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Abstract
The adoption of multi-core platforms in embedded real-time systems mandates predictable system
components. Such components must guarantee the satisfaction of the timing constraints of various
applications running on the system. One of the components that can break the system predictability
is cache coherence, which ensures the correctness of shared data. This paper proposes a solution
towards the enablement of predictable cache coherent real-time systems. The solution uses existing
COTS coherence protocols and proposes a methodology to integrate them with legacy real-time
arbiters without imposing any required modification to either of them. Doing so, the paper also works
as an exploratory study of the integration of various coherence protocols with various predictable
arbitration schemes leading to a total of 12 different architecture configurations. Evaluation against
four state-of-the-art predictable coherence solutions as well as COTS-based solutions show that the
proposed approach achieves the tightest existing latency bounds among predictable solutions with
minimal performance degradation over the COTS ones.
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1 Introduction

Compared to traditional real-time embedded systems, modern applications of embedded
systems impose fundamentally new set of challenges. Examples of these applications are
prevalent in domains such as automotive, unmanned air vehicles (UAVs), space, and in-
dustry 4.0. With the transition towards more autonomy in these domains, the challenges are
correlated to processing massive amounts of data, which requires unprecedented computation
power as well as memory bandwidth. Moreover, this data processing must happen as quick
as its incoming rate from the external physical environment (e.g. camera frame rate in
a self-deriving car or an incoming vital signal from a patient). This dictates a minimal
acceptable average performance of the computing system. Meanwhile, the fact that these are
safety-critical systems, they have the stringent requirement of predicable performance. This
is expressed in terms of deadlines that should never be exceeded under all conditions. To
be able to provide this predictable performance, the hardware architecture itself should be
predictable to enable the derivation of reasonable bounds on the worst-case execution time
(WCET) of all running tasks.

Architecting computing systems to meet all the aforementioned requirements becomes a
challenging task since they can conflict with each other. An example of such conflict that is
relevant to the focus of this paper is data sharing. Most existing research in the predictable
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management of multi-core hardware assumes tasks do not share data [8]. This is because data
sharing can infringe the isolation properties promised by these techniques [18]. Nonetheless,
this is no longer possible for the aforementioned domains since inter-task communication
through data sharing is a key to the functionality of these systems [28, 17]. For example,
in automotive, measured values from several sensors need to be consumed by multiple
functions [11].

Considering average performance requirements, cache coherence seems to be the appealing
solution to enable data sharing both from academic [22, 23] and industry [9] perspective.
Therefore, this paper focuses on cache coherence as the data sharing mean in multi-core
real-time systems. Despite having a recent attention from the real-time community, the
approach followed by the majority of existing works is to ensure predictability by mandating
modifications to either the commercial-off-the-shelf (COTS) coherence protocols only [14],
the legacy predictable interconnects or arbitration schemes [17], or both [15, 18, 27, 20, 19].
In contrast, this paper contributes to the efforts of enabling predictable and
coherent sharing of data in real-time systems by proposing PCC: a solution that
integrates COTS coherence protocols into legacy predictable real-time arbitration
schemes without requiring any modifications to either of them. This solution is
based on the following observation. The usually abstracted bus architecture in the real-time
research is physically composed of several parallel buses in COTS platforms. In particular, the
interconnect between private caches and the shared cache either deploys a communication bus
for the communication among the private caches, which is separate from the bus connecting
these private caches to the shared cache [3], or it enables several point-to-point connectivity
that allows for overlapping transfers [1, 7]. This enables the data to be sent to different
destinations simultaneously; in particular, from a core’s private cache to another private
cache as well as to the shared memory. A more thorough discussion about this observation is
presented in the system model in Section 4. Leveraging this observation, the paper makes
the following contributions.

1) It illustrates how to predictably integrate COTS coherence protocols into the legacy
predictable real-time arbiters without imposing any architectural modifications to the
protocol itself nor to the underlying predictable arbitration scheme. This is key since
it has been established by prior works that directly doing so will lead to unpredictable
behaviors [18]. However, we show how exploiting the architectural capability mentioned
in the previous observation can restore predictability to the real-time multi-core system
upon integrating cache coherence to it.

2) The predictability of the solution is proven by a formal timing analysis that we introduce in
Section 6. Unlike existing works, this analysis is generalized to apply to various real-time
arbiters as well as various COTS coherence protocols. Additionally, a key aspect of this
work is that the provided bounds stand the same regardless of the pipeline architecture
of the cores, whether in-order or out-of-order (OoO).

3) To confirm the claimed integrability, we deploy a wide set of COTS coherence protocols as
well as predictable arbitration schemes. In addition to the modified-shared-invalid (MSI)
protocol that is adopted by most existing works, we also fully implement the MESI (E
refers to Exclusive) and MOESI (O refers to Owned) protocols, which, unlike the simple
MSI protocol, are common on multi-core platforms. For instance, the MESI protocol
is adopted by the ARM’s most-recent Cortex-R82 [4], while the MOESI is adopted by
ARM’s A53 processor [2]. For predictable arbiters, we exemplify the generality of the
solution by implementing time division multiplexing (TDM), round robin (RR), weighted
RR (WRR), and harmonic RR (HRR). This results in 12 different implemented and
studied cache coherent architectures.
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4) These rich system configurations enable us to conduct extensive case studies, which in
turn lead to several novel observations about the various design trade-offs of choosing the
coherence protocol as well as the arbitration mechanism from the predictability perspective
of multi-core real-time systems. These observations are discussed in details in Section 7.

5) We compare against four predictable cache coherent techniques [15, 18, 19] as well as
against conventional COTS coherence techniques. Results show that PCC is able to
achieve the tightest bound for existing predictable coherence solutions, with a minimal
performance degradation compared to COTS solutions.

2 Background

In this section, we cover the fundamentals of cache coherence protocols and shared bus
arbitration.

2.1 Coherence Protocols
A Coherence protocol is the mechanism that cache controllers employ in multi-core systems
to ensure the correctness of the data. The correctness is achieved by guaranteeing that all
the cores have access to the latest version of the data. Thus, coherence protocols enforce
Single-writer-multiple-reader (SWMR) invariant to keep the coherency of the data. The
basic protocol that many COTS architecture implements is MSI.

