
A Mathematical Comparison Between
Response-Time Analysis and Real-Time Calculus
for Fixed-Priority Preemptive Scheduling
Victor Pollex #Ñ

INCHRON AG, Erlangen, Germany

Frank Slomka # Ñ

Institute of Embedded Systems/Real-Time Systems, Faculty of Engineering and Computer Science,
Universität Ulm, Germany

Abstract
Fixed-priority preemptive scheduling is a popular scheduling scheme for real-time systems. This is
accompanied by a vast amount of research on how to analyse and check whether these systems satisfy
their real-time requirements. Two methods that emerged from this research are the response-time
analysis and the real-time calculus. These two methods have been compared empirically on the
basis of several abstract systems showing that for some systems one method gives better results
than the other and for other systems both methods appear to give the same results. However,
empirical analyses inherently contain uncertainty. To get a definitive answer we compare both
methods mathematically and we show that both methods give the same results for systems that use
fixed-priority preemptive scheduling and independent tasks.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded and cyber-physical systems; Software and its engineering →
Scheduling

Keywords and phrases real-time systems, fixed-priority scheduling, response-time analysis, real-time
calculus

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.7

Funding Victor Pollex: This work was supported by Federal Ministry of Education and Research
under the grant agreement number 01IS21031A.
Frank Slomka: This work was supported by Federal Ministry of Education and Research under the
grant agreement number 01IS21031B.

1 Introduction

For real-time systems it is necessary to verify that they meet their real-time requirements.
Two of the methods that have emerged to verify these systems are the response-time analysis
(RTA) and the real-time calculus (RTC). The response-time analysis originates from a
proof [12, Theorem 5] that shows when a real-time system that periodically runs a set of
independent tasks will always produce results on time. Whereas the origin of the real-time
calculus is a mathematical framework [6, 7] to find a bound for the delay that a data stream
is subjected to when flowing through a packet switched network.

Over time large amounts of work was produced regarding the response-time analysis
and the real-time calculus that covers, among other things, different scheduling algorithms,
different patterns on how tasks recur, and dependencies between tasks as well as empirical
comparisons.

In distributed real-time systems where the activation of tasks can follow a complex pattern,
the real-time calculus, due to its more expressive model, appears to produce the same or
better results than the response-time analysis [14, Benchmark 1]. When the distributed real-

© Victor Pollex and Frank Slomka;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 7; pp. 7:1–7:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:victor.pollex@inchron.com
https://www.inchron.com
mailto:frank.slomka@uni-ulm.de
https://www.uni-ulm.de/en/in/es/
https://doi.org/10.4230/LIPIcs.ECRTS.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Response-Time Analysis vs. Real-Time Calculus

time system is a feedback loop, then both methods appear to produce the same results [14,
Benchmark 2]. However, when the distributed real-time system has a cyclic dependency or
there are data dependencies, then the response-time analysis appears to produce the same or
better results than the real-time calculus [14, Benchmark 3 and 4].

All of these comparisons are empirical. Therefore, we only have an indication that one
method might always produce the same or better results than the other. However, we do
not know for certain. So, to get a definitive answer we compare these methods formally.
By means of a mathematical proof we show that both methods produce the same results
when the real-time system uses fixed-priority preemptive scheduling and their tasks are
independent.

Structure of the Paper

The remainder of this paper has the following structure: First we describe the related work in
Section 2. Then we introduce the models and the analyses of the response-time analyses and
the real-time calculus in Section 3. Subsequently, in Section 4 we describe the assumptions
that we use and formally compare the response-time analysis with the real-time calculus by
means of a mathematical proof. We conclude the paper with a summary in Section 5.

2 Related Work

In their seminal paper [12] Liu and Layland introduce a sufficient test for real-time systems
that run a set of independent tasks which recur periodically, have an implicit deadline, and
are subject to the fixed-priority preemptive scheduling algorithm. For the same type of
real-time systems, Joseph and Pandya improve the analysis in [9] by supplying an exact test.
Moreover, their test is not only suitable for tasks with implicit deadlines, but also for tasks
with restricted deadlines. Lehoczky presents in [11] a further improvement to the previous
test by extending the exact test to also include tasks with arbitrary deadlines, which then
Tindell et al. further extend in [25] to allow tasks to have a release jitter. Similarly, Audsley
et al. improve in [1] the exact test where they assume that the set of tasks have implicit
deadlines, but they allow the tasks to block internally and have a release jitter. In [24]
Tindell and Clark provides a test that combines all of these improvements. Audsley et al.
present in [2] an historic perspective on fixed-priority preemptive scheduling. In [16] Richter
presents an abstract representation of the bounds on how often the tasks recur. Based on
which, Schliecker et al. introduce in [18] the multiple event busy time as a generalization of
the concept of busy period which many response-time analyses use.

The work of Cruz [6, 7] is considered seminal for network calculus which is a mathematical
framework to find bounds for the latency that network components cause on bit streams [10].
Fidler presents in [8] a comprehensive survey of the models that the network calculus uses
Based on the network calculus, Thiele et al. introduce in [23] the models for the real-
time calculus, how to get these models from a recurring real-time task, and they describe
a schedulability test with these models for systems that use a fixed-priority preemptive
scheduling algorithm. Chakraborty et al. refine in [5] the real-time calculus to calculate
tighter bounds and apply it to scheduling networks. Wandeler improves the real-time calculus
further in [26].

In [14] Perathoner et al. use several small abstract systems to empirically benchmark
various formal performance analyses with these systems. Among the analyses are the response-
time analysis and the real-time calculus. They show that neither of these two analyses always

V. Pollex and F. Slomka 7:3

outperforms the other. But rather it depends on the characteristics of the system under
analysis whether one outperforms the other. However, this is an empirical comparison. We
compare them mathematically instead.

Naedele et al. present in [13] a schedulability test with the real-time calculus for a system
that uses a fixed-priority preemptive scheduling algorithm. They indicate that it is possible
to derive the test in [25] from their schedulability test. Similarly, Pollex et al. show in [15] a
generalization of the response-time analysis with the help of the real-time calculus. They
exemplarily derive the analysis in [25] from the real-time calculus. However, we use the more
general schedulability test from [17] for our comparison.

In [17] Schliecker presents the multiple event busy time, how to derive it for fixed-priority
preemptive scheduling, and an accompanying analysis as an extension of the work in [25].
They also show how to derive a multiple event busy time from the service curves of the
real-time calculus. However, there is no discussion how the multiple event busy times, the
one extended from [25] and the other derived from the service curve of the real-time calculus,
relate to each other. We show that they are in fact identical.

Boyer and Roux propose in [3, 4] a model which can embed the models that the network
calculus and the response-time analysis use, therefore making it possible to analyse a system
that uses both models. However, they only look into how to interface between the different
models and not how the individual analyses compare. Furthermore, much of the mathematical
background that they use assumes real-valued functions that have the extended non-negative
real numbers as domain and co-domain. We generalise some of them, where we assume
mappings that use partially ordered sets or lattices as domain and co-domain.

Depending whether the real-time systems use fixed or dynamic priority scheduling,
the existing analyses differ because of the different mathematical requirements on the
models. In [19, 20] Slomka and Sadeghi introduce a new mathematical framework based
on mathematical tools from electric engineering to analyse real-time systems. This new
mathematical framework makes it possible to describe an unified analysis for real-time
systems that use fixed and/or dynamic priority scheduling. They also describe existing
analyses like [25] and analyses for real-time systems with dynamic priority scheduling with the
new mathematical framework. Based on this mathematical framework, Slomka and Sadeghi
show in [21] preliminary work for investigating the relationship between the response-time
analysis and the real-time calculus. They sketch possible similarities, however they do not
express the real-time calculus with their new mathematical framework, let alone compare
them.

3 Models and Analyses

To analyse a real-time system we need to appropriately model it. Since we compare the
response-time analyses with the real-time calculus, we first describe the assumptions and
notations that both analyses have in common followed by a running example that we use
to illustrate the concepts of both analyses. Second, we present the common mathematical
concepts that both analyses use. Third, we restate the notation and the analyses themselves
as presented in [17] and [26] for the response-time analysis and the real-time calculus,
respectively.

3.1 Common Assumptions and Notation
We assume that the real-time system has a single core processor that uses a fixed-priority
scheduler which allows a higher priority task to preempt a lower priority task at any time.
The set of tasks Γ that is assigned to the processor has n tasks τi, where i ∈ {1, . . . , n}. We

ECRTS 2022

7:4 Response-Time Analysis vs. Real-Time Calculus

0 5 10 15 20 25 30

τ1

τ2

Time

Ta
sk

s

Figure 1 Worst-case schedule of the system described in Example 1.

only consider events that cause the system to release a job of a task which the system then
puts into the ready queue of the scheduler. The scheduler is work-conserving, i.e. whenever a
job of a task is in the ready queue, the scheduler assigns a job to the processor to execute
it. Each task τi has a unique priority which defines a strict order on the set of tasks Γ. We
use the index of τi to also represent the priority of the task. A lower numerical value of the
index means that the task has a higher priority, i.e. task τ3 has a higher priority than task
τ8. The tasks are independent from each other. There are no data dependencies, temporal
dependencies, or any other dependencies between them. Also, the jobs of the tasks do not
use any shared resources other than the processor.

To illustrate the concepts of both analyses we use the following running example of a
real-time system.

▶ Example 1. Let the system consist of two tasks Γ := {τ1, τ2}, where τ1 has a higher
priority than τ2. Task τ1 releases a job every p1 := 6 time units, has a release jitter of j1 := 4
time units, and the processor needs c+

1 := 2 time units to process each of its jobs. Similarly,
task τ2 releases a job every p2 := 12 time units, has a release jitter of j2 := 8 time units, and
the processor needs c+

2 := 3 time units to process each of its jobs.
Figure 1 shows the worst-case schedule for this system. Task τ1 releases a job at time

points 0, 2, and from then on every p1 time units. Similarly, task τ2 releases a job at time
points 0, 4, and from then on every p2 time units. The processor completes the first job
of task τ2 at 7 time units and the second job at 12 time units. So, the length of the time
interval for the first two jobs from their release to when the processor completes them is
7 − 0 = 7 and 12 − 4 = 8 time units, respectively. Because at 12 time units an interval starts
where no jobs are pending and therefore the processor is idle, we can conclude that a job
of task τ2 will never need more than 8 time units from the time it was released until the
processor completes it.

