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Abstract
We introduce ACES, a method for scalable noise metrology of quantum circuits that stands for
Averaged Circuit Eigenvalue Sampling. It simultaneously estimates the individual error rates of all
the gates in collections of quantum circuits, and can even account for space and time correlations
between these gates. ACES strictly generalizes randomized benchmarking (RB), interleaved RB,
simultaneous RB, and several other related techniques. However, ACES provides much more
information and provably works under strictly weaker assumptions than these techniques. Finally,
ACES is extremely scalable: we demonstrate with numerical simulations that it simultaneously
and precisely estimates all the Pauli error rates on every gate and measurement in a 100 qubit
quantum device using fewer than 20 relatively shallow Clifford circuits and an experimentally feasible
number of samples. By learning the detailed gate errors for large quantum devices, ACES opens new
possibilities for error mitigation, bespoke quantum error correcting codes and decoders, customized
compilers, and more.
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1 Introduction

Estimating errors in quantum computers is essential for progress towards fault tolerant
quantum computation (FTQC) [36]. An error is any undesired quantum evolution, and so
errors can be as general as the set of allowed quantum dynamics, making them difficult to
estimate and characterize. The most relevant errors in the context of FTQC can be broadly
cast into the two archetypes of coherent and incoherent errors [31], though this is not an
exclusive dichotomy.

Coherent errors are roughly those that we wish to reduce through improved calibration or
eliminate via dynamical decoupling [42], though clever choices of quantum codes and circuits
can also be tailored to handle coherent noise [9, 22, 46]. These methods reach natural limits
when the coherent noise becomes too complex to efficiently describe. While in principle
coherent errors can accumulate badly during a computation [31], quantum error correction
itself seems to reduce the coherence of noise [23, 3, 26].

Incoherent noise, by contrast, can generally only be completely fixed by quantum error
correction and fault tolerance, though near-term strategies for error mitigation could also
help [38, 32, 11, 8, 34]. Optimizing the codes, decoders, and circuits for FTQC requires a
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4:2 Averaged Circuit Eigenvalue Sampling

comprehensive understanding of the incoherent noise in a quantum device. Many techniques
have been developed to estimate incoherent errors, including randomized benchmarking
(RB) [10], interleaved RB [35], simultaneous RB [17], character RB [21], and Pauli noise
estimation [14] among others. Each of these techniques has in common that a general quantum
noise source (which may include coherent errors) is actively averaged to obtain an incoherent
noise model with the same fidelity using randomized control techniques [41, 28, 29, 43, 44].
It is this averaged noise that RB-type methods seek to estimate.

In this paper, we show that incoherent noise, modeled as a Pauli channel, can be learned
extremely efficiently using averaged circuit eigenvalue sampling, or ACES. It is already
known that Pauli channels can be (individually) estimated efficiently and in a manner that
is robust to state preparation and measurement (SPAM) errors [19, 20, 14, 16], and they
are effective at modeling noise for FTQC [18, 27]. ACES goes beyond this prior work and
simultaneously estimates a large collection of Pauli noise channels associated to a quantum
device. Indeed, we give numerical simulations showing that ACES can characterize every
error rate associated to the Clifford gates in a 100 qubit quantum device using fewer than
20 circuits and a reasonable number of samples. Moreover, it requires only very simple
classical resources to process these data, unlike other characterization techniques based on
simulating or implementing general quantum circuits, or using challenging tensor network
simulations [4, 5, 37, 39, 33, 6].

2 The Pauli and Clifford groups

The n-qubit Pauli group Pn consists of n-fold tensor products of single-qubit Pauli op-
erators labeled as follows. Let a be a 2n-bit string a = a1a2 . . . a2n and write Pa =
ia

T Υa
∏n

j=1 X
a2j−1
j Z

a2j

j , where Xj and Zj are single-qubit Paulis acting on qubit j, and
Υ =

⊕n
k=1 ( 0 1

0 0 ) is such that Pa is always hermitian. The group Pn contains these Pa, to-
gether with the overall phases {±1,±i}, composed under matrix multiplication. All elements
of the Pauli group satisfy

