
Quantum Algorithms for Learning a Hidden Graph
Ashley Montanaro #

School of Mathematics, University of Bristol, UK
Phasecraft Ltd., Bristol, UK

Changpeng Shao #

School of Mathematics, University of Bristol, UK

Abstract
We study the problem of learning an unknown graph provided via an oracle using a quantum
algorithm. We consider three query models. In the first model (“OR queries”), the oracle returns
whether a given subset of the vertices contains any edges. In the second (“parity queries”), the
oracle returns the parity of the number of edges in a subset. In the third model, we are given copies
of the graph state corresponding to the graph.

We give quantum algorithms that achieve speedups over the best possible classical algorithms
in the OR and parity query models, for some families of graphs, and give quantum algorithms in
the graph state model whose complexity is similar to the parity query model. For some parameter
regimes, the speedups can be exponential in the parity query model. On the other hand, without
any promise on the graph, no speedup is possible in the OR query model.

A main technique we use is the quantum algorithm for solving the combinatorial group testing
problem, for which a query-efficient quantum algorithm was given by Belovs. Here we additionally
give a time-efficient quantum algorithm for this problem, based on the algorithm of Ambainis et al.
for a “gapped” version of the group testing problem.

2012 ACM Subject Classification Theory of computation → Quantum query complexity

Keywords and phrases Quantum algorithms, query complexity, graphs, combinatorial group testing

Digital Object Identifier 10.4230/LIPIcs.TQC.2022.1

Funding This paper was supported by the QuantERA ERA-NET Cofund in Quantum Technologies
implemented within the European Union’s Horizon 2020 Programme (QuantAlgo project) and
EPSRC grants EP/R043957/1 and EP/T001062/1. This project has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 817581).

Acknowledgements We would like to thank João Doriguello and Ryan Mann for helpful discussions
on the topic of this work.

1 Introduction

Quantum computers are known to be able to compute certain functions more quickly than
their classical counterparts, in terms of the number of queries to the input that are required.
In some cases, quantum algorithms can also learn unknown objects using fewer queries than
their classical counterparts. For example, if we are given query access to an unknown boolean
function on n-bits which is promised to be a dot product between x and a secret string s
modulo 2, then the Bernstein-Vazirani algorithm learns this function with 1 query [17], while
the best possible classical algorithm uses n queries. If the function is promised to be an OR
function of k unknown variables, then Belovs’ algorithm for combinatorial group testing [15]
learns this function with Θ(

√
k) queries, while the best possible classical algorithm needs

Θ(k log(n/k)) queries. These speedups are not far from the largest quantum speedups that
can be achieved. For any class C of Boolean functions over {0, 1}n, let D and Q be such that
an unknown function from C can be identified using D classical membership queries or from
Q quantum membership queries. Then D = O(nQ3) [41].

© Ashley Montanaro and Changpeng Shao;
licensed under Creative Commons License CC-BY 4.0

17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022).
Editors: François Le Gall and Tomoyuki Morimae; Article No. 1; pp. 1:1–1:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ashley.montanaro@bristol.ac.uk
mailto:changpeng.shao@bristol.ac.uk
https://doi.org/10.4230/LIPIcs.TQC.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Quantum Algorithms for Learning a Hidden Graph

Table 1 Query complexities for learning various classes of graphs: m is the number of edges, n is
the number of all vertices. The symbols ∨ (OR), ⊕ (parity), and |G⟩ (graph state) denote the type
of query considered. Q and C denote quantum and classical queries.

Q, ∨ Q, ⊕ C, ∨,⊕ Q, |G⟩
All graphs Θ(n2) Θ(n) Θ(n2) Θ(n)
m edges O(m log(

√
m logn) +

√
m logn) O(

√
m logm) Ω(m log n2

m) O(m log n2

m)
Degree d O(d4m3/4√

logn(logm) +
√
m logn) O(d log m

d) Ω(nd log n
d) O(d log m

d)
Matching O(m3/4

√
(logn)(logm) +

√
m logn) O(logm) Ω(m log n

m) O(logm)
Cycle O(m3/4

√
(logn)(logm) +

√
m logn) O(logm) Ω(m log n

m) O(logm)
Star Θ(

√
m) O(1) Ω(m log n

m) O(1)
k-vertex clique Θ(

√
k) O(1) Ω(k log n

k) O(1)

Here we focus on the problem of learning an unknown graph using quantum queries, in a
variety of settings. Many quantum speedups (both polynomial, e.g. [27], and exponential,
e.g. [16]) are known for problems involving graphs. However, the only quantum speedup we
are aware of for learning graphs is recent work on learning graphs using cut queries [34].

We consider several different notions of queries to an unknown graph – OR queries,
parity queries, and graph states, all defined below – and aim to minimize the number of
queries required to identify the graph. The first two of these query models are closely related
to models that have been extensively studied in the classical literature on exact learning,
e.g. [9, 25, 31], in particular because of their applications to computational biology. In some
cases we find polynomial speedups over the best possible classical complexity, while in other
cases (such as learning bounded-degree graphs in the parity query model) the speedups can
even be exponential. A summary of our results is as follows; also see Table 1. Throughout,
we use n to denote the number of vertices and m to denote the number of edges of a graph.

1. (OR queries) First, we consider the problem of identifying an unknown graph, given
access to queries to subsets of the vertices, which return whether the corresponding
induced subgraph has any edges within that subset. That is, given a graph G = (V,E), a
query takes a subset S ⊆ V and returns whether E ∩ (S × S) is empty. This model has
been extensively studied classically and we will briefly survey these results below. Our
main results in this model are:

A quantum algorithm to learn an unknown graph withm edges usingO(m log(
√
m logn)

+
√
m logn) OR queries, as compared with the classical lower bound of Ω(m log(n2/m)).

For some relationships between m and n (e.g. m = Θ(logn)) this gives a modest
quantum-classical separation.
The lower bound that any quantum algorithm that identifies an arbitrary unknown
graph in this model must make Ω(n2) OR queries, so the above algorithm’s complexity
cannot be improved by more than log factors.
Learning graphs with special structure, such as Hamiltonian cycles, matchings, stars
and cliques, has specific applications in molecular biology [5, 29, 30]. We give quantum
speedups for learning these graphs in this model. The graphs and quantum speedups
can be roughly summarized as follows. Hamiltonian cycles and matchings: k3/4 vs. k;
stars and cliques:

√
k vs. k. Here k is the number of non-isolated vertices.

2. (Parity queries) Next, we consider the same problem, but where the oracle returns
the parity of |E ∩ (S × S)|, for arbitrary subsets S. Although this may seem a more
unusual setting, this oracle can be obtained from the perhaps more natural oracle, known

A. Montanaro and C. Shao 1:3

as additive oracle, that returns the size of E ∩ (S × S), which has also been studied
classically [18, 25,31, 40]. We will see that larger quantum speedups are available in this
model. Here, we show that:

There is a quantum algorithm which learns an unknown graph with degree d making
O(d logm) parity queries, as compared with the classical lower bound of Ω(nd log(n/d))
queries.
There is a quantum algorithm which learns an unknown graph with m edges mak-
ing O(

√
m logm) parity queries, as compared with the classical lower bound of

Ω(m log(n2/m)).
Stars and cliques can be learned with O(1) parity queries.

Our results show that, for some families of graphs, parity queries can be exponentially
more efficient than OR queries for quantum algorithms. The results we obtain are based
on very similar ideas to a recent work by Lee, Santha and Zhang [34], which considered a
related “cut query” model (see below).

3. (Graph states) We also study a quantum version of the problem of learning an unknown
graph: the problem of learning an unknown graph state [32]. Graph states are a family
of quantum states that have many important applications, in particular to measurement-
based quantum computing. Any graph G has a corresponding graph state |G⟩, and it
is a natural question to ask how many copies of |G⟩ are required to identify G. It was
already known that Θ(n) copies are necessary and sufficient if G is an arbitrary graph
with n vertices [1,36,42]. However, we show that one can do better given some additional
information about G:

If G has degree d, we can learn G using O(d logm) copies. If G is promised to be a
subgraph of a known graph G′ with bounded degree d, the quantum algorithm is also
time-efficient (has runtime Õ(d3n)). This second algorithm could be particularly useful
in the practically-relevant scenario where we aim to produce a desired graph state
G′, but some edges of G′ have failed to be generated, and we would like to determine
which edges have failed.
If G is known to be picked from a set of size L, we can learn G using O(logL) copies.
For example, if G is known to have at most m edges, we can learn G using O(m logn)
copies.

The results about learning graph states also underpin the results about learning graphs
from parity queries, because it turns out that using a procedure known as Bell sampling [36]
to learn a graph state is equivalent to learning a graph using parity queries – except with
the restriction that these queries are only to uniformly random subsets of the vertices.

An important technique we use to learn a graph using the OR query is the quantum
algorithm by Belovs [15] for combinatorial group testing (CGT, also known as “pooled
testing”) [26, 39]. Belovs’ algorithms are produced by directly solving the semidefinite
program for the general adversary bound, which is known to characterise quantum query
complexity. This approach is beautiful but rather complex, and leads to algorithms which are
not necessarily efficient in terms of time complexity. Here we give a quantum algorithm for
CGT that makes Õ(

√
k) queries and runs in time Õ(n

√
k), based on the use of an algorithm

of Ambainis et al. [6] for a “gapped” version of the group testing problem.
In Appendix B, we also give simple explicit quantum algorithms for learning an unknown

subset on which the exact-half function or majority function acts, which match the complexity
of previous algorithms by Belovs.

