
Scheduling Offset-Free Systems Under FIFO
Priority Protocol
Matheus Ladeira #

ISAE ENSMA, Chasseneuil, France
University of Poitiers, France

Emmanuel Grolleau #

ISAE-ENSMA, Chasseneuil, France
University of Poitiers, France

Fabien Bonneval #

Ecole Nationale de l’Aviation Civile, Toulouse, France

Gautier Hattenberger #

Ecole Nationale de l’Aviation Civile, Toulouse, France

Yassine Ouhammou #

ISAE-ENSMA, Chasseneuil, France
University of Poitiers, France

Yuri Hérouard #

ISAE-ENSMA, Chasseneuil, France

Abstract
On UAVs, telemetry messages are often sent following a FIFO schedule, and some messages, depending
on the FIFO queue state may suffer long delays, and can even be lost if the FIFO queue is full.
Considering the high complexity of the problem of assigning offsets to periodic tasks, we propose a
new heuristic, called GCD+, that we compare to the methods of the state of the art, showing that
GCD+ significantly outperforms them on synthetic tasks sets. Then we use a real UAV use case,
based on Paparazzi autopilot, to show that GCD+ behaves well. The proposed algorithm is meant
to be the new Paparazzi’s automatic offset assignment method for messages.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture;
Computer systems organization → Embedded software

Keywords and phrases Scheduling, non-preemptible, heuristics, FIFO, autopilot

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.11

Supplementary Material Source code for an implementation of GCD+ in Python was submitted under
LGPL license to artefact evaluation, and can be found in: https://github.com/lias-laboratory/
gcdplus
Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.4

Funding This project has received funding from the ECSEL Joint Undertaking (JU) under grant
agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia,
Netherlands.

1 Introduction

When conceiving an Unmanned Aerial System (UAS), i.e., a flying drone and every supporting
device in the drone’s network, the communication between the drone and the Ground Control
Station (GCS) or the remote pilot may be critical, since it may determine if the drone is

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Matheus Ladeira, Emmanuel Grolleau, Fabien Bonneval, Gautier Hattenberger,
Yassine Ouhammou, and Yuri Hérouard;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matheus.ladeira@ensma.fr
https://orcid.org/0000-0002-3488-3468
mailto:emmanuel.grolleau@ensma.fr
https://orcid.org/0000-0001-7045-9819
mailto:fabien.bonneval@enac.fr
mailto:gautier.hattenberger@enac.fr
https://orcid.org/0000-0002-2986-5249
mailto:yassine.ouhammou@ensma.fr
https://orcid.org/0000-0003-3776-4736
mailto:yuri.herouard@etu.isae-ensma.fr
https://doi.org/10.4230/LIPIcs.ECRTS.2022.11
https://github.com/lias-laboratory/gcdplus
https://github.com/lias-laboratory/gcdplus
https://doi.org/10.4230/DARTS.8.1.4
https://doi.org/10.4230/DARTS.8.1.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Scheduling Offset-Free Systems Under FIFO Priority Protocol

certifiable or not for a specific mission [15]. Without a reliable communication link and the
guarantee that the GCS or the remote pilot can take control of the drone, safety and security
of every entity in the surroundings must be insured only by its autonomous functionalities.
This requires the development of very complex and, therefore, expensive embedded skills.

Hence, guaranteeing the nominal behaviour of the communication system is an important
step in drone development and configuration. Nevertheless, not only a larger communication
band can improve the exchange of messages between the different parts of the UAS: the
choice of the moments in which these messages are sent, by orchestrating their periods and
the moments of the first message transmissions, can play an important role in order to avoid
large waiting queues and, consequently, message delays or even losses. Some message delays
can make the GCS conclude falsely that the communication is lost and enter in fail-safe
mode.

LINK

SERVER

UAV

Other tools

Simulator
Messages (debug)

Joystick
Network bridges
User applications

...

GCS

Ground Control
Station

Available Firmwares

Fixedwing

Rotorcraft

Hybrid

Rover

downlink
(datallink class)

uplink
(telemetry class)

air-to-air

Flight controller
Sensors, actuators, propulsion

Payload

publish / subscribe middleware

Communication library
PPRZLINK

Log telemetry
Dispatch messages

Paparazzi UAV

(ground class)

Airborne Segment

Ground Segment

Figure 1 Paparazzi system architecture.

Amongst current solutions for the problem, we can highlight the one used in Paparazzi
[3, 11, 16], the open source autopilot developed by ENAC (École Nationale d’Aviation Civile,
France) and used in many research-related domains. It is conceived using modular functions
for the control algorithm, that are called in a single execution thread, one after the other
according to a defined pattern of execution. In parallel, a telemetry thread is responsible
for sending telemetry data through a wireless channel to a ground station, as depicted in
Figure 1. Each type of message has a defined range of possible sizes and a specific period in
which it will be sent. The messages are sent following a First-In-First-Out (FIFO) scheduling
policy.

In their current approach, message periods are chosen and adapted so that they yield a
very high hyperperiod, i.e., the time it takes for the pattern of message transmission to start
repeating (mathematically, it is the Lowest Common Multiple of all message periods). If

M. Ladeira et al. 11:3

every message is called to be sent in the same moment in time, this will happen only once in
every hyperperiod. Therefore, by adjusting periods such that their LCM is high enough, the
system will have only one simultaneous activation of all the messages in a very long period
of time – days, years, millennia, or even further. However, this simultaneous call can still
happen, while there are other methods that may prevent it completely.

The problem of message transmission in a single communication link is analogous to the
problem of scheduling non-preemptive tasks on a single processor. More specifically, this is
equivalent to the problem of finding offsets in an offset-free system of periodic tasks under
FIFO scheduling (thus tasks are non-preemptive), which has been studied in the literature.