3.2 Common Mathematical Notation and Definitions
First we introduce common mathematical notation and definitions. Then we present three
mathematical definitions which are fundamental to many lemmas on which the theorem of
our main contribution bases.

The set of positive integers and non-negative integers is N and N0, respectively. Further-
more, the set of real numbers, the extended real numbers (includes −∞ and ∞), and the
non-negative real numbers is R, R, and R+

0 , respectively.

V. Pollex and F. Slomka 7:5

▶ Definition 2 (Monotonicity). Let f : X → Y be a mapping from a partially ordered set X

to a partially ordered set Y , then f is isotone or antitone if

∀x1, x2 ∈ X : x1 ≤ x2 ⇒ f(x1) ≤ f(x2) or (1a)
∀x1, x2 ∈ X : x1 ≤ x2 ⇒ f(x1) ≥ f(x2), respectively. (1b)

Isotone mappings are also called order-preserving or in case of functions increasing or
non-decreasing. Similarly, antitone mappings are also called order-reversing, decreasing, or
non-increasing.

▶ Definition 3 (Directional Continuity). Let f : X → R be a function from a subset X of the
real numbers, then f is continuous on the left or right at x ∈ X if

∀ϵ > 0 ∃δ > 0 ∀ξ ∈ X ∩ (x − δ, x) : |f(ξ) − f(x)| < ϵ or (2a)
∀ϵ > 0 ∃δ > 0 ∀ξ ∈ X ∩ (x, x + δ) : |f(ξ) − f(x)| < ϵ, respectively. (2b)

If f is continuous on the left or right at every element of X, then f is called continuous on the
left or right, respectively. Alternatively, f can be called left-continuous or right-continuous.

The models use several functions like the event load function (Definition 8) or the arrival
curves (Definition 11) which in general are increasing, but not strictly increasing. Therefore,
their inverse functions do not necessarily exist, but their closely related pseudo-inverse do.
We define the pseudo-inverse of a function with the help of its contour set.

▶ Definition 4 (Contour Set). Let f : X → Y be a mapping from a set X to a partially
ordered set Y , then the lower contour set Xf≤y and the upper contour set Xy≤f of f at
y ∈ Y are

Xf≤y := {x ∈ X : f(x) ≤ y} and (3a)
Xy≤f := {x ∈ X : y ≤ f(x)} . (3b)

▶ Definition 5 (Pseudo-Inverse). Let f : X → Y be a mapping from a subset X of a complete
lattice L to a partially ordered set Y , then the pseudo-inverse f−1 : Y → L and f−1 : Y → L

at y ∈ Y are

f−1(y) := inf Xy≤f and (4a)

f−1(y) := sup Xf≤y (4b)

with the convention that inf ∅ = sup X and sup ∅ = inf X.

Note that we do not require that f is increasing as in [4, Definition 5]. This makes the
new result in Lemma 50 possible. Also, note that the image of the pseudo-inverses f−1 and
f−1 is a subset of the complete lattice L and not a subset of X. The reason is that the
pseudo-inverses are the infimum and supremum of subsets of X. These do not necessarily
have to be in X, but they are in L. To illustrate this, we use the following example.

▶ Example 6. Let f : I → R be a function from the open interval I := (1, 6) to the real
numbers where f(x) = x when x ∈ (1, 3], f(x) = 3 when x ∈ (3, 4], and f(x) = x − 2
when x ∈ (4, 6). See Figure 2a for a plot of f . Table 1 shows the contour sets and their
respective pseudo-inverses for any y ∈ R. Lastly, Figures 2b and 2c show the plots for the
pseudo-inverses f−1 and f−1. As Table 1 shows, the pseudo-inverses attain the values 1 and
6, which are not in I.

ECRTS 2022

7:6 Response-Time Analysis vs. Real-Time Calculus

Table 1 Resulting contour sets, Iy≤f and If≤y, and their respective pseudo-inverses, f−1(y) and
f−1(y), for any y ∈ R for function f defined in Example 6.

y ∈ Iy≤f f−1(y)

(−∞, 1] I 1
(1, 2] [y, 6) y

(2, 3] [y, 4] ∪ [y + 2, 6) y

(3, 4) [y + 2, 6) y + 2
[4, ∞) ∅ 6

y ∈ If≤y f−1(y)

(−∞, 1] ∅ 1
(1, 2] (1, y] y

(2, 3) (1, y] ∪ (4, y + 2] y + 2
[3, 4) (1, y + 2] y + 2
[4, ∞) I 6

1 2 3 4 5 6
1

2

3

4

(a) Plot of f .
0 1 2 3 4 5

1

2

3

4

5

6

(b) Plot of f−1.
0 1 2 3 4 5

1

2

3

4

5

6

(c) Plot of f−1.

Figure 2 Plot of the functions f defined in Example 6 and its pseudo-inverses f−1 and f−1.

▶ Definition 7 (Deconvolution). Let f : R+
0 → R+

0 and g : R+
0 → R+

0 be increasing functions.
The deconvolution in inf-plus ⊘ and in sup-plus ⊘ are defined as follows [10, Definition
3.1.13 and 3.2.2]:

(f ⊘ g)(x) := sup
0≤ξ

{f(x + ξ) − g(ξ)} (5a)

(f ⊘ g)(x) := inf
0≤ξ

{f(x + ξ) − g(ξ)} (5b)

3.3 Response-Time Analysis
Over time, events occur that release jobs of tasks. To capture the density of these events for
a task τi, the response-time analysis uses two functions, the event load function η+

i and the
event distance function δ−

i .

▶ Definition 8 (Event Load Function). Confer [17, p. 53, (3.3)]. The upper event load
function for task τi maps a length of a time interval to an upper bound of the number of
events that can occur in any time interval of that length and is denoted by

η+
i : R+

0 → N0. (6)

▶ Definition 9 (Event Distance Function). Confer [17, p. 53, (3.1)]. The minimum event
distance function for task τi maps a number of events to a lower bound of the length of a
time interval in which at least that amount of events occur and is denoted by

δ−
i : R+

0 → R+
0 . (7)

Given q events, every interval in which at least q events occur has a length of at least δ−
i (q).

Or, in any interval with a length smaller than δ−
i (q) less than q events occur.

V. Pollex and F. Slomka 7:7

η+
2

0 5 10 15 20
0

1

2

3

Length of interval ∆

N
um

be
r

of
ev

en
ts

(a) The event load function η+
2 of

task τ2.

δ−
2

B+
2 (2)

B+
2 δ−

2 (2)

0 1 2 3
0

4

8

12

16

20

Number of events

Le
ng

th
of

in
te

rv
al

∆
(b) The event distance function δ−

2 and the multiple event busy time
function B+

2 of task τ2.

Figure 3 The concepts of the response-time analysis applied on the system described in Example 1.

Both the event load function and the event distance function are closely related, such
that we can derive one function from the other. The relationship between these functions
is that one function is essentially the pseudo-inverse of the other. Commonly, we have the
upper event load function and from that we derive the minimum event distance function
with (cf. [17, p. 54, (3.7)])

δ−
i := η+

i

−1
. (8)

Additionally, a task has a worst-case execution-time c+
i which describes the maximum

amount of processor time without any interference of higher priority task that a job needs
for the processor to execute it.

The worst-case response time r+
i of task τi is bounded by (cf. [17, p. 64, (3.22)])

r+
i ≤ max

q∈N0

{
B+

i (q) − δ−
i (q)

}
. (9)

Equation (9) uses the multiple event busy time function B+
i : N0 → R+

0 , cf. [17, p. 63,
Definition 3.6]. For fixed priority preemptive scheduling the multiple event busy time
function is (cf. [17, p. 64, (3.23)])

B+
i (q) = min

∆∈R+
0

∆ : ∆ = q · c+
i +

i−1∑
j=1

(
η+

j (∆) · c+
j

) . (10)

In (10) we explicitly specify the smallest fix-point to resolve any possible mathematical
ambiguity, because that is how [17, p. 64, (3.23)] is intended.

▶ Example 10. Given the system in Example 1 we exemplarily derive the various functions
of the response-time analysis for it.

For task τ1 the worst-case execution time is the same as given in the example system,
i.e. c+

1 = 2. Because task τ1 has the highest priority, the multiple event busy time function
is B+

1 (q) = q · c+
1 according to Equation (10). With the release of jobs every p1 = 6 time

units and a release jitter of j1 = 4 time units, the event load function is η+
1 (∆) =

⌈
∆+j1

p1

⌉
for

∆ > 0 and η+
1 (∆) := 0 for ∆ = 0. Now that we have the event load function we derive the

event distance function according to Equation (8), i.e. δ−
1 (q) = max{0, ⌈q − 1⌉ · p1 − j1}.

ECRTS 2022

7:8 Response-Time Analysis vs. Real-Time Calculus

Similarly, for task τ2 the worst-case execution time is the same as in the example system,
i.e. c+

2 = 3. According to Equation (8) the multiple event busy time function B+
2 has

to consider the interference from the higher priority task τ1 which results in B+
2 (q) =

q · c+
2 +

⌈
q·c+

2 +8
4 − 1

⌉
· c+

1 for q > 0 and B+
2 (q) = 0 for q = 0. Task τ2 releases jobs

every p2 = 12 time units and has a release jitter of j2 = 8 time units, therefore its event
load functions is η+

2 (∆) =
⌈

∆+j2
p2

⌉
for ∆ > 0 and η+

2 (∆) = 0 for ∆ = 0. Deriving the
event distance function from the event load function according to Equation (8) results in
δ−

2 (q) = max{0, ⌈q − 1⌉ · p2 − j2}.
Now that we have both the multiple event busy time function B+

2 and the event distance
function η+

2 for task τ2 we can calculate the upper bound for the worst-case response-time,
see Figure 3b for a plot with both of these functions. The worst-case response-time for task
τ2 is not greater than r+

2 ≤ maxq∈N0

{
B+

i (q) − δ−
i (q)

}
= max{0 − 0, 7 − 0, 12 − 4, . . .} = 8

time units. Note that we do not necessarily need to compute all the values of the multiple
event busy time function B+

2 . In a schedulable system there will be a point when there are
no pending jobs of task τ2 that could defer the execution of any of its following jobs, cf. [17,
p. 72, Theorem 3.9].