TQC 2022

1:4 Quantum Algorithms for Learning a Hidden Graph

1.1 Summary of the techniques

The OR query model. In this model, we use a similar strategy to the classical algorithm
given by Angluin and Chen [9]. The basic idea of [9] is binary search: We decompose the
set of vertices V into halves V1, V2, and suppose we already know the edges in V1, V2. We
then try to learn the edges between them. The edges in V1, V2 can be learned recursively,
and the complexity is dominated by the learning of the edges between V1, V2. This is an
adaptive algorithm. On a quantum computer, we can use the quantum algorithm for CGT
to accelerate the learning of the edges between V1, V2. However, the classical inductive idea
may not be applicable to the quantum case. A reason is that the underlying constant in
the complexity of quantum algorithm for CGT is unknown for us, so we cannot bound the
overall complexity easily. To overcome this problem, we first decompose V into a disjoint
union of some subsets such that each subset contains no edges, then learn the edges between
the subsets. This idea is inspired by the non-adaptive learning algorithm of [9].

The graph state model. We can apply Bell sampling to learn an unknown graph state [36].
Each Bell sample returns a uniformly random stabilizer of the graph state. Equivalently,
if A is the adjacency matrix of the graph, then each Bell sample returns As (mod 2) for a
random vector s ∈ {0, 1}n. If we take k samples, then we obtain an n× k matrix B and the
matrix AB. From B, AB we can determine A by choosing a suitable k.

The parity query model. Since the graph state can be generated by a parity query on a
uniform superposition, any results for the graph state model also hold for the parity query
model. Differently from the graph state model, with parity queries, we do have control of s.
More precisely, for any s ∈ {0, 1}n, there is a quantum algorithm that returns As (mod 2)
using two parity queries. With this result, we can learn graphs of m edges more efficiently
by considering the low and high-degree parts.

1.2 Prior work

Learning graphs with OR queries. Graph learning appears in many different contexts.
In different applications, we apply different queries, and the OR query is important for
problems in computational biology. This type of query is also known as independent set
query [13] and edge-detection query [9]. Many classical algorithms were discovered to learn
graphs using OR queries in the past decades. For special graphs, Beigel et al. [14] and
Alon et al. [5] have given algorithms for learning an unknown matching using O(n logn)
queries. Grebinski and Kucherov [29] gave an algorithm for learning a Hamiltonian cycle
using O(n logn) queries. Alon and Asodi [4] gave bounds on nonadaptive deterministic
algorithms for learning stars and cliques. Bouvel et al. [18] gave algorithms for learning
an unknown star or clique using O(n) queries. The constant factors in the algorithms for
learning Hamiltonian cycles, matchings, stars and cliques were improved by Chang et al. [22].

In the general case, Angluin and Chen [9] gave a deterministic adaptive algorithm with
complexity O(m logn) for learning a graph with m edges, encompassing all the above bounds
(however, note that other restrictions can be considered, such as nonadaptivity, or restricted
levels of adaptivity). The constant factor in this runtime was improved by Chang, Fu and
Shih [23]. The complexity O(m logn) obtained in [9] assumes m is known in advance. When
m is not known, the complexity of [9] is O(m logn+

√
m log2 n). This is recently improved

to O(m logn+
√
m(logn)(log k. . . logn)) in [2], where k can be any constant.

A. Montanaro and C. Shao 1:5

Graph states. In [42], Zhao, Pérez-Delgado and Fitzsimons studied the problem of repres-
enting basic operations of graphs by graph states with high efficiency and showed that no
classical data structure can have similar performance. In this work, the authors gave an
algorithm for learning an arbitrary graph state of n qubits using O(n) copies. Graph states
are a subclass of stabilizer states. Alternative algorithms for learning an arbitrary stabilizer
state with O(n) copies have been given by Aaronson and Gottesman [1] and Montanaro [36].

Learning graphs with parity queries. The parity query model is a special case of a model for
graph queries which generalises the OR query model, and is known as additive queries [25,31]
(also known as quantitative queries [18] and edge counting queries [40]). The additive query
plays an important role for applications related to DNA sequencing. In this model, a query
to a subset S returns the number of edges of G in S; the parity query model is obtained if
this answer is taken mod 2.

The additive query is known to be somewhat more powerful than the OR query for
learning graphs. For instance, as shown in [18], a Hamiltonian cycle or a matching can
be identified with O(n) additive queries, while this requires at least Ω(n logn) OR queries.
Stars and cliques can be identified with O(n/ logn) additive queries or with at least Ω(n)
OR queries. Our results summarized in Table 1 also confirm that parity queries (and hence
additive queries) are more powerful than OR queries in the quantum case. Some other
results include the following. Graphs with maximum degree d can be learned with O(dn)
additive queries [31]. This is also true for learning bipartite graphs with maximum degree d
non-adaptively [18]. Graphs with m edges can be learned with O(m(logn)/(logm)) additive
queries [20,25].

Our results in the parity query model are closely related to a recent work by Lee, Santha
and Zhang [34]. These authors showed that weighted graphs with maximum degree d can be
learned using O(d log2 n) quantum “cut queries”, and graphs with m edges can be learned
using O(

√
m log3/2 n) quantum cut queries. A cut query takes as input a subset S of the

vertices, and returns the number of edges of G with exactly one endpoint in S. Lee, Santha
and Zhang also gave efficient quantum algorithms in this model for determining the number
of connected components of G, and for outputting a spanning forest of G. It was shown
in [34] that cut queries reduce to additive queries; however, there is no efficient reduction in
the other direction. In [34, Corollary 27] stronger results than the cut-query results are given
for additive queries: an O(d log(n/d)) query algorithm for learning graphs with maximum
degree d, and an O(

√
m logn + logn) query algorithm for learning graphs with m edges.

These algorithms are based on very similar ideas to the ones we state here (Theorems 14
and 17). Our algorithms as stated only require parity information (although the results
of [34] could easily be rephrased in this way too); more importantly, the complexity of our
results is somewhat better for graphs with very few edges, as a logn term is changed into a
logm term. On the other hand, the algorithms of [34] are stated for the more general class
of weighted graphs.

Combinatorial group testing (CGT). Classically, it is known that the number of queries
required to solve CGT is Θ(k log(n/k)) [26]. In the quantum case, Ambainis and Montanaro [7]
first studied this problem and proposed a quantum algorithm using O(k) queries. They also
showed a lower bound of Ω(

√
k). Later in [15], based on the adversary bound method, Belovs

proposed a quantum algorithm for CGT using Θ(
√
k) queries.

TQC 2022

1:6 Quantum Algorithms for Learning a Hidden Graph

1.3 Preliminaries
Let f : {0, 1}n → {0, 1} be a boolean function with a quantum oracle to access it. That is,
we are allowed to perform the map |x⟩|y⟩ → |x⟩|y ⊕ f(x)⟩ for any x ∈ {0, 1}n, y ∈ {0, 1}.
Together with a simple phase flip unitary gate, we can also perform |x⟩ → (−1)f(x)|x⟩. For any
x ∈ {0, 1}n, the Fourier coefficient of f at x is defined as f̂(x) = 1

2n

∑
s∈{0,1}n(−1)f(s)+s·x.

We can equivalently associate each bit-string x ∈ {0, 1}n with a subset S ⊆ [n]. The Fourier
sampling primitive is based on the following sequence of operations: First apply Hadamard
gates H⊗n to |0⟩⊗n; then apply the oracle |x⟩ → (−1)f(x)|x⟩.; finally apply H⊗n again. The
resulting state is

∑
x∈{0,1}n f̂(x)|x⟩. Measuring in the computational basis returns x with

probability f̂(x)2.
For an arbitrary graph G = (V,E) on n vertices, and an arbitrary subset S ⊆ V , define

the oracles fG,OR, fG,Par by
fG,OR(S) = 0 if |E ∩ (S × S)| = 0, and fG,OR(S) = 1 otherwise;
fG,Par(S) = |{E ∩ (S × S)}| mod 2.

We give quantum algorithms access to these oracles in the usual way described above.
A subroutine that will be used extensively throughout this paper is Belovs’ efficient

quantum algorithm for combinatorial group testing (CGT) [15]. In this problem, we are
given oracle access to an n-bit string A with Hamming weight at most k. Usually, we assume
that k ≪ n. In one query, we can get the OR of an arbitrary subset of the bits of A. The
goal is to determine A using the minimal number of queries. Belovs showed that this can be
achieved using O(

√
k) quantum queries. For more details, refer to Appendix A.

▶ Theorem 1 (Theorem 3.1 of [15]). The quantum query complexity of the combinatorial
group testing problem is Θ(

√
k). The quantum algorithm succeeds with certainty.

We sometimes use the notation [X] for an expression which evaluates to 1 if X is true,
and 0 if X is false.

2 Learning an unknown graph with OR queries

Let G be a graph with m edges and n vertices. Our goal is to identify all the edges in G

using OR queries. We follow the same general strategy as Angluin and Chen [9] to achieve
this by starting with special cases and progressively generalising. In particular, Lemmas 3
and 5 are direct quantum speedups of corresponding results (Lemmas 3.3 and 3.4) in [9].
The basic idea of the quantum learning algorithm is as follows: We first decompose the set
of vertices into a disjoint union of several subsets. Each subset contains no edges. Then
we learn the edges between these subsets. A sub-routine of this learning procedure is the
quantum algorithm for solving solving combinatorial group testing (CGT), i.e., Theorem 1.
It is the main ingredient to obtain quantum speedups.

Suppose A,B are two known, nonempty, independent (i.e., contain no edges) subsets of
the set of vertices. The following lemma helps us efficiently identify the non-isolated vertices
(those which have at least one edge incident to them).

