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Abstract
The Quantum Approximate Optimization Algorithm (QAOA) finds approximate solutions to combin-
atorial optimization problems. Its performance monotonically improves with its depth p. We apply
the QAOA to MaxCut on large-girth D-regular graphs. We give an iterative formula to evaluate
performance for any D at any depth p. Looking at random D-regular graphs, at optimal parameters
and as D goes to infinity, we find that the p = 11 QAOA beats all classical algorithms (known to the
authors) that are free of unproven conjectures. While the iterative formula for these D-regular graphs
is derived by looking at a single tree subgraph, we prove that it also gives the ensemble-averaged
performance of the QAOA on the Sherrington-Kirkpatrick (SK) model defined on the complete
graph. We also generalize our formula to Max-q-XORSAT on large-girth regular hypergraphs. Our
iteration is a compact procedure, but its computational complexity grows as O(p24p). This iteration
is more efficient than the previous procedure for analyzing QAOA performance on the SK model,
and we are able to numerically go to p = 20. Encouraged by our findings, we make the optimistic
conjecture that the QAOA, as p goes to infinity, will achieve the Parisi value. We analyze the
performance of the quantum algorithm, but one needs to run it on a quantum computer to produce
a string with the guaranteed performance.
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1 Introduction

We are at the start of an era in which quantum devices are running algorithms. We need to
understand the power of quantum computers for solving or finding approximate solutions
to combinatorial optimization problems. One approach is to learn by experimenting on
hardware. Although useful for probing the hardware and testing algorithms at small sizes, it
does not give a convincing picture of asymptotic behavior. To this end we need mathematical
studies of the behavior of quantum algorithms, running on ideal circuits, at large sizes. In this
paper we take a step in that direction by analyzing the Quantum Approximate Optimization
Algorithm as applied to a certain combinatorial optimization problem. The instances are
large and the depth of the algorithm is high. For this task, we will see that the QAOA
outperforms the best assumption-free classical algorithm.

MaxCut is a combinatorial optimization problem on bit strings whose input is a graph.
Each bit is associated with a vertex, and the goal is to maximize the number of edges with
bit assignments that disagree on the two ends of the edge. It is NP-hard to solve this
problem exactly, and even approximating the optimal solution beyond a certain ratio is
NP-hard [30]. We focus on MaxCut for large-girth D-regular graphs. On these graphs, the
currently known best classical algorithms (including Goemans-Williamson and the Gaussian
wave process [23, 20, 3, 29]) achieve an average-case cut fraction (the number of cut edges
output by the algorithm divided by the number of edges) of 1/2 + (2/π)/

√
D as both the

girth and D go to ∞, where 2/π ≈ 0.6366.
We apply the Quantum Approximate Optimization Algorithm (QAOA) [15] to large-girth

D-regular graphs. The QAOA depends on a parameter p, the algorithm’s depth. At small
p, the QAOA has been realized in current quantum hardware [19]. Some analytic results
are also known. At p = 1, the QAOA has a guaranteed approximation ratio (the number of
cut edges output by the algorithm divided by the maximum number of edges that can be
cut) of at least 0.6924 on all 3-regular graphs [15] and an expected cut fraction of at least
1/2 + 0.3032/

√
D on triangle-free graphs [31]. For p = 2, the QAOA has an approximation

ratio of at least 0.7559 on 3-regular graphs with girth more than 5 and, for p = 3, that ratio
becomes 0.7924 when the girth is more than 7 [32]. So far, expressions for the QAOA’s
performance on any fixed-D regular, large-girth graph are known only for p = 1 [31] and
p = 2 [21].

In this work, we analyze the performance of the QAOA on any large-girth D-regular
graph for any choice of p by looking at a single tree subgraph. Using the regularity of
this tree subgraph, we derive an iteration that computes the performance of the QAOA.
After optimizing over the 2p input parameters, we find that the p = 11 QAOA improves
on 1/2 + (2/π)/

√
D, when D is large and the girth is more than 23. This is better than all

assumption-free classical algorithms known to the authors.1
We also show that this performance, obtained from one subgraph, is mathematically equal

to the ensemble-averaged performance of the QAOA applied to the Sherrington-Kirkpatrick

1 There is a recent classical message-passing algorithm [1] that also does better than 1/2 + (2/π)/
√

D for
MaxCut on large-girth D-regular graphs. It gets asymptotically close to the optimum assuming the
solution space has no “overlap gap property” (see [17] for a review).
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(SK) model [16]. This implies that the iteration in this paper can also be used to give the
QAOA’s performance on the SK model. A recent related work can be found in Ref. [8]. Our
iteration is more efficient than the one originally shown in Ref. [16], and we have been able
to go numerically to higher depth.

Encouraged by our findings, we conjecture that the large p performance of the QAOA
will achieve the optimal cut fraction on large random D-regular graphs, where a vanishing
fraction of neighborhoods are not locally tree-like. The optimal cut fraction on these graphs
is also related to the SK model. It is 1/2 + Π∗/

√
D + o(1/

√
D), where Π∗ = 0.763166 . . ., the

Parisi value, is the ground state energy density of the SK model [25, 12]. If our conjecture is
right we have a simple, though computationally intensive, new iteration for calculating Π∗.

Generalizing our formalism, we also analyze the performance of the QAOA for Max-q-
XORSAT (of which MaxCut is a special case at q = 2) on large-girth D-regular hypergraphs.
The p = 1 QAOA was recently found to do better than an analogous classical threshold
algorithm for q > 4 [22]. The iterative formula for general q is very similar to that for
MaxCut and has the same time and memory complexities in the D → ∞ limit. We run this
iteration to find optimal QAOA parameters and performance for 3 ≤ q ≤ 6 and 1 ≤ p ≤ 14.
Moreover, we discuss potential obstructions to the QAOA from not “seeing” the whole graph.

The paper is organized as follows. In Section 2, we introduce the necessary definitions to
describe the QAOA and the MaxCut problem. In Section 3, we describe two iterations that
compute the performance of the QAOA for MaxCut on large-girth D-regular graphs at fixed
depth: one for finite D and the other for D → ∞ (proof in Appendix A). We also present
our results from numerical evaluation and optimization of the QAOA objective function up
to p = 20. In Section 4, we argue that the performance of the QAOA on large-girth regular
graphs and on the SK model are equivalent. We conjecture in Section 5 that the iteration in
Section 3.2 for infinite D is an alternative procedure to compute the Parisi value. In Section 6,
we generalize our iterations to evaluate the QAOA’s performance for Max-q-XORSAT on
large-girth regular hypergraphs. Finally, in Section 7 we discuss our results and suggest some
future avenues of work.