In this article, we analyse the problem of message and task scheduling, proposing GCD+,
a new method to seek for better offsets and to avoid deadline misses. Section 2 explores in
depth the motivating case for this development. Section 3 presents a mathematical model
for the problem. Section 4 brings to light other heuristics that deal with the same problem.
Section 5 describes our contribution: the new heuristic method. Section 6 compares our
heuristic to three heuristics found in the literature. Section 7 applies the new method to a
real case involving the Paparazzi autopilot, and finally, Section 8 concludes the paper.

2 Motivating Example

Currently, in order to avoid critical events (several simultaneous message calls), the adopted
strategy in Paparazzi consists of two methods applied in parallel. The first one is changing
message periods in small amounts (from about 1% to 10%), so that the critical case for any
two messages only happens once in a very long interval (the hyperperiod, calculated as the
LCM of the periods). For example, instead of using the periods 3 and 5 seconds, which will
compose an execution pattern that will repeat every 15 seconds (i.e. the hyperperiod is 15
seconds long), one can choose to use periods of 3.1 and 5.1 seconds, which yield a hyperperiod
of 158.1 seconds. This technique can help reduce the interference specially considering sets
of several messages, which will have a very large hyperperiod, meaning that concurrent calls
become less probable. However, it does not guarantee that critical cases will not happen,
and it might lead to unexpected long delays that are very hard to reproduce.

The second method, complementary to the first, relies on the use of offsets, so the critical
instant does not happen at t = 0. The first message to be evaluated is assigned an offset of
0; the second one, an offset equivalent to 10% of its period; the third one, 20% of its period;
and so on (and, when the counter reaches 100%, it resets to 0 so that every offset is smaller
than the respective period).

Using offsets is a well-known strategy to increase the schedulability of task systems:
finding the right combination of offsets for each set of tasks in order to avoid overlapping [7].
The problem consists in choosing offsets in an offset-free system such as to avoid load peaks.
Hence, instead of being called at every instant t = n · Ti (where n ∈ N and Ti is the period
in which τi is executed), a task would be called at every instant t = Oi + n · Ti (where Oi is
an initial offset given to τi). By coordinating the individual offsets of each task according
to their periods and to the other periods in the system, it might be possible to completely
prevent critical cases or, at least, reduce the maximum possible interference between messages
– and in a mathematically predictable way.

The analogy between message and task scheduling holds due to the fact that the transmis-
sion of a message happens at a defined rate, such as the processing of individual instructions
in a CPU, and the message sizes are analogous to the execution times of the tasks. These,
however, must be considered non-preemptible, since once a message starts being sent, the

ECRTS 2022

11:4 Scheduling Offset-Free Systems Under FIFO Priority Protocol

process cannot be interrupted by a new arriving message. Also, due to implementation
constraints (namely a ring buffer used to store output messages) the first message to arrive
in the transmission queue will be the first to be sent, and therefore they are under a FIFO
scheduling policy.

Paparazzi uses a configuration file to describe its telemetry, where each message is
characterized by a period and an offset. Therefore, increasing schedulability by changing the
offset does not require changing a single line of the C code of the autopilot, saving testing
and validation efforts.

In our case, the goal is not only to meet deadlines, but also to minimize the response
time of the messages. This goal is related to the freshness of data sent over the datalink.
Indeed, the longer a message is kept in a queue before being sent, the less representative of
the state of the system it is.

In the following sections, we will analyse the behaviour of task systems (but the analogy
between processing non-preemptible tasks and sending telemetry messages holds for every
case).

3 Problem Statement

Figure 2 Model of execution of a set of two periodic tasks under FIFO with different offsets. The
up arrows represent task releases.

An offset-free task system [7] Φ of n periodic tasks executing in a single processor under
FIFO scheduling (and, therefore, non-preemptive), each task τ ′

i (such that i ∈ [1, n] ⊂ N)
being given by a tuple composed of two positive integers – its period Ti and its Worst Case
Execution Time (WCET) ci –, is given by Equation 1.

Φ ≜ {τ ′
i | τ ′

i = (Ti, ci) ∀i ∈ [1, n]} (1)

We are interested in finding a vector of n integers Oi such that the concrete task system
Θ, defined by Equation 2, is schedulable and, in order to guarantee data freshness, where
the tasks have the smallest starting time. Since the scheduler is non-preemptive, an earlier
starting time means a lower response time.

Θ ≜ {τi | τi = (τ ′
i , Oi) ∀i ∈ [1, n]} (2)

In order to do that, like in [7, 18, 1], we will make use of Theorem 1. Nevertheless until
now, it has been used to guarantee space between releases of pairs of tasks, but in our GCD+
heuristic, we use it to guarantee space between more tasks than two, hence the name of our
heuristic.

▶ Theorem 1 ([18]). Given two concrete tasks τi and τj , the minimum distance between the
release of a job of τi and the next job of τj is given by:

∆i,j = (Oj −Oi) mod GCD(Ti, Tj) (3)

M. Ladeira et al. 11:5

Using the example depicted in Figure 2 and considering that τ1 has an offset O1 = 1, a
period T1 = 16 and an execution time c1 = 8, and that τ2 has an offset O2 = 0, a period
T2 = 12 and an execution time c2 = 4, the minimum distance between the release of a job of
τ1 and the next release of τ2 is:

∆1,2 = (O2 −O1) mod GCD(T1, T2) = (0− 1) mod 4 = 3

Similarly, the minimum distance between the release of a job of τ2 and the next release
of a job of τ1 is:

∆2,1 = (O1 −O2) mod GCD(T1, T2) = (1− 0) mod 4 = 1

By taking Equation 3 and comparing its result to ci, if ci > ∆i,j and jobs use their
WCET, it is guaranteed that there will be a delay in the execution of a job of τj , and this
delay will be of at least ci −∆i,j . Therefore, we can define a lower bound Ii,j for the largest
interference caused by the execution of a job of τi on the execution of the next job of τj as
being the amount of time the execution of τi overlaps into the minimum distance from its
request to the subsequent request of τj . So, we have Equation 4.