▶ Lemma 2. Assume that A and B are two known, disjoint, non-empty independent sets of
vertices in G. Suppose there are nA, nB non-isolated vertices in A and B respectively. Then
there is a quantum algorithm that identifies these non-isolated vertices with O(√nA + √

nB)
OR queries. The algorithm succeeds with certainty.

A. Montanaro and C. Shao 1:7

Proof. For each subset S ⊆ A, we consider queries of the form S ∪B. The result is 1 if and
only if there is a non-isolated vertex in S. We can view A as a bit string such that the i-th
element is 1 if the i-th vertex is non-isolated, and 0 otherwise. Using the quantum algorithm
for CGT (see Theorem 1), we can learn this bit-string with O(√nA) queries. Similarly, we
can learn the non-isolated vertices in B with O(√nB) queries. ◀

Note that if there are mAB edges between A,B, then nA, nB ≤ min(mAB , n) ≤ min(m,n).
Next, we show how to learn the edges between A and B. Lemma 3 below focuses on a general
case, and Lemma 4 considers the case of bounded-degree graphs.

▶ Lemma 3. Make the same assumptions as Lemma 2. Suppose there are mAB edges between
A and B. Then there is a quantum algorithm that identifies these edges with O(mAB) OR
queries. The algorithm succeeds with certainty.

Proof. By Lemma 2, we assume that there are no isolated vertices in A,B. It costs 1 query
to check if mAB = 0 or not. In the following, we shall assume that mAB > 0. We view each
vertex as a variable. Then the learning problem is equivalent to learn the Boolean function
f = x1f1 ∨ · · · ∨ xnA

fnA
, where f1, . . . , fnA

are OR functions of variables y1, . . . , ynB
∈ B,

and where x1, . . . , xnA
∈ A. To learn f , we first set all variables in B to 1, then f becomes

x1 ∨ · · · ∨ xnA
. By the CGT algorithm, we can learn x1, . . . , xnA

with O(√nA) queries.
Next, for each i ∈ {1, . . . , nA}, we set xi = 1, xj = 0 (j ̸= i), then we are left with fi.
Using the CGT algorithm again, we can learn fi with O(√ai) queries, where ai is the
size of fi, i.e., the number of relevant variables in fi. Thus the total number of queries is
O(√nA + √

a1 + · · · + √
anA

). Since a1 + · · · + anA
= mAB and nA ≤ mAB, the number of

queries is bounded by O(√mAB +mAB) = O(mAB), which is tight when a1 = · · · = anA
= 1

and nA = mAB . ◀

When the graph is bounded-degree, the above lemma can be improved.

▶ Lemma 4. Make the same assumptions as Lemma 3, and additionally suppose that G
has maximum degree d. Then there is a quantum algorithm that identifies the edges using
O(d2√

mAB logmAB) OR queries. The algorithm succeeds with certainty.

Proof. For simplicity, let each vertex in A and B have an index in the set {1, . . . , |A|},
{1, . . . , |B|} respectively. By Lemma 2, we can assume that |A| = nA, |B| = nB. That is,
there are no isolated vertices in A,B.

First, to gain intuition, we consider the special case of matchings (d = 1). In this case,
nA = nB = mAB ≤ n. For each a ∈ A, we use na to denote the index of the neighbour of a
in B, if such a neighbour exists, and otherwise set na = 0. For any T ⊆ B, let BT ∈ {0, 1}|A|

denote the bit-string whose i’th element equals 1 if ni ∈ T , and 0 otherwise. Fixing the
same T and varying over subsets S ⊆ A and queries of the form S ∪ T , we can think of this
oracle query as returning 1 if there exists i ∈ S such that ni ∈ T (equivalently, BT

i = 1), and
0 otherwise. This is the same oracle used in CGT, so this means that BT can be learned
completely using O(

√
|BT |) quantum queries for any fixed T . Here |BT | is the Hamming

weight of the bit-string BT .
We then repeat this algorithm for different choices of T . In particular, we can think

of each ni ∈ {1, . . . , |B|} as an element of {0, 1}⌈log(|B|+1)⌉, and consider the sequence
Tj = {i : ij = 1}, j = 1, . . . , ⌈log(|B| + 1)⌉. Then k := ⌈log(|B| + 1)⌉ = O(logmAB)
repetitions are enough to learn all the bits of ni for all i ∈ A, and hence to learn the graph
completely. The overall complexity is O(

√
|BT1 | + · · · +

√
|BTk |). As |BTi | ≤ mAB for all i,

the complexity is bounded by O(√mAB logmAB). Note that there is no need to repeat the
CGT algorithm to reduce its error probability, as it is already exact.

TQC 2022

1:8 Quantum Algorithms for Learning a Hidden Graph

Next, we consider bounded-degree graphs. We can generalise the above idea to learning
bipartite graphs where every vertex in A has degree at most d. For each a ∈ A, we now define
na as the set of the indices of the neighbours of a in B. For any T ⊆ B, define BT ∈ {0, 1}|A|

as the bit-string such that the i’th element equals 1 if ni ∩ T ̸= ∅, and 0 otherwise. Then, for
any choice of T , an oracle query of the form S ∪ T , S ⊆ A, returns whether any vertex in S
has any neighbours in T . This implies that BT can be learned with O(

√
|BT |) queries using

the quantum algorithm for CGT [15].
There are randomised constructions of families of subsets T of size k = O(d2(lognB)) that

allow the d nonzero entries to be determined deterministically, for any pattern of nonzero
entries (these are “nonadaptive” combinatorial group testing schemes [3, 10, 39]). Since
|BTi | ≤ mAB for all i, the overall complexity is O(d2√

mAB(lognB)). ◀

There are also nonadaptive combinatorial group testing strategies that are designed to
have a low worst-case probability of error [3, 21], and have only a linear dependence on
d. However, it is not clear that these schemes can be used in our setting, as the failure
probability would be of the form n−δ

B , for some δ > 0, and nB might be much less than n.
In the following, we consider a more general case when A,B are not independent.

▶ Lemma 5. Assume that A and B are two disjoint, non-empty sets of vertices in G with
mA,mB known edges respectively. Suppose there are mAB edges between A and B. Then there
is a quantum algorithm that identifies these edges using O(mAB +mA +mB) OR queries. In
particular, if G has maximal degree d, then the algorithm uses O(d4√

mAB logmAB) queries.

Proof. The idea behind the quantum algorithm is as follows: We first color the two graphs
induced by A,B such that each color class is an independent set in G. Then we use Lemmas 3
and 4 to identify the edges between color classes in A and color classes in B.

It is well-known that a graph with t edges can be ⌊
√

2t + 1⌋-colored. The coloring
can be constructed in polynomial time. Now let q1 = ⌊

√
2mA + 1⌋, q2 = ⌊

√
2mB + 1⌋

be the number of colors used for A and B, respectively. Assume that there are mij

edges between the i-th color class of A and the j-th color class of B. Then by Lemma
3, the number of queries used to identify the edges between A and B is bounded by∑q1

i=1
∑q2

j=1 O(mij + 1) = O(mAB + q1q2) = O(mAB +mA +mB).
If G has degree d, then it is d-colorable, namely q1, q2 = O(d). By Lemma 4 and the

same argument as above, all edges can be identified with O(d4√
mAB logmAB) queries. ◀

The next lemma generalizes the above lemma to learn the edges of multiple disjoint
subsets. Note that if there are k subsets, then there are O(k2) pairs. So naively we need to
make at least O(k2) queries. However, this can improved to be linear in k by using Lemma 5
in a binary decomposition approach.

▶ Lemma 6. Assume that S0, . . . , Sk−1 are disjoint non-empty sets of vertices in G, and
each has si known edges. Suppose there are si,j edges between Si and Sj, then there is
a quantum algorithm that identifies all the edges using O(k + T log k) OR queries, where
T =

∑
i si +

∑
i,j si,j . If G has maximal degree d, then the number of queries can be reduced

to O(k + d4
√
kT log T).

Proof. For simplicity, we assume that k = 2l for integer l. Set K =
∑k−1

i=0 si. The idea
of the algorithm is to recursively use Lemma 5 in a binary form. In step 1, for each pair
(S2i, S2i+1), we use Lemma 5 to find the edges between them. There are 2l−1 pairs in total.
So this step uses

A. Montanaro and C. Shao 1:9

O

(2l−1−1∑
i=0

(s2i,2i+1 + s2i + s2i+1 + 1)
)

= O

(
2l−1 +K +

2l−1−1∑
i=0

s2i,2i+1

)
queries in total. After step 1, we know the edges of each adjacent pair (S2i, S2i+1). So we can
combine them and obtain a new set, denoted as S′

i := S2i ∪ S2i+1 for i = 0, 1, . . . , 2l−1 − 1.
It has s′

i := s2i,2i+1 + s2i + s2i+1 edges. The number of edges between S′
i and S′

j is
s′

i,j := s2i,2j + s2i,2j+1 + s2i+1,2j + s2i+1,2j+1. Now, similarly to step 1, we can learn the
edges between (S′

2i, S
′
2i+1). This step uses

O

(
2l−2 +K +

2l−1−1∑
i=0

s2i,2i+1 +
2l−2−1∑

i=0
s4i,4i+2 + s4i,4i+3 + s4i+1,4i+2 + s4i+1,4i+3

)
queries in total. Continuing the above procedure, we can learn all the edges. The above
procedure terminates after l = O(log k) steps. It is not hard to show that the total number
of queries is bounded by O(Kl + 2l + T1 + T2 + · · · + Tl−1), where Ti is the total number
of edges between two adjacent pairs in step i. Since Ti ≤ T −K, the number of queries is
bounded by O(T (log k) + k).