MSI protocol consists of three main states: Modified(M), Shared(S), and Invalid(I)
where each cache line in the private cache should be either in one of these states or in the
transition to one of them. M state grants read and write permissions to the core that has
the cache line. Due to SWMR invariant, only a single core can have a certain cache line in
M state at a time, and other cores cannot privately cache this line during this time. Cores
can request lines for modification by issuing GetM message on the shared bus. On the other
hand, S state is a read only state, where multiple cores can have the same cache line in this
state. Cores request lines for read by broadcasting GetS message on the bus. The last state
is I which indicates that the data of a cache line is not available in the private cache or the
data is stale. I state does not allow reading or writing to the data.

Extensions can be applied to MSI by adding one or more states such as the exclusive (E)
and the owner (O) state. These extensions result in the famous protocols: MESI, MOSI,
and MOESI. E state is similar to S state as both are read only states, but E state indicates
that only one core has this cache line in its private cache. This allows such core to move
from E to M silently without issuing GetM message. The other state, O is also a read only
state, but it gives the core the ownership of the cache line, meaning this core should respond
to other cores’ requests for this line instead of the shared memory.

Transient States. Besides these standard states, which are called stable states, there are
number of states that indicate the transitions between the stable states, and they are called
transient states. Transient states are crucial due to the non-atomicity of the interconnect
between cache memories. For instance, if core Ci requires to write to a cache line in the
I state, it will issue a GetM message and wait for receiving the data. Before the data is
received, the cache line can neither be in the I nor the M states; therefore, a transient state
is required to define this transitional period. Conventionally, this state is named IMd, which
shows the source and destination states, and the superscript indicates the reason of the state
(d indicates waiting for data). In order to complete this example, we can assume that while
Ci is waiting for data, it observes a GetM message from another core Cj . Accordingly, Ci

should change the state of the line from IMd to IMdI. IMdI indicates that after the data
arrives and write is performed, the cache line should be moved to I state. Some of these
transient states are depicted in Figure 2 and discussed within the example in Section 3.
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Figure 1 The worst-case latency of different bus arbiters. C2 is the core under analysis.

2.2 Bus Arbitration
In embedded systems, the communication medium between private caches from one side and
the shared memory from the other side is usually a shared bus. A bus arbiter is responsible
for organizing accesses of the cores to the bus. Figure 1 shows the worst-case latency (WCL)
of different predictable arbiters. A predictable arbiter should grant access to the bus to
the requesting core in a predictable bounded latency. Figure 1a shows the latency of TDM
arbiter, which dedicates a fixed time slot for each core to access the bus. The WCL of
TDM is govern by WCL = N × S, where N is the number of cores and S is the slot width.
The width of the slot is chosen to have S ≥ (Larb + Lacc), where Larb is the bus latency to
broadcast a request and Lacc is the latency of data transfers over the bus. Similarly, Figure
1b shows the latency of RR arbiter, which is a dynamic arbiter that keeps a cyclic list of
cores with ready requests. WCL of RR is calculated by WCL = (N − 1) × (Larb + Lacc).
There are multiple variants of RR, the most common are WRR and HRR. Both WRR and
HRR allow cores to have different arbitration weights. WRR’s WCL can be calculate as
shown in Figure 1c, for a core Cj WCL is

∑N−1
i=0,i̸=j Wi × (Larb + Lacc), where Wi is the

weight of core Ci. WCL of HRR is calculated differently, as shown in Figure 1d the weights
of the cores are distributed harmonically, therefore the WCL of Cj in HRR can be calculated
using (⌈HP/Wj⌉ − 1) × (Larb + Lacc), where HP is the hyper-period of the cyclic list of the
cores, and it is equal to the summation of all the weights.

3 Related Work and Motivation

In the way of adopting the multi-core systems in real-time applications, many efforts have been
conducted to facilitate this adoption by predictably managing interference among different
cores upon accessing shared hardware resources in the system. Examples of these resources
are caches [5, 12, 14, 15, 18, 19, 21, 27], interconnects [17, 20], and main memory [10, 13, 16].
Among these works, the most relevant to this paper are the ones focusing on enabling coherent
data sharing through hardware coherence protocols [14, 15, 18, 19] and the ones aiming at
predictably arbitrating accesses to the shared cache [17, 20].
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PMSI [15] provides predictable cache coherence by modifying the legacy MSI protocol
and implementing it on top of a unified TDM bus. The work was extended in [18] by
adopting a MESI-based solution. PMSI (and PMESI) suffers from two main drawbacks. 1)
Its WCL is quadratic in the number of cores, which makes it very pessimistic. 2) It requires
modifications to both the COTS coherence protocol and the underlying architecture. The first
drawback hinders its usability for real-time systems with tight latency requirements, while
the second one makes it hard to adopt by industrial entities since designing and verifying
new coherence protocols is known to be one of the most tedious architectural tasks [23, 24].

In order to elaborate PMSI’s operation graphically, we use the example in Figure 2. The
example crafts a scenario that highlights the key features and drawbacks of PMSI. Moreover,
it is used to explain the rest of the related approaches, and in Section 5 we utilize the example
to present PCC’s operation and how it tackles the other approaches’ downsides. The example
shows the different latency components of the write request from core C2 to the memory
location A. Initially, at 1 cores C0 and C2 have write requests to A which is cached in the
shared memory. At 2 , C1 has a read request from the memory location B which is modified
by C2. Afterwards at 7 , C2 has a read request from A followed by a read request from B.
Towards the end at 8 , C1 requests another read from B.