Ii,j ≜

{
0 if ci ≤ ∆i,j , or i = j

ci −∆i,j otherwise
(4)

Note that we use a FIFO scheduling policy, and that if a job is released before another
one, then the former will be executed before the latter. The interference that a job under
analysis can suffer when it is released is therefore the remaining execution time of the job in
execution (if any) plus the sum of the worst-execution times of the jobs which are ready at
or before the release of the job under analysis. The value of Ii,j , if positive, shows the lowest
bound for the biggest amount of delay that will be caused in the execution of a job of τj due
to the execution of a job of τi. The maximum delay can still be larger than Ii,j in case any
backlog occurs, as will be seen in a following example.

Using the example in Figure 2, the lower bound for the maximum delay that τ1 causes in
τ2 is:

I1,2 = c1 −∆1,2 = 8− 3 = 5

And the minimal value for the maximum delay that τ2 causes in τ1 is:

I2,1 = c2 −∆2,1 = 4− 1 = 3

It can be seen from Figure 2 that the maximum delays suffered by tasks τ1 and τ2 are
effectively correspondent to I2,1 and I1,2, respectively. However, considering the same system
but with c2 = 6 instead of 4, I2,1 = 5, but instead the simulation shows that a maximum
delay of 6 happens. This can be explained by the presence of a backlog (an accumulation of
preceding delays).

This lower bound can be far from the real maximum delay in the case for more than two
tasks in a system, since delays can more easily accumulate. Yet, reducing the lower bound for
the maximum interference in task pairs is shown to improve the system’s schedulability [7, 8].

▶ Proposition 2. If Ii,j = 0 ∀i, j, then there is no delay in the execution of the system, i.e.,
every task job τi,k ends its execution time in the instant ri,k + ci ∀i, k.

ECRTS 2022

11:6 Scheduling Offset-Free Systems Under FIFO Priority Protocol

Proof. We prove it by recurrence. If Ii,j = 0 ∀i, j, the first task job to be requested will
certainly finish its execution before the next job request to happen, since no task executes
before it. Hence, the next job will not have any initial delays, and since Ii,j = 0 ∀i, j, it will
also finish its execution before the next request, and so on. ◀

The goal of this paper is to present a method to look for the state of null interference
discussed in Proposition 2 if this state exists.

4 State of the Art

Some methods have been proposed to assign offsets to systems independently of their scheduler
(FIFO, Earliest Deadline First, etc.), such as the heuristic proposed in this paper. Given the
complexity of the problem, well described by [7], the use of heuristics is a common approach
to solving it. In [7], the authors have proposed an algorithm (hereafter called Goossens’s
Heuristics) to order every possible task pair in a set according to a decreasing order of the
GCD of their periods, so each pair of tasks (starting from the highest GCD) is given a pair
of offsets which are apart by half of their GCD. The goal is to try to separate as much as
possible the task calls. The complexity of the algorithm is O(n2 · (log Tmax + log n2)). We
can think of a slight modification to this method by separating the “half instant” (call instant
plus half of the execution time) of every task, instead of their calls. This modification is
hereafter called Modified Goossens’s Heuristics.

Later, a modification of the previous heuristics is proposed in [8], regarding the priority
that determines the order in which task pairs are evaluated, but keeping the principle of
separating as much as possible the task calls. Four new priority assignments are evaluated,
based on expressions containing the pairwise GCDs. The algorithm complexity is, therefore,
considered to be the same.

Also, a method is proposed in [9] (hereafter called CAN Message Heuristics) to look for
the longest least-charged time interval in the interval [0, Tmax), and then put the task call in
the middle of that interval (starting from the task with the lowest period. Its complexity is
said to be O(n · Tmax), therefore it is pseudo-polynomial.

Paparazzi currently uses a method where each message has an offset correspondent to a
multiple of 10% of its period (modulo 100%) [17]. The multiple is defined at the moment
the message is added to the set, such that: the first message has an offset correspondent to
0% of its period; the second, 10%; the third, 20%; and so on. In mathematical notation:
Oi = ((i− 1) mod 10) · 0.1 · Ti. Its complexity is, hence, O(n).

Moreover, some methods were proposed specifically for FIFO schedulers. In [1], the
authors explore several properties for FIFO schedulers and derive a sufficient (but not
necessary) test to assess the schedulability of a task set (given the tasks’ periods, execution
times and offsets). However, they do not propose a method for calculating the tasks’ offsets
other than assigning random values, while in [12] the authors do present such a method.
Their proposal consists in using one or several offsets per task in order to reproduce, under
FIFO, the schedule constructed by another scheduler (Earliest Deadline First, for example).
Nevertheless, implementing this approach in the case of the Paparazzi autopilot would require
the autopilot’s code to be modified, retested and revalidated, while a single offset per task
requires only a specific configuration (already expected by the code).

M. Ladeira et al. 11:7

(a) O1 = 0 and O2 = 1. (b) Solution presented
by Goossens’s heuristics:
O1 = 0 and O2 = 2.

(c) Solution presented by
modified Goossens’s heur-
istics: O1 = 0 and O2 = 3.

Figure 3 Representation of the execution of a system around a modular circle of size 4, with
T1 = 16, c1 = 3, T2 = 12 and c2 = 1.

5 Contribution

This paper’s contribution relies on the extension of a simple yet very useful technique to
analyse pairs of tasks, allowing it to be used on whole sets of tasks. This technique is based
on the modular arithmetic around the GCD of their periods, which is based on Theorem 1.
Therefore, it needs a “sufficiently large” GCD to function properly, i.e., the GCD of all the
periods cannot be smaller than any execution time. Otherwise, this method will give poor
results.

If we analyse the modular circle around the GCD(Ti, Tj), hereafter also referred to as
GCDi,j , and we represent the execution of those tasks from their release to their end, we
can rapidly see if there will be any overlap in execution, such as in Figure 3a. The overlap in
the GCD circle means that there will be an instant during the execution where there will be
a task release, but another one will already be in execution. Similarly, if there is no overlap,
then there will not be any delay whatsoever if there is no backlog.