When G has maximal degree d, by Lemma 5, the number of queries used in step i is

O

(
2l−i + d4

2l−i−1∑
j=0

√
s

(i)
2j,2j+1 log s(i)

2j,2j+1

)
,

where s(i)
2j,2j+1 is the number of edges of the j-th adjacent pair in step i. It is easy to check

that
∑l−1

i=1
∑2l−i−1

j=0 s
(i)
2j,2j+1 = T −K, thus the total number of queries used in the algorithm

is bounded by O(k + d4
√
kT log T), where we bound s

(i)
2j,2j+1 ≤ T and use Cauchy-Schwarz

inequality. ◀

We can now use these ingredients to obtain algorithms for learning general graphs using
OR queries. By the above lemma, what remains is to decompose the set of vertices into a
disjoint union of a small number of subsets. We shall use the following trick described in [8].

Given a probability p, a p-random set S is obtained by including each vertex independently
with probability p. Then the probability that a p-random set includes no edge of G is at
least q = 1 −mp2. Choosing p = 1/10

√
m, then the probability is at least q = 0.99. The size

of S is close to pn with high probability.
Let V denote the set of vertices. First we identify a random set S1 that includes no

edge of G by following the above procedure. After we have S1, then in V − S1, we can find
another random set S2 that includes no edge of G. We continue this process for k steps,
where k is determined later. Assume now that we have k random sets S1, . . . , Sk. Each
has no edge of G. This uses O(k) queries in total. After k steps, the number of remaining
vertices is about (1 − p)kn ≈ e−pkn. This means that the above procedure terminates after
k = O(p−1 logn) = O(

√
m logn) steps with high probability.

▶ Theorem 7. Let G be a graph with m edges and n vertices. Then there is a quantum
algorithm that learns the graph by making

O
(
m log(

√
m logn) +

√
m logn

)
(1)

OR queries with probability at least 0.99. If G has maximal degree d, the query complexity is

O
(
d4m3/4

√
logn(logm) +

√
m logn

)
(2)

with probability at least 0.99.

TQC 2022

1:10 Quantum Algorithms for Learning a Hidden Graph

Proof. The idea of our algorithm is as follows: we first decompose the vertices of the graph
into k = O(

√
m logn) independent subsets by the above arguments. Then we learn the edges

among all the pairs using Lemma 6.
The first step uses O(

√
m logn) OR queries. By Lemma 6, all the edges can be identified

with O(k +m log k) = O(
√
m(logn) +m log(

√
m logn)) queries. If the graph has maximal

degree d, then the number of queries is

O

(
d4
√
m3/2(logn)(logm) +

√
m logn

)
= O

(
d4m3/4

√
logn(logm) +

√
m logn

)
. ◀

The quantum query complexity achieved by the first part of Theorem 7 is an improvement
over the Ω(m log(n2/m)) classical lower bound if m is very small with respect to n; for
example, if m = Θ(logn), the complexity is O(log1.5 n), as compared with Ω(log2 n) classically.
However, if m = Ω(nϵ) for some fixed ϵ > 0, the complexity is worse than the classical lower
bound.

If G is promised to be a Hamiltonian cycle or a matching (for example), then d = O(1),
and by the second part of Theorem 7 the number of OR queries used to learn G is bounded
by O(m3/4√

logn(logm) +
√
m logn), which is an improvement over the Ω(m log(n/m))

classical complexity for large m.

2.1 Learning specific graphs using OR queries
Next we give quantum algorithms for learning some specific graph families using OR queries.

▶ Proposition 8. There is a quantum algorithm which makes O(
√
k) OR queries and identifies

an arbitrary clique on k vertices.

Proof. The idea is as follows: First, we find a vertex v in the clique, then use the quantum
algorithm for CGT [15] to learn all the other vertices using O(

√
k) queries, by querying

with subsets of the vertices that include v. Such a query returns 1 if and only if the subset
includes another vertex of the clique.

As for the first step, the vertex v can be found with high probability using O(1) queries,
using a similar idea to the quantum algorithm of [7] for CGT. We produce a subset S of vertices
by including each vertex with probability 1/k. Then with probability

(
k
2
)
k−2(1 − 1/k)k−2 ≈

1/2e, this leads to exactly 2 vertices i, j in the clique being included in the subset. This
subset corresponds to a boolean function f(x) = xixj for unknown i, j. To learn i, j, we use
the Fourier sampling method. Let bk be the bit-string of length n whose k-th bit equals 1,
and all other bits equal 0. It is easy to verify that the Fourier coefficients of f at bi, bj , bi + bj

are all equal to 1/2. Thus with probability at least 3/4, we can identify xi or xj . ◀

▶ Proposition 9. There is a quantum algorithm which makes O(
√
m) OR queries and

identifies an arbitrary star graph with m edges.

Proof. This is equivalent to learning the Boolean function f(x) = xi ∧ (∨j∈Axj), for some
unknown i, A, where A is a subset of [n] of size m and i /∈ A. To learn it, we use the Fourier
sampling to identify the center xi first, then use the CGT algorithm to learn the edges.

The Fourier sampling method returns a state of the form
∑

y∈{0,1}n f̂(y)|y⟩. Consider the
Fourier coefficient at yi = 1, yj = 0 (j ̸= i). It equals

1
2n

∑
x∈{0,1}n

(−1)xi∧(∨j∈Axj)+xi = 1
2n

 ∑
x∈{0,1}n:xi=0

1 −
∑

x∈{0,1}n:xi=1

(−1)∨j∈Axj

 = 1 − 1
2m−1 .

A. Montanaro and C. Shao 1:11

This means that Fourier sampling can detect the center with O(1) queries with high probability.
After we obtain the center, it suffices to focus on the function obtained by setting xi = 1.
Using the quantum algorithm for CGT, we can learn this function with O(

√
m) queries. ◀

The above two results are tight because of the optimality of CGT. More precisely, CGT
corresponds to the special case of learning a clique when one vertex is given, or learning a
star when the center is given.

2.2 Lower bound
Finally, we show a quantum lower bound for learning graphs with OR queries, which shows
that the quantum algorithm given in Theorem 7 for learning graphs with m edges is optimal
up to a logarithmic factor.

▶ Theorem 10. Let G be an arbitrary graph of n vertices. Then any quantum algorithm
that learns G with success probability > 1/2 using OR queries must make Ω(n2) queries.

Proof. Consider the family of graphs on 2n vertices defined as follows. We first start with
two disjoint cliques A, B on n vertices. We then put edges between A and B in an arbitrary

pattern. This corresponds to an adjacency matrix of the form
(
J − I M

MT J − I

)
, where J is

the all-1’s matrix, and M is an arbitrary n× n matrix. Now observe that any query that
contains more than one vertex in A, or more than one vertex in B, will always return 1.
Any query that contains only one vertex in total will always return 0. So we can restrict to
considering queries that include exactly one vertex of A and exactly one vertex of B. Such a
query just returns one of the entries of M . Learning M with success probability > 1/2 using
this oracle requires Ω(n2) quantum queries [12]. ◀

As a corollary, we get the lower bound that any quantum algorithm that learns an
arbitrary graph with m edges must make Ω(m) quantum queries. Also, by the known lower
bound on the quantum query complexity of the parity function [12], if m is unknown, then any
quantum algorithm that determines m exactly must make Ω(m) queries when m = Ω(n2).

3 Learning an unknown graph state

The graph state |G⟩ on n qubits corresponding to a graph G = (V,E) with n vertices can be
defined explicitly as

|G⟩ = 1√
2n

∑
x∈{0,1}n

(−1)
∑

(i,j)∈E
xixj |x⟩, (3)

The state |G⟩ can also be defined as the state produced by acting on the uniform superposition
|+⟩⊗n with a controlled-Z gate across each pair of qubits corresponding to an edge in G, or
as the unique state stabilized by the set of Pauli operators {Xv

∏
w∈N(v) Zw : v ∈ V }, where

N(v) denotes the set of vertices neighbouring v [32].
The representation (3) makes it clear that graph states have a close connection to the

parity query model, as |G⟩ is the state produced by evaluating fG,Par(S) on all subsets S
in uniform superposition. Therefore, lower bounds on the complexity of identifying graphs
using parity queries imply lower bounds on the number of copies of |G⟩ required to identify
G, and upper bounds on the number of copies of |G⟩ required to identify G imply upper
bounds on the complexity of identifying G using parity queries.

TQC 2022

1:12 Quantum Algorithms for Learning a Hidden Graph

First we show how to partially go in the other direction, by making parity queries of a
certain form, given copies of |G⟩. We use a procedure called Bell sampling, which was used
for learning arbitrary stabilizer states in [36]. Given two copies of a state |ψ⟩ of n qubits,
Bell sampling corresponds to measuring each corresponding pair of qubits in the Bell basis.
Outcomes of Bell sampling can be identified with strings s ∈ {I,X, Y, Z}n of Pauli matrices,
and are observed with the following probabilities:

▶ Lemma 11 (Lemma 2 of [36]). Let |ψ⟩ be a state of n qubits. Bell sampling applied to |ψ⟩⊗2

returns outcome s with probability 2−n|⟨ψ|σs|ψ∗⟩|2, where |ψ∗⟩ is the complex conjugate of
|ψ⟩ with respect to the computational basis, and σs = s1 ⊗ s2 ⊗ · · · ⊗ sn.