PaPb = (−1)⟨a,b⟩PbPa , (1)

where the sign is determined by the binary symplectic form ⟨a, b⟩ = aT (Υ + ΥT )b mod 2.
The normalizer of the Pauli group inside the unitary group, modulo phases, is the Clifford

group Cn, and it is generated by the controlled-NOT gate CXi→j from control i to target j,
the Hadamard gate Hj , and the phase gate Sj

1.
Pauli channels are quantum channels of the form

ρ 7→
∑

a

paPaρP
†
a , (2)

where pa is a (possibly subnormalized) probability distribution called the Pauli error rates.
Leakage from the qubit space occurs when

∑
a pa < 1. When a general quantum channel

E =
∑

j Kj ·K†
j is twirled by the Pauli group, it becomes a Pauli channel denoted EP,

EP(ρ) = 1
4n

∑
a

P †
aE(PaρP

†
a)Pa . (3)

1 From this definition, elements of the Clifford group are actually equivalence classes up to an overall phase,
but by a slight abuse of language we can speak about a “Clifford unitary” to mean any representative
element up to a phase and refer to uniqueness of a Clifford unitary when we really mean uniqueness up
to an overall phase.
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If Kj =
∑

a νj,aPa, then the Pauli error rates of EP are pa =
∑

j |νj,a|2. Thus we can speak
of the Pauli error rates of a general channel by considering its Pauli twirl. Note that we can
interpret twirling as the mean of a random process where a Pauli is selected uniformly at
random and applied both before and after the channel.

The eigenvectors of a Pauli channel E are just the Pauli operators. Indeed, from Equa-
tion (1) we have E(Pb) = λbPb where the Pauli eigenvalues λb are,

λb =
∑

a

(−1)⟨a,b⟩pa . (4)

This equation can be inverted to express the error rates in terms of the eigenvalues 2,

pa = 1
2n

∑
b

(−1)⟨a,b⟩λb . (5)

We now introduce a “G-twisted” Pauli twirl. For a given Clifford G and Pauli Pa,
let Pa′ = G(Pa). Note that since G is unitary, the set of all a and a′ are in one-to-one
correspondence. We wish to expand a noisy gate as G̃ = GE for some general noise channel
E = G†G̃. Intuitively, E is close to the identity, though the definition doesn’t assume that.
Then the G-twisted twirl of G̃ is

G̃GP(ρ) = 1
4n

∑
a

P †
a′ G̃(PaρP

†
a)Pa′ = G

(
EP(ρ)

)
. (6)

From the last equality, we see that the G-twisted twirl isolates the Pauli noise around a given
noisy implementation G̃ of an ideal Clifford gate G.

G-twisted twirled channels have an analogous eigendecomposition to a Pauli twirled
channel, but with the notion of generalized eigenvector. Given such a channel G̃GP, the
generalized eigenvectors with respect to G0 are vectors such that G̃GP(v) = λG0(v). We
see from Equation (6) that choosing G0 = G gives exactly the Paulis as the generalized
eigenvectors with eigenvalues given by the Pauli eigenvalues of the noise map EP.

3 Averaged circuits

Let us consider a Clifford circuit (i.e., a circuit composed solely of CX, H, and S gates or
an equivalent generating set), denoted C. Any physical implementation of these circuits will
be noisy, and we seek to characterize the incoherent Pauli-averaged noise in these circuits,
specifically in the generators used to create the circuits. To that end, from the circuit C we
create a new ensemble of circuits CP by sampling a G-twisted Pauli twirl across each Clifford
circuit element and recompiling the Pauli gate. This approach to Pauli frame randomization
is known as randomized compiling [43]. Each circuit in the ensemble implements the same
unitary operation, but now the noise has been averaged over the Pauli group. In Ref. [43], it
was proven that circuits sampled in this way yield on average a circuit that interleaves Pauli-
averaged noise with ideal gates (except possibly in the final measurement step). This result
rigorously holds whenever the noise on each Pauli gate is the same, and furthermore Ref. [43]
provides some robustness guarantees in the event that this assumption is perturbatively
violated 3.

2 Note that λa and pa are essentially Fourier transform pairs since the transform relating them is the
Walsh-Hadamard transform (up to a permutation). A helpful intuition is that λ lives in the “time
domain” where we can efficiently sample, and p lives in the “frequency domain” where we wish to
reconstruct the signal.