The breakdown of PMSI’s latency is illustrated in Figure 2a, where cores issue their
request messages only during their dedicated TDM slots. C0 issues a GetM message at 1
and receives the data from the shared memory in the same slot. On the other hand, C2
issues its message at 3 which entails that C0 changes A’s state from M to MIwb according
to PMSI protocol. MIwb indicates a transition from M state to I state after writing data back
to the shared memory. Regarding the request latency, its first component is Larb, which is
the time between a core having a request until the request is broadcast on the bus. Since
PMSI does not allow cache-to-cache transfers, C2 has to wait for a complete TDM period to
receive A after C0 writes it back to the shared memory at 4 . The duration between the
request broadcast and the data being ready to be sent (the time between 4 to 5 ) is the
inter-coherence latency (Linter−coh), which appears because of the coherence interference
between the cores, such as the write-back from C0. Nonetheless, C2 cannot receive A at
5 because of the previous request from C1 at 2 which requires C2 to write B back to the
shared memory. Accordingly, C2 receives A at 6 instead of 5 , and this delay is defined as
the intra-coherence latency (Lintra−coh) that results from the intra-core interference between
a core’s demanding requests and its write-backs. The last latency component is Lacc, and the
total latency per request is the summation of all the aforementioned components. Clearly, the
WCL of such behavior is very pessimistic as the latency of c2’s write(A) illustrates. Finally,
the requests at 7 and 8 are all hits, because PMSI allows read from the modified cached
lines (such as A) as well as previously modified lines (such as B). These two features, which
are inherited from MSI, result in a relatively good average-case performance as shown in
Table 1.

DISCO [14] makes the observation that write requests are the reason of PMSI’s excessive
WCL due to the need for write-backs. Hence, it proposes to tighten this WCL by discrimin-
ating between read and write requests. This is done by prohibiting modified cache lines from
being stored in the private L1 caches of cores; instead, all write requests must be serviced
at the shared memory directly. The tight WCL can be observed from Figure 2b, where the
write requests from C0 and C2 are serviced during the same slots they are issued in at 1
and 3 . Moreover, C1’s request at 2 is serviced directly from the shared memory, unlike the
case of PMSI, because C2 is not allowed to privately cache the modified B line. Nonetheless,
WCL comes at the cost of average performance which is embodied in the misses of the read

ECRTS 2022
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Figure 2 The memory latency of the write request to A from core C2 in a 3-core system that
implements unified bus to connect privates cache with the shared memory. The bus uses TDM
arbitration with fixed slot width; however, the figure shows different sizes for the slots in order to fit
into the page width. In the beginning of the scenario, A resided in the shared memory, while B was
modified by C2.
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Table 1 Summary of the properties of the related work along with PCC’s properties. ✗ indicates
that the ✗ is not supported, while ✓ indicates it is supported. features with several marks indicate a
score for each work. For example, ✗✗✓✓ indicates a score of 2/4, ✗✗✗✓ indicates 1/4, ✗✓ indicates
a score of 1/2, and ✓✓ indicates a score of 2/2.

Related work Per-req. WCL Bus Arch. Supports OoO Exe. Supports COTS Protocols Supports different
arbiters

Supports C2C
Data Transfer average performance

PMSI/ PMESI Quadratic Unified ✗✗ ✗ ✗ ✗ ✗✗✓✓

DISCO/ DISCOSharedW Linear Unified ✓✓ ✗ ✓ ✗ ✗✓✓✓

PMSI∗/ PMESI∗ Linear Unified ✗✗ ✗ ✗ ✓ ✗✗✗✓

PISCOT Linear Split ✗✓ ✓ ✗ ✓ ✓✓✓✓

PCC Linear Unified ✓✓ ✓ ✓ ✓ ✓✓✓✓

requests from C2 that come after 7 . It also requires hardware support to enable selective
bypassing of L1 caches for write requests. The author also proposed DISCO-SharedW in [14]
as an enhanced version allowing the caching of modified cache lines in the L1 caches if they
are to a private data that is not shared amongst cores. This optimization provides a good
balance between a tight WCL and good performance. However, it assumes the availability of
a prior information about the shared data. Accordingly, DISCO-SharedW scores a relatively
high average-case performance in Table 1’s comparison.

The PMSI∗ and PMESI∗ solutions are proposed in [19] to be modified versions of the
original PMSI/PMESI protocol. Similar to DISCO, they aim at reducing the quadratic WCL
of PMSI by mitigating the impact of write-backs. Unlike DISCO, they limit the number
of write-backs that have to go to the shared memory. This is achieved by deploying two
techniques. 1) They enable direct communication between private caches, similar to this work.
2) They remove some of the standard transitions in the MSI and the MESI protocols. In
particular, if a core owns a line in the modified state, they disallow such line from being
shared among several cores afterwards; i.e., such line can only be accessed by a single core
at a time. The reason for this modification is to make this line directly transferable among
cores while avoiding the need to transfer this line to the shared memory (until eviction). An
example to this transition is C1’s read request at 2 , where C1 receives B directly from C2
but C2 invalidates B after its transfer. While achieving a linear WCL in number of cores,
this solution suffers from a significant performance penalty due to disabling simultaneous
sharing of such lines and the possibly ping-pong effect as a result. The ping-pong effect
appears between the read requests from C2 and C1 at 7 and 8 ; thus, PMSI∗ and PMESI∗

are given the worst performance score in Table 1.
PISCOT [17] follows a different approach by deploying a split-bus interconnect that

implements a TDM request bus to broadcast coherence requests and a first-come first-serve
(FCFS) response bus to transfer data responses. PISCOT is the only previous solution that
enables the deployment of conventional coherence protocols without modifications. It also
leverages the split-bus interconnect to achieve high average performance, while maintaining
predictability with tight latency bounds. Another aspect of PISCOT compared to all existing
works is its support to OoO cores by considering cores with multiple outstanding requests.
Nonetheless, we find this support to be limited since it only services one request at a time;
mainly to ensure the tight latency bounds. PCC similar to PISCOT enables the adoption of
COTS coherence protocols in real-time systems without modifications. In doing so, unlike
PISCOT, which requires a specific split-bus architecture, PCC enables the usage of legacy
prevalent real-time bus architectures and arbiters. PCC also supports OoO cores and since it
allows all requests to be non-preemptively serviced once their corresponding messages are
broadcasted, it does not put any constraint on the OoO behavior of cores, while offering the
tight WCL that is independent of the core pipeline architecture.

ECRTS 2022
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L1
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Last-level Cache / 
off-chip memory
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Figure 3 The system model.