If |G⟩ is a graph state, then |G⟩ = |G∗⟩, and |⟨G|σs|G⟩|2 = 1 if and only if σs is a stabilizer
of |G⟩; otherwise, |⟨G|σs|G⟩|2 = 0. Therefore, Bell sampling returns a uniformly random
stabilizer of |G⟩. Such a stabilizer can be produced by taking the product of a random subset
S of the rows of the stabilizer matrix for G (where each row is included with independent
probability 1/2). We obtain the following overall operator:∏

v∈S

Xv

∏
u∈N(v)

Zu = ±
∏

u∈[n]

X [u∈S]
u Z |N(u)∩S|

u

where we collect X and Z terms together for each vertex u ∈ [n]. Hence, when we receive a
sample of a uniformly random stabilizer of |G⟩, we obtain a random subset S ⊆ [n], and for
each u ∈ [n], we learn the number of edges between u and S, mod 2. We learn the identity
of S from which qubits have an X term associated with them.

This allows us to try to find efficient algorithms based only on this (now classical)
subroutine of learning subsets and parities. Indeed, learning a graph state using Bell
sampling is equivalent to learning a graph using parity queries, as studied in Section 4 below
– except with the restriction that these queries are only to uniformly random subsets of the
vertices. We first give a general algorithm for learning a graph known to be picked from any
finite set.

▶ Theorem 12. Let S be a family of graphs. Then, for any G ∈ S, G can be identified by
applying Bell sampling to O(log |S|) copies of |G⟩. The algorithm succeeds with probability at
least 0.99.

Proof. Let A be the adjacency matrix of G. Each Bell sample returns the inner product of
a random vector s ∈ Fn

2 with each column (or row) of A. If we take k samples, we can write
these k row vectors as an n× k matrix B. Then the result of the Bell sampling procedure is
the matrix AB.

To be able to uniquely identify G, we want AB ̸= A′B for all A, A′ corresponding to
graphs in S, or in other words (A+A′)B ̸= 0n×k. As each entry of B is uniformly random,
for any n× n matrix C with rank r, PrB [CB = 0n×k] = 2−kr. (This holds because for each
linearly independent row c of C, PrB [cB = 0k] = 2−k, and these events are independent.) In
particular, for any nonzero matrix C, PrB [CB = 0n×k] ≤ 2−k. The number of matrices C of
the form C = A+A′ is at most |S|2. Taking a union bound over all such matrices, we have

Pr
B

[∃C = A+A′, CB = 0n×k] ≤ |S|2

2k
.

So it is sufficient to take k = O(log |S|) to achieve failure probability 0.01, as claimed. ◀

As a corollary of Theorem 12, if G is a graph with at most m edges, it can be identified
with O(m log(n2/m)) copies of |G⟩.

A. Montanaro and C. Shao 1:13

It is natural to wonder whether the dependence on |S| in Theorem 12 could be improved,
because if S is the set of all graphs, the complexity of Theorem 12 does not match that of the
best algorithms for learning an arbitrary graph state, which use O(n) copies of |G⟩ [1, 36,42].
An information-theoretic lower bound comes from the fact that |G⟩ is a state of n qubits,
so by Holevo’s theorem, Ω((log |S|)/n) copies are required to identify a state from S. In
addition, this bound cannot always be reached; if S is the set of all graphs on r vertices,
for some r < n, the number of copies required to identify a graph from this set is Θ(r)
by the same information-theoretic argument, which can be much larger than O(r2/n) for
some choices of r. This suggests that the best dependence on |S| that could be achieved is
O(
√

log |S|).
However, better complexities can be achieved for graphs with more structure. If the

graph is promised to be a star, then the Fourier sampling method can be applied to learn it
with O(1) copies of |G⟩. More precisely, suppose the edges of the star graph are (i, j), j ∈ A.
Here i is the center and we assume |A| ≥ 1. Then

|G⟩ = 1√
2n

∑
x∈{0,1}n

(−1)xi

∑
j∈A

xj |x⟩.

By Fourier sampling, if we apply Hadamard gates to |G⟩, we obtain the state

1√
2

|0, . . . , 0⟩|+⟩|0, . . . , 0⟩ + 1√
2

|[1 ∈ A], . . . , [i− 1 ∈ A]⟩|−⟩|[i+ 1 ∈ A], . . . , [n ∈ A]⟩. (4)

The |±⟩ is in the i-th qubit. Performing measurements in the computational basis, if we
obtain |0, . . . , 0⟩|1⟩|0, . . . , 0⟩, then we know the center; if we obtain a state with more than
two 1’s, then we know all vertices in A. The probability is 1/4 for each case, so we can learn
a unknown star using O(1) copies of |G⟩.

We can also apply Bell sampling to learn cliques with O(1) copies. Each Bell sample
gives us the inner product of each row of the adjacency matrix with a random vector, and
each nonzero row has probability 1/2 for this inner product to be nonzero. As G is a clique,
all its nonzero rows are the same. Thus, after O(1) samples, with high probability we learn
all the nonzero rows at once.

In summary, we have

▶ Theorem 13. There is a quantum algorithm that identifies G by using O(1) copies of |G⟩
if G is a star or a clique.

Next we consider the case of bounded-degree graphs.

▶ Theorem 14. For an arbitrary graph G, there is a quantum algorithm which uses
O(d log(m/d)) copies of |G⟩, and for each vertex v that has degree at most d, outputs
all the neighbours of v and that v has degree at most d. For each vertex w that has degree
larger than d, the algorithm outputs “degree larger than d”. The algorithm succeeds with
probability at least 0.99.

Proof. We assume that d ≤ n/4 throughout, as otherwise an algorithm for learning an
arbitrary graph using O(n) copies can be used [1, 36, 42]. We produce k Bell samples,
corresponding to vectors Aw1, . . . , Awk for uniformly random vectors w1, . . . ,wk ∈ {0, 1}n.
For any pair x ̸= y ∈ {0, 1}n, the probability that x · wi = y · wi for all i is equal to the
probability that (x + y) · wi = 0 for all i, which equals 2−k. By a union bound, for any
x ∈ {0, 1}n, the probability that there exists y ∈ {0, 1}n such that y ̸= x, |y| ≤ d and
x · wi = y · wi for all i is bounded by

∑d
l=0
(

n
l

)
2−k = O(2d log(n/d)−k).

TQC 2022

1:14 Quantum Algorithms for Learning a Hidden Graph

We then apply this bound to all n rows of A via a union bound, to obtain that the
probability that, for any row x of A, there exists y ∈ {0, 1}n with |y| ≤ d, x · wi = y · wi

for all i and y ̸= x is O(n2d log(n/d)−k). Taking k = O(d log(n/d)) is sufficient to bound this
probability by an arbitrarily small constant. Assuming that this failure event does not occur,
the algorithm determines all rows of A with Hamming weight bounded by d, and identifies
all rows that are inconsistent with having Hamming weight bounded by d.

We finally show how to replace n with m in the algorithm’s complexity. This is achieved
by first identifying the subset W of non-isolated vertices, and then running the algorithm
above on the vertices in this subset. We can restrict the graph to this subgraph H by
measuring the qubits corresponding to the other vertices in the computational basis. The
resulting state is of the form |H ′⟩ =

∏
i∈T Zi|H⟩, for some subset T ⊆ W . By Lemma 11, Bell

sampling behaves in the same way on |H ′⟩ as on |H⟩. To find the subset W , Bell sampling
is applied l times for some l, to produce an n× l matrix C = AB for a uniformly random
matrix B. The set of vertices corresponding to rows of C which have at least one nonzero
entry is kept, to produce a set W ′. Any zero row of A will always produce a corresponding
zero row of C, so will not be included in W ′. On the other hand, the probability that any
nonzero row of A produces the corresponding zero row of C is 2−l. As there are at most
2m nonzero rows, corresponding to vertices in W , the probability that any vertex in W is
not included in W ′ is O(m2−l) by a union bound. So it is sufficient to take l = O(logm) to
learn which rows are nonzero with probability 0.99. ◀

We can also learn the family of graphs that are subgraphs of a fixed graph G′ of bounded
degree d. This is relevant to the setting where we have attempted to produce |G′⟩ using
a quantum circuit which may have failed to produce certain edges, and we would like to
determine which graph we have actually produced. In this case, we can get an algorithm
that still uses O(d logn) copies like Theorem 14, but is also computationally efficient, in that
its runtime is O(d3n log3 n).

▶ Theorem 15. Let G′ be a graph of bounded degree d, G be a subgraph of G′. Given access
to copies of |G⟩, there is a quantum algorithm that identifies G using O(d logn) copies with
runtime O(d3n log3 n). The algorithm succeeds with probability at least 0.99.

Proof. We take k Bell samples, for some k to be determined. For each vertex v, the
corresponding row rv of A is a linear combination over F2 of at most d fixed vectors e1, . . . , ed

of Hamming weight 1, where each vector corresponds to a neighbour of v in G′. So we
can write rv =

∑d
i=1 xiei for some xi ∈ {0, 1}, and determining x ∈ {0, 1}d is sufficient to

determine rv. As the results of the Bell samples correspond to inner products between rv

and random vectors over Fn
2 , we obtain a system of k random linear equations in d unknowns.

These equations can be solved in time O(k3) to determine x if the corresponding random
matrix is full rank, and the probability that a random k× d matrix over F2, k ≥ d, is not full
rank is O(2−(k−d)) [28]. So, by a union bound, it is sufficient to take k = O(d logn) for all of
the rows of A to be determined by solving the corresponding systems of linear equations. ◀

Using a similar technique to the last part of Theorem 14, the linear dependence on n in
Theorem 15 can be replaced with a linear dependence on the number of non-isolated vertices,
and the polylog dependence on n can be replaced with an equivalent dependence on m.