3.4 Real-Time Calculus
The real-time calculus models a task with the Greedy Processing Component which has
event-based arrival curves αi and resource-based service curves βi as input.

▶ Definition 11 (Event-Based Arrival Curves). Confer [26, p. 16, Def. 1] and [26, p. 73,
Def. 3]. Let R[s, t) denote the number of events that occur in the interval [s, t), where s ∈ R+

0
is a point in time before t ∈ R+

0 , i.e. s ≤ t. Then, the event-based lower arrival curve
α− : R+

0 → R+
0 and the event-based upper arrival curve α+ : R+

0 → R+
0 satisfy for every

point in time t ∈ R and every length of interval ∆ ∈ R+
0 the property:

α−(∆) ≤ R[t, t + ∆) ≤ α+(∆) (11)

▶ Definition 12 (Resource-Based Service Curves). Confer [26, p. 19, Def. 2] and [26, p. 73,
Def. 6]. Let C[s, t) denote the amount of resources that are available in the interval [s, t),
where s ∈ R+

0 is a point in time before t ∈ R+
0 , i.e. s ≤ t. Then, the resource-based lower

service curve β− : R+
0 → R+

0 and the resource-based upper service curve β+ : R+
0 → R+

0
satisfy for every point in time t ∈ R and every length of interval ∆ ∈ R+

0 the property:

β−(∆) ≤ C[t, t + ∆) ≤ β+(∆) (12)

The arrival curves α− and α+ map a length of a time interval to a lower, respectively
upper, bound of the amount of events that can occur in any interval of that length which
causes the system to release jobs. Similarly, the service curves β− and β+ map a length of
a time interval to a lower, respectively upper, bound of the amount of resources that are
available in any interval of that length to execute any pending jobs. However, the arrival
curves in Definition 11 are event-based, which map from a length of an interval to a number
of events. But, the service curves in Definition 12 are resource-based, which map from a
length of an interval to an amount of resources. Number of events and amount of resources
are not comparable. So, we need to transform at least one of them into the other. Which we
do with workload curves.

V. Pollex and F. Slomka 7:9

▶ Definition 13 (Workload Curves). Confer [26, p. 74, Def. 7]. Let W (u) denote the amount
of resources that are necessary to process u consecutive events, then the lower workload curve
γ− : R+

0 → R+
0 and the upper workload curve γ+ : R+

0 → R+
0 satisfy for u ∈ R+

0 and v ∈ R+
0

consecutive events, where u ≤ v, the property:

γ−(v − u) ≤ W (v) − W (u) ≤ γ+(v − u) (13)

To transform the resource-based lower service curve into its event-based form, we compose
(◦) it with the pseudo-inverse of the upper workload curve. Confer [26, p. 74, (4.6)] and [26,
p. 75, (4.11)].

β
− = γ+−1 ◦ β− (14)

Similarly, we transform the event-based upper arrival curve into its resource-based form by
composing it with the upper workload curve. Confer [26, p. 75, (4.8)].

α+ = γ+ ◦ α+ (15)

With the arrival curve and the service curve in either the resource-based form or the
event-based form, we can describe an upper bound on the delay of task τi. This is the longest
time that the processor needs to execute a job of task τi. From the time the event occurred
which released the job until the job was completely executed. We describe this upper bound
with the notion of the largest horizontal distance between functions.

▶ Definition 14 (Largest horizontal distance between functions). Confer [10, p. 154, (3.21)].
Let f, g : R+

0 → R+
0 be increasing functions, then the largest horizontal distance ↔ between f

and g is

f ↔ g := sup
λ∈R+

0

{
inf

µ∈R+
0

{µ : f(λ) ≤ g(λ + µ)}
}

(16)

With the event-based upper arrival curve α+
i and lower service curve β

−
i of task τi, we can

express the upper bound of the delay of task τi by means of the largest horizontal distance
between functions and is (cf. [26, p. 26, (2.11)])

α+
i ↔ β

−
i . (17)

However, we need the event-based lower service curve β
−
i for task τi. Given a task τi with its

corresponding arrival and service curves, then the remaining lower service curve is (cf. [26,
p. 23, (2.10) or p. 201, (A.15)])

β−
j (∆) = sup

0≤λ≤∆

{
β−

i (λ) − α+
i (λ)

}
or β−

j = (β−
i − α+

i)↗
. (18)

In the latter part of Equation (18) we apply an increasing operator, which is defined as

▶ Definition 15 (Increasing operator). Let F be the set of functions f : R+
0 → R and Ix the

interval [0, x] for a non-negative real number x, then the increasing operator ↗ : F → F is

f↗(x) := sup
ξ∈Ix

{f(ξ)} (19)

The increasing operator transforms a function f into an increasing function and it is a closure
operator.

ECRTS 2022

7:10 Response-Time Analysis vs. Real-Time Calculus

0 5 10 15 20
−5

0

5

10

15

(a) Plot of β−
1 − α+

1 .
0 5 10 15 20

−5

0

5

10

15

(b) Plot of β−
2 = (β−

1 − α+
1)↗.

Figure 4 The resource-based lower service curve β−
2 of task τ2 for the system described in

Examples 1 and 19 according to Equation (18) by applying the increasing operator.

▶ Remark 16. Let F be the set of functions f : R+
0 → R, then

f↗ is increasing (20)

Proof. Let Ix the interval [0, x] for a non-negative real number x, x1, x2 ∈ R+
0 with x1 ≤ x2,

then Ix1 ⊆ Ix2 , therefore f↗(x1) = supξ∈Ix1
{f(ξ)} ≤ supξ∈Ix2

{f(ξ)} = f↗(x2). ◀

▶ Remark 17 (Increasing closure). Let F be the set of functions f : R+
0 → R, then the increasing

operator ↗ : F → F is a closure operator on the partially ordered set (F, ≤), where ≤ is the
pointwise order on functions.

Proof. Let f, g ∈ F be functions and Ix the interval [0, x] for a non-negative real number x,
then
(a) f ≤ f↗: Because x is an element in Ix it follows that f(x) ≤ supξ∈Ix

{f(ξ)} = f↗(x).
(b) f ≤ g ⇒ f↗ ≤ g↗: Follows directly from Equation (19).
(c) f↗↗ = f↗: Follows from Equations (19) and (20), i.e. f↗↗(x) = supξ∈Ix

{
f↗(ξ)

}
=

f↗(x).
Because the increasing operator ↗ satisfies (a)–(c), it is a closure operator. ◀

For the case of fixed-priority preemptive scheduling the lower available service curve β−
i

is the lower remaining service curve of the next higher priority task τi−1. See Figure 4 that
shows the available service curve β−

2 of task τ2 or the lower remaining service curve of task τ1
for the system described in Examples 1 and 19. When i = 1 then the lower available service
curve of the highest priority task τ1 is equal to the lower available service curve to the entire
scheduler itself, i.e. β−

1 = β−.
Similarly to the horizontal distance between functions (Definition 14) we define the

vertical distance between functions.

▶ Definition 18 (Largest vertical distance of functions). Confer [10, p. 154, (3.20)]. Let
f, g : R+

0 → R+
0 be increasing functions, then the largest vertical distance ↕ between f and

g is

f ↕ g := sup
ξ∈R+

0

{f(ξ) − g(ξ)} = sup(f − g) (21)

V. Pollex and F. Slomka 7:11

α+
2

β
−
2

α+
2 ↔ β

−
2

0 5 10 15 20
0

1

2

3

4

Length of interval ∆

N
um

be
r

of
ev

en
ts

Figure 5 The event-based upper arrival curve α+
2 , the event-based lower service curve β

−
2 , and

the upper bound of the delay α+
2 ↔ β

−
2 for τ2 of the system described in Example 1.

▶ Example 19. Given the system in Example 1 we exemplarily derive the various functions
of the real-time calculus for it.

For task τ1 be event-based upper arrival curve is α+
1 (∆) =

⌈
∆+j1

p1

⌉
for ∆ > 0 and

α+
1 (∆) = 0 for ∆ = 0. Because task τ1 has the highest priority, the resource-based

lower service curve is β−
1 (∆) = ∆. Lastly, the upper workload curve is γ+

1 (q) = q · c+
1 .

Similarly, for task τ2 the event-based upper arrival curve is α+
2 (∆) =

⌈
∆+j2

p2

⌉
for ∆ > 0

and α+
2 (∆) = 0 for ∆ = 0. According to Equation (18) the resource-based lower service

curve is β−
2 (∆) = sup0≤λ≤∆

{
β−

1 (λ) − α+
1 (λ)

}
, see Figure 4b for a plot of β−

2 , and the upper
workload curve is γ+

2 (q) = q · c+
2 .

Figure 5 shows the event-based upper arrival curve α+
2 and the event-based lower service

curve β
−
2 of task τ2. From those we derive the upper bound of the delay α+

2 ↔ β
−
2 which is

12 − 4 = 8 time units.

4 Formal Comparison of the RTA with the RTC

In this section we formally compare the upper bound for the worst-case response-time,
Equation (9), that the response-time analysis uses with the upper bound for the delay,
Equation (17), that the real-time calculus uses. For a fair comparison we must ensure
identical initial conditions, therefore we make the following assumptions:
▶ Assumption 20. For mathematical reasons, every curve (α+

i , β−, and γ+) is increasing and
not bounded above, lower curves (β−) are right-continuous, and upper curves (α+

i and γ+)
are left-continuous.
For the event-based upper arrival curve α+

i this means that an interval of greater length
exists where at least as many events occur than in any interval of the same or smaller length
and if the system keeps running for all eternity, an infinite amount of events will occur.
▶ Assumption 21. Jobs of tasks do not starve, every job finishes after a finite amount of
time. For a set of n tasks, we express this by assuming that the available service for the
lowest priority task τn is not bounded above, i.e. for all r ∈ R+

0 a ∆ ∈ R+
0 exists such that

r < β−
n (∆).