2 Background on the QAOA and MaxCut

The QAOA [15] is a quantum algorithm for finding approximate solutions to combinatorial
optimization problems. The cost function counts the number of clauses satisfied by an input
string. Given a cost function C(z) on strings z ∈ {±1}n, we can define a corresponding
quantum operator, diagonal in the computational basis, as C|z⟩ = C(z)|z⟩. Moreover, let
B =

∑n
j=1 Xj , where Xj is the Pauli X operator acting on qubit j. Let γ = (γ1, γ2, . . . , γp)

and β = (β1, β2, . . . , βp). The QAOA initializes the system of qubits in the state |s⟩ = |+⟩⊗n

and applies p alternating layers of e−iγjC and e−iβjB to prepare the state

|γ, β⟩ = e−iβpBe−iγpC · · · e−iβ1Be−iγ1C |s⟩. (2.1)

For a given cost function C, the corresponding QAOA objective function is ⟨γ, β|C|γ, β⟩.
Preparing the quantum state |γ, β⟩ and then measuring in the computational basis enough
times, one will find a bit string z such that C(z) is near ⟨γ, β|C|γ, β⟩ or better.

We study the performance of the QAOA on MaxCut. Given a graph G = (V, E) with
vertices in V and edges in E, the MaxCut cost function is

CMC(z) =
∑

(u,v)∈E

1
2(1 − zuzv). (2.2)

TQC 2022
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We restrict our attention to graphs that are regular and have girth greater than 2p + 1. We
work with these graphs because the subgraph that the QAOA at depth p sees on them are
regular trees and this enables our calculation. Here, by “seeing” we refer to the fact that the
output of the QAOA on a qubit depends only on a neighborhood of qubits that are within
distance p to the given qubit on the graph. In what follows, we focus on (D + 1)-regular
graphs, which implies the subgraph seen by the QAOA on each edge is a D-ary tree.

With D large, we will see that the optimal γ are of order 1/
√

D. So we find it convenient
to prepare the QAOA state |γ, β⟩ using the scaled cost function operator

C = − 1√
D

∑
(u,v)∈E

ZuZv, (2.3)

where we have subtracted a constant that only introduces an irrelevant phase. The factor
of 1/2 has been dropped so that this form of the cost function will match the cost function
used in the Sherrington-Kirkpatrick model. Note we are preparing the state |γ, β⟩ using C

as a driver instead of the CMC operator. With this scaling, the optimal γ will be of order
unity instead of 1/

√
D.

Given any edge in a (D + 1)-regular graph with girth greater than 2p + 1 the subgraph
with vertices at most p away from the edge is a D-ary tree regardless of which edge. Since
the QAOA at depth p only sees these trees, we have

⟨γ, β|CMC|γ, β⟩ = 1
2 |E|

(
1 − ⟨γ, β|ZuZv|γ, β⟩

)
(2.4)

where (u, v) ∈ E is any edge. The cut fraction output by the QAOA is then

⟨γ, β|CMC|γ, β⟩
|E|

= 1
2 − 1

2 ⟨γ, β|ZuZv|γ, β⟩ . (2.5)

Since the QAOA cannot beat the optimal cut fraction of 1/2 + order(1/
√

D) in a typical
random regular graph, we write

⟨γ, β|ZuZv|γ, β⟩
2 = −νp(D, γ, β)√

D
(2.6)

where νp(D, γ, β) for good parameters will be of order unity.

3 The QAOA on large-girth (D + 1)-regular graphs

We describe two iterations to evaluate the performance of the QAOA at high depth on
MaxCut on large-girth (D + 1)-regular graphs. The cut fraction output by the QAOA at
any parameters is

⟨γ, β|CMC|γ, β⟩
|E|

= 1
2 + νp(D, γ, β)√

D
. (3.1)

We give one iteration to evaluate νp(D, γ, β) at finite D, and one for the D → ∞ limit. We
have attempted to make this section self-contained for those readers only interested in the
form of the iterations, and deferred the detailed proofs of these iterations to Appendix A.

In what follows, we index vectors in the following order:

a = (a1, a2, · · ·, ap, a0, a−p, · · · , a−2, a−1) . (3.2)
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Define, for 1 ≤ r ≤ p,

Γr = γr, Γ0 = 0, Γ−r = −γr. (3.3)

That is, Γ is a (2p + 1)-component vector. Furthermore, let

f(a) = 1
2 ⟨a1|eiβ1X |a2⟩ · · · ⟨ap−1|eiβp−1X |ap⟩ ⟨ap|eiβpX |a0⟩

× ⟨a0|e−iβpX |a−p⟩ ⟨a−p|e−iβp−1X |a−(p−1)⟩ · · · ⟨a−2|e−iβ1X |a−1⟩ (3.4)

where ai ∈ {+1, −1} enumerates the two computational basis states, and

⟨a1|eiβX |a2⟩ =
{

cos(β) if a1 = a2

i sin(β) if a1 ̸= a2.
(3.5)

3.1 An iteration for any finite D

Here we give an iteration that allows us to evaluate νp(D, γ, β) for any input parameters
and D.

Let H
(m)
D : {−1, 1}2p+1 → C for 0 ≤ m ≤ p. We start with H

(0)
D (a) = 1 and let

H
(m)
D (a) =

( ∑
b

f(b)H(m−1)
D (b) cos

[
1√
D

Γ · (ab)
])D

for 1 ≤ m ≤ p (3.6)

where we denote ab as the entry-wise product, i.e. (ab)j = ajbj . By starting with H
(0)
D (a) = 1

and iteratively evaluating Eq. (3.6) for m = 1, 2, . . . , p, we arrive at H
(p)
D (a) that can be

used to compute

νp(D, γ, β) = i
√

D
2

∑
a,b

a0b0f(a)f(b)H(p)
D (a)H(p)

D (b) sin
[

1√
D

Γ · (ab)
]
. (3.7)

We prove this in Appendix A.1. The key idea is to use the fact that when girth > 2p + 1,
the subgraph seen by the QAOA is a pair of D-ary trees of p levels glued at their roots
(see Figure 1(a) for an example). Then νp is given as a sum over all O(Dp) nodes in this
subgraph. Since every node in the tree has exactly D children that couples to their parent in
exactly the same way, we can greatly simplify the process by summing from the leaves of the
tree, then their parents, and their parents’ parents, and so on. This yields a p-step iteration
where at each step m = 1, 2, . . . , p, we have a compact description of the contributions of the
nodes from the bottom m − 1 levels via H

(m−1)
D (see Figure 1(b)).