A. Montanaro and C. Shao 1:15

4 Learning an unknown graph with parity queries

In this section we investigate learning an unknown graph G using the parity oracle fG,Par(S).
Identifying S with a bit-string x ∈ {0, 1}n via xi = 1 if i ∈ S, and xi = 0 otherwise, we see
that fG,Par(x) =

∑
(i,j)∈E xixj , where the sum is taken mod 2. So, if G is arbitrary, fG,Par

is an arbitrary quadratic polynomial over F2 with no linear part. It was shown in [35] that
any polynomial of this form can be learned using O(n) quantum queries, and this is optimal.
This immediately gives a quantum algorithm for learning an arbitrary graph using O(n)
parity queries, which is quadratically better than the best possible classical algorithm. (By
an information-theoretic argument, classically Ω(n2) parity queries are required.)

Evaluating fG,Par(x) on a uniform superposition over computational basis states |x⟩ gives
precisely the graph state |G⟩, so the results of Section 3 can all immediately be applied to
learning graphs in the parity query model. However, the ability to evaluate fG,Par(x) on
other input states allows for more general algorithms to be developed. In particular, we can
obtain the following subroutine.

▶ Lemma 16. Let A be the adjacency matrix of G. For any v ∈ {0, 1}n, there is a quantum
algorithm which returns Av and makes two queries to fG,Par.

Proof. Consider the function gv(x) = f(x) + f(x+ v). It can be evaluated for any x using
two queries to f . Let B denote the adjacency matrix A, except that we set Bij = 0 for i > j.
Then f(x) = xTBx.

We evaluate gv in superposition to produce
1√
2n

∑
x∈{0,1}n

(−1)gv(x)|x⟩ = 1√
2n

∑
x∈{0,1}n

(−1)xT Bx+(x+v)T B(x+v)|x⟩

= 1√
2n

(−1)vT Bv
∑

x∈{0,1}n

(−1)x·(Av)|x⟩.

Then applying Hadamard gates to each qubit returns the vector Av. ◀

Note that no equivalent of Lemma 16 can hold in the graph state model of Section 3. If
we let v be a vector of Hamming weight 1, Lemma 16 returns an entire row of the adjacency
matrix of A using one query. But even to determine one entry of an arbitrary row of A
requires Ω(n) copies of |G⟩, because this is equivalent to a quantum random access code on(

n
2
)

bits1. Such codes are known to require quantum states of Ω(n2) qubits [37], and |G⟩ is a
state of n qubits.

We can use Lemma 16 as a subroutine to learn an arbitrary graph with a bounded
number of edges. Classically, by an information-theoretic argument, this requires at least
Ω(log

((n
2)
m

)
) = Ω(m log(n2/m)) queries.

▶ Theorem 17. There is a quantum algorithm which learns a graph with at most m edges
using O(

√
m logm) parity queries. The algorithm succeeds with probability at least 0.99.

Proof. The algorithm splits the graph into low and high-degree parts. First, Theorem 14
is used with d =

√
m/ logm. This learns all rows of A with at most

√
m/ logm nonzero

entries, and the identities of all “dense” rows of A with more than
√
m/ logm nonzero entries.

Then each of the dense rows is learned individually by applying Lemma 16 with v chosen to
be the corresponding standard basis vector. There can be at most O(

√
m logm) dense rows,

so the overall algorithm uses O(
√
m logm) queries. ◀

1 Joe Fitzsimons, personal communication.

TQC 2022

1:16 Quantum Algorithms for Learning a Hidden Graph

Theorem 17 is close to tight, because identifying an arbitrary graph on k vertices (and
hence with up to Θ(k2) edges) requires Ω(k) quantum queries [35]. Stars and cliques can be
learned with O(1) parity queries via the techniques of the previous section for graph states.

References
1 Scott Aaronson and Daniel Gottesman. Identifying stabilizer states, 2008. URL: http:

//pirsa.org/08080052/.
2 Hasan Abasi and Bshouty Nader. On learning graphs with edge-detecting queries. In

Algorithmic Learning Theory, pages 3–30. PMLR, 2019. arXiv:1803.10639.
3 M. Aldridge, O. Johnson, and J. Scarlett. Group testing: An information theory perspective.

Foundations and Trends in Communications and Information Theory, 15(3–4):196–392, 2019.
arXiv:1902.06002.

4 Noga Alon and Vera Asodi. Learning a hidden subgraph. SIAM Journal on Discrete Mathem-
atics, 18(4):697–712, 2005. doi:10.1137/S0895480103431071.

5 Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning
a hidden matching. SIAM Journal on Computing, 33(2):487–501, 2004. doi:10.1137/
S0097539702420139.

6 Andris Ambainis, Aleksandrs Belovs, Oded Regev, and Ronald de Wolf. Efficient quantum
algorithms for (gapped) group testing and junta testing. In Proc. 27th ACM-SIAM Symp.
Discrete Algorithms, pages 903–922, 2016. doi:10.1137/1.9781611974331.ch65.

7 Andris Ambainis and Ashley Montanaro. Quantum algorithms for search with wildcards
and combinatorial group testing. Quantum Information and Computation, 14(5&6), 2014.
doi:10.26421/QIC14.5-6.

8 Dana Angluin and Jiang Chen. Learning a hidden hypergraph. Journal of Machine Learning
Research, 7:2215–2236, 2006.

9 Dana Angluin and Jiang Chen. Learning a hidden graph using O(log n) queries per edge.
Journal of Computer and System Sciences, 74(4):546–556, 2008. doi:10.1016/j.jcss.2007.
06.006.

10 George K Atia and Venkatesh Saligrama. Boolean compressed sensing and noisy group testing.
IEEE Transactions on Information Theory, 58(3):1880–1901, 2012. arXiv:0907.1061.

11 A. Atıcı and R. Servedio. Improved bounds on quantum learning algorithms. Quantum
Information Processing, 4(5):355–386, 2005. quant-ph/0411140.

12 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. doi:10.1145/502090.
502097.

13 Paul Beame, Sariel Har-Peled, Ramamoorthy S. Natarajan, Cyrus Rashtchian, and Makrand
Sinha. Edge estimation with independent set oracles. ACM Transactions on Algorithms
(TALG), 16(4):1–27, 2020. doi:10.1145/3404867.

14 Richard Beigel, Noga Alon, Simon Kasif, Mehmet S. Apaydin, and Lance Fortnow. An optimal
procedure for gap closing in whole genome shotgun sequencing. In RECOMB 2001, pages
22–30, 2001. doi:10.1145/369133.369152.

15 Aleksandrs Belovs. Quantum algorithms for learning symmetric juntas via the adversary
bound. Computational Complexity, 24:255–293, 2015. doi:10.1007/s00037-015-0099-2.

16 Shalev Ben-David, Andrew M. Childs, András Gilyén, William Kretschmer, Supartha Pod-
der, and Daochen Wang. Symmetries, graph properties, and quantum speedups, 2020.
arXiv:2006.12760.

17 Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on
Computing, 26(5):1411–1473, 1997. doi:10.1137/S0097539796300921.

18 Mathilde Bouvel, Vladimir Grebinski, and Gregory Kucherov. Combinatorial search on graphs
motivated by bioinformatics applications: a brief survey. In WG 2005: Graph-Theoretic
Concepts in Computer Science, pages 16–27, 2005. doi:10.1007/11604686_2.

http://pirsa.org/08080052/
http://pirsa.org/08080052/
https://doi.org/10.1137/S0895480103431071
https://doi.org/10.1137/S0097539702420139
https://doi.org/10.1137/S0097539702420139
https://doi.org/10.1137/1.9781611974331.ch65
https://doi.org/10.26421/QIC14.5-6
https://doi.org/10.1016/j.jcss.2007.06.006
https://doi.org/10.1016/j.jcss.2007.06.006
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/3404867
https://doi.org/10.1145/369133.369152
https://doi.org/10.1007/s00037-015-0099-2
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1007/11604686_2

A. Montanaro and C. Shao 1:17

19 G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and
estimation. Quantum Computation and Quantum Information: A Millennium Volume, pages
53–74, 2002. quant-ph/0005055.

20 Nader H Bshouty and Hanna Mazzawi. Reconstructing weighted graphs with minimal query
complexity. Theoretical computer science, 412(19):1782–1790, 2011. doi:10.1016/j.tcs.2010.
12.055.

21 Chun Lam Chan, Pak Hou Che, Sidharth Jaggi, and Venkatesh Saligrama. Non-adaptive
probabilistic group testing with noisy measurements: Near-optimal bounds with efficient
algorithms. In 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 1832–1839. IEEE, 2011. arXiv:1107.4540.

22 Huilan Chang, Hong-Bin Chen, Hung-Lin Fu, and Chie-Huai Shi. Reconstruction of hidden
graphs and threshold group testing. Journal of Combinatorial Optimization, 22:270–281, 2011.
doi:10.1007/s10878-010-9291-0.

23 Huilan Chang, Hung-Lin Fu, and Chih-Huai Shih. Learning a hidden graph. Optimization
Letters, 8:2341–2348, 2014. doi:10.1007/s11590-014-0751-9.

24 H.-B. Chen and H.-L. Fu. Nonadaptive algorithms for threshold group testing. Discrete
Applied Mathematics, 157:1581–1585, 2009.

25 Sung-Soon Choi and Jeong H. Kim. Optimal query complexity bounds for finding graphs.
Artificial Intelligence, 174(9-10):551–569, 2010. doi:10.1016/j.artint.2010.02.003.

26 Dingzhu Du, Frank K Hwang, and Frank Hwang. Combinatorial group testing and its
applications, volume 12. World Scientific, 2000.

27 Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query complexity
of some graph problems. SIAM Journal on Computing, 35(6):1310–1328, 2006. doi:10.1137/
050644719.