3 While the gate-independent noise assumption may seem unrealistic, it should be noted that the successful
and widely used method of standard RB makes the much stronger assumption that the noise is gate-
independent across all n-qubit Clifford gates, whereas ACES weakens this substantially to just the Pauli
gates.
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These considerations motivate considering only averaged circuits, denoted CP, so that the
noisy physical implementations will have the form

C̃P = G̃T

GT P
. . . G̃1

G1P
= GT EGT

. . .G1EG1 . (7)

4 Eigenvalue sampling

Let us suppose for the moment that a given circuit C ideally implements the identity unitary.
Under the gate-independent noise assumption, it follows that the noisy implementation of
the averaged circuit, C̃P, will be a Pauli channel. It therefore has Pauli eigenvalues, namely
C̃P(Pa) = ΛC,aPa, where we use capital Λ to denote this circuit-level eigenvalue. Because of
the gate-independent noise assumption, this eigenvalue depends only on the eigenvector (Pa)
and on the circuit (C), so it is labeled accordingly as ΛC,a.

If the circuit C does not implement the identity unitary, but rather some net Clifford
operation, something similar still holds. If the ideal circuit maps an input Pauli Pa to an
output Pauli C(Pa) = ±Pa′ , then the overall ± sign and the value of a′ can be efficiently
computed [1]. The noisy version of the circuit will give an averaged operator that satisfies
the generalized eigenvalue equation

C̃P(Pa) = ΛC,aC(Pa) = ±ΛC,aPa′ . (8)

From the orthogonality of the Pauli basis, it follows that

ΛC,a = ± 1
2n

Tr
(
Pa′ C̃P(Pa)

)
, (9)

and this suggests a prescription for estimating the (generalized) eigenvalue ΛC,a that we call
eigenvalue sampling.

To estimate ΛC,a via eigenvalue sampling, let us focus on the case where Pa is a single-
qubit Pauli. We begin by selecting uniformly at random an eigenstate ψ± on the support of
Pa having eigenvalue ±1 (ignoring the other registers). Then we send ψ± into a randomly
chosen element in the circuit ensemble CP and measure the output in the basis defined by
Pa′ . Our overall estimate for ΛC,a consists of measuring N independent experiments and
taking the difference of the sample averages between the ψ+ and ψ− experiments. It is easy
to check that this differencing trick makes Equation (9) hold in expectation, so this is an
unbiased estimator of ΛC,a. This sampling strategy was first analyzed in Ref. [15], and it is
straightforward to generalize to the n-qubit case. Note that it will be most efficient if the
support of Pa and Pa′ are relatively small, and also that Paulis with disjoint support can
implement such measurements simultaneously.

5 Relating circuit and gate eigenvalues

We have seen how eigenvalue sampling on averaged circuits gives us access to the (generalized)
Pauli eigenvalues ΛC,a in the implemented circuit ensemble C̃P. This is already a useful
method for estimating the quality of the circuit implementation C̃, since it can be interpreted
as a fidelity-like measure for how faithfully the circuit executes given the input Pa. However,
we seek to characterize not just the global circuit noise, but the error rates associated to the
constituent gates as well. How do the (generalized) eigenvalues of the individual gates relate
to the eigenvalue of the total circuit C = GT . . .G1?
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Let us apply the generalized eigenvalue relation sequentially to the gates in a Clifford
circuit. For the first gate we obtain G̃P

1 (Pa1) = λ1,a1G1(Pa1) = (±)1λ1,a1Pa2 . Acting on this
with G̃P

2 , we obtain

G̃P
2 G̃P

1 (Pa1) = (±)1(±)2λ1,a1λ2,a2GP
2 (Pa2)

= (±)1(±)2λ1,a1λ2,a2Pa3 .