This implies that the resource-based lower service curve β−
i for every task i ∈ {1, . . . , n} is

not bounded above.
▶ Assumption 22. The event load function and the event-based upper arrival curve for a task
τi are equal, i.e. η+

i = α+
i , because both model exactly the same.

ECRTS 2022

7:12 Response-Time Analysis vs. Real-Time Calculus

Examples for how to define the event load function for common event models are in [16,
p. 50] or in [26, p. 16, Ex. 1]. All those definitions satisfy Assumption 20.

▶ Assumption 23. An implicit assumption of the response-time analysis is that one unit
of processor time is available per time unit. Therefore, the lower bound of the available
resources that a fixed-priority preemptive scheduler has is β−(∆) = ∆, cf. [26, p. 20, Ex. 2].

The resource-based lower service curve β−(∆) = ∆ is not bounded above and is continuous.
Therefore, it is also right-continuous and thus satisfies Assumption 20.

▶ Assumption 24. Furthermore, the response-time analysis assumes that every job of a task
τi needs at most c+

i processor time to execute. So, we have for the upper workload curve
γ+

i (q) = q · c+
i .

This also satisfies Assumption 20.
Under Assumptions 20–24 we provide our main contribution, Theorem 31, a proof that

the upper bound for the worst-case response-time of the response-time analysis, Equation (9),
and the upper bound for the delay of the real-time calculus, Equation (17), are equal for
every task in a set of independent tasks as described in Section 3.1.

We divide the proof of Theorem 31 into several steps and begin by revisiting Figures 3b
and 5. These show the functions that the response-time analysis and the real-time calculus
use to model the system in Example 1. Both analyses calculate the same upper bound for
the worst-case response-time or delay. It appears that the functions in Figure 3b are the
pseudo-inverse of the functions in Figure 5. So, there seem to exist a relation between the
horizontal distance between functions, Equation (16), and the vertical distance between
functions, Equation (21). This turns out to be the case, Lemma 25. Next, we need to compare
the pseudo-inverse of the event-based upper arrival curve α+

i

−1 and the pseudo-inverse of the
event-based lower service curve β

−
i

−1
with the event distance function δ−

i and the multiple
event busy time function B+

i . The former is straight forward, Remark 26, however the
latter is more challenging. For that we need to determine what the pseudo-inverse of the
resource-based lower service curve β−

i

−1 is, Lemma 27. From it, we then have to derive the
pseudo-inverse of the event-based lower service curve β

−
i

−1
, Lemma 28. With that we can

compare the pseudo-inverse of the event-based lower service curve β
−
i

−1
with the multiple

event busy time function B+
i , Lemma 29. Lastly, we need to verify that the different domains

of the pseudo-inverse of the event-based lower service curve β
−
i

−1
and the multiple event

busy time function B+
i do not affect the comparison, Lemma 30. After all these steps we can

finally prove the equality of the upper bound of the worst-case response-time, Equation (9),
and the upper bound for the delay, Equation (17), in Theorem 31.

▶ Lemma 25. Let f, g : R+
0 → R+

0 be increasing functions that are not bounded above, then
the largest horizontal distance between f and g is equal to the largest vertical distance between
g−1 and f−1.

f ↔ g = g−1 ↕ f−1 (22)

Proof. f and g are both increasing, so we use the equality of Equation (52). Both functions
f and g are also not bounded above, therefore we use Equation (49), Definition 7, and
Definition 18.

f ↔ g
(52)= (g ⊘ f)−1(0) (49)= (g−1 ⊘ f−1)(0) (5a)= sup

ξ∈R+
0

{
g−1(ξ) − f−1(ξ)

} (21)= g−1 ↕ f−1 ◀

V. Pollex and F. Slomka 7:13

▶ Remark 26. Let Γ be a set of n independent tasks as described in Section 3.1 and let
Assumption 22 hold, then for any task τi of Γ the event distance function δ−

i is equal to the
pseudo-inverse of the event-based upper arrival curve α+

i

−1.

δ−
i = α+

i

−1 (23)

Proof. The minimum event distance function is equal to the pseudo-inverse of the upper event
load function Equation (8). And the upper event load function is equal to the event-based
upper service curve, Assumption 22.

δ−
i

(8)= η+
i

−1 = α+
i

−1
◀

▶ Lemma 27. Let Γ be a set of n independent tasks as described in Section 3.1 and let
Assumptions 20 and 21 hold, then the pseudo-inverse of the resource-based lower service
curve β−

i

−1 of task τi is

β−
i

−1(r) = min
∆∈R+

0

∆ : ∆ = β−−1

r +
i−1∑
j=1

α+
j (∆)

 (24)

Proof. Let fi(λ) := β−(λ) −
∑i−1

j=1 α+
j (λ) and gi,r(∆) := β−−1

(
r +

∑i−1
j=1 α+

j (∆)
)

.
(a) β− is upper semi-continuous: Follows from Assumption 20 and Lemma 36.
(b) α+

i is lower semi-continuous: Follows from Assumption 20 and Lemma 36.
(c) −α+

i is upper semi-continuous: Follows from (b) and Lemma 34.
(d) fi is upper semi-continuous: Follows from (a) and (c) and Lemma 35.
(e) β−

i (∆) = sup0≤λ≤∆ {fi(λ)}, the resource-based lower service curve of task τi is the
increasing closure of fi: Follows from Equation (50).

(f) fi is not bounded above: Let x be a non-negative real number and Ix be the interval [0, x].
Because fi is upper semi-continuous, (d), and I∆ is a compact set, then fi achieves its
maximum in I∆. Therefore, for every ∆ ∈ R+

0 a λ ∈ I∆ exists such that β−
i (∆) = fi(λ).

From Assumption 21 we have that β−
i is not bounded above, so for every r ∈ R+

0 there
exist a ∆ ∈ R+

0 and subsequently a λ ∈ R+
0 such that r < β−

i (∆) = fi(λ). Therefore, fi

is not bounded above.
(g) gi,r is increasing: Follows from Assumption 20 and Equation (42a) and that increasing

functions are closed under addition and composition.
(h) r ≤ fi(∆) ⇔ ∆ ≥ gi,r(∆): Follows from Assumption 20 and Equation (41)

r ≤ fi(∆) ⇔ r ≤ β−(∆) −
i−1∑
j=1

α+
j (∆) ⇔ β−(∆) ≥ r +

i−1∑
j=1

α+
j (∆)

(41)⇔ ∆ ≥ β−−1

r +
i−1∑
j=1

α+(∆)

 ⇔ ∆ ≥ gi,r(∆)

(i) gi,r has a smallest fix-point: fi is not bounded above, (f), so we have that for any r ∈ R+
0

a ∆ ∈ R+
0 exists such that

fi(∆) > r ⇔ β−(∆) −
i−1∑
j=1

α+
j (∆) > r ⇔ β−(∆) > r +

i−1∑
j=1

α+
j (∆)

ECRTS 2022

7:14 Response-Time Analysis vs. Real-Time Calculus

holds. This implies that β−(∆) ≥ r +
∑i−1

j=1 α+
j (∆). Because of Assumption 20, we

apply Equation (41), and we get ∆ ≥ β−−1
(

r +
∑i−1

j=1 α+
j (∆)

)
= gi,r(∆). Let I be

the closed interval [0, ∆] of real numbers, then I is a complete lattice. Because of (g)
and gi,r(∆) ≤ ∆, the restriction of gi,r to I maps to itself, i.e. gr(I) ⊆ I. Therefore,
according to Lemma 56, gr has a smallest fix-point in I.

Equation (24) follows from Equation (47), because of (d) and (e), (h), and (i).

β−
i

−1(r) (47)= fi
−1(r) (4a)=

(3b)
inf

∆∈R+
0

{∆ : r ≤ fi(∆)} (h)= inf
∆∈R+

0

{∆ : ∆ ≥ gi,r(∆)}

(i)= min
∆∈R+

0

{∆ : ∆ = gi,r(∆)} = min
∆∈R+

0

∆ : ∆ = β−−1

r +
i−1∑
j=1

α+(∆)

 ◀

▶ Lemma 28. Let Γ be a set of n independent tasks as described in Section 3.1 and let
Assumptions 20 and 21 hold, then the pseudo-inverse of the event-based lower service curve
β

−
i

−1
of task τi is

β
−
i

−1
(q) = min

∆∈R+
0

∆ : ∆ = β−−1

γ+
i (q) +

i−1∑
j=1

α+
j (∆)

 (25)

Proof. We expand the event-based lower service curve into the composition of the pseudo-
inverse of the upper workload curve and the resource-based lower service curve. The pseudo-
inverse of the upper workload curve is increasing, Equation (42b), and right-continuous, Equa-
tion (43b). So, we expand the pseudo-inverse of the composition according to Equation (45b).
The upper workload curve is increasing and left-continuous according to Assumption 20,
therefore the two pseudo-inverse operations cancel each other out, Equation (46a).

β
−
i

−1 (14)=
(

γ+
i

−1 ◦ β−
i

)−1
(45b)= β−

i

−1 ◦ γ+
i

−1−1 (46a)= β−
i

−1 ◦ γ+
i

We satisfy the antecedents of Lemma 27, and so we get

(β−
i

−1 ◦ γ+
i)(q) (24)= min

∆∈R+
0

∆ : ∆ = β−−1

γ+
i (q) +

i−1∑
j=1

α+
j (∆)

 ◀

▶ Lemma 29. Let Γ be a set of n independent tasks as described in Section 3.1 and let
Assumptions 20–24 hold, then for any task τi of Γ the multiple event busy time function B+

i

is equal of the pseudo-inverse of the event-based lower service curve β
−
i

−1

B+
i = β

−
i

−1
(26)

Proof. First we abbreviate some expressions. Let fi(q, ∆) := β−−1
(

γ+
i (q) +

∑i−1
j=1 α+

j (∆)
)

and gi(q, ∆) := q · c+
i +

∑i−1
j=1

(
η+

j (∆) · c+
j

)
.