28 Paulo JSG Ferreira, Bruno Jesus, Jose Vieira, and Armando J Pinho. The rank of random
binary matrices and distributed storage applications. IEEE communications letters, 17(1):151–
154, 2012.

29 Vladimir Grebinski and Gregory Kucherov. Optimal query bounds for reconstructing a
Hamiltonian cycle in complete graphs. In Fifth Israel Symposium on the Theory of Computing
Systems, pages 166–173, 1997. doi:10.1109/ISTCS.1997.595169.

30 Vladimir Grebinski and Gregory Kucherov. Reconstructing a hamiltonian cycle by querying the
graph: Application to dna physical mapping. Discrete Applied Mathematics, 88(1-3):147–165,
1998. doi:10.1016/S0166-218X(98)00070-5.

31 Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs under the
additive model. Algorithmica, 28(1):104–124, 2000. doi:10.1007/s004530010033.

32 Marc Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, Maarten Van den Nest, and
Hans J. Briegel. Entanglement in graph states and its applications. In Quantum Computers,
Algorithms and Chaos, International School of Physics, Enrico Fermi. IOS Press, 2006.
doi:10.3254/978-1-61499-018-5-115.

33 I. Krasikov and S. Litsyn. Survey of binary Krawtchouk polynomials. In Codes and Association
Schemes, volume 56 of DIMACS series in Discrete Mathematics and Theoretical Computer
Science, pages 199–212. American Mathematical Society, 1999.

34 Troy Lee, Miklos Santha, and Shengyu Zhang. Quantum algorithms for graph problems
with cut queries. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 939–958. SIAM, 2021. doi:10.1137/1.9781611976465.59.

35 Ashley Montanaro. The quantum query complexity of learning multilinear polynomials.
Information Processing Letters, 112(11):438–442, 2012. doi:10.1016/j.ipl.2012.03.002.

36 Ashley Montanaro. Learning stabilizer states by Bell sampling, 2017. arXiv:1707.04012.
37 Ashwin Nayak. Optimal lower bounds for quantum automata and random access codes.

In Proc. 40th Annual Symp. Foundations of Computer Science, pages 369–376, 1999. doi:
10.1109/SFFCS.1999.814608.

TQC 2022

https://doi.org/10.1016/j.tcs.2010.12.055
https://doi.org/10.1016/j.tcs.2010.12.055
https://doi.org/10.1007/s10878-010-9291-0
https://doi.org/10.1007/s11590-014-0751-9
https://doi.org/10.1016/j.artint.2010.02.003
https://doi.org/10.1137/050644719
https://doi.org/10.1137/050644719
https://doi.org/10.1109/ISTCS.1997.595169
https://doi.org/10.1016/S0166-218X(98)00070-5
https://doi.org/10.1007/s004530010033
https://doi.org/10.3254/978-1-61499-018-5-115
https://doi.org/10.1137/1.9781611976465.59
https://doi.org/10.1016/j.ipl.2012.03.002
https://doi.org/10.1109/SFFCS.1999.814608
https://doi.org/10.1109/SFFCS.1999.814608

1:18 Quantum Algorithms for Learning a Hidden Graph

38 R. O’Donnell. Computational Applications Of Noise Sensitivity. PhD thesis, Carnegie Mellon
University, 2003.

39 Ely Porat and Amir Rothschild. Explicit non-adaptive combinatorial group testing schemes.
In International Colloquium on Automata, Languages, and Programming, pages 748–759.
Springer, 2008. doi:10.1007/978-3-540-70575-8_61.

40 Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries with a focus on
edge counting. In International Conference on Algorithmic Learning Theory, pages 285–297.
Springer, 2007. doi:10.1007/978-3-540-75225-7_24.

41 Rocco A. Servedio and Steven J. Gortler. Equivalences and separations between quantum
and classical learnability. SIAM Journal on Computing, 33(5):1067–1092, 2004. doi:10.1137/
S0097539704412910.

42 Liming Zhao, Carlos A. Pérez-Delgado, and Joseph F. Fitzsimons. Fast graph operations
in quantum computation. Physical Review A, 93:032314, 2016. doi:10.1103/PhysRevA.93.
032314.

A Combinatorial group testing

In this appendix, we move on from the problem of learning graphs to combinatorial group
testing (CGT). In the CGT problem, we are given oracle access to an n-bit string A with
Hamming weight at most k. Usually, we assume that k ≪ n. In one query, we can get the
OR of an arbitrary subset of the bits of A. The goal is to determine A using the minimal
number of queries. (To connect to the topic of the previous sections, we can see CGT as the
problem of learning a graph on n vertices with OR queries, in the very special case where the
graph is promised to have no edges between vertices, and may contain up to k self-loops.)

We can think of A as a subset of [n], and define the oracle as

fA(S) =
{

1, if A ∩ S ̸= ∅,
0, otherwise.

(5)

Classically, it is known that the number of queries required to solve CGT is Θ(k log(n/k)) [26].
In the quantum case, Ambainis and Montanaro [7] first studied this problem and proposed a
quantum algorithm using O(k) queries. They also showed a lower bound of Ω(

√
k). Later

in [15], based on the adversary bound method, Belovs proved that a quantum computer
can solve the CGT problem with Θ(

√
k) queries. In principle, Belovs’ approach can yield

a quantum algorithm with an explicit implementation, but this implementation might
not be time-efficient. In this section, we propose a quantum algorithm for CGT with
an efficient implementation. The complexity is a little worse than Θ(

√
k) by a factor of

O((log k)(log log k)).
The idea of our quantum algorithm is inspired by [6] and the Bernstein–Vazirani al-

gorithm [17]. The key idea is to observe that the Bernstein-Vazirani algorithm allows the
identity of a subset A ⊆ [n] to be determined with one query to an oracle that computes
|A ∩ T | for arbitrary T ⊆ [n]. And in [6], Ambainis et al solved a closely related problem to
evaluating this oracle, which they called gapped group testing (GGT): given the oracle fA,
decide if |A| ≤ k or |A| ≥ k+ d. They showed that Θ(

√
k/d) queries are enough to solve this

problem by the adversary bound method. The main idea of their quantum algorithm was
borrowed from [15], but unlike [15], they have an efficient implementation of their quantum
algorithm.

So it seems that, by taking d = 1 and using binary search, we can use the quantum
algorithm of [6] for the gapped group testing problem to determine |A| with O(log k)
repetitions of their algorithm, leading to a query complexity of O(

√
k log k). However,

https://doi.org/10.1007/978-3-540-70575-8_61
https://doi.org/10.1007/978-3-540-75225-7_24
https://doi.org/10.1137/S0097539704412910
https://doi.org/10.1137/S0097539704412910
https://doi.org/10.1103/PhysRevA.93.032314
https://doi.org/10.1103/PhysRevA.93.032314

A. Montanaro and C. Shao 1:19

we should be careful at this point since the quantum algorithm of [6] only succeeds with
probability 2/3. So O(log k) repetitions will decrease the success probability to almost 0. A
simple method to increase the success probability to 1 −O((log k)−1) is using the Chernoff
bound. We can think of the intended output of the algorithm of [6] for GGT as 1 if |A| ≤ k

and 0 if |A| ≥ k+1. Denote this outcome O. As proved in [6], the probability that each run of
the algorithm returns the intended outcome is at least 2/3. We repeat the algorithm for GGT
t times and output the median of the results. Let X be the median. Then by the Chernoff
bound, we have Pr[X ≠ O] ≤ e−ct for some constant c. So by choosing t = O(log log k), the
success probability is increased to 1 − c′(log k)−1 for an arbitrarily small constant c′. Taking
a union bound over the ⌈log2 k⌉ uses of the algorithm, we can determine |A| with success
probability 9/10. By applying this algorithm to subsets S ⊆ [n], for varying subsets |S|, we
can determine |A ∩ S| with success probability 9/10.

Next we show that access to an oracle of this form is sufficient to determine A completely.
In fact, this claim holds for any monotone function, rather than just the OR function.

▶ Lemma 18. Consider a family of monotone boolean functions g : {0, 1}k → {0, 1}.
Assume there is a family of classical or quantum algorithms An which, when applied to
f : {0, 1}n → {0, 1} such that f(x) = g(xS) for some subset S such that |S| = k, outputs
k with success probability 9/10. Let T (n) denote the complexity of An, and assume that
T (n) is nondecreasing. Then there is a quantum algorithm which determines S with success
probability 1 − δ, for any δ > 0, and has complexity O(T (n) log 1/δ).

Proof. Identify n-bit strings with subsets of [n], and create the uniform superposition
1√
2n

∑
T ⊆[n] |T ⟩. For each T , run A|T | on the function fT : {0, 1}|T | → {0, 1} given by f

restricted to the variables in T . As f is monotone, a query to fT can be simulated by a
query to f by setting the variables outside of T to 0. The result is a state of the form

1√
2n

∑
T ⊆[n]

|T ⟩(
√

1 − δT ||S ∩ T |⟩ +
√
δT |ψT ⟩)

for some δT ∈ [0, 1] such that δT ≤ 1/3, and some states |ψT ⟩ such that ⟨|S ∩ T ||ψT ⟩ = 0.
Apply Z⊗|T | to the last register and uncompute A|T | to produce

1√
2n

∑
T ⊆[n]

(−1)|S∩T |(1 − δT)|T ⟩|0⟩ + |η⟩

for some unnormalised state |η⟩ orthogonal to |0⟩ on the second register. Measure the second
register and output “fail” if the result is not 0. Otherwise, apply Hadamard gates to every
qubit of the remaining register, and return the result.