Continuing in this fashion, we find that

C̃P(Pa1) = (±)
T∏

k=1
λk,ak

C(Pa1) , (10)

where the overall sign and the individual ak can be computed efficiently [1]. Comparing
with Equation (8), we see that ΛC,a1 = (±)

∏
k λk,ak

. We will use the freedom to reinterpret
the sign of the input Pauli Pa1 to ensure that we always have a + sign in this equation, and
therefore we have the relation

ΛC,a1 =
T∏

k=1
λk,ak

. (11)

With this sign convention, in the regime of interest ΛC,a1 is positive and not too small. We
therefore focus on sets of circuits Ck and input labels aki such that ΛCk,aki

is always larger
than, say, 1/2, and gates where λk,ak

> 0.

6 Estimating gate errors via ACES

We now consider a circuit Ck and an input label aki
; we give this combination a composite

index µ = (Ck,aki
). From the above discussion, we can obtain an empirical estimate Λ̂µ

of Λµ by eigenvalue sampling on the averaged circuit ensemble for the circuit/input label
µ. Similarly, we assemble all gate-level eigenvalues under a single index to get λν , where ν
labels pairs of gates and Paulis whose noise we wish to model. Since all eigenvalue quantities
are positive in the regime of interest, we can introduce new variables,

Λµ = e−bµ , λν = e−xν . (12)

The new variables are related by the linear equations∑
ν

Aµνxν = bµ . (13)

We refer to the matrix A as the design matrix. Once enough independent equations (µ)
are obtained so that A is full rank, an estimate for x can be obtained in any number of
ways, most straightforwardly via least squares as x̂ = A+b̂, where b̂ denotes an empirical
estimate for b and A+ is the pseudoinverse of A. Inverting Equation (12) subsequently gives
us estimates for λν , and Pauli error rates can be obtained by using Equation (5).

The precision of our estimate depends in part on the choice of A, as well as the precision
of the initial estimates of the Λµ. The estimates for λν are always accurate in the sense that
these are consistent estimators, however they will in general have some bias. In the numerical
simulations below, no attempt was made to find optimal designs A, and only random choices
were used. We leave open the question of finding optimal design matrices that maximize the
precision and accuracy of these estimators.

TQC 2022
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Figure 1 a) Sending X, Y , and Z Paulis (blue, yellow, and red, resp.) through a small “mirror
circuit” (i.e., one of the form UU†) with n = 21 qubits, depth d = 34, and nearest-neighbor gates in
1D. Normalized histograms of b) the absolute error for the µth estimated circuit eigenvalue Λ̂µ, and
c) the total variation distance (TVD) for the estimated Pauli error rates p̂j of the noisy gate G̃j in a
n = 100 qubit simulation. There are 898 gates (including measurements) in the model, and 10, 155
estimated circuit fidelities (which are estimated in large batches due to the n-bit measurements) to
estimate N = 5070 parameters. Plots are for a number of samples S per Λµ of 104, 105, and 106.

7 Correlations and SPAM

The ACES methodology is flexible enough to allow independent estimation of SPAM errors
as well as space- and/or certain time-correlated errors. To estimate measurement noise, we
simply add a list of variables xν associated to each Pauli measurement error that we wish to
model. We caution that separating preparation errors from measurement errors will not be
possible if they are introduced into the model in a symmetric way (because then A will not
be full rank); this problem is not unique to ACES however [4] and we do not attempt to
resolve it here.

To handle space-correlated errors, we reinterpret the gates that generate our circuits to
come in correlated groups. For example, if we want to model correlated noise between the
Hadamard gates H1 and H2, we could have separate variables for the gates H1, H2, and
H1 ⊗H2. This is analogous to interleaved [35] and simultaneous RB [17], except that all of
the data are used to fit all of the gates and correlations symmetrically and simultaneously.

Limited forms of time-correlated errors can be handled similarly by introducing variables
for pairs of gates in time. For example, if the noise on H1 depends on whether S1 was applied
or not right before, then we can introduce separate variables for these cases.

The only condition for a unique and consistent estimate in all of these scenarios is that
the design matrix A is full rank. If A were random, then we only need as many equations
as unknowns for this to hold with high probability. From this heuristic, we expect that the
number of experiments should be about as large as, or a little larger than, the number of
variables.

8 Numerical results

We now demonstrate the scalability of ACES via numerical simulations. Rigorous proofs of
the consistency of ACES and bounds on the sample complexity will be presented elsewhere.
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We consider the most general model of inhomogeneous but uncorrelated noise, plus
readout errors4. In this model on n qubits there are O(n) variables: CX gates acting
between neighbors, together with six single-qubit Clifford gates (modulo the Paulis), and
independent readout errors on each qubit in each Pauli basis.