(a) β
−
i

−1
(q) = min∆∈R+

0
{∆ : ∆ = fi(q, ∆)}: Follows from Lemma 28.

(b) β−−1(r) = r: Follows from Assumption 23 and Definition 5.

V. Pollex and F. Slomka 7:15

(c) fi(q, ∆) = gi(q, ∆): Follows from (b), Equation (15), Assumption 24, and Assumption 22

fi(q, ∆) = β−−1

γ+
i (q) +

i−1∑
j=1

α+
j (∆)

 (b)= γ+
i (q) +

i−1∑
j=1

α+
j (∆)

(15)= γ+
i (q) +

i−1∑
j=1

γ+
j

(
α+

j (∆)
)

= q · c+
i +

i−1∑
j=1

(
α+

j (∆) · c+
j

)
= q · c+

i +
i−1∑
j=1

(
η+

j (∆) · c+
j

)
= gi(q, ∆)

(d) B+
i (q) = min∆∈R+

0
{∆ : ∆ = gi(q, ∆)}: Follows from Equation (10).

Equation (26) follows directly from (a), (c), and (d)

β
−
i

−1
(q) (a)= min

∆∈R+
0

{∆ : ∆ = fi(q, ∆)} (c)= min
∆∈R+

0

{∆ : ∆ = gi(q, ∆)} (d)= B+
i (q) ◀

▶ Lemma 30. Let f : R+
0 → R+

0 and g : R+
0 → N0, then

max
n∈N0

{
f−1(n) − g−1(n)

}
= sup

r∈R+
0

{
f−1(r) − g−1(r)

}
(27)

Proof. Let h := f−1 − g−1,bX := supx∈X {h(x)}, r a non-negative real number and n := ⌈r⌉
a non-negative integer.
(a) bN0 ≤ bR+

0
: Follows from N0 being a subset of R+

0 .
(b) f−1(r) ≤ f−1(n): Follows from r ≤ n and Equation (42a).
(c) g−1(r) = g−1(n): Follows from Definitions 4 and 5 and because the co-domain of g are

the non-negative integers

g−1(r) = inf
x∈R+

0

{x : r ≤ g(x)} = inf
x∈R+

0

{x : ⌈r⌉ ≤ g(x)} = g−1(⌈r⌉) = g−1(n)

(d) h(r) ≤ h(n): Follows from (b) and (c)
(e) bR+

0
≤ bN0 : Follows because for every r ∈ R+

0 an n ∈ N0 exists such that h(r) ≤ h(n).
This Lemma follows from (a) and (e). ◀

▶ Theorem 31. Let Γ be a set of n independent tasks as described in Section 3.1 and let
Assumptions 20–24 hold, then for any task τi of Γ the upper bound for the worst-case response
time from the response-time analysis is equal to the upper bound for the delay from the
real-time calculus.

max
q∈N0

{
B+

i (q) − δ−
i (q)

}
= α+

i ↔ β
−
i (28)

Proof. First we substitute the multiple event busy time function B+
i with the pseudo-inverse

of the event-based lower service curve β
−
i

−1
, Lemma 29 and the event distance function δ−

i

with the pseudo-inverse of the event-based upper the arrival curve α+
i

−1, Remark 26.

max
q∈N0

{
B+

i (q) − δ−
i (q)

} (26)= max
q∈N0

{
β

−
i

−1
(q) − δ−

i (q)
}

(23)= max
q∈N0

{
β

−
i

−1
(q) − α+

i

−1(q)
}

ECRTS 2022

7:16 Response-Time Analysis vs. Real-Time Calculus

Next we interchange the maximum max with the supremum sup and change the set from
the non-negative integers N0 to the non-negative real numbers R+

0 (Lemma 30). This results
in the vertical distance between the pseudo-inverse of the event-based lower service curve
β

−
i

−1
and the pseudo-inverse of the event-based upper arrival curve α+

i

−1 by Definition 18:

max
q∈N0

{
β

−
i

−1
(q) − α+

i

−1(q)
}

(27)= sup
λ∈R+

0

{
β

−
i

−1
(λ) − α+

i

−1(λ)
}

(21)= β
−
i

−1
↕ α+

i

−1

Finally, we apply the equality between the vertical distance of the pseudo-inverse functions
and the horizontal distance between the functions, Lemma 25, so that we ultimately get
Equation (17), the upper bound for the delay.

β
−
i

−1
↕ α+

i

−1 (22)= α+
i ↔ β

−
i ◀

5 Summary

We looked into the existing analyses for real-time systems with a single processor that uses
the fixed-priority preemptive scheduling algorithm to process a set of independent tasks that
do not share any resources other than the processor. One is the response-time analysis that
Schliecker presents in [17] and the other is the real-time calculus that Wandeler describes
in [26]. Both use abstract event models and produce upper bounds on the amount of time
that the processor needs to complete the tasks. The existing empirical comparisons could
only give us indications as how these two analyses compare.

However, we can now give a definite answer. We gave a mathematical proof that both
analyses produce for the investigated type of systems identical upper bounds. So, from a
mathematical point of view both analyses are equivalent and regarding the results it does
not matter which analysis is used. However, a different criteria, like run-time complexity,
can favour one over the other.

References
1 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying

new scheduling theory to static priority pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, September 1993. doi:10.1049/sej.1993.0034.

2 Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell, and Andy J. Wellings. Fixed
Priority Pre-emptive Scheduling: An Historical Perspective. Real Time Systems, 8(2-3):173–198,
March 1995. doi:10.1007/BF01094342.

3 Marc Boyer and Pierre Roux. A common framework embedding network calculus and event
stream theory. Technical report, ONERA - The french aerospace lab, May 2016. Preprint.
URL: https://hal.archives-ouvertes.fr/hal-01311502.

4 Marc Boyer and Pierre Roux. Embedding network calculus and event stream theory in a
common model. In 21st IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA 2016, Berlin, Germany, September 6-9, 2016, pages 1–8. IEEE, 2016.
doi:10.1109/ETFA.2016.7733565.

5 Samarjit Chakraborty, Simon Künzli, and Lothar Thiele. A General Framework for Analysing
System Properties in Platform-Based Embedded System Designs. In 2003 Design, Automation
and Test in Europe Conference and Exposition (DATE 2003), 3-7 March 2003, Munich,
Germany, pages 10190–10195. IEEE Computer Society, 2003. doi:10.1109/DATE.2003.10083.

6 Rene L. Cruz. A Calculus for Network Delay, Part I: Network Elements in Isolation. IEEE
Transactions on Information Theory, 37(1):114–131, January 1991. doi:10.1109/18.61109.

https://doi.org/10.1049/sej.1993.0034
https://doi.org/10.1007/BF01094342
https://hal.archives-ouvertes.fr/hal-01311502
https://doi.org/10.1109/ETFA.2016.7733565
https://doi.org/10.1109/DATE.2003.10083
https://doi.org/10.1109/18.61109

V. Pollex and F. Slomka 7:17

7 Rene L. Cruz. A Calculus for Network Delay, Part II: Network Analysis. IEEE Transactions
on Information Theory, 37(1):132–141, January 1991. doi:10.1109/18.61110.

8 Markus Fidler. A Survey of Deterministic and Stochastic Service Curve Models in the
Network Calculus. IEEE Communications Surveys & Tutorials, 12(1):59–86, 2010. doi:
10.1109/SURV.2010.020110.00019.

9 Mathai Joseph and Paritosh Pandya. Finding Response Times in a Real-Time System. The
Computer Journal, 29(5):390–395, January 1986. doi:10.1093/comjnl/29.5.390.

10 Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet, volume 2050 of Lecture Notes in Computer Science. Springer,
2001. doi:10.1007/3-540-45318-0.

11 John P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines.
In Proceedings of the Real-Time Systems Symposium - 1990, Lake Buena Vista, Florida, USA,
December 1990, pages 201–209. IEEE Computer Society, December 1990. doi:10.1109/REAL.
1990.128748.

12 C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM, 20(1):46–61, January 1973. doi:10.1145/
321738.321743.

13 Martin Naedele, Lothar Thiele, and Michael Eisenring. Characterizing Variable Task
Releases and Processor Capacities. Technical report, ETH Zürich, 1999. doi:10.3929/
ethz-a-004289034.

14 Simon Perathoner, Ernesto Wandeler, Lothar Thiele, Arne Hamann, Simon Schliecker, Rafik
Henia, Razvan Racu, Rolf Ernst, and Michael González Harbour. Influence of Different System
Abstractions on the Performance Analysis of Distributed Real-Time Systems. In Christoph M.
Kirsch and Reinhard Wilhelm, editors, Proceedings of the 7th ACM & IEEE International
conference on Embedded software, EMSOFT 2007, September 30 - October 3, 2007, Salzburg,
Austria, pages 193–202. ACM, 2007. doi:10.1145/1289927.1289959.

15 Victor Pollex, Steffen Kollmann, and Frank Slomka. Generalizing Response-Time Analysis. In
16th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA 2010, Macau, SAR, China, 23-25 August 2010, pages 203–211. IEEE
Computer Society, 2010. doi:10.1109/RTCSA.2010.36.

16 Kai Richter. Compositional Scheduling Analysis Using Standard Event Models. PhD
thesis, Technical University Carolo-Wilhemina of Braunschweig, 2005. doi:10.24355/dbbs.
084-200511080100-362.

17 Simon Schliecker. Performance Analysis of Multiprocessor Real-Time Systems with Shared
Resources. PhD thesis, Technical University Carolo-Wilhemina of Braunschweig, 2011. doi:
10.24355/dbbs.084-201111210932-0.

18 Simon Schliecker, Jonas Rox, Matthias Ivers, and Rolf Ernst. Providing Accurate Event Models
for the Analysis of Heterogeneous Multiprocessor Systems. In Catherine H. Gebotys and
Grant Martin, editors, Proceedings of the 6th International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2008, Atlanta, GA, USA, October 19-24, 2008,
pages 185–190. ACM, 2008. doi:10.1145/1450135.1450177.