The algorithm outputs failure with probability 1 − 1
2n

∑
T (1 − δT)2 ≤ 2δT − δ2

T ≤ 1/5.
If the algorithm does not output failure, the residual state has squared inner product
(1

2n

∑
T (1 − δT))2 ≥ (9/10)2 with the state 1√

2n

∑
T ⊆[n](−1)|S∩T ||T ⟩; if applied to this

state, it would output S with certainty, by the analysis of the Bernstein-Vazirani algorithm.
Therefore the algorithm fails with probability at most 1/5 + 19/100 < 1/2. Repetition and
taking the majority vote reduces the failure probability to δ, for arbitrary δ > 0, with an
additional multiplicative cost O(log 1/δ). ◀

By Lemma 18, we obtain the following theorem.

▶ Theorem 19. There is a quantum algorithm that solves the CGT problem with success
probability at least 2/3. The query complexity is O(

√
k(log k)(log log k)), and time complexity

is Õ(n
√
k).

TQC 2022

1:20 Quantum Algorithms for Learning a Hidden Graph

B Majority and exact-half functions

In this part, we consider the following general learning problem. We are given access to
a function f : {0, 1}n → {0, 1}, which is promised to be equal to some known function
g : {0, 1}k → {0, 1} acting on a subset S of the variables. Our goal is to learn which k

variables f depends on. We first note that, for any function g, any classical algorithm for
this problem must make Ω(log

(
n
k

)
) = Ω(k log(n/k)) queries, as each query returns 1 bit

of information. For some functions g, quantum algorithms can do better. In particular,
using the adversary bound method, Belovs [15] showed that for the exact-half function
(g(x) = 1 ⇔ |x| = k/2) and the majority function (g(x) = 1 ⇔ |x| ≥ k/2), the quantum
query complexity of identifying S is O(k1/4). Here we give simple explicit quantum algorithms
that match this complexity up to logarithmic factors. Then we observe that an even simpler
approach can be used to solve this learning problem for almost all functions g.

The approach used in this section is based on applying Fourier sampling to f (see Section
1.3), an approach explored by Atıcı and Servedio [11] in the context of quantum learning and
testing algorithms for functions with few relevant variables. Fourier sampling allows one to
produce the state |ψf ⟩ =

∑
T ⊆[n] f̂(T)|T ⟩ with one quantum query to f . Now observe that, if

f(x) does not depend on the i’th bit xi, f̂(T) = 0 for all T such that i ∈ T . So, if f depends
only on a subset S of the variables, measuring |ψf ⟩ in the computational basis returns a
subset of S. By repeating this procedure we can hope to learn all of S, and we can sometimes
accelerate this process using amplitude amplification. Let Wl(g) be the Fourier weight of g
on the l’th level, Wl(g) =

∑
T,|T |=l ĝ(T)2. Similarly define W≥l(g) =

∑
T,|T |≥l ĝ(T)2.

▶ Lemma 20. Let g be a symmetric function, i.e. g(x) = h(|x|) for some h, where |x| is the
Hamming weight of x. Then, for any l such that W≥l(g) > 0, there is a quantum algorithm
which identifies S with probability at least 0.99 using O(k/(l

√
W≥l(g))) log k) queries to f .

If l = k, there is a quantum algorithm using O(1/
√
Wk(g)) queries.

Proof. We start by applying amplitude amplification [19] to the following procedure: use
Fourier sampling on f , and return “yes” if the size of the subset returned is at least l. This
returns a subset T of size l′ ≥ l using O(1/

√
W≥l(g)) evaluations of f and with success

probability max{1 −W≥l(g),W≥l(g)} ≥ 1/2 [19, Theorem 2]. Observe that, as |ψf ⟩ has no
support on subsets that are not contained within S, T ⊆ S with certainty.

As g is symmetric, f̂(T) depends only on |T | for all T , so T is picked uniformly at random
from all l′-subsets of [k]. For any r, it is sufficient to perform this procedure O(r) times to
achieve r successes with high probability. The final step of the algorithm is to output the
union of the subsets returned in successful iterations. By a union bound, the probability that
there is a variable that is not included in any of the subsets is at most k(1− l/k)r ≤ ke−lr/k+r.
So it is sufficient to take r = O((k/l) log(k/δ)) to achieve success probability 1 − δ. For
the second claim in the lemma, if l = k, we learn all the relevant variables with one use of
amplitude amplification and with probability ≥ 1/2, which can be boosted to arbitrarily
close to 1 with a constant number of repetitions. ◀

Lemma 20 crucially relies on g being symmetric. Otherwise, certain variables could be
substantially harder to identify than others. To apply Lemma 20, it is sufficient to find
bounds on the Fourier spectrum of g, which we now obtain for certain functions. First, we
consider the majority function (MAJk(x) = 1 ⇔ |x| ≥ k/2), which is a special case of a
previously studied framework known as “threshold group testing” [24].

A. Montanaro and C. Shao 1:21

▶ Fact 21 ([38], Theorem 3.5.3). Let MAJk be the majority function on k bits. If |S| is even,
then M̂AJk(S) = 0. Otherwise,

M̂AJk(S) = (−1)(k−1)/2

((k−1)/2
(|S|−1)/2

)(
k−1

|S|−1
) 2

2k

(
k − 1

(k − 1)/2

)
.

Using Fact 21, we can obtain a bound on the tail of the Fourier spectrum of the majority
function.

▶ Lemma 22. W≥(k+1)/2(MAJk) = Ω(1/
√
k).

Proof. By Fact 21,

Wl(MAJk) =
(
k

l

)((k−1)/2
(l−1)/2

)2

(
k−1
l−1
)2

4
22k

(
k − 1

(k − 1)/2

)2
= k

l

((k−1)/2
(l−1)/2

)2(
k−1
l−1
) 4

22k

(
k − 1

(k − 1)/2

)2

and using 4
22k

(
k−1

(k−1)/2
)2 = Θ(1/k), we obtain

Wl(MAJk) = Θ

((k−1)/2
(l−1)/2

)2

k
(

k−1
l−1
)


for l ≥ (k + 1)/2. In the case l = (k + 1)/2, we have Wl(MAJk) = Θ(k−3/2) using(
a

a/2
)

= Θ(2a/
√
a) for any a. By Stirling’s formula, ((k−1)/2

(l−1)/2)2

(k−1
l−1) ≈

√
2(k−1)

π(l−1)(k−l) , which is

nondecreasing when l ≥ (k + 1)/2, so Wl(MAJk) = Ω(k−3/2) for l ≥ (k + 1)/2. ◀

Next, we consider the EXACT-HALF function, g(x) = 1 ⇔ |x| = k/2.

▶ Lemma 23. Let k be even. Then W≥k/2(EXACT- HALFk) = Θ(1/
√
k).

Proof. Let g : {0, 1}k → {0, 1} be the EXACT-HALF function. It will be convenient
for the proof to switch to the representation of the Fourier transform of g that ĝ(s) =
1

2k

∑
x∈{0,1}k (−1)s·xg(x), which is equivalent to the representation used in the rest of this

paper for all s such that s ̸= 0k, up to a constant factor. Then, for s ̸= 0k,

ĝ(s) =
∑

x,|x|=k/2

(−1)x·s = 1
2k

k/2∑
i=0

(−1)i

(
|s|
i

)(
k − |s|
i

)
,

where the last expression is a Krawtchouk polynomial [33]. This is symmetric about |s| = k/2,
so ∑

s,|s|≥k/2

ĝ(s)2 ≥ 1
2
∑

s

ĝ(s)2 = 1
2∥g∥2

2 = Θ(1/
√
k). ◀

So, by the above lemmas, we reproduce the Θ(k1/4) complexity of Belovs’ algorithms for
the majority and EXACT-HALF functions up to a logarithmic factor. The algorithms are
also time-efficient.

▶ Theorem 24. There exist quantum algorithms that learn the majority and exact-half
functions on k-bits using O(k1/4 log k) queries. The time complexity is O(nk1/4 log k).

TQC 2022

1:22 Quantum Algorithms for Learning a Hidden Graph

Finally, we observe a simple general approach which can be used to solve the learning
problem for almost all functions efficiently. Define the influence of the j’th variable as

Infj(g) =
∑
T ∋j

ĝ(T)2 = Pr
x∈{0,1}k

[g(x) ̸= g(xj)],

where xj is the bit-string equal to x with its j’th bit flipped.

▶ Proposition 25 (essentially Atıcı and Servedio [11]). Assume that, for all j ∈ S, Infj(g) ≥
ϵ. Then there is a quantum algorithm which identifies S with probability 1 − δ using
O(ϵ−1 log(k/δ)) queries to f .

Proof. We apply Fourier sampling to f , which returns a subset T ⊆ [k] with probability
ĝ(T)2. We use this subroutine q times and output the union of the subsets of variables
returned. The probability that the j’th variable is included in each sample is Infj(g) ≥ ϵ.
The probability that there exists a variable that is not returned after the q queries is at most
k(1 − ϵ)q ≤ ke−qϵ. So it is sufficient to take q = O(ϵ−1 log(k/δ)) to learn all the variables
except with probability δ. ◀

If g is picked at random, then for all j, Infj(g) is lower-bounded by a constant with high
probability. So, by Proposition 25, for almost all functions g, there is a quantum algorithm
that identifies S using O(log k) queries and succeeds with probability 0.99. This holds even
if g is unknown, and is an exponential improvement over the optimal classical complexity.

	1 Introduction
	1.1 Summary of the techniques
	1.2 Prior work
	1.3 Preliminaries

	2 Learning an unknown graph with OR queries
	2.1 Learning specific graphs using OR queries
	2.2 Lower bound

	3 Learning an unknown graph state
	4 Learning an unknown graph with parity queries
	A Combinatorial group testing
	B Majority and exact-half functions