Note that each step of the above iteration involves a sum with 22p+1 terms for each of
the 22p+1 entries of H

(m)
D (a). The final step has a sum with O(16p) terms. Overall, this

iteration has a time complexity of O(p 16p) and a memory complexity of O(4p). This is
much faster than the original “light cone” approach that directly evaluates ⟨ZuZv⟩ on the
subgraph seen by the QAOA [15]. That procedure takes 2O(Dp) time without utilizing the
symmetric structure of the regular tree subgraph.

3.2 An iteration for D → ∞
We find that in the infinite D limit we get a more compact iteration which takes fewer steps
to evaluate. We state the result here and prove it in Appendix A.2.

TQC 2022
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Define matrices G(m) ∈ C(2p+1)×(2p+1) for 0 ≤ m ≤ p as follows. For j, k ∈ {1, . . . , p, 0,
−p, . . . , −1}, let G

(0)
j,k =

∑
a f(a)ajak, and

G
(m)
j,k =

∑
a

f(a)ajak exp
(

−1
2

p∑
j′,k′=−p

G
(m−1)
j′,k′ Γj′Γk′aj′ak′

)
for 1 ≤ m ≤ p. (3.8)

Starting at m = 0 and going up by p steps, we arrive at G(p) which is used to compute

νp(γ, β) := lim
D→∞

νp(D, γ, β) = i

2

p∑
j=−p

Γj(G(p)
0,j )2. (3.9)

Since there are p + 1 matrices with O(p2) entries, and each involves a sum over O(4p) terms,
this iteration naïvely has a time complexity of O(p34p). This is quadratically better than the
time complexity of the finite-D formula. The memory complexity is only O(p2) for storing
the G(m) matrix, which is exponentially better than O(4p) memory needed to store the
entries of H

(m)
D in the finite-D iteration.

We note some properties about this iteration. Superficially Eq. (3.8) looks like a recursive
map on the matrices G(m) which one might think would only asymptotically converge in
the number of steps. However it converges to a fixed point G(p) after p steps in a highly
structured way. In particular, the iteration has the following three sets of properties, whose
proof can be found in Ref. [4, Appendix A]. We use the convention 1 ≤ r < s ≤ p and
j, k ∈ {1, . . . , p, 0, −p, . . . , −1}.

(a) Values of the diagonal and anti-diagonal of G(m) are all 1. G(m) is symmetric with respect
to the diagonal, reflection with respect to the anti-diagonal results in complex conjugation,
and the matrix consists of 8 triangular regions which are rotations, reflections, and/or
complex conjugations of each other. To be precise, G(m) satisfies the following properties:

(1) G
(m)
j,k = G

(m)
k,j

(2) G
(m)
j,j = G

(m)
j,−j = 1

(3) G
(m)
0,r = G

(m)∗
0,−r

(4) G
(m)
r,s = G

(m)
r,−s = G

(m)∗
−r,−s = G

(m)∗
−r,s

These are sketched in Figure 1(c).
(b) G

(m)
r,s only depends on G

(m−1)
r′,s′ where 1 ≤ r′ < s′ < s. Similarly, G

(m)
0,r only depends on

G
(m−1)
r′,s′ for 1 ≤ r′ < s′ ≤ p.

(c) As a consequence of (b), at each step m of the iteration the corner blocks of size
(m + 1) × (m + 1) of G(m) converge to their final value, i.e., they reach a fixed point and
do not change in later iteration steps. This implies that matrix G(p) is a fixed point.
This is sketched in Figure 1(c), where matrix entries of the same color reach their fixed
point at the same step of the iteration, starting from the corners and ending with the
central “cross” at step p.

Making use of (b) and some properties of f(a) allows us to lower the complexity of the
iterative procedure to O(p24p). For more details, see Ref. [4, Appendix A.4].

3.3 Numerical evaluation and optimization for the D → ∞ limit
Let

ν̄p = max
γ,β

νp(γ, β). (3.10)



J. Basso, E. Farhi, K. Marwaha, B. Villalonga, and L. Zhou 7:7

Figure 1 (a) Example tree subgraph seen by the QAOA at p = 2 on a large-girth regular graph.
For any node w on the tree, we denote p(w) as its parent. (b) A visualization of our iteration for
finite D. (c) Sketch of the properties of matrices G(m) in our iteration for D → ∞, at p = 4. Regions
of the same color converge in the same iteration step, starting from the corners and with the central
row and column converging after p steps.

Numerically implementing the iteration summarized in Section 3.2 and optimizing for γ, β

we find ν̄p up to p = 17. The values are given in Table 1 and plotted in Figure 2 as a function
of 1/p. The optimal γ and β can be found in Ref. [4, Table 4], and some examples are
plotted in Figure 3. Based on the smooth pattern of the optimal γ and β up to p of 17, we
guess these parameters at p = 18, 19, 20 using heuristics similar to that in Ref. [33]. Then
evaluation of νp(γ, β) gives lower bounds on ν̄p at higher p which are listed in Table 2, and
their corresponding γ and β are listed in Ref. [4, Table 5].

Note that, at p = 11 and beyond, the QAOA achieves a cut fraction better than 1
2 + 2/π√

D
in

the large D limit, making it the best currently known assumption-free algorithm for MaxCut
on large random regular graphs.

Table 1 Optimal values of ν̄p up to p = 17.

p 1 2 3 4 5 6 7 8 9
ν̄p 0.3033 0.4075 0.4726 0.5157 0.5476 0.5721 0.5915 0.6073 0.6203

p 10 11 12 13 14 15 16 17
ν̄p 0.6314 0.6408 0.6490 0.6561 0.6623 0.6679 0.6729 0.6773

Table 2 Lower bounds of ν̄p for p = 18, 19, 20.

p 18 19 20
ν̄p lower bound 0.6813 0.6848 0.6879

TQC 2022
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0 11
2

1
3

1
4

1
6

1
8

1
11

1
17

1/p

0.3

0.4

0.5

0.6

0.7

0.8

ν̄p

Parisi value = 0.763166 . . .