19 Frank Slomka and Mohammadreza Sadeghi. HeRTA: Heaviside Real-Time Analysis, 2020.
Preprint. doi:10.48550/arXiv.2007.12112.

20 Frank Slomka and Mohammadreza Sadeghi. Beyond the limitations of real-time scheduling
theory: a unified scheduling theory for the analysis of real-time systems. SICS Software-
Intensive Cyber Physical Systems, 35(3-4):201–236, 2021. doi:10.1007/s00450-021-00429-1.

21 Frank Slomka and Mohammadreza Sadeghi. Work-in-Progress Abstract: On the relationship
between scheduling theory and real-time calculus. In 27th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA 2021, Houston, TX,
USA, August 18-20, 2021, pages 195–197. IEEE, 2021. doi:10.1109/RTCSA52859.2021.00030.

22 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955. doi:10.2140/pjm.1955.5.285.

ECRTS 2022

https://doi.org/10.1109/18.61110
https://doi.org/10.1109/SURV.2010.020110.00019
https://doi.org/10.1109/SURV.2010.020110.00019
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
https://doi.org/10.3929/ethz-a-004289034
https://doi.org/10.3929/ethz-a-004289034
https://doi.org/10.1145/1289927.1289959
https://doi.org/10.1109/RTCSA.2010.36
https://doi.org/10.24355/dbbs.084-200511080100-362
https://doi.org/10.24355/dbbs.084-200511080100-362
https://doi.org/10.24355/dbbs.084-201111210932-0
https://doi.org/10.24355/dbbs.084-201111210932-0
https://doi.org/10.1145/1450135.1450177
https://doi.org/10.48550/arXiv.2007.12112
https://doi.org/10.1007/s00450-021-00429-1
https://doi.org/10.1109/RTCSA52859.2021.00030
https://doi.org/10.2140/pjm.1955.5.285

7:18 Response-Time Analysis vs. Real-Time Calculus

23 Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling
hard real-time systems. In IEEE International Symposium on Circuits and Systems, ISCAS
2000, Emerging Technologies for the 21st Century, Geneva, Switzerland, 28-31 May 2000,
Proceedings, pages 101–104. IEEE, 2000. doi:10.1109/ISCAS.2000.858698.

24 Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing and Microprogramming, 40(2-3):117–134, April 1994. doi:10.1016/
0165-6074(94)90080-9.

25 Ken W. Tindell, Alan Burns, and Andy J. Wellings. An Extendible Approach for Analyzing
Fixed Priority Hard Real-Time Tasks. Real-Time Systems, 6(2):133–151, March 1994. doi:
10.1007/BF01088593.

26 Ernesto Wandeler. Modular Performance Analysis and Interface-Based Design for Embedded
Real-Time Systems. PhD thesis, Swiss Federal Institute of Technology Zurich, 2006. doi:
10.3929/ethz-a-005328667.

A Properties of Semi-Continuous Functions

▶ Definition 32 (Lower and Upper Limit). Let f : X → R be a function from a subset X of
the real numbers, then the lower respectively upper limit of f at an accumulation point x for
X is

lim inf
ξ→x

f(ξ) := sup
r>0

inf
ξ∈X

{f(ξ) : 0 < |ξ − x| < r} respectively (29a)

lim sup
ξ→x

f(ξ) := inf
r>0

sup
ξ∈X

{f(ξ) : 0 < |ξ − x| < r} . (29b)

Note that in Definition 32 the domain X of f has no further restrictions. In particular X

does not have to be dense.

▶ Definition 33 (Semi-Continuity). Let f : X → R be a function from a subset X of the real
numbers to the extended real numbers, then f is lower respectively upper semi-continuous at
x ∈ X if

f(x) ≤ lim inf
ξ→x

f(ξ) respectively (30a)

f(x) ≥ lim sup
ξ→x

f(ξ). (30b)

If f is lower respectively upper semi-continuous at every element x ∈ X, then we call f a
lower respectively upper semi-continuous function.

▶ Lemma 34 (Duality of Semi-Continuity). Let f : X → R be a function from a subset X of
the real numbers to the extended real numbers, then

f is lower semi-continuous ⇔ −f is upper semi-continuous (31)

Proof. Let x be an element of X, then it follows from Definition 33, i.e.

f(x) ≤ lim inf
ξ→x

f(ξ) ⇔ −f(x) ≥ − lim inf
ξ→x

f(ξ) ⇔ −f(x) ≥ lim sup
ξ→x

−f(ξ) ◀

▶ Lemma 35 (Semi-Continuous Functions are Closed under Addition). Let f, g : X → R be
lower respectively upper semi-continuous functions from a subset X of the real numbers to the
extended real numbers, then f + g is lower respectively upper semi-continuous, if no x ∈ X

exists such that f(x) + g(x) is of the type −∞ + ∞.

https://doi.org/10.1109/ISCAS.2000.858698
https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.1007/BF01088593
https://doi.org/10.1007/BF01088593
https://doi.org/10.3929/ethz-a-005328667
https://doi.org/10.3929/ethz-a-005328667

V. Pollex and F. Slomka 7:19

Proof. Let x be an element of X, then if follows from Definition 33, i.e.

f(x) + g(x) ≤ lim inf
ξ→x

f(x) + lim inf
ξ→x

g(x) ≤ lim inf
ξ→x

f(x) + g(x) respectively

f(x) + g(x) ≥ lim sup
ξ→x

f(x) + lim sup
ξ→x

g(x) ≥ lim sup
ξ→x

f(x) + g(x). ◀

▶ Lemma 36. Let f : I → R be an increasing function from an interval I of the real numbers,
then

f is lower semi-continuous if f is left-continuous (32a)
f is upper semi-continuous if f is right-continuous (32b)

Proof. Let x ∈ I and f be left-continuous respectively right-continuous, then

lim inf
ξ→x

f(ξ) = sup
r>0

inf
ξ∈I

{f(ξ) : 0 < |ξ − x| < r} ≥ sup
r>0

f(x − r) = f(x)

lim sup
ξ→x

f(ξ) = inf
r>0

sup
ξ∈I

{f(ξ) : 0 < |ξ − x| < r} ≤ inf
r>0

f(x + r) = f(x) ◀

B Properties of Pseudo-Inverses

▶ Lemma 37. Confer [3, Proposition 6, (6) and (7)]. Let f : X → Y be a mapping from a
subset X of a complete lattice L to a partially ordered set Y , then for an element x ∈ X and
an element y ∈ Y

y ≤ f(x) ⇒ f−1(y) ≤ x and (33a)

f(x) ≤ y ⇒ x ≤ f−1(y). (33b)

Proof of (33a). Let y ≤ f(x), then x ∈ Xy≤f , therefore f−1(y) = inf Xy≤f ≤ x. ◀

Proof of (33b). Let f(x) ≤ y, then x ∈ Xf≤y, therefore x ≤ sup Xf≤y = f−1(y). ◀

▶ Lemma 38. Confer [3, Proposition 6, (14) and (12)]. Let f : X → Y be a mapping from
a subset X of a complete lattice L to a totally ordered set Y , then for an element x ∈ X and
an element y ∈ Y

x < f−1(y) ⇒ f(x) < y and (34a)

f−1(y) < x ⇒ y < f(x). (34b)

Proof of (34a). Let x < f−1(y), then the partial order of X implies that ¬(f−1(y) ≤ x).
We can then apply Equation (33a) whose contraposition implies ¬(y ≤ f(x)). The total
order of Y then implies f(x) < y. ◀

Proof of (34b). Let f−1(y) < x, then the partial order of X implies that ¬(x ≤ f−1(y)).
We can then apply Equation (33b) whose contraposition implies ¬(f(x) ≤ y). The total
order of Y then implies y < f(x). ◀

▶ Lemma 39. Confer [3, Proposition 6, (8), (9), and (10)]. Let f : X → Y be an isotone
mapping from a totally ordered subset X of a complete lattice L to a partially ordered set Y ,
then for an element x ∈ X and an element y ∈ Y

f(x) < y ⇒ x ≤ f−1(y) and (35a)

y < f(x) ⇒ f−1(y) ≤ x. (35b)

f−1(y) < x ⇒ y ≤ f(x) (36)

ECRTS 2022

7:20 Response-Time Analysis vs. Real-Time Calculus

Proof of (35a). Let f(x) < y and let ξ be an element of Xy≤f , then we have f(x) < y ≤ f(ξ).
This implies x < ξ, because f is isotone and X is totally ordered. Therefore, x is a lower
bound of Xy≤f , so x ≤ inf Xy≤f = f−1(y). ◀

Proof of (35b). Let y < f(x) and let ξ be an element of Xf≤y, then we have f(ξ) ≤ y < f(x).
This implies ξ < x, because f is isotone and X is totally ordered. Therefore, x is an upper
bound of Xf≤y, so f−1(y) = sup Xf≤y ≤ x. ◀

Proof of (36). Let f−1(y) < x, the infimum of Xy≤f is less than x. Then a ξ ∈ Xy≤f must
exist such that f−1(y) ≤ ξ < x, due to how the infimum is defined and because X is a totally
ordered set. On the one hand from ξ ∈ Xy≤f follows that y ≤ f(ξ), on the other hand from
ξ < x follows f(ξ) ≤ f(x), because f is isotone, subsequently y ≤ f(x) holds. ◀

▶ Lemma 40. Let f : R+
0 → R+

0 be a function that is not bounded above, then the image of
f−1 is a subset of the non-negative real numbers.

f−1(R+
0) ⊆ R+

0 , (37)

Proof. Let R+
0 ∪ {∞} be the complete lattice of which R+

0 is a subset of and let y be in R+
0 .