The method presented here intends to reduce execution overlaps, but considering the
system as a whole instead of pairs of tasks. For this, we take advantage of a property of
semi-harmonic task sets, which means their task periods are all multiple of a given value
Ω. This can be the case for several task systems, specially when we consider that there
are several techniques to adapt task periods in given ranges so that they can approach this
semi-harmony [2, 20, 4, 19, 13].

To better understand the method, we can start with an example. Let us suppose we want
to assign an offset for a task τ3 of period T3 = 8 and execution time of c3 = 2 in the system
represented by Figure 3c. We might have the impression that adding any task to the system
would cause an overlap in execution times. However, even if the circle looks fully occupied,
the system still has some free spaces, as seen in Figure 4.

Figure 4 Execution of τ1 (top, green), τ2 (middle, blue) and τ3 (bottom, red).

In fact, when comparing the GCD circle with the real execution of the system, τ1 is
released only once every T1

GCD1,2
= 4 GCDs. On the right side of Figure 5, it is represented in

green in GCDs 0, 4 and 8. This means that there is still room to execute, without interference

ECRTS 2022

11:8 Scheduling Offset-Free Systems Under FIFO Priority Protocol

with the two considered tasks, within the 3 GCDs out of 4 which are not used by τ1, using
τ1 reserved slot on the GCD circle. This reserved slot is called a section, and is represented
on the left part of Figure 5 as a yellow sector in the central pie chart. Sections are partitions
of the GCD cycle that will be allocated to tasks which have to be collocated on the same
GCD cycle. For example, since τ1 and τ2 have respective periods of 16 and 12, there will be
one time interval of size 4 such that τ1 and τ2 are both released each LCM of the periods.
Now, if we consider τ3, of period 8, since GCD1,3 is twice as large as GCD1,2,3, τ3 can be
added to the system using the section allocated to τ1 because it can always alternate with
τ1. Since this section is a partition over the GCD cycle, it will not interfere with τ2 either.
This is represented in Figure 5, where task τ3 is assigned to the second GCD circle, at the
beginning of the yellow section, and will then use this section on circles numbered 1 + 2k for
any natural integer k.

0

1

2

3

Section 𝑝 = 2

Section 𝑝 = 3

Figure 5 Representation of the execution of τ1 (green), τ2 (blue), τ3 (red) and τ4 (dashed grey)
over the overall GCD circle (left) and the cycles 0 to 11 composing the hyperperiod (right).

Several other tasks could also be added without interfering with the rest of the system,
in the unused spaces seen in Figure 5. For example, if we consider τ2, the ratio T2

GCD1,2
= 3

allows execution within the 2 GCDs over 3 which are not used by τ2. Therefore, we could add,
without creating interference, one or several tasks using the section used by τ2 (represented
in purple on Figure 5) two GCDs over three in the same way as τ3 used τ1’s unused GCD
section. In both cases, we can observe that this addition of tasks without interference is
always possible if the period of these additional tasks is a multiple of GCD1,2. As a result, by
construction, if n− 2 tasks were added to the initial system of two tasks using this method,
GCD1,...,n = GCD1,2.

Note that this condition is sufficient but not necessary to add a new task to a system
without interference. For example, if we consider the system Φ = {τ1 = (T1 = 6, c1 =
1), τ2 = (T2 = 10, c2 = 1)}, an additional task τ3 = (T3 = 15, c3 = 1) can be added without
interference while T3 is not a multiple of GCD1,2. We do not seek a necessary and sufficient
condition of non overlap, because we know that finding non overlapping intervals is a hard
problem. Indeed, the simultaneous in-congruence problem, which is at the root of this
problem, is NP-hard in the strong sense [5].

In the problem tackled by this paper, we do not have the freedom to change periods,
but we can retain the main idea by working with the GCD of all the tasks to try to find
offsets minimizing the interference. In an attempt to consider the system holistically instead

M. Ladeira et al. 11:9

of a union of independent pairs of tasks, the proposed heuristics of this paper considers
the GCD of all the periods. In our context, the time unit being the duration of a bit
on the network, and the periods of the telemetry messages often being multiples of tens,
hundreds or thousands of milliseconds, we expect the global GCD to be large in general in
real applications.

The global GCD, hereafter called Ω, is defined in Equation 5.

Ω = GCD1,2,...,n (5)

If two tasks have a GCD between their periods which is greater than Ω, it is possible to
arrange them as it was done for τ3 in the preceding example. On the other hand, if their
GCD is exactly Ω, then they must be put in a modular circle around Ω to be analysed,
because over the hyperperiod, there will be a time window of size Ω where both tasks will be
released.

Our method seeks that sort of arrangement in any given system by checking how many
distinct sections (reserved slots, such as the one shared by τ1 and τ3 in the example) will
need to co-exist in Ω, so that groups of tasks can be scheduled according to their respective
sections and that each section will have its own reserved interval of time, without ever
overlapping with other sections. The amount of sections will be given after analysing the
quotient of each task period by Ω: if the GCD between two quotients is greater than one, it
means that their respective tasks can be put in the same section in the mod Ω circle without
creating an overlap in execution times. This quotient will be called a task’s subperiod as
defined in Equation 6.

TSi = Ti

Ω (6)

From the example in Figure 4, TS1 = 4, TS2 = 3 and TS3 = 2. Note that TS1 and TS3

are multiple of 2 (which is why we characterize their section as prime p = 2 in Figure 5),
and that TS2 is co-prime with the other two. Since TS2 = 3, the section assigned to τ2 is
characterized by a prime p = 3.

If we divide the whole execution of the system into cycles of Ω units of time such as in
the right side of Figure 5, each task can be released periodically every TSi cycles. So, τ1
can be released every four cycles, and τ3, every two cycles. The algorithm shall be able to
schedule τ3 so that it avoids being released in the same cycle as τ1. This can be done by
analysing the possible cycles it can be assigned to: since its subperiod is only two, it can only
be assigned to cycle zero or cycle one (assigning it to cycle two is the same as assigning it to
cycle zero due to its periodicity). For cycle zero, the section for multiples of two is already
occupied by τ1, but cycle one is free. Then, it can be assigned to start at the beginning of
the section of prime two in cycle one.