Table 1 summarize the differences between all the aforementioned approaches, and from
that we can conclude the features that should be present in the proposed approach. Initially,
the per-request WCL should be linear with the number of cores without compromising
the average-case performance. Also, PCC should be independent of the coherence protocol
therefore it can incorporate COTS protocols without any modifications. Moreover, it uses
unified bus architecture with the ability of cache-to-cache data transfer to guarantee both
tight WCL bounds and high performance. Finally, it should support OoO pipelines without
changing the WCL, and it should not assume any prior information about shared data. All
the previous point are also summarized in the last row of Table 1.

4 System Model

We consider a multi-core system that has N cores as shown in Figure 3.

Cores Architecture and Cache Hierarchy. Unlike most of the existing related work, we
do not put a constraint on the pipeline architecture of the cores, they can be in-order or
OoO or a mix of both. Each core has a private cache (L1). In addition, the system contains
a shared memory, which it can be a last level cache, off-chip memory, or both of them.
The writes from L1 to the shared memory is handled using write-allocate write-back policy,
and the cache hierarchy is inclusive such that data existing in any L1 is a subset of the
shared memory’s data. It is important to highlight that the proposed solution works for
general cache architectures. For example, the solution works seemingly for different number
of cache levels, where each core has several private caches and then the last private level of
all cores connect to a shared cache. In that case, the solution works for the bus connecting
to the shared cache. An exhaustive enumeration of all possible cache architecture is beyond
the scope of this paper; thus, for conciseness, we focus on the model depicted in Figure 3.
Another important notice is that we assume that the data will always be serviced within the
depicted memory hierarchy in Figure 3 (i.e. the shared cache will always have the line in
the valid state). This assumption is only to avoid the other sources of interference that are
beyond the scope of this paper (e.g. I/O interference [6] or off-chip memory interference [10]).

Cache Coherence. The data is kept coherent among the private caches by incorporating
any of the standard COTS coherence protocols. In this work, we exemplify by adopting
three protocols: MSI, MESI, and MOESI.
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Bus Architecture. L1 caches and the shared memory communicate through a logical shared
snooping bus. We use the term logical here to differentiate between the logical bus model and
the actual physical implementation details of this bus. As far as the paper is concerned, we
make few assumptions about (requirements) the logical bus to be able to derive the bounds.
Aside from these requirements, the physical implementation of the bus can be realized using
any technique. These assumptions are as follows.

1) The bus allows the direct data transfers between L1 caches. Moreover, a transfer from
a sender L1 cache to another can be overlapped with a transfer to the shared memory. In
other words, a data sent from a core can be received by the shared memory and another
core simultaneously. We find these assumptions to reflect techniques adopted in COTS
architectures. For example, different existing ARM processors allow for direct transfers
between private L1s, this includes processors both real-time (e.g. Cortex-R82 [4]) and
application (e.g. Cortex-A53 [2]) families. Additionally, the data-coherent bus connecting
private L1 caches and the snooping control unit (SCU) in Arm’s MPCore processor is separate
from the bus connecting the SCU to the shared L2 cache, where the latter is AXI-based (e.g.
in A9) or with the Cache Coherence Interconnect extensions to the AXI interface (CCI-400)
such as in A15. On the other hand, for the CCI-550, the data interconnect is mentioned
to be a fully connected cross bar [1]. Another vendor’s example is the QorIQ processor
family from NXP, where the CoreNet Coherency Fabric enables point-to-point connections to
pipeline the transfers between cores and shared memories [7]. Either having a dedicated bus
or several parallel point-to-point connections will enable the required overlapped transfer.

2) The bus has a logical unified architecture. This means transferring a coherence message
and a data message cannot be overlapped. During anytime instance, either a coherence
message is being broadcast or a data message is being transferred. It is important to note
that this assumption does not prevent the coherence and data messages from being sent on
two different realized physical buses. It only requires unifying their arbitration such that
their transfers are not overlapped. This is key to enable the integration of COTS coherence
in predictable arbitration schemes with tight latency bounds, especially for OoO cores as we
will discuss in section 6.

3) Cores are granted access to the bus using a predictable arbitration scheme. This work
is not limited to a specific arbiter type, and we provide results, in Section 7, for TDM, RR,
WRR, and HRR arbiters. Once a request is granted access to the bus by the arbiter, it will
remain in service and no other request will be granted access until the in-service request is
fulfilled. The maximum time to service any request is assumed to be Lacc. For slot-based
arbitration schemes (such as TDM), the time slot of the bus arbiter should be long enough to
fit the latency of broadcasting coherence messages besides transferring data (i.e. slot width
should be at least Lacc).

The data sharing model. we don’t assume any constraints on data sharing or the shared
address space. Additionally, our proposal can work with the timing interference management
solutions like memory partitioning and coloring. Also, we don’t assume any restrictions on
the task scheduler, so any task can run on any core without any implications on the system
predictability.

5 Proposed Solution

PCC leverages the observations about the potential architectural features deployed by COTS
platforms that are specified in the system model (Section 4) to facilitate the predictable
integration of cache coherence in real-time systems without drastic degradation of performance.
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In particular, the operation of PCC makes use of these two features: 1) direct cache-to-cache
communication, and 2) a data transfer from a core can be simultaneously sent to another
core as well as the shared memory. As a result, PCC operates according to Theorem 1.

▶ Theorem 1. Once a request, Ri(A) to any cache line A from any core Ci is granted access
to the shared bus under PCC, it will be non-preemptively serviced without interference from
any other request.

Proof. Under the PCC system model described in Section 4, once a request from any core
Ci is granted access to the shared bus, the actions conducted towards its fulfillment falls
under one of the following three scenarios (depending on the type of the request as well as
the specifications of the adopted coherence protocol).
1. The requested cache line is already owned by Ci In that case, to fulfil the request,

it needs only to broadcast a coherence message. This will be the only action needed for
requests that do not necessitate a data transfer. An example is the transition from O
state to M state as a result of a write request under MOESI protocol.

2. The requested cache line is owned by the shared memory. In that case, Ci will
also need to broadcast a coherence message and then receive the data from the shared
memory. This will occur if the data is owned by the shared memory.