Since f is not bounded above, a non-negative real number x exists (x ∈ R+
0) that satisfies

y < f(x).
On the one hand y < f(x) implies f−1(y) ≤ x according to (33a). On the other hand

the relation R+
0 ⊇ Xy≤f implies 0 = inf R+

0 ≤ inf Xy≤f = f−1(y). Therefore f−1(y) is a
non-negative real number. ◀

▶ Lemma 41. Confer [3, Proposition 6, (17), and (18)]. Let f : X → R be an increasing
and left-continuous function from a subset X of the real numbers R, then for an element
x ∈ X and an element y ∈ R

y < f(x) ⇒ f−1(y) < x (38a)

x ≤ f−1(y) ⇒ f(x) ≤ y (38b)

Proof. Let y < f(x). Because f is left-continuous a δ > 0 exists for ε = f(x)−y > 0 such that
|f(x)−f(ξ1)| < ε holds for any ξ1 ∈ X where x−δ < ξ1 < x. From |f(x)−f(ξ1)| < f(x)−y

it follows that y < f(ξ1). Let ξ2 be an element of Xf≤y, hence f(ξ2) ≤ y < f(ξ1) holds. Since
f is increasing and X is totally ordered it follows that ξ2 < ξ1, therefore ξ1 is an upper bound
of Xf≤y. So sup Xf≤y = f−1(y) ≤ ξ1 < x. The contraposition x ≤ f−1(y) ⇒ f(x) ≤ y

follows directly. ◀

▶ Lemma 42. Confer [3, Proposition 6, (15), and (16)]. Let f : X → R be an increasing
and right-continuous function from a subset X of the real numbers R, then for an element
x ∈ X and an element y ∈ R

f(x) < y ⇒ x < f−1(y) (39a)
f−1(y) ≤ x ⇒ y ≤ f(x) (39b)

Proof. Let f(x) < y. Because f is right-continuous a δ > 0 exists for ε = y − f(x) >

0 such that |f(ξ1) − f(x)| < ε holds for any ξ1 ∈ X where x < ξ1 < x + δ. From
|f(ξ1) − f(x)| < y − f(x) it follows that f(ξ1) < y. Let ξ2 be an element of Xy≤f , hence
f(ξ1) < y ≤ f(ξ2) holds. Since f is increasing and X is totally ordered it follows that ξ1 < ξ2,
therefore ξ1 is a lower bound of Xy≤f . So x < ξ1 ≤ f−1(y) = inf Xy≤f . The contraposition
f−1(y) ≤ x ⇒ y ≤ f(x) follows directly. ◀

V. Pollex and F. Slomka 7:21

▶ Lemma 43. Let f : X → R be an increasing and left-continuous functions from a subset
X of the real numbers R, then for an element x ∈ X and an element y ∈ R

f(x) ≤ y ⇔ x ≤ f−1(y) (40)

Proof. Follows directly from Equations (33b) and (38b).

f(x) ≤ y
(33b)⇒ x ≤ f−1(y) (38b)⇒ f(x) ≤ y ◀

▶ Lemma 44. Let f : X → R be an increasing and right-continuous function from a subset
X of the real numbers R, then for an element x ∈ X and an element y ∈ R

y ≤ f(x) ⇔ f−1(y) ≤ x (41)

Proof. Follows directly from Equations (33a) and (39b).

y ≤ f(x) (33a)⇒ f−1(y) ≤ x
(39b)⇒ y ≤ f(x) ◀

▶ Lemma 45 (Isotone pseudo-inverse). Confer [3, Proposition 3]. Let f : X → Y be a
mapping from a subset X of a complete lattice L to a partially ordered set Y , then

f−1 is isotone (42a)

f−1 is isotone (42b)

Proof of (42a). Confer [10, p. 131, Theorem 3.1.2]. Let y1 and y2 be elements of Y with
y1 ≤ y2 and let x be an element of Xy2≤f . Then, we have f(x) ≥ y2 ≥ y1, so x is
also an element of Xy1≤f . Therefore Xy1≤f is a superset of Xy2≤f and subsequently
f−1(y1) = inf Xy1≤f ≤ inf Xy2≤f = f−1(y2). ◀

Proof of (42b). Let y1 and y2 be elements of Y with y1 ≤ y2 and let x be an element of
Xf≤y1 . Then, we have f(x) ≤ y1 ≤ y2, so x is also an element of Xf≤y2 . Therefore Xf≤y1 is
a subset of Xf≤y2 and subsequently f−1(y1) = sup Xf≤y1 ≤ sup Xf≤y2 = f−1(y2). ◀

▶ Lemma 46 (Directional continuity of pseudo-inverse). Confer [3, Proposition 5]. Let
f : I → R be an increasing function from an interval I of the real numbers R, then

f−1 is left-continuous (43a)

f−1 is right-continuous (43b)

Proof of (43a). Let y be a real number and ε > 0.

Case f−1(y) − ε < inf I. For any δ > 0 and for any υ ∈ (y − δ, y) we have f−1(y) − ε <

inf I ≤ f−1(υ). Therefore, we get f−1(y) − f−1(υ) < ε.

Case inf I ≤ f−1(y) − ε. Note that f−1(y) − ε < f−1(y) ≤ sup I. Because I is an
interval of the real numbers, a real number ξ ∈ I exists such that f−1(y) − ε < ξ < f−1(y).
By applying Equation (34a) ξ < f−1(y) implies f(ξ) < y. Let δ := y − f(ξ), then for all
υ ∈ R∩ (y − δ, y) we have y − δ = f(ξ) < υ. Through Equation (35a) this implies ξ ≤ f−1(υ).
So, together with f−1(y) − ε < ξ we get f−1(y) − f−1(υ) < ε. ◀

ECRTS 2022

7:22 Response-Time Analysis vs. Real-Time Calculus

Proof of (43b). Let y be a real number and ε > 0.

Case sup I < f−1(y) + ε. For any δ > 0 and for any υ ∈ (y, y + δ) we have f−1(υ) ≤
sup I < f−1(y) + ε. Therefore, we get f−1(υ) − f−1(y) < ε.

Case f−1(y) + ε ≤ sup I. Note that inf I ≤ f−1(y) < f−1(y) + ε. Because I is an
interval of the real numbers, a real number ξ ∈ I exists such that f−1(y) < ξ < f−1(y) + ε.
By applying Equation (34b) f−1(y) < ξ implies y < f(ξ). Let δ := f(ξ) − y, then for all
υ ∈ R∩ (y, y + δ) we have υ < f(ξ) = y + δ. Through Equation (35b) this implies f−1(υ) ≤ ξ.
So, together with ξ < f−1(y) + ε we get f−1(υ) − f−1(y) < ε. ◀

▶ Lemma 47 (Pseudo-inverse operator is antitone). Let f : X → Y and g : X → Y be mappings
from a subset X of a complete lattice L to a partially order set Y , then

f ≤ g ⇒ f−1 ≥ g−1 (44a)

f ≤ g ⇒ f−1 ≥ g−1 (44b)

Proof of (44a). Let f ≤ g, y an element of Y , and x an element of Xy≤f , then y ≤ f(x) ≤
g(x), so Xy≤f ⊆ Xy≤g, and subsequently f−1(y) = inf Xy≤f ≥ inf Xy≤g = g−1(y). ◀

Proof of (44b). Let f ≤ g, y and element of Y , and x an element of Xg≤y, then y ≥ g(x) ≥
f(x), so Xg≤y ⊆ Xf≤y, and subsequently f−1(y) = sup Xf≤y ≥ sup Xg≤y = g−1(y). ◀

▶ Lemma 48 (Pseudo-inverse of a composition). Confer [3, Proposition 6, (25) and (24)].
Let f : X → Y be a function from a subset X of a complete lattice L to a subset Y of the
real numbers and let g : Y → R be an increasing function, then

(g ◦ f)−1 = (f−1 ◦ g−1) if g is left-continuous (45a)
(g ◦ f)−1 = (f−1 ◦ g−1) if g is right-continuous (45b)

Proof of (45a). Let z be a real number and let g be left-continuous, then we can apply
Equation (40) and we get

(g ◦ f)−1(z) (4b)= sup
x∈X

{x : g(f(x)) ≤ z} (40)= sup
x∈X

{
x : f(x) ≤ g−1(z)

} (4b)= (f−1 ◦ g−1)(z) ◀

Proof of (45b). Let z be a real number and let g be right-continuous, then we can apply
Equation (41) and we get

(g ◦ f)−1(z) (4a)= inf
x∈X

{x : z ≤ g(f(x))} (41)= inf
x∈X

{
x : g−1(z) ≤ f(x)

} (4a)= (f−1 ◦ g−1)(z) ◀

▶ Lemma 49 (The Pseudo-Inverse Operators are inverse to each other). Let f : X → R be an
increasing function from a subset X of R, then

f−1−1
= f if f is left-continuous (46a)

f−1−1 = f if f is right-continuous (46b)

Proof of (46a). Let x be an element of X and let f be left-continuous, then we can apply
Equation (40) and we get

f−1−1
(x) (4a)= inf X

x≤f−1
(3b)= inf

y∈R

{
y : x ≤ f−1(y)

} (40)= inf
y∈R

{y : f(x) ≤ y} = f(x) ◀

V. Pollex and F. Slomka 7:23

Proof of (46b). Let x be an element of X and let f be right-continuous, then we can apply
Equation (41) and we get

f−1−1(x) (4b)= sup Xf
−1≤x

(3a)= sup
y∈R

{
y : f−1(y) ≤ x

} (41)= sup
y∈R

{y : y ≤ f(x)} = f(x) ◀

▶ Lemma 50. Let f : R+
0 → R+

0 be an upper semi-continuous function and g := f↗ be the
increasing closure of f , then

f−1 = g−1 (47)

Proof. Let x be a non-negative real number and let Ix be the interval [0, x], then
(a) f ≤ g: Follows directly from g being the increasing closure of f , Remark 17.
(b) f−1 ≤ g−1: f is upper semi-continuous, Ix is a compact set, therefore f achieves its

maximum in Ix and an element x0 ∈ Ix with x0 ≤ x exists where f(x0) = g(x).
Let y be a non-negative real number. Then, for every element x ∈ Xy≤g there exists a
x0 ≤ x where y ≤ g(x) = f(x0). Therefore, x0 is an element of Xy≤f and subsequently
f−1(y) = inf Xy≤f ≤ inf Xy≤g = g−1(y).