To sum up, we have three values to choose for each task:
1. The cycle number between 0 and TSi

− 1;
2. The section within the cycle, acting as a partition, whose prime has to be a divisor of the

subperiod;
3. An offset inside the section, in case two tasks share the same cycle and section (e.g., if we

want to add τ4 with T4 = 8 and c4 = 1 in cycle one, in the section of prime p = 2, right
after every execution of τ3, represented in dashed gray on Figure 5).

For each assignment above there is a partial offset, respectively OC , OS and OI , such
that the final offset will be given by Equation 7. Tasks assigned to start at the same cycle
will have the same OC , while those that use the same section (multiples of the same prime)
will share the same OS , and if they share both OC and OS they will have to have distinct OI .

ECRTS 2022

11:10 Scheduling Offset-Free Systems Under FIFO Priority Protocol

Oi = Ω OCi
+ OSi

+ OIi
(7)

Using our example in Figure 5, τ1 and τ2 have OC = 0 since they are executed in the first
cycle, while τ3 has OC = 1. As τ1 and τ3 share the same section, they have the same OS = 0,
while τ2 has OS = 3, which is the moment in the GCD circle when their section begins. And,
since every task starts in the same time as their respective section, every OI = 0. A new task
τ4 with T4 = 8 and c4 = 1, set to be executed right after τ3 finishes its execution (as seen in
Figure 5), would share the same values of OC and OS with τ3, but would have OI = 2.

Note that, if we want to add a task τ5 such that T5 = 20 and, therefore, TS5 = 5,
independently of the execution time of the task, GCD+ would have to create a new section:
those for subperiods multiple of 5. The section will be put to begin its execution right after
the one for multiples of 3 (i.e., for τ5, OC = 4). It will necessarily result in an interference in
every task in the section for multiples of 2, as GCD+ was not able to find a better solution.

Algorithm 1 represents the algorithm to determine the values of each partial offset. First,
it calculates Ω, the overall GCD of all the periods. Based on this value, it assigns tasks one
by one to the section that will increase the least in size (i.e., for every cycle, the longest it
takes for its tasks to finish their execution). By doing this, it can calculate the partial offsets
OCi

and OIi
so that the task can start as soon as possible in the section without overlapping

with any other. When every task is assigned, it can then calculate each section size and
finally apply an offset to each section, so one is released only after the previous has finished
its execution. Its complexity is O(n · (log Tmax +

√
Tmax + log Tmax

log log Tmax
· (log Tmax + Tmax)))

using the Euclid’s algorithm for finding GCDs in O(log Tmax), a sieve to factor numbers in
approximately O(

√
Tmax) and considering the number of distinct prime factors of a number

to be at most log Tmax

log log Tmax
. Note that the last Tmax is only a superior bound to TSi , and the

algorithm generally works very far from this bound.

Algorithm 1 GCD+.

Require: Φ = {(Ti, ci) | i, Ti, ci ∈ N ∧ i ∈ [1, n]}
Ensure: O = {Oi | i, Oi ∈ N ∧ i ∈ [1, n] ∧Oi < Ti}

1: Ω← GCD({∀ Ti})
2: for all τi ∈ Φ do
3: if Ti = Ω then assign(τi, 1)
4: else
5: Find prime factors of TSi (Equation 6)
6: Choose prime p such that assigning τi to it increases its section size by the least

possible amount
7: assign(τi, p), defining the cycle OC and internal offset OI

8: end if
9: end for

10: calculate every OS (section sizes)
11: for all τi ∈ Φ do calculate Oi according to Equation 7
12: end for

M. Ladeira et al. 11:11

6 Performance comparison

6.1 Experimental setup and chosen metrics
Random task sets are generated according to the methodology proposed in [10], to generate
an unbiased distribution of utilization factors.

In order to generate representative task periods, there are two available methods in the
literature. The first one, used in [1] for generating semi-harmonic task sets, chooses a random
integer between defined lower and upper bounds, and multiplies the random number to a
defined value, of which every period will be a multiple of. The second one [6], more general
than the first, generates task periods from a finite set of possibilities according to a given
factor distribution. The latter was chosen due to it being more representative of real-world
scenarios.

The method for generating task periods works as follows: a set of prime numbers {pi} is
given to the algorithm as an input. Each prime pi related to a unique vector {xj ∈ N} of
size ni. The vector represents the probability distribution that the corresponding exponent
will be chosen to compose the final period. In other words, the probability that the factor
p

(j−1)
i will compose the generated period is xj/

∑
k xk). The possible values for the periods

are limited to
∏

i p
(ni−1)
i , and so is the hyperperiod of the system.

The generating set of vectors for each task period is obtained from the factors present
in the periods of a real set of messages from Paparazzi1. This file, in addition to being
used in the real telemetry system of rotorcraft equipped with Paparazzi, contains periods
that were purposefully tuned to increase the hyperperiod (using 11.1 seconds instead of 10,
for example). This causes the overall GCD to be reduced, approaching then a worst-case
scenario in our domain of application. Yet, the overall GCD has proven to be sufficiently
large.

The generated periods and generated utilization factors are multiplied to obtain the
execution times. These are then rounded to the nearest integer. Task sets that have any
execution time rounded to 0 are discarded, since they will not have the effective number of
tasks that were demanded. Also, only sets for which the GCD of all the periods is greater or
equal to the largest execution time will be used. This case is often found in real applications
such as Paparazzi, and is needed for our heuristics to work properly.

Then, the algorithms for finding the offsets are used in each task set. After each offset
assignment algorithm is run, the respective concrete task sets are simulated over an interval
equivalent to two hyperperiods plus the greatest offset and, for every task in every set, its
maximum delay ηi is registered (the largest period of time between a task release and the
beginning of its execution). This value represents the largest interference a task suffers. The
delays can then be put directly in a box plot to be analysed in their brute form, where each
task in each set will have its data point indicating the value of its maximum delay, and these
data points will be condensed in boxes where each box represents a single algorithm for offset
assignment.