3. The requested cache line is owned by another core, say Cj In that case, Ci needs
to broadcast a coherence message and then receive the data from Cj .

For Scenario 1, it is clear that once Ri(A) is granted access to the bus using any predictable
arbiter, it is an exclusive access, where it can issue its message non-preemptively; and hence,
finishes its service.

For Scenario 2, after Ri(A) gains access to the bus and broadcast its message (similar
to scenario 1), it also requires to receive the requested data from the shared memory.
According to the system model in Section 4, this also happens directly once Ri(A)’s message
is broadcasted without any interruption from other requests.

For Scenario 3, there are two sub-scenarios as follows. Scenario 3(a) is the case where the
owner core Cj needs to send the data to Ci only and not the shared memory. This is the
case for example if Ri(A) is a getM(A) request, while A is modified in Cj ’s private cache.
This scenario is similar to Scenario 2 since it requires a single data transfer, while the source
of the data is now a core and not the shared memory. Therefore, same argument applies
similar to Scenario 2 such that Ri(A) finishes without any interruption.
Scenario 3(b) is a bit more involved as it requires two data transfers and not one. In this
scenario, Cj needs to send the data to both Cj and the shared memory. This occurs for
instance if Ri(A) is a getS(A) request, while A is modified in Cj ’s private cache. Leveraging
the observation about the bus architecture in Section 4, PCC is able to conduct these
two transfers in parallel; and hence, enables Ri(A) to also finish in this case without any
interruption. ◀

5.1 Illustrative Example
Now, we show the operation of PCC in action by applying it to the same example in Figure 2
and discuss how PCC offers predictability with tight bounds and no required modifications to
the coherence protocol.

Figure 4 shows the latencies of PCC in a system that utilizes TDM arbiter and MSI
coherence protocol. At 1 , C0 and C2 have write requests to A, and each request is broadcast,
afterwards, to the bus at the beginning of its core’s TDM slot. At 3 , C2, the core under
analysis, is granted access to the bus and it issues its request. During the same slot of C2,
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C0 GetM(A)
A: I → IMd

Rx(A)
A: IMd → M 

Send A
A: M → I ⋯

C1 GetS(B)
B: I → ISd

Rx(B)
B: ISd → S ⋯

C2 Send B
B: M → S

GetM(A)
A: I → IMd

Rx(A)
A: IMd → M ⋯

Data 
Direction

SM to C0
C2 to C1

C0 to C2
C2 to SM

TDM Slot C0 C1 C2 ⋯

C0: write(A) → Miss
C2: write(A) → Miss

Larb Lacc

C1: read(B) → Miss

1

2
3

C1: read(B) → Hit

7 8

C2: read(B) → Hit
C2: read(A) → Hit

Figure 4 The memory latency of a write request to A from core C2 in a 3-core system that uses
PCC along with TDM arbiter and MSI coherence protocol. This figure follows the same scenario,
initial conditions, and the numbering as in Figure 2.

C0, the previous owner of A, responds with the data. Accordingly, this example contains
only two type of latencies Larb and Lacc, which they are the only types that a single request
can incur in case of PCC . Unlike PMSI, PCC does not suffer from Linter−coh or Lintra−coh

because of the fact that requests are served in a single access slot to the bus (Theorem 1).
Additionally, a core cannot have a pending write-back and a request during its access slot
because the write-backs are handled during the requestor’s access slot, and core’s access slots
are for its demanding requests only.

PCC leverages COTS coherence protocols which ensures high average-case performance.
This can be observed from the example in two instances. First at 2 , where C1 requests
reading B which is owned by C2. Consequently, C2 responds by sending B to C1 as well
as to the shared memory; hence, both C1 and C2 are allowed to keep B in S state, unlike
PMSI∗. The second instance at 3 , after C2 completes its write to A, PCC allows C2 to keep
A in M state, unlike DISCO. This results in access hits for the read request to A at 7 and
the read requests to B at 7 and 8 .

6 Timing Analysis and Predictability Guarantees

In this section, we show that PCC solution satisfies the predictability invariants proposed
in [15]. Besides, we derive PCC’s per-request WCL and the total worst-case memory latency
incurred by a task.

6.1 Satisfying Predictability Invariants

According to [15], a system that utilizes COTS coherence protocol along with a predictable
arbiter cannot guarantee a predictable memory latency. Hassan et al., also, provided in [15],
6 invariants to test the predictability of cache memory systems. Accordingly, we show in
this section that PCC satisfies all the invariants, which means COTS protocols with any
predictable arbiter can be predictable if cache-to-cache data transfers are allowed according
to the described system model.
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Invariant 1. A predictable bus arbiter must manage coherence messages on the bus such
that each core may issue a coherence request on the bus if and only if it is granted an access
slot to the bus.

▶ Lemma 2. PCC satisfies Invariant 1.

Proof. Allowing a core to issue a request on the bus is the bus arbiter’s responsibility,
and according to the system model defined in Section 4, PCC utilizes predictable arbiters.
Predictable arbiters allow cores to issue requests only in their own dedicated access slots. ◀

Invariant 2. The shared memory services requests to the same line in the order of their
arrival to the shared memory.

▶ Lemma 3. PCC satisfies Invariant 2.

Proof. Let two requests, Ri(A) and Rj(A) from two different cores Ci and Cj, respectively.
Both requests target the same cache line which is owned by the shared memory. If Ri(A)
and Rj(A) appear on the bus at ti and tj , respectively, where ti < tj , then according to
Theorem 1, Ri(A) once its message is broadcast at ti, it will not be interrupted by any other
request including Rj(A) until it is serviced, which implies here that the shared memory
finishing sending the data to Core Ci. Therefore the shared memory services the request
according to the order of their appearance on the bus which is the same order of their arrival
to the shared memory. ◀

Invariant 3. A core responds to coherence requests in the order of their arrival to that core.

▶ Lemma 4. PCC satisfies Invariant 3.