(c) f−1 ≥ g−1: Follows from (a) and (44a).
Equation (47) follows from (b) and (c). ◀

C Properties of Deconvolution

▶ Lemma 51 (Monotonicity of Deconvolution). Let f : R+
0 → R+

0 be an increasing function
and g : R+

0 → R+
0 a function, then

(f ⊘ g) is increasing (48)

Proof. Let x1 and x2 be non-negative real numbers (x1, x2 ∈ R+
0) such that x1 ≤ x2.

From x1 ≤ x2 follows that x1 + ξ ≤ x2 + ξ holds for every ξ ∈ R+
0 and subsequently

f(x1 + ξ) ≤ f(x2 + ξ), since f is increasing. Furthermore f(x1 + ξ) − g(ξ) ≤ f(x2 + ξ) − g(ξ)
holds for every ξ ∈ R+

0 , therefore

(f ⊘ g)(x1) = inf
ξ∈R+

0

{f(x1 + ξ) − g(ξ)} ≤ inf
ξ∈R+

0

{f(x2 + ξ) − g(ξ)} = (f ⊘ g)(x2) ◀

▶ Theorem 52. Let f, g : R+
0 → R+

0 be increasing functions that are not bounded above, then

(f ⊘ g)−1 = (f−1 ⊘ g−1) (49)

Proof. Let y ∈ R+
0 be a non-negative real number.

(a) f−1(R+
0) ⊆ R+

0 : Follows from f being not bounded above and Equation (37).
(b) g−1(R+

0) ⊆ R+
0 : Follows from g being not bounded above and Equation (37).

i.e. the images of f−1 and g−1 are subsets of the non-negative real numbers, therefore
(f−1 ⊘ g−1) is well-defined.

Part 1 shows that (f ⊘ g)−1 ≤ (f−1 ⊘ g−1):
Let x be a non-negative real number such that x < (f ⊘ g)−1(y). According to (34a)
this implies (f ⊘ g)(x) < y and due to (5b) a non-negative real number ξ exists that
satisfies f(x + ξ) − g(ξ) < y. Furthermore a non-negative real number υ exists such that
f(x + ξ) − y < υ ≤ g(ξ), because g(ξ) is a non-negative real number.

ECRTS 2022

7:24 Response-Time Analysis vs. Real-Time Calculus

On the one hand f is increasing, therefore f(x + ξ) < y + υ implies x + ξ ≤ f−1(y + υ)
according to (35a), so x ≤ f−1(y + υ) − ξ. On the other hand υ ≤ g(ξ) implies g−1(υ) ≤ ξ

according to (33a). This results altogether in x+g−1(υ) ≤ f−1(y+υ)−ξ+g−1(υ) ≤ f−1(y+υ)
and due to (a) and (b) ultimately in x ≤ f−1(y + υ) − g−1(υ) ≤ supλ∈R+

0
{f−1(y + λ) −

g−1(λ)} = (f−1 ⊘ g−1)(y).
In conclusion, the set Xl,y :=

{
x ∈ R+

0 : x < (f ⊘ g)−1(y)
}

is a subset of the set Xr,y :={
x ∈ R+

0 : x ≤ (f−1 ⊘ g−1)(y)
}

. Since (f ⊘ g)−1(y) = sup Xl,y and sup Xr,y = (f−1 ⊘
g−1)(y) this implies (f ⊘ g)−1(y) ≤ (f−1 ⊘g−1)(y).Furthermore y is chosen arbitrarily, hence
(f ⊘ g)−1 ≤ (f−1 ⊘ g−1).

Part 2 shows that (f ⊘ g)−1 ≥ (f−1 ⊘ g−1):
Let x be a non-negative real number that satisfies x < (f−1 ⊘ g−1)(y). Due to (5a) a non-
negative real number υ exists such that x < f−1(y +υ)−g−1(υ). Furthermore a non-negative
real number ξ exists that satisfies g−1(υ) < ξ < f−1(y + υ) − x due to (a) and (b).

On the one hand x + ξ < f−1(y + υ) implies f(x + ξ) < y + υ according to (34a). On
the other hand g is increasing, therefore g−1(υ) < ξ implies υ ≤ g(ξ) according to (36). This
results altogether in f(x+ ξ) < y +g(ξ) and thus (f ⊘g)(x) ≤ f(x+ ξ)−g(ξ) < y. Because f

is increasing, so is (f ⊘ g) according to (48), therefore (f ⊘ g)(x) < y implies x ≤ (f ⊘ g)−1(y)
according to (35a).

In conclusion the set Xr,y :=
{

x ∈ R+
0 : x < (f−1 ⊘ g−1)(y)

}
is a subset of the set

Xl,y :=
{

x ∈ R+
0 : x ≤ (f ⊘ g)−1(y)

}
. Since (f ⊘ g)−1(y) = sup Xl,y and sup Xr,y = (f−1 ⊘

g−1)(y) this implies (f ⊘ g)−1(y) ≥ (f−1 ⊘g−1)(y).Furthermore y is chosen arbitrarily, hence
(f ⊘ g)−1 ≥ (f−1 ⊘ g−1).

Combining both parts yields the desired equality (f ⊘ g)−1 = (f−1 ⊘ g−1). ◀

D Other Properties

▶ Lemma 53. Confer [15, Lemma 1]. Let Γ be a set of n independent tasks as described in
Section 3.1 and let Assumption 20 hold, then the resource-based lower service curve β−

i of
task τi is

β−
i (∆) = sup

0≤λ≤∆

β−(λ) −
i−1∑
j=1

α+
j (λ)

 (50)

Proof. See [15, Lemma 1]. ◀

▶ Lemma 54. Confer [10, p. 154]1. Let f, g : R+
0 → R+

0 be increasing functions, then

f ↔ g = inf
µ∈R+

0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

(51)

Proof. Let Aλ :=
{

µ ∈ R+
0 : f(λ) ≤ g(λ + µ)

}
, d(λ) := inf Aλ, and B :=

⋂
λ∈R+

0
Aλ, then

f ↔ g = supλ∈R+
0

{d(λ)} and infµ∈R+
0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

= inf B.

1 Le Boudec and Thiran textually state Equation (51) in [10, p. 154] without proof and mistakenly refer
to the vertical deviation [10, p. 154, (3.20)] and not the horizontal deviation [10, p. 154, (3.21)].

V. Pollex and F. Slomka 7:25

Case 1. The set Aλ is empty for some λ ∈ R+
0 .

(a) f ↔ g = ∞: For that λ ∈ R+
0 we have d(λ) = inf Aλ = inf ∅ = ∞, therefore f ↔ g =

supλ∈R+
0

{d(λ)} = ∞.
(b) infµ∈R+

0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

= ∞: Because there is a λ ∈ R+
0 where Aλ is

the empty set, the set B =
⋂

λ∈R+
0

Aλ = ∅ is also empty. Therefore,

inf
µ∈R+

0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

= inf B = inf ∅ = ∞.

Case 2. The set Aλ is not empty for every λ ∈ R+
0 .

(c) Aλ is an interval with sup Aλ = ∞: Follows directly from g being increasing, i.e. let
λ ∈ R+

0 and µ ∈ Aλ, then for any ξ ∈ R+
0 such that ξ ≥ µ we have g(λ + ξ) ≥ g(λ + µ),

therefore ξ ∈ Aλ and sup Aλ = ∞.
(d) B is an interval: Follows directly from (c), an intersection of intervals is an interval.
(e) µ ∈ B ⇒ f ↔ g ≤ µ: µ ∈ B ⇒ ∀λ ∈ R+

0 : µ ∈ Aλ ⇒ ∀λ ∈ R+
0 : d(λ) ≤ µ ⇒

supλ∈R+
0

{d(λ)} ≤ µ ⇒ f ↔ g ≤ µ

(f) µ /∈ B ⇒ µ ≤ f ↔ g: µ /∈ B ⇒ ∃λ ∈ R+
0 : µ /∈ Aλ ⇒ ∃λ ∈ R+

0 : µ ≤ d(λ) ≤
supλ∈R+

0
{d(λ)} = f ↔ g

Equation (51) follows from (d)–(f), i.e.

f ↔ g = inf B = inf
µ∈R+

0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

◀

▶ Lemma 55. Let f, g : R+
0 → R+

0 be increasing functions, then the horizontal distance
between them is

f ↔ g = (g ⊘ f)−1(0) (52)

Proof. f and g are increasing, so we can use the equality of Equation (51). After some
rearranging we apply the definition for the deconvolution in inf-plus, Equation (5b), and for
the pseudo-inverse, Equation (4a).

f ↔ g
(51)= inf

µ∈R+
0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

= inf
µ∈R+

0

{
µ : ∀λ ∈ R+

0 , 0 ≤ g(λ + µ) − f(λ)
}

= inf
µ∈R+

0

{
µ : 0 ≤ inf

λ∈R+
0

{g(λ + µ) − f(λ)}
}

(5b)= inf
µ∈R+

0

{µ : 0 ≤ (g ⊘ f)(µ)} (4a)= (g ⊘ f)−1(0) ◀

▶ Lemma 56. Confer [22, p. 286, Lemma 1]. Let f : A → A be an increasing function from
and into a complete lattice A and let P be the set of fix-points of f , then P is not empty, P

is a complete lattice and

sup P = sup
x∈A

{x : f(x) ≥ x} ∈ P (53a)

inf P = inf
x∈A

{x : f(x) ≤ x} ∈ P (53b)

Proof. See [22, p. 286, Lemma 1] ◀

ECRTS 2022

	1 Introduction
	2 Related Work
	3 Models and Analyses
	3.1 Common Assumptions and Notation
	3.2 Common Mathematical Notation and Definitions
	3.3 Response-Time Analysis
	3.4 Real-Time Calculus

	4 Formal Comparison of the RTA with the RTC
	5 Summary
	A Properties of Semi-Continuous Functions
	B Properties of Pseudo-Inverses
	C Properties of Deconvolution
	D Other Properties