However, while a certain absolute value for a delay (for example, 1000 time units) can
mean a significant deadline miss (e.g., a task with period 500 with implicit deadline), for
others it can mean only an “affordable” amount of 10% of its period (e.g., a task with period
10000 in a system with few and low-utilization tasks). Therefore, we must also evaluate the
ratio between each delay and each corresponding task period to better evaluate the obtained
results.

1 https://github.com/paparazzi/paparazzi/blob/master/conf/telemetry/default_rotorcraft.xml

ECRTS 2022

https://github.com/paparazzi/paparazzi/blob/master/conf/telemetry/default_rotorcraft.xml

11:12 Scheduling Offset-Free Systems Under FIFO Priority Protocol

If a task was delayed at most by 100 time units in a system in which the shortest task
executes in 200 time units, then it performed better than one that had the same maximum
delay but in a system where the maximum execution time is 50, indicating that task delays
have been chained and, in our case, probably more messages are waiting in the queue. Hence,
to look for signs of chaining delays, we also analyse the ratio between the delay and the
maximum execution time of other tasks in the set.

To evaluate the response time of each task, the maximum delay summed to the execution
time of each task is normalized with respect to each execution time. Values close to 1 will
indicate a small relative change to the response time.

A final analysis takes into account the schedulability of each task set. If any implicit
deadline was missed, the task set is marked as unschedulable under FIFO. Then, the amount
of schedulable sets is counted for each offset-assignment method, and they are compared
between each other for each value of the total utilization factor.

In summary, the metrics used in the analysis are in the following list:
1. interference of other tasks ηi

2. interference normalized by period ηi/Ti

3. interference normalized by concurrent tasks’ maximal duration ηi/max{∀τk ̸=τi}(ck)
4. maximum response time (ηi + ci)/ci

5. schedulability

6.2 Results
The codes of some heuristic methods cited in Section 4, as well as the new contribution were
implemented and executed in Python 3.9.6, using a laptop with Ubuntu 18.04.1, Intel Core
i7-4710MQ CPU (2.50GHz, 4 cores, 8 threads, 2054MHz), and 16 GB of RAM.

GCD+ is comparatively evaluated using sets of 8 and 16 tasks. The limit on the number
of tasks is due to the duration of the simulation used to compute the metrics. The time
for each method to yield an offset assignment is measured and, later, the resulting offset
assignments are evaluated in a simulation according to the criteria presented before. The
simulation stores the maximum delays of each task (the difference between the time it starts
its execution and the time it was called). Also, simulations with 1000 sets and then 2000
sets resulted in identical graphs, so we use only 1000 sets as a sufficient sample. The offset
calculation time for each group of sets is shown in Table 1 for sets with 70% utilization.
Other utilization values did not present significant variations.

Table 1 Average time to assign offsets (results from 1000 filtered sets at 70% utilization).

Method Time - 8 tasks (µs) Time - 16 tasks (µs)
GCD+ 54.8 151
Paparazzi method [17] 4.78 9.11
Goossens’s method [7] 22.8 74.7
CAN message method [9] 45.7 346

Table 1 shows that the time to calculate offsets is very small from a human perspective
for every method. It also shows that every method is scalable, and therefore we can focus
solely on their results.

Box-plots are used to represent simulation results, where each heuristic method has its
box. In the plots, the median (50th percentile) is represented as an orange continuous bar,
the limits of the box are the first quartile (25th percentile) and third quartile (75th percentile),

M. Ladeira et al. 11:13

and whiskers span from a box limit until the furthest value such that its size is, at most, 1.5
times the distance between the first and third quartile. All values beyond the whisker limits
are considered outliers and are not represented in order to allow readability. However, the
representations showing outliers follow the same tendencies as shown in the following figures.
The mean value is also represented, as a dashed green bar.

For sets of 8 tasks, the behaviour of the systems can be seen in Figure 6 for 70% utilization
and in Figure 7 for 90% utilization. Similarly, the behaviour for 16 task systems is seen in
Figure 8 for 70% utilization and in Figure 9 for 90% utilization. In these figures, the box
plot furthest to the left shows the first metric (ηi), the one at its right side shows the second
metric (ηi/Ti) and so on.

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

100

200

300

400

500

Maximum Delays

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.2

0.4

0.6

0.8

1.0

MaxDelay / Period

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

2.5
MaxDelay / max(ExecTimes)

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

MaxRespTime/ExecTime

Figure 6 Delays extracted from simulations for 1000 filtered sets of 8 tasks, with U = 70%.

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

100

200

300

400

500

600

700
Maximum Delays

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

MaxDelay / Period

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

2.5

MaxDelay / max(ExecTimes)

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s
0

5

10

15

20

MaxRespTime/ExecTime

Figure 7 Delays extracted from simulations for 1000 filtered sets of 8 tasks, with U = 95%.

ECRTS 2022

11:14 Scheduling Offset-Free Systems Under FIFO Priority Protocol

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

100

200

300

400

500

600

Maximum Delays

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

MaxDelay / Period

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

MaxDelay / max(ExecTimes)

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

10

20

30

40

50

60

MaxRespTime/ExecTime

Figure 8 Delays extracted from simulations for 1000 filtered sets of 16 tasks, with U = 70%.

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

100

200

300

400

500

600

700

800
Maximum Delays

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

MaxDelay / Period

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

MaxDelay / max(ExecTimes)

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

10

20

30

40

50

60

MaxRespTime/ExecTime

Figure 9 Delays extracted from simulations for 1000 filtered sets of 16 tasks, with U = 95%.

From the box plots, it can be seen that, for GCD+, every quartile (first, second and
third) is significantly closer to the ideal value in every situation than those for the other
heuristics, as well as the boundaries of the whiskers and the mean values. For utilization
factors of 70%, GCD+ was able to keep the delay of the great majority of tasks under 60%
and 80% of their periods in the case of sets of 8 and 16 tasks, respectively. Other heuristics,
however, show whiskers going beyond the value of 100% in these same situations.