Proof. Let two requests, Ri(A) and Rj(B) from two different cores Ci and Cj, respectively.
The requests target different cache lines which are both owned by Ck. Similar to the shared
memory, if Ri appears first on the bus, Ck has to respond with the data to Ci before any other
request can broadcast its message (Theorem 1). In conclusion, cores respond immediately to
requests once they appear on the bus, therefore the requests’ arrival order is respected. ◀

Invariant 4. A write request from Ci that is a hit to a non-modified line in Ci’s private
cache has to wait for the arbiter to grant Ci an access to the bus.

▶ Lemma 5. PCC satisfies Invariant 4.

Proof. The coherence protocols dictate how the cache controllers deal with the writes to the
non-modified lines. According to the system model in Section 4, PCC incorporates COTS
protocols that necessitate a modification request (GetM or UpgM) to be broadcast before
writing to a non-modified line (i.e., a line in S state). (1)
According to Lemma 2, cores issue requests only during their access slot. (2)
From (1) and (2), a write request to a non-modified line in the core’s private cache should
wait for the core’s access slot to the bus. ◀

Invariant 5. A write request from Ci that is a hit to a non-modified line, say A, in Ci’s
private cache has to wait until all waiting cores that previously requested A get an access
to A.



M. Hossam and M. Hassan 17:13

▶ Lemma 6. PCC satisfies Invariant 5.

Proof. Assume that Ci owns non-modified cache line A in its private cache, and at time
ti, it has a write request, Ri(A), to A. In addition, assume that Cj requested access (read
or write), and its request Rj(A), to A is broadcast on the bus at time tj , where tj < ti.
Invariant 5 breaks if PCC allows serving Ri(A) before Rj(A). (1)
Whereas, Lemma 5 enforces Ci to wait until it is granted access to the bus before proceeding
with Ri(A). Let this to happen at time ti+δ, where by construction ti+δ > ti (2)
Finally, Theorem 1 dictates that once a request is broadcast, it will be serviced before any
other request can be broadcast or serviced (3)
From (1) – (3) and since tj < ti+δ, it necessitates that Rj(A) will be serviced before Ri(A);
thus, PCC satisfies Invariant 5. ◀

Invariant 6. Each core has to deploy a predictable arbitration between its own generated
requests and its responses to requests from other cores.

▶ Lemma 7. PCC satisfies Invariant 6.

Proof. From Theorem 1, cores will never have pending responses to others’ requests during
their own access time. The reason for that is because of the principle of non-preemptively
servicing the requests once they are granted access to the bus. Accordingly, the arbitration
between a core’s own generated requests and its responses always chooses the requests due
to the absence of pending responses. Therefore, PCC has the effect of this arbitration layer
intrinsically without implementing it. ◀

6.2 Per-Request WCL Analysis
According to the example in Section 5, it is clear that the latency of a single request depends

mainly on the type of the bus arbiter.

▶ Lemma 8. The per-request latency is calculated as in Equation 1, where WCLarb is the
worst-case arbitration latency.

WCLperReq = WCLarb + Lacc (1)

Proof. In worst-case, such request has to wait for WCLarb before it can be granted access to
the bus by the arbiter. Once it is granted access to the bus, according to Theorem 1, a core’s
request is non-preemptively serviced. Based on the system model, this service consumes a
maximum latency of Lacc. Therefore, the per-request worst-case latency is as depicted in
Equation 1. ◀

▶ Lemma 9. The processing latency of any request under PCC is calculated as in Equation 1
regardless of the pipeline architecture of the cores in the system (whether in-order, out-of-order
or a combination of both).

Proof. For an in-order core, the proof is straightforward. An in-order core can have a
maximum of one request in-flight at any given time. Therefore, such request do not suffer
any queuing delay from requests of the same core (it is always the head of the queue). Such
request suffers a worst-case processing latency as proven by Lemma 8. Additionally, such
core causes a maximum interference of one request on other cores since it cannot have several
requests simultaneously requiring service per construction.
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An out-of-order core, in contrast, can have several simultaneously outstanding requests.
We now prove that this behavior does not impact the processing latency of requests from
such core, nor impacts other cores. First, for requests from the core itself, we are bounding
the processing latency of any request, which is the latency suffered by such request once it
becomes at the head of the queue of its corresponding core. This is because this processing
latency is the considered one to be used when calculating the overall’s task WCET []. As
a result, no queuing delay needs to be added as a component to the latency in Lemma 8.
Second, for the interference impact from this core on other cores, we prove that it still
adheres to Lemma 8 as follows. 1) Under any of the predictable arbiters considered in the
system model, each core gets a guaranteed turn to access the bus regardless of the behavior
of other cores or the number of their outstanding requests. As a result, the arbitration
latency component, WCLarb remains the same. 2) By construction of PCC and as proven
by Theorem 1, once a request is granted access to the bus, it entertains a non-preemptive
service until it is fulfilled. This is regardless of the behavior of other cores. As a result, the
access latency component, Lacc remains the same. From 1) and 2), we finish the proof for
the out-of-order core case. ◀

6.3 Total Task’s Worst-Case Memory Latency Analysis
A task’s WCET can be computed as follows: WCET = WCCT + WCML, where the
WCCT is the worst-case computation time of the task executing on the core, and the
WCML is the total worst-case memory latency suffered by the task upon accessing the
memory. We now show how to compute the WCML using the per-request WCL derived in
Section 6.2.

WCL can be simply calculated using the per-request WCL calculated in Equation 2 as
follows, where RT is the total number of memory request issued by the task under analysis.

WCML = RT × WCLperReq (2)

Effect of Dirty Line Replacements. Another latency component that should be considered
is the effect of the write back requests due to L1 cache evictions or replacement In worst-case,
every request can trigger an eviction of a dirty cache line; and hence, creates a write back
request that it has to wait for. As a result, The WCML in Equation 2 changes to the value
calculated in Equation 3. This is because every request now has to wait for an additional
write back request that also susceptible to WCLperReq latency in worst case.

WCML = 2 · RT × WCLperReq (3)

In some systems, the number of dirty line evictions can be constrained to the number of
write requests. Accordingly, calculating WCML can be carried out using Equation 4, where
RW is the number of write requests.