We generated C = 19 random 1D Clifford circuits on n = 100 qubits of varying depths
from d = 2 up to d = 89. The sum of all the circuit depths, including the measurement
rounds, was 354. We then computed the circuit eigenvalues obtained from sending in all
single-qubit Paulis and, on some circuits, two-qubit Paulis on nearest neighbors as well.
We found it challenging to generate a full-rank design matrix A using the “mirror circuits”
shown in Figure 1a, so we padded each mirror circuit with a depth 5 random circuit layer
at the end. This means that the Paulis measured at the output had, in some cases, weight
as high as 6, though most still had weight 1 or 2. Constant-weight Pauli operators can
nonetheless be estimated efficiently from single-qubit Pauli measurements [12, 24, 25], and
this only increases the sample complexity by a constant factor. We then generated a “true”
noise model by assigning to each gate random Pauli error rates consistent with the estimates
reported in the Arute et al. experiment [2]. The entire implementation can be found in the
associated Mathematica notebook accompanying this manuscript [13].

Despite its seeming simplicity, this model still has N = 5070 parameters. Even under the
simplifying assumptions of RB with Clifford averaging where the noise is depolarizing on
each gate, there would still be 798 parameters (neglecting SPAM) to be estimated through
interleaved RB, and even then the required Clifford randomizations would be prohibitively
expensive.

ACES estimates all of these parameters with just these 19 random circuits (and their
Pauli randomizations). This is possible because each measurement is an n-bit measurement,
so many parameters are estimated in parallel.

In Figs. 1b and 1c we plot the convergence of the ACES estimate as a function of S, the
number of samples per circuit eigenvalue estimate. Estimates x̂ν of the model parameters xν

were obtained from the simulated data by solving Equation (13) with the simplest possible
estimator, a truncated least-squares estimate (i.e., finding the least squares solution and
truncating any negative values).

Counting an n-bit measurement as one sample, the total sample complexity is O(SC)
where C is the number of different averaged circuits used, in this case C = 19. Results
are shown for S = 104, 105, 106. Even for S = 104, nearly all circuit eigenvalue estimates
(1b) are within 1% of the true answer, and the total variation distance (TVD) between the
estimated and true Pauli error rates on each gate are within .64% with 95% confidence. This
latter figure improves to .1% with 95% confidence for S = 106, a remarkably precise estimate
given how many parameters there are and that no regularization was used to avoid potential
overfitting.

9 Discussion

There are many potential applications for ACES, and many avenues for improving and
extending it as well. For example, in addition to the tailored codes and decoders mentioned
above, error mitigation is one of the most natural applications of ACES [38, 32, 11, 8, 34],
and it can also be used to debias estimates of classical shadows following the ideas in

4 We do not model state preparation errors, only readout errors, for the reason discussed in the main text
that these are not separately identifiable.

TQC 2022
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Refs. [7, 30, 40]. Regarding extensions, while we have focused entirely on Clifford gates, it
is easy to see that ACES can accommodate circuits with a constant number of T gates in
specific configurations. However, extending beyond this to universal gate sets in general is
an important question for future research. A differential analysis suggests that obtaining
circuit eigenvalue estimates such that Λ̂µ = Λµ ± ϵΛµ suffices to obtain gate-level eigenvalue
estimates of order λ̂ν = λν ±O

(
∥A+∥ϵ

)
λν . Thus, finding circuits, Pauli inputs, and noise

models whose associated design matrix minimizes ∥A+∥ could help optimize the sample
efficiency of ACES. There are additional desiderata for the design matrix, such as requiring
only few experiments and using circuits that map few-qubit Paulis to few-qubit Paulis.
Finding a general understanding of which circuits behave best is an open question. While
ACES can test for correlations in a given noise model, it would be more powerful to include a
large model and then search for dominant correlations by enforcing sparsity. One way forward
might be to test clusters of gates for inclusion using methods such as group LASSO [45].
Finally, the most obvious open problem is to implement ACES in a near-term experiment.
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