2/π = 0.636619 . . .

Figure 2 Optimal values ν̄p as a function of 1/p. At p = 11, ν̄p exceeds 2/π, related to the
cut fraction of the best currently known assumption-free classical algorithms. Here we made the
somewhat arbitrary choice of plotting the data against 1/p to see the large p region in a compact
plot.

We implement the iterative procedure described in Section 3.2 in C++. Our code is
available at Ref. [5]. Bit strings are encoded as unsigned long int variables, which allow
for fast bit-wise manipulations. Matrices and vectors are implemented using the Eigen
library [18]. We parallelize the sum over a in Eq. (3.8) using OpenMP [11]. We optimize γ, β

for each value of p using the LBFGS++ library, which implements the Limited-memory BFGS
algorithm for unconstrained optimization problems [26]. Each evaluation of the gradient of
νp(γ, β) in Eq. (3.9) is a subroutine of the optimization which takes 2p + 1 function calls.
We run on a n2d-highcpu-224 machine in Google Cloud, which has 224 vCPUs, using one
thread per vCPU. A function call at p = 16 takes about 133 seconds, and a function call at
p = 17 takes about 595 seconds. The run time of each function call is roughly multiplied by
4 every time p is increased by 1. At p = 20, a single function call takes slightly under 14
hours to evaluate. Memory usage is dominated by the need to store matrix G(m), which is
negligible and quadratic in p. Further optimizations might be possible.

4 Agreement with the Sherrington-Kirkpatrick model

We note that Table 1 in this paper seems to be an extension of Table 1 in Ref. [16]. There, the
authors study the performance of the QAOA on the Sherrington-Kirkpatrick (SK) model [24],
which describes a spin-glass system with all-to-all random couplings. The cost function is

CSK
J (z) = 1√

n

∑
1≤i<j≤n

Jijzizj (4.1)

where the Jij are independently drawn from a distribution with mean 0 and variance 1. The
authors arrive at an iterative formula for the ensemble-averaged performance of the QAOA
on the SK model
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0.0 0.2 0.4 0.6 0.8 1.0

(r - 1) / (p - 1)

0.1

0.2

0.3

0.4

0.5

0.6

γr

p = 5

p = 9

p = 13

p = 17

0.0 0.2 0.4 0.6 0.8 1.0

(r - 1) / (p - 1)

βr

Figure 3 Optimal γr and βr as a function of (r − 1)/(p − 1) ∈ [0, 1] for p = 5, 9, 13, 17. For each
p, the index r = 1, 2, . . . , p enumerates the entries of γ and β. Dashed lines in between data points
are solely intended to guide the eye.

Vp(γ, β) := lim
n→∞

EJ

[
⟨γ, β|CSK

J /n|γ, β⟩J J

]
, (4.2)

where |γ, β⟩J is the QAOA state prepared with CSK
J . Since concentration is shown to hold,

we know that typical instances of the SK model all behave as the ensemble average.
Observe that ν̄p, the optimized values of νp(γ, β), listed in Table 1 of this paper agree

with the values of V̄p = maxγ,β Vp(γ, β) in Table 1 of Ref. [16]. It turns out that this is true
in a general sense:

▶ Theorem 1. For all p and all parameters (γ, β), we have

Vp(γ, β) = νp(γ, β). (4.3)

The proof of this theorem is provided in Ref. [4, Section 6], where the iteration for νp in this
paper is carefully mapped to the previously known formula for Vp. This theorem establishes
the fact that for each p and fixed parameters, the performance of the QAOA on large-girth
D-regular graphs in the D → ∞ limit is equal to its performance on the SK model in the
n → ∞ limit. We remark that in the iteration in this paper there is only one tree subgraph,
with of order Dp vertices, for every large-girth D-regular graph. On the other hand, in the
SK case, there is an ensemble of instances given by different weights on the complete graph.
It is interesting to us that the ensemble average in Eq. (4.2) can be replaced by a single
subgraph.

Theorem 1 also implies that the iteration in Section 3.2 works for evaluating the perform-
ance of the QAOA applied to both large-girth regular graphs and the SK model.

5 Conjecture that our iteration achieves the Parisi value

The cut fraction output by the QAOA on MaxCut for large-girth (D + 1)-regular graphs is

⟨γ, β|CMC|γ, β⟩
|E|

= 1
2 + νp(D, γ, β)√

D
. (5.1)

TQC 2022
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We have given an iteration for evaluating νp(D, γ, β) for any depth p and parameters γ, β.
Furthermore, in Section 3.2 we give a compact iteration for νp(γ, β) = limD→∞ νp(D, γ, β).
Using this iteration we can optimize over parameters to get ν̄p = maxγ,β νp(γ, β). Note
ν̄p cannot be bigger than the Parisi value, Π∗ = limn→∞ EJ [maxz CSK

J (z)/n]. From our
numerics out to p = 17 we see that ν̄p is headed in that direction.

Now we make the bold conjecture:
▶ Conjecture. Let Π∗ = 0.763166... be the Parisi value [25, 27]. Then

lim
p→∞

ν̄p = Π∗. (5.2)

That is, the iteration in Section 3.2 is an alternative procedure to compute Π∗. To prove this
conjecture, perhaps one can show that the iteration in this paper is equivalent to one of the
known procedures for computing Π∗. (It may be interesting to note that Π∗ = limk→∞ Pk,
where Pk is the minimum of the Parisi variational principle over a k-step replica symmetry
breaking ansatz with 2k + 1 parameters [24, 2]. This is not unlike ν̄p.) Or one can find a
way to analytically evaluate the p → ∞ limit.

There is an order of limits issue we now address. For any combinatorial optimization
problem of fixed size, the QAOA can be shown to give the optimal solution in the p → ∞
limit [15]. This may require p to grow exponentially in the system size. But we calculate the
performance ν̄p of the QAOA at fixed p in the D → ∞ limit (which means infinite system
size). Then we take p → ∞. Our conjecture is about whether, under this new order of limits,
the QAOA achieves the optimum as p → ∞.