WCML = RT × WCLperReq + RW × WCLperReq (4)

This is the case for instance for the MSI protocol. However, COTS protocols that implement
E state (e.g. MESI or MOESI) require PutM message for the lines in the E state, which
are clean (non-modified) lines. As a result, using Equation 4 with such protocols is not
sufficient and can lead to unsafe bounds. In that case, using a more conservative bound such
as the one in Equation 3 is the safe decision.
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Figure 5 Per-request WCL of running EEMBC benchmarks, where T-bars represent the analytical
value and solid bars are for the observed WCL among all the requests.

Effect of Hit/Miss Cache Analysis in the Presence of Coherence. Equation 3 is safe and
sufficient to be used in the case of lack of more available information from the task analysis;
however, WCML can be tighten using information from running the task under analysis in
isolation (i.e., run the task on a core while turning off the other cores). For instance, the
assumption that all demanding requests from a task incur WCLperReq is rather pessimistic,
since in most typical cases number of L1 hits is higher than the misses, and the hit latency
(LHit) is much smaller than the WCLperReq. However, it is not feasible to infer the number
of hits from the isolation analysis due to the absence of coherence interference which decreases
the hit rate. Moreover, the effect of coherence interference is not limited only to the shared
data, but it can affect the hit rate of private data as well unless the target system offers data
isolation between private and shared data in L1. Therefore, systems without data isolation
should adhere to WCML calculated by Equation 3. Whereas, if the system is capable of
isolating shared data from private data (for example by providing a separate cache partition
for each, WCML can be more tightened by Equation 5. Equation 5 is based on the fact
that if private and shared data are isolated from each other, they will not be able to evict
each other, and an isolation analysis is performed to calculate the number of requests for
private data that hit in L1 (Riso

privHit), the number requests for private data that miss in
L1 (Riso

privMiss), the number of write-backs due to replacements to private data (Riso
Repl), and

the number requests for shared data (RShared). Since no assumption can be made about
requests to shared data, all of them are assumed to be misses, and further suffering from
write-back replacement delays.

WCML =
(
Riso

privHit×LHit+(Riso
privMiss+Riso

Repl)×WCLperReq

)
+

(
2×RShared×WCLperReq

)
(5)

7 Evaluation

In order to evaluate our proposed solution, we performed a number of experiments to compare
between PCC and state-of-the-art solutions. Additionally, we conducted other experiments to
explore the effects of different combinations of bus arbiters with coherence protocols along
with different execution modes (in-order and OoO). Throughout the experiments, we used a
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Figure 6 Per-request WCL of running SPLASH-3 benchmarks, where T-bars represent the
analytical value and solid bars are for the observed WCL among all the requests.
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Figure 7 The observed WCL (solid bars) and the analytical WCL (T-bars) for Cacheb01
benchmark from EEMBC suite.

4-core system where each core has 16KB direct-mapped L1 cache, and the cores are connected
to each other and to a last level cache by a snooping unified bus. The access latency of
L1 (LHit) is 1 cycle, and the complete access slot to the bus is 54 cycles: 4 cycles for the
request latency and 50 for the data transfer. To avoid the unnecessary large latency of the
off-chip memory, we used a perfect last level cache which fits the whole data of the running
application. All the experiments were carried out using an open-source cache simulator 1,
which enables us to run trace-based simulations on memory traces collected using Intel’s
PINtool upon executing the benchmarks. We used SPLASH-3 benchmarks [26], which were
configured to execute in 4 threads where each thread runs on a separate core. Moreover, we
used benchmarks from the EEMBC [25] suite to simulate the extreme case of data sharing
and coherence interference by running four instances of the same benchmark trace on the four
cores, simultaneously. Accordingly, all the cores issue almost the same sequence of requests
and share 100% of their data.

1 https://gitlab.com/FanosLab/pcc-sim

https://gitlab.com/FanosLab/pcc-sim
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Figure 8 The observed WCL (solid bars) and the analytical WCL (T-bars) for Ocean benchmark
from SPLASH-3 suite.
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Figure 9 The observed WCL (solid bars) and the analytical WCL (T-bars) for Ocean benchmark
from SPLASH-3 suite running in a 4-core system with OoO pipeline and MOESI coherence protocol.

7.1 Per-Request WCL
In this group of experiments, we measure the latency that is incurred by each memory request
of the running benchmark, and compare it to the analytical WCL to ensure the safety and
the tightness of the bounds. Figure 5 shows the results of running EEMBC benchmarks, and
it compares between PMSI [15], PMESI [18], PMSI∗, and PMESI∗[19]. Besides, the figure
includes three variants of PCC with the protocols MSI, MESI, and MOESI along with
TDM bus arbiter. TDM is chosen for this experiment to have a fair comparison with the
other solutions which adopt a TDM arbiter. Similarly, Figure 6 shows WCL of running the
SPLASH benchmarks.

▶ Observation 1. The observed WCLs of the solutions that implement cache-to-cache data
transfer are much tighter compared to PMSI and PMESI. Further, the analytical bounds of
PMSI and PMESI are quite pessimistic, which is clear from Figure 6 where hardly 50% of the
bound is reached. Contrarily, the other solutions, including PCC, show notably tight bounds
with both benchmarks suites.

Figures 7 and 8 delineate WCL of chosen benchmarks from EEMBC and SPLASH, respectively.
The results of the other benchmarks are consistent with Figures 7 and 8; hence, we include
the results of a single benchmark from each suite for conciseness. In this experiment, a
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Figure 10 The total memory latency of running Ocean benchmark from SPLASH-3 suite. The
T-bars represent the analytical WCML calculated using Equation 3 and the solid bars are for the
observed total memory latency. The vertical axis is in a logarithmic scale.

comparison is held between a combination of configurations that contain MSI, MESI, and
MOESI protocols along with RR, WRR, and HRR arbiters. WCLs of WRR and HRR are
reported per core due to their unfair arbitration scheme; therefore, each core has a different
bound based on its weight. The weights of the cores, in this and the following experiments,
are {4, 2, 1, 1}, and the numbers are chosen arbitrarily to show the effect of the different
weights. On the other hand, RR arbiter treats all the cores similarly; thus, the maximum
value of WCL among the cores is reported.