It is also noticeable how every heuristic method has more trouble reducing delays when
the task count increases, notably with respect to the ratio between maximum response
times and execution times – this ratio tripled when the task count doubled. Increasing the
utilization factor is another factor that worsens the maximum delays for every heuristic
method.

M. Ladeira et al. 11:15

Figure 10 Schedulability for 1000 filtered sets of 8 tasks, from U = 50% to 98%.

Figure 11 Schedulability for 1000 filtered sets of 16 tasks, from U = 50% to 98%.

In order to evaluate the schedulability of these task sets with respect to the utilization
factors, an implicit deadline was considered for every task, and if a set has a task that missed
a deadline, it is considered unschedulable. Figure 10 and Figure 11 were then obtained
for sets of 8 and 16 tasks, respectively. GCD+ shows a significant advantage relative to
every other heuristic in every situation that is shown. For sets of 8 tasks, at 80% utilization
factor, there is an increase of at least 50% in the number of schedulable sets, while for 90%
utilization there are about twice as much schedulable sets when using GCD+. For sets of 16
tasks, the increase is even more pronounced: from about 2x at 50% utilization to about 4x
at 90%.

The significant improvement seen in the presented results can be explained by certain
limitations of the other methods. Paparazzi method tries to distribute the offsets without
taking into account the relations between the messages. The CAN Message heuristic method,
when trying to distribute the first calls over the maximum period, ignores the effects over the
hyperperiod, during which two tasks that were initially put far away can fall into a critical
case. The Goossens’s heuristic method, although it considers some interactions between

ECRTS 2022

11:16 Scheduling Offset-Free Systems Under FIFO Priority Protocol

pairs of tasks during the whole hyperperiod, has a trap: when several tasks have the same
period, it will tend to assign the same offset to all of them, intentionally creating a critical
case. Furthermore, its random component might lead to undesired critical cases. The fact
that it does not take into account the execution times of tasks has no apparent effect in its
results, since the Modified Goossens’s Heuristic (which does take them into account) had the
exact same results as the original method.

7 Case Study

An adapted real-world scenario was set up in order to measure the applicability of GCD+.
A telemetry configuration file was used to define the messages that a Paparazzi autopilot
implementation sends periodically, such that the telemetry is composed of the messages
described in Table 2. The column c indicates the content size of the message, without adding
any protocol header or tail.

Table 2 Paparazzi telemetry values.

i ID T (s) c (B)
1 ALIVE 2 17
2 ROTORCRAFT_FP 1 58
3 INS_REF 1 32
4 ROTORCRAFT_NAV_STATUS 1 15
5 ENERGY 1 21
6 DATALINK_REPORT 1 11
7 DL_VALUE 0.2 5
8 ROTORCRAFT_STATUS 0.2 20
9 STATE_FILTER_STATUS 0.2 4
10 AIR_DATA 0.2 28
11 INS 0.2 36
12 GPS_INT 0.1 57
13 IMU_GYRO_SCALED 0.04 12
14 IMU_ACCEL_SCALED 0.04 12
15 IMU_ACCEL_RAW 0.02 12
16 IMU_GYRO_RAW 0.02 12

The messages are sent to a UART channel, which is normally connected to an antenna to
transmit the data, but for this test and to ignore any effects related to the transmission of
radio waves, messages are read directly in the UART channel in our experiment. According
to its protocol, every byte has a start and an end bit added to it, which makes it transmit 10
bits per byte. It was configured to transmit 57600 bits per second. In addition, the Paparazzi
protocol used (Pprzlink V2.0) adds 8 bytes to each message for header and checksum2.

Therefore, to use the time it takes for a bit to be transmitted as a unit of time, i.e.,
1/57600 second, values for periods have to be multiplied by 57600, and the amount of bytes
in every message, after the 8 Pprzlink bytes are added, have to be multiplied by 10. With
these converted values, we can analyse this case using GCD+. Its results are presented in
Figure 12.

Figure 12 shows that, using GCD+, every message has a delay under 10% of its period,
in comparison to 80%, 170% and even 270% in other heuristics. These delays represent at
most 20% of the maximum length of other messages, while the third metric shows that there
was a significant chaining of interferences for all the other heuristics. Also, deadline misses
were registered for the methods Goossens and Paparazzi, while the system was schedulable
using offsets from GCD+ and CAN Message heuristics.

2 https://wiki.paparazziuav.org/wiki/Messages_Format

https://wiki.paparazziuav.org/wiki/Messages_Format

M. Ladeira et al. 11:17

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

500

1000

1500

2000

2500

3000

Maximum Delays

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

2.5

MaxDelay / Period

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

1

2

3

4

5

MaxDelay / max(ExecTimes)

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s
0

5

10

15

20

25

MaxRespTime/ExecTime

Figure 12 Delays extracted from simulations for the case study.

From the physical analysis, before the implementation of GCD+, some messages were
lost due to a full buffer, as it can be seen in Figure 13. The figure is a screen capture from
the software Logic 2, for analysing the data acquired from the UART setup. The first line
(Channel 0) represents the raw bits sent in the UART port; the second one (Channel 1) goes
from a low to a high state every time the autopilot blocks the UART buffer, as it is writing
a message to be sent in the channel, and from high to low when in releases the buffer; the
third line (Channel 2) goes from high to low or from low to high when the buffer is already
full (a lot of messages in the queue) and, hence, the buffer refused to accept a message from
the autopilot (i.e., a message loss). It can be seen that there is a message loss at every 2
seconds. This problem was avoided with the offsets given by the heuristics presented in this
paper, as it can be seen in Figure 14, where no message is ever lost. The image shows less
than 3 seconds of data capturing, but the complete test was made for 20 seconds.

Figure 13 Screen capture from the analysis of a Paparazzi telemetry case with a message loss at
every 2 seeconds.

ECRTS 2022

11:18 Scheduling Offset-Free Systems Under FIFO Priority Protocol

Figure 14 Screen capture from the analysis of an improved Paparazzi telemetry case with no
more message losses.

This case study confirms what can be seen in simulations. Moreover, the case studies
in telemetry usually confirm the fact that the global GCD is large, giving an advantage to
GCD+.

8 Conclusion

In this article, we have proposed GCD+ a new method for finding suitable offsets for tasks in
execution or messages in transmission under FIFO scheduling. It was compared in simulations
to State-of-the-Art methods using a random task set generator and in a real case, presenting
better results than the others in both scenarios. In addition, the new method was compared
against the one used in Paparazzi in a physical setup of the autopilot, confirming the better
result obtained in the simulation. GCD+ proved its efficiency, notably for the cases of a
semi-harmonic set where the maximum execution time is not greater than the GCD of all
task periods.

GCD+ can be extended in the future to support other cases. For example, GCD+ could
be extended to handle multi-periodic precedence constraints, such as described in [14]. It
would allow applying this method to the computation of offsets in the case of monolithic
periodic tasks integrating a static scheduler, which are central in most UAV autopilots. Also,
the integration of GCD+ into the configuration tool of Paparazzi is planned in the near
future.

References
1 Sebastian Altmeyer, Sakthivel Manikandan Sundharam, and Nicolas Navet. The case for fifo

real-time scheduling. Technical report, University of Luxembourg, 2016.
2 Chaitanya Belwal and Albert MK Cheng. Generating bounded task periods for experimental

schedulability analysis. In 2011 IFIP 9th International Conference on Embedded and Ubiquitous
Computing, pages 249–254. IEEE, 2011.

3 Pascal Brisset, Antoine Drouin, Michel Gorraz, Pierre-selim Huard, and Jeremy Tyler. The
Paparazzi Solution. HAL, 2006.

4 Vicent Brocal, Patricia Balbastre, Rafael Ballester, and Ismael Ripoll. Task period selection
to minimize hyperperiod. In ETFA2011, pages 1–4. IEEE, 2011.

M. Ladeira et al. 11:19

5 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

6 Joel Goossens and Christophe Macq. Limitation of the hyper-period in real-time periodic task
set generation. In In Proceedings of the RTS Embedded System (RTS’01. Citeseer, 2001.

7 Joël Goossens. Scheduling of offset free systems. Real-Time Systems, 24(2):239–258, 2003.
8 Mathieu Grenier, Joël Goossens, and Nicolas Navet. Near-optimal fixed priority preemptive

scheduling of offset free systems. In 14th International Conference on Real-Time and Networks
Systems (RTNS’06), pages 35–42, 2006.

9 Mathieu Grenier, Lionel Havet, and Nicolas Navet. Pushing the Limits of CAN - Scheduling
Frames with Offsets Provides a Major Performance Boost. 4th European Congress on Embedded
Real Time Software (ERTS 2008), 2008.

10 David Griffin, Iain Bate, and Robert I Davis. Generating utilization vectors for the systematic
evaluation of schedulability tests. In 2020 IEEE Real-Time Systems Symposium (RTSS), pages
76–88. IEEE, 2020.

11 Gautier Hattenberger, Murat Bronz, and Michel Gorraz. Using the paparazzi UAV system for
scientific research. In IMAV 2014, International Micro Air Vehicle Conference and Competition
2014, page 247, 2014.

12 Mitra Nasri, Robert I Davis, and Björn B Brandenburg. Fifo with offsets: High schedulability
with low overheads. In 2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 271–282. IEEE, 2018.

13 Mitra Nasri and Gerhard Fohler. An efficient method for assigning harmonic periods to hard
real-time tasks with period ranges. In 2015 27th Euromicro Conference on Real-Time Systems,
pages 149–159. IEEE, 2015.

14 Thanh-Dat Nguyen, Yassine Ouhammou, Emmanuel Grolleau, Julien Forget, Claire Pagetti,
and Pascal Richard. Design and analysis of semaphore precedence constraints: A model-based
approach for deterministic communications. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 231–236. IEEE, 2018.

15 Réda Nouacer, Mahmoud Hussein, Huascar Espinoza, Yassine Ouhammou, Matheus Ladeira,
and Rodrigo Castiñeira. Towards a framework of key technologies for drones. Microprocessors
and Microsystems, 77:103142, 2020.

16 Paparazzi developers. Paparazzi home page. https://paparazziuav.org. Accessed: 02-02-
2022.

17 Paparazzi developers. Paparazzi offset generation source code. https://github.com/
paparazzi/paparazzi/blob/master/sw/tools/generators/gen_periodic.ml. Accessed: 02-
02-2022.

18 Rodolfo Pellizzoni and Giuseppe Lipari. Feasibility analysis of real-time periodic tasks with
offsets. Real-Time Systems, 30(1-2):105–128, 2005. doi:10.1007/s11241-005-0506-x.

19 Ismael Ripoll and Rafael Ballester-Ripoll. Period selection for minimal hyperperiod in periodic
task systems. IEEE Transactions on Computers, 62(9):1813–1822, 2012.

20 Jia Xu. A method for adjusting the periods of periodic processes to reduce the least com-
mon multiple of the period lengths in real-time embedded systems. In Proceedings of 2010
IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applica-
tions, pages 288–294. IEEE, 2010.

ECRTS 2022

https://paparazziuav.org
https://github.com/paparazzi/paparazzi/blob/master/sw/tools/generators/gen_periodic.ml
https://github.com/paparazzi/paparazzi/blob/master/sw/tools/generators/gen_periodic.ml
https://doi.org/10.1007/s11241-005-0506-x

	1 Introduction
	2 Motivating Example
	3 Problem Statement
	4 State of the Art
	5 Contribution
	6 Performance comparison
	6.1 Experimental setup and chosen metrics
	6.2 Results

	7 Case Study
	8 Conclusion