6 Generalized iterations for Max-q-XORSAT

It turns out we can easily generalize our iterations for the QAOA’s performance on MaxCut in
Section 3 to the Max-q-XORSAT problem. MaxCut is a special case of Max-2-XORSAT. Given
a q-uniform hypergraph G = (V, E) where E ⊆ V q, and given a signed weight Ji1i2...iq

∈ {±1}
for each edge (i1, i2, . . . , iq) ∈ E, Max-q-XORSAT is the problem of maximizing the following
cost function:

CXOR
J (z) =

∑
(i1,...,iq)∈E

1
2(1 + Ji1i2...iq

zi1zi2 · · · ziq
). (6.1)

This cost function can be understood as counting the number of satisfied clauses, where a
clause is satisfied if zi1zi2 · · · ziq

= Ji1i2...iq
on the associated edge. Note the MaxCut cost

function in Eq. (2.2) is a special case of this problem where q = 2 and all Ji1i2 = −1.
We consider this problem on (D + 1)-regular hypergraphs, where each vertex has degree

D + 1, i.e., it is part of exactly D + 1 hyperedges. (As in Section 2, working with (D + 1)-
regular hypergraphs means the subgraphs that the QAOA sees are D-ary hypertrees.) The
total number of hyperedges is |E| = n(D + 1)/q, where n = |V | is the number of vertices.
Due to a result by Sen [28], we know that with high probability as n → ∞, the maximum
fraction of satisfied clauses for a random (D +1)-regular hypergraph for sufficiently large D is

1
|E|

max
z

CXOR
J (z) = 1

2 + Πq

√
q

2D
+ o(1/

√
D) (6.2)

where Πq is the generalized Parisi value that can be determined explicitly.2 In particular,
Π2 = Π∗ = 0.763166 . . ..

2 See Ref. [28] for how this value can be calculated. Take care to note that the conventions slightly differ,
and our Πq = Pq/

√
2 where Pq is defined in Section 2.1 of Ref. [28].



J. Basso, E. Farhi, K. Marwaha, B. Villalonga, and L. Zhou 7:11

Figure 4 (a) The hypertree subgraph seen by the QAOA at p = 2 for the hyperedge (1, 2, . . . , q)
on a (D + 1)-regular q-uniform hypergraph with girth > 2p + 1, for q = 3 and D = 2. (b) A partial
view near the leaves of the hypertree subgraph for a general q and D. The starfish are hyperedges.
Here w1, w2, . . . , wq−1 are leaf nodes in the same hyperedge, and we denote their common parent as
v1 = p(w1) = · · · = p(wq−1).

We want to evaluate how the QAOA performs on the Max-q-XORSAT problem for
large-girth (D + 1)-regular hypergraphs. Here, girth is defined as the minimum length of
Berge cycles in the hypergraph [7]. Similar to the MaxCut problem discussed in Section 2, we
will see that the QAOA has optimal parameters γ that are of order 1/

√
D for these graphs.

For this reason, it will be convenient to prepare the QAOA state |γ, β⟩J with the following
shifted and scaled cost function operator

CJ = 1√
D

∑
(i1,...,iq)∈E

Ji1i2...iq Zi1Zi2 · · · Ziq . (6.3)

For any such hypergraph, we are interested in the fraction of satisfied clauses output by the
QAOA at any parameters, for any choices of Ji1i2...iq drawn from {+1, −1}. We show the
following:

▶ Theorem 2. Consider CXOR
J on any (D + 1)-regular q-uniform hypergraphs with girth

> 2p + 1. Let |γ, β⟩J be the QAOA state generated generated using CJ . Then for any choice
of J ,

1
|E|

⟨γ, β|CXOR
J |γ, β⟩J J = 1

2 + ν[q]
p (D, γ, β)

√
q

2D
(6.4)

where ν
[q]
p (D, γ, β) is independent of J and can be evaluated (classically) with an iteration

using O(p4pq) time and O(4p) memory. In the infinite D limit, limD→∞ ν
[q]
p (D, γ, β) can be

evaluated with an iteration using O(p24p) time and O(p2) memory.

The full proof can be found in Ref. [4, Section 8], where we also describe iterations for ν
[q]
p in

detail. It is based on the same idea as the iterations in Section 3, as we exploit the regularity
of the hypertree subgraph seen by the QAOA on these hypergraphs.

In the next section, we give a part the proof that shows the J-independence ν
[q]
p , and

discuss its implication of a worst-case limitation on the QAOA’s performance. In Section 6.2
that follows, we describe the infinite-D iteration and present results from its numerical
evaluation.
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6.1 J-independence of ν [q]
p and implied worst-case limitation

We argue that the left hand side of Eq. (6.4) is independent of the choice of J ’s, so there
is no J needed on the right hand side. When the girth of the hypergraph is larger than
2p + 1, the subgraph seen by the QAOA on any hyperedge is always a D-ary q-uniform
hypertree. See Figure 4(a) for an example. In this figure each triangle is associated with a
coupling J that can be either +1 or −1. Look at the triangle containing vertices 1, 2 and 3.
We can absorb the sign of J123 into the bit at vertex 1 as follows: if J123 = −1 do nothing,
whereas if J123 = +1 flip the sign of the bit at vertex 1 by redefining Z1 → −Z1. Then
J123Z1Z2Z3 → −Z1Z2Z3 under this transformation. Now look at the triangle containing
bits 1, v1 and v2. The sign of J1v1v2 may have been modified by the last step. But we can
now absorb the sign of J1v1v2 into the bit at v1 so that J1v1v2Z1Zv1Zv2 → −Z1Zv1Zv2 . This
might affect the sign of Jv1w1w2 in the triangle containing v1, w1 and w2. But we can redefine
the bit at w1 appropriately so that Jv1w1w2Zv1Zw1Zw2 → −Zv1Zw1Zw2 . Since there are no
cycles in the hypertree, we can move through the whole picture in this way resetting all the
couplings J to −1.

We have reset all the couplings J to −1 in the picture, and we now argue that this
makes the quantum expectation (6.4) independent of the J ’s. At the quantum level we flip
the sign of the operator Zu by conjugating with Xu, that is, XuZuXu = −Zu. Since the
driver B commutes with each Xu and the initial state is an eigenstate of each Xu, we can
sprinkle Xu’s into the left hand side of Eq. (6.4) and establish the J-independence of the
expression coming from any particular hyperedge. Now the cost function (6.1) is a sum over
the hyperedges of a given hypergraph, but the expected value of each term in the QAOA
state is independent of the J ’s. So for every (D + 1)-regular q-uniform hypergraph with girth
> 2p + 1 we can write

1
|E|

⟨γ, β|CXOR
J |γ, β⟩J J = 1

2 − 1
2 ⟨γ, β|Z1Z2 . . . Zq|γ, β⟩ (6.5)

where (1, 2, 3, . . . , q) is any hyperedge, and the state |γ, β⟩ without the J label has all the
couplings set to −1.

A corollary to this J-independence is that the QAOA at low depth fails to find the
optimal assignment in the worst case. To see this, let us go back to the q = 2 case where
we studied MaxCut on a large-girth regular graph which has all of the couplings J = −1.
At optimal parameters, the fraction of satisfied clauses is 1/2 + ν̄p/

√
D in the large D limit,

where ν̄p ≤ Π∗. Consider the corresponding instance where all the couplings on the same
graph are set to J = +1, which makes the instance fully satisfiable. In that case, the best
possible fraction of satisfied clauses is 1. However, the fraction output by the QAOA at
optimal parameters is the same as in the J = −1 case, that is, at most 1/2 + Π∗/

√
D, which

is only a bit more than 1/2 in the large D limit.
Here we have an example of the QAOA failing to reach the optimum in the worst case

because it does not “see” the whole graph. (Unlike previous results of the similar flavor in
Refs. [9, 14], we do not need the graph to be bipartite to bound the worst-case approximation
ratio.) Regardless of the signs of the couplings, the low-depth QAOA sees a tree subgraph
surrounding each edge. On the tree subgraph the signs of the couplings are irrelevant so the
QAOA does not distinguish between instances where the cost function favors disagreement
and instances where agreement is favored. Without seeing cycles the QAOA cannot do better
than what it can achieve in the most frustrated case, and this yields an upper bound on the
worst-case approximation ratio.
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6.2 The infinite-D iteration for ν [q]
p

We now describe the iteration mentioned in Theorem 2 for the D → ∞ limit. Similar
to Section 3.2, we define matrices G(m) ∈ C(2p+1)×(2p+1), for 0 ≤ m ≤ p as follows. For
j, k ∈ {1, . . . , p, 0, −p, . . . , −1}, let G

(0)
j,k =

∑
a f(a)ajak, and

G
(m)
j,k =

∑
a

f(a)ajak exp
[
−1

2

p∑
j′,k′=−p

(
G

(m−1)
j′,k′

)q−1Γj′Γk′aj′ak′

]
for 1 ≤ m ≤ p. (6.6)

Starting at m = 0 and going up by p steps we arrive at G(p) which is used to compute

ν[q]
p (γ, β) := lim

D→∞
ν[q]

p (D, γ, β) = i√
2q

p∑
j=−p

Γj(G(p)
0,j )q. (6.7)
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Figure 5 Optimal values ν̄
[q]
p normalized by their corresponding Parisi values Πq as a function of

1/p for q = 2, 3, 4, 5, 6. The Parisi values are taken from Ref. [22]. Similar to Fig. 2, we made the
somewhat arbitrary choice of plotting the data against 1/p to see the large p region in a compact
plot. Dashed lines in between data points are intended to guide the eye.

Note the only difference between Max-q-XORSAT and MaxCut, where q = 2, can be
seen by comparing Eqs. (3.8) and (3.9) in Section 3.2 to Eqs. (6.6) and (6.7) in the current
iteration, where we are raising the matrix elements of G to some q-dependent power. Hence,
this iteration also takes at most O(p24p) time and O(p2) memory to be evaluated, regardless
of q. This is polynomially faster than the finite D case with exponentially better memory
usage.

We take this iteration and numerically optimize over γ and β to find

ν̄[q]
p = max

γ,β
lim

D→∞
ν[q]

p (D, γ, β). (6.8)
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Figure 6 Optimal QAOA parameters (γ, β) at p = 14 for various Max-q-XORSAT on D-regular
hypergraphs in the D → ∞ limit. This data can be found in Ref. [5].

up to p = 14 for 3 ≤ q ≤ 6. Combining with the data we have for q = 2 in Table 1, we plot
the results in Figure 5. For ease of comparison across different values of q we have normalized
ν̄

[q]
p by its corresponding Parisi value Πq. See Figure 6 for a plot of the optimal γ and β we

found at p = 14. Numerical values for ν̄
[q]
p and optimal γ and β for all 1 ≤ p ≤ 14 can be

found in Ref. [5].
In some cases, there are thresholds on how well the QAOA at low depths can do. It is

known that for problems that exhibit the overlap gap property, the locality property of the
QAOA prevents it from getting close to the optimum at low depths where it does not see
the whole graph [13, 10]. Specifically, using an overlap gap property in the Max-q-XORSAT
problem on random Erdős-Rényi hypergraphs with constant average degree and even q ≥ 4,
Ref. [10] showed that the QAOA (or any local algorithm) has limited performance when the
depth p is less than ϵ log n, where n is the graph size and ϵ is a constant that depends on
the degree and q. Assuming the overlap gap property also holds when the hypergraphs are
regular, one can use similar arguments to show that the QAOA’s performance as measured
by ν̄

[q]
p /Πq does not converge to 1 as p → ∞ when q ≥ 4 and is even. This is because our

large-girth assumption implies the graph has at least Dp vertices, so p is always less than
ϵ log n in this limit.

7 Discussion

In this paper, we have introduced new techniques for evaluating the performance of a quantum
algorithm at high qubit number and at high depth. In particular we do this by finding
a compact iteration for the QAOA’s performance on MaxCut on instances with locally
tree-like neighborhoods. On random large-girth D-regular graphs, the QAOA at p = 11 and
higher has the highest approximation ratio of any assumption-free algorithm. We have given
performance guarantees for the QAOA, but it is necessary to run a quantum computer to
produce a string with the calculated performance.

We have also shown that for any depth p and for any parameters, γ and β, the performance
of the QAOA on large-girth D-regular graphs, as D → ∞, matches the typical performance
of the QAOA on the Sherrington-Kirkpatrick model at infinite size. We find it remarkable
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that the ensemble averaging done in the SK model can be replaced by analyzing a single tree
subgraph. For both of these models the best conceivable performance is upperbounded by
the Parisi constant, Π∗. There are optimal parameters at each p, and we speculate that as
p → ∞ these optimal parameters give QAOA performance that matches the Parisi constant
for both models.

Moreover, in Section 6, we have generalized our iteration for MaxCut on large-girth regular
graphs to evaluate the QAOA’s performance on Max-q-XORSAT problems for large-girth
regular hypergraphs. We have shown that, at fixed parameters, the QAOA gives the same
value of the objective function regardless of the signs of the couplings on these hypergraphs.
This implies a worst-case algorithmic threshold at low depth for fully satisfiable instances.
Building on our work, Ref. [6] recently generalized the equivalence between MaxCut and the
SK model to between Max-q-XORSAT and the fully connected q-spin model.

There are a number of ideas to explore coming out of this work. Can we find a more
efficient iterative formula for the QAOA’s performance than the one in Section 3.2? If so,
we can better probe the large-p behavior of the QAOA. Can the iteration in Section 3.2 be
recast in the p → ∞ limit in terms of continuous functions corresponding to γ, β? This
might be a way to verify, or falsify, the conjecture in Section 5.

Can one find other problems at high qubit number and high depth where the performance
of the QAOA can be established using techniques similar to the ones introduced in this
paper?
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A Proof of the iterations for MaxCut

In this appendix, we prove the correctness of the two iterations in Section 3.1 and Section 3.2.
We hope this proof illustrates two key technical ideas in this paper: namely, we can exploit
the regularity of the tree subgraph seen by the QAOA to yield a compact formula for its
performance, and we find an algebraic simplification in the D → ∞ limit. This appendix
also serves as the proof of a special case of Theorem 2 at q = 2. The remaining proofs of our
results can be found in the full version of this paper at Ref. [4].

A.1 Proof of the finite D iteration
We start by proving the finite D iteration that was stated in Section 3.1. We focus on the
iteration for p = 2 as an example, and its generalization to other p is immediate.

The goal is to evaluate the energy expectation for a single edge (L, R) on a (D +1)-regular
graph whose girth is larger than 2p + 1. For p = 2, this is

⟨γ, β|ZLZR|γ, β⟩ = ⟨s|eiγ1Ceiβ1Beiγ2Ceiβ2BZLZRe−iβ2Be−iγ2Ce−iβ1Be−iγ1C |s⟩ (A.1)

where C = −(1/
√

D)
∑

(u,v)∈E ZuZv, and E denotes the set of edges for the given graph. In
the Heisenberg picture, it can be seen that the operator eiγ1C · · · eiβpBZLZRe−iβpB · · · e−iγ1C

only acts nontrivially on the subgraph induced by including all vertices distance p or less
from either node L or R. For a (D + 1)-regular graph with girth greater than 2p + 1, this
subgraph looks like a pair of D-ary trees that are glued at their roots (see Figure 7), with a
total of n = 2(Dp + · · · + D + 1) nodes. In what follows, we compute Eq. (A.1) by restricting
our attention to only the qubits in this subgraph.

We start by inserting 5 complete sets in the computational Z-basis that we will label as
z[1], z[2], z[0], z[−2], and z[−1]. Each of these complete sets iterates over 2n basis states since
the number of qubits in the subgraph is n. Then

⟨γ, β|ZLZR|γ, β⟩ =
∑

{z[i]}

⟨s|z[1]⟩ eiγ1C(z[1]) ⟨z[1]|eiβ1B |z[2]⟩ eiγ2C(z[2]) ⟨z[2]|eiβ2B |z[0]⟩ z
[0]
L z

[0]
R

× ⟨z[0]|e−iβ2B |z[−2]⟩ e−iγ2C(z[−2]) ⟨z[−2]|e−iβ1B |z[−1]⟩ e−iγ1C(z[−1]) ⟨z[−1]|s⟩

= 1
2n

∑
{z[i]}

exp
[
iγ1C(z[1]) + iγ2C(z[2]) − iγ2C(z[−2]) − iγ1C(z[−1])

]
z

[0]
L z

[0]
R

×
n∏

v=1

⟨z[1]
v |eiβ1X |z[2]

v ⟩ ⟨z[2]
v |eiβ2X |z[0]

v ⟩ ⟨z[0]
v |e−iβ2X |z[−2]

v ⟩ ⟨z[−2]
v |e−iβ1X |z[−1]

v ⟩ . (A.2)
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Figure 7 The tree subgraph seen by the QAOA at p = 2 for the edge (L, R) on a (D + 1)-regular
graph with girth > 2p + 1. For any node v on either of the D-ary trees we denote p(v) as the parent
of that node. In the figure w is a leaf node, and we show its parent and its parent’s parent.

Let us define the following function which is the p = 2 version of Eq. (3.4):

f(a1, a2, a0, a−2, a−1) = 1
2 ⟨a1|eiβ1X |a2⟩ ⟨a2|eiβ2X |a0⟩ ⟨a0|e−iβ2X |a−2⟩ ⟨a−2|e−iβ1X |a−1⟩ .

(A.3)

Then, using Γ as defined in Eq. (3.3), we can rewrite Eq. (A.2) as

⟨γ, β|ZLZR|γ, β⟩ =
∑

{z[i]}

z
[0]
L z

[0]
R exp

[
i

2∑
j=−2

ΓjC(z[j])
] n∏

v=1
f(zv) (A.4)

where zv = (z[1]
v , z

[2]
v , z

[0]
v , z

[−2]
v , z

[−1]
v ) are the bits from the 5 complete sets associated with

node v. Using the fact that C(z) = −(1/
√

D)
∑

(u,v)∈E zuzv, we can rewrite ⟨γ, β|ZLZR|γ, β⟩
as

⟨γ, β|ZLZR|γ, β⟩ =
∑
{zu}

z
[0]
L z

[0]
R exp

[
− i√

D

∑
(u′,v′)∈E

Γ · (zu′zv′)
] n∏

v=1
f(zv) (A.5)

where we have replaced the sum over the 5 complete sets {z[i] : −2 ≤ i ≤ 2} with an
equivalent sum over the bit configurations of each node {zu : 1 ≤ u ≤ n}. Now to evaluate
⟨ZLZR⟩ we need to perform a sum over the bit configurations zv of every node v in the
tree subgraph, where each node is coupled to its neighbors on the graph via the term in the
exponential of Eq. (A.5).

We can start by considering a single leaf node w who is only connected to its parent
node p(w) on the tree, as shown in Figure 7. Then the sum over the 32 bit values of the
configuration zw = (z[1]

w , z
[2]
w , z

[0]
w , z

[−2]
w , z

[−1]
w ) yields∑

zw

f(zw) exp
[
− i√

D
Γ · (zwzp(w))

]
(A.6)

which is a function of the parent node’s configuration zp(w). Note that doing this on every
leaf node contributes the same function to its parent. Since there are exactly D leaf nodes
per parent, we get the following contribution
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H
(1)
D (zp(w)) :=

( ∑
zw

f(zw) exp
[
− i√

D
Γ · (zwzp(w))

])D

. (A.7)

This is true for every parent node of any of the leaves.
After performing the sums for all the leaf nodes, we can move to the sums for their

parents. Let us look at the sum on the node p(w) for example, which yields∑
zp(w)

f(zp(w))H
(1)
D (zp(w)) exp

[
− i√

D
Γ · (zp(w)zp(p(w)))

]
. (A.8)

Again, because its parent node p(p(w)) has D identical children like p(w), this yields

H
(2)
D (zp(p(w))) :=

( ∑
zp(w)

f(zp(w))H
(1)
D (zp(w)) exp

[
− i√

D
Γ · (zp(w)zp(p(w)))

])D

. (A.9)

Note at p = 2 we have reached the root of the tree L = p(p(w)) after these two iterations.
To evaluate ⟨γ, β|ZLZR|γ, β⟩, it only remains to sum over the 5 bits in zL and the 5 bits

in zR:

⟨γ, β|ZLZR|γ, β⟩ =
∑

zL,zR

z
[0]
L z

[0]
R f(zL)f(zR)H(2)

D (zL)H(2)
D (zR) exp

[
− i√

D
Γ · (zLzR)

]
.

(A.10)

For higher p, we can see that the evaluation of ⟨γ, β|ZLZR|γ, β⟩ simply involves more
iterations of Eq. (A.9) corresponding to more levels in the tree subgraph. In summary, the
iteration for general p can be written as starting with

H
(0)
D (a) = 1 (A.11)

and then evaluating for m = 1, 2, . . . , p,

H
(m)
D (a) =

( ∑
b

f(b)H(m−1)
D (b) exp

[
− i√

D
Γ · (ab)

])D

, (A.12)

since there are p levels in the tree subgraph seen by the QAOA with p layers. At the end we
get

⟨γ, β|ZLZR|γ, β⟩ =
∑
a,b

a0b0f(a)f(b)H(p)
D (a)H(p)

D (b) exp
[
− i√

D
Γ · (ab)

]
. (A.13)

This is almost what we have stated for the iteration in Section 3.1.
To finish the proof, we note from Eq. (A.3) as well as its general p version in Eq. (3.4)

that

f(−a) = f(a). (A.14)

We now claim that

H
(m)
D (−a) = H

(m)
D (a) for 0 ≤ m ≤ p (A.15)
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which we will show by induction on m. Note this is trivially true for the base case m = 0 since
H

(0)
D (a) = 1 is constant. Assuming that H

(m−1)
D (−a) = H

(m−1)
D (a), we can take b → −b in

the summand of Eq. (A.12) and combine it with its original form to see that

H
(m)
D (a) =

( ∑
b

f(b)H(m−1)
D (b) cos

[
1√
D

Γ · (ab)
])D

. (A.16)

From this form it follows that H
(m)
D (−a) = H

(m)
D (a) since a only appears in the cosine which

is an even function, establishing Eq. (A.15).
Similarly, we can take b → −b in Eq. (A.13) and combine with its original form to get

⟨γ, β|ZLZR|γ, β⟩ = −i
∑
a,b

a0b0f(a)f(b)H(p)
D (a)H(p)

D (b) sin
[

1√
D

Γ · (ab)
]
. (A.17)

Thus to get the νp as defined in Eq. (2.6) that tells us the cut fraction, we have

νp(D, γ, β) = i
√

D

2
∑
a,b

a0b0f(a)f(b)H(p)
D (a)H(p)

D (b) sin
[

1√
D

Γ · (ab)
]
. (A.18)

This proves our iteration for any finite D in Section 3.1.

A.2 Proof of D → ∞ iteration
We wish to evaluate Eq. (3.7) in the D → ∞ limit:

lim
D→∞

νp(D, γ, β) = lim
D→∞

i
√

D

2
∑
a,b

a0b0f(a)f(b)H(p)
D (a)H(p)

D (b) sin
[

1√
D

Γ · (ab)
]
. (A.19)

We first prove by induction that for 0 ≤ m ≤ p,

H(m)(a) := lim
D→∞

H
(m)
D (a) (A.20)

exists and is finite. For m = 0, our claim holds because H
(0)
D (a) = 1. Assuming the claim is

true for m − 1, we examine H(m)(a) by taking the limit on Eq. (A.16)

H(m)(a) = lim
D→∞

[ ∑
b

f(b)H(m−1)
D (b) cos

(
1√
D

Γ · (ab)
)]D

. (A.21)

Then performing a Taylor expansion of cos(· · ·), we get

H(m)(a) = lim
D→∞

[ ∑
b

f(b)H(m−1)
D (b)

(
1 − 1

2D

(
Γ · (ab)

)2
+ O

(
1

D2

))]D

. (A.22)

Using the fact that for any m,∑
a

f(a)H(m)
D (a) = 1 (A.23)

which is proved in Ref. [4, Lemma 5], we get

H(m)(a) = lim
D→∞

[
1 − 1

2D

∑
b

f(b)H(m−1)
D (b)

(
Γ · (ab)

)2 + O
( 1

D2

)]D

. (A.24)



J. Basso, E. Farhi, K. Marwaha, B. Villalonga, and L. Zhou 7:21

Finally, taking the limit,

H(m)(a) = exp
[

− 1
2

∑
b

f(b)H(m−1)(b)
(
Γ · (ab)

)2
]

(A.25)

which yields an iteration on H(m).
Returning to Eq. (A.19), we apply the product rule of limits to H

(p)
D (a), H

(p)
D (b), and√

D sin[Γ · (ab)/
√

D] and get

lim
D→∞

νp(D, γ, β) = i

2
∑
a,b

a0b0f(a)f(b)H(p)(a)H(p)(b)Γ · (ab). (A.26)

This iteration can be simplified by expanding the dot products in Eqs. (A.25) and (