▶ Observation 2. There is no noticeable difference between results of Figures 7 and 8,
although EEMBC simulates a synthetic effect of all the data is shared. This indicates the
tightness and safety of WCL bounds in the case of a synthetic benchmark, like in Figure
7, and in a normal case, like Figure 8. Regarding the arbiters, RR shows a better WCL
compared to WRR, whereas its WCL is average compared to the smallest and largest WCLs
of HRR. The effect of the weights of the cores in WRR is not highly reflected into the WCLs,
and the analytical WCL appears to be loose. On the other side, WCLs of the cores in HRR
are rather tight.

To complete the study of WCL, the analytical bounds are tested in the case of OoO execution.
Figure 9 shows WCL of running a chosen benchmark from SPLASH-3 suite (the same
benchmark used in Figure 8.) The execution of the benchmark is held using cores with
OoO pipeline with a maximum of 8 outstanding requests. Additionally, TDM, RR, WRR,
and HRR are used along with MOESI coherence protocol for the comparison. MOESI
is chosen in this set of experiments since it is considered the most advance protocol among
MSI and MESI.

▶ Observation 3. The analytical bounds are still respected in the OoO execution; however,
WRR shows tighter WCLs compared to the in-order experiment shown in Figure 8. The
tightness of the WCLs is due to the ability of the OoO cores to issue multiple requests and
benefit from their high weights; therefore, the cores with lower weights are pushed to their
bounds.
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Figure 11 The average slowdown of the performance of the predictable cache solutions compared
to COTS-Split and COTS-Unified. All the values of running EEMBC benchmarks are normalized to
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7.2 Total Task’s WCL
In this experiment, we are concerned with the total memory latency that is incurred by
each task. Similar to the previous experiment, a single benchmark from SPLASH-3 is run
using MSI, MESI, and MOESI protocols along with TDM, RR, WRR, and HRR bus
arbiters. Figure 10 shows WCML and the memory latency per each core. The latency is
broken down into the three contributors to the latency: hit, miss, and replacement latencies.
No information is assumed about the private vs shared data; and hence, WCML is calculated
using the most conservative equation (Equation 3). Results are reported per core as each
thread of the benchmark is mapped to a single core.

▶ Observation 4. The gap between WCML and the observed latency is very large because of
the pessimism in Equation 3. Regarding the protocols, MSI shows better latencies compared
to MESI and MOESI, and by looking at the replacement latency part, it is clear that
replacements are the reason for the performance degradation of MESI and MOESI. The
justification of the higher number of replacements in MESI and MOESI can be returned
to the addition of E and O states as they require a PutM message, unlike S state, before the
eviction of a cache line. An optimization that can mitigate the latency of replacements is the
empty PutM message (a PutM message that is not followed by a write-back) in the case of E
state; however, this optimization has to be coupled with a dynamic arbiter, such as RR, to
show an impact on the latency.

7.3 Average-case Performance
In this section, we compare the average-case performance between different solutions including
the solutions that implement COTS arbiters which favor performance only. Figure 11
delineates the average slowdown of each solution relative to a system that deploys an MSI
protocol along with a split bus architecture and FCFS arbiter which is denoted by COTS-Split.
This experiment runs the synthetic benchmarks of EEMBC to compare the performance of all
the previous configurations and adding to them COTS-Unified configurations. COTS-Unified
denotes a FCFS bus arbiter on top of a unified bus architecture. Similarly, Figure 12 shows
the performance results of running SPLASH-3 benchmarks.
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Figure 12 The slowdown of the performance of the predictable cache solutions compared to
COTS-Split and COTS-Unified. All the values of running SPLASH-3 benchmarks are normalized to
COTS-Split performance.

▶ Observation 5. The relative performance of MSI protocol compared to MESI and
MOESI, shown in Figures 11 and 12, is consistent with their total memory latency which is
discussed Observation 4. PMSI in Figure 11 shows a large performance degradation compared
to MSI with TDM arbiter, while in Figure 12 the gap between them is minimal. The reason
for this is the nature of the benchmarks as the percentage of the shared data in SPLASH is
smaller than that in EEMBC; EEMBC has 100% of data shared to impose high coherence
interference between cores. Also, we can make the same observation for PMESI and MESI
with TDM. Moreover, PMESI∗ shows the worst performance in most of the benchmarks in
Figure 12, and this is because PMESI∗ limits the cases that different cores can have the
same cache line in S state. Finally, PCC deploying MSI with RR arbiter shows the best
performance in Figure 12 and it is the closest to COTS-Split performance.

The last experiment is to compare the performance of different arbiters that are coupled
with MOESI protocol and OoO cores. Figure 13 shows the results of executing SPLASH-3
benchmarks, where the performance values of the arbiters are normalized to the values of
COTS-Unified. The other predictable solutions are excluded from this experiments as none
of them supports OoO execution.

▶ Observation 6. The average gain in performance of MOESI with RR OoO execution
compared to in-order execution is 5%. TDM shows the worst performance among the other
arbiters, while WRR shows a slightly better performance than RR and HRR.
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Figure 13 The slowdown of the performance of MOESI-PCC compared to COTS-Unified. All
the values of running SPLASH-3 benchmarks are normalized to COTS-Unified performance.

8 Conclusion

We propose PCC: a solution to integrate COTS coherence protocols into legacy predictable
real-time arbitration schemes without requiring any modifications to either of them. Doing
so has several benefits. 1) PCC achieves tight latency bounds with minimal performance
degradation. 2) It does not impose any burden on designing or verifying new protocols,
which facilities adoption by industry. 3) It uses legacy arbitration schemes that have been
studied for a long time, which in turn carries forward the credit of their analyzability making
the proposed solution more appealing from a certification perspective. 4) It enables the
integration of any coherence protocol with any predictable arbiter in a plug-and-play fashion.
In this paper, we leveraged this capability to implement 3 different detailed coherence
protocols as well as 4 commonly-used real-time arbiters. This allowed us to carry exploratory
experiments for 12 different architectural configurations. Finally, we release the source code
of the cycle-accurate implementation of such architectures for the community to use and
expand.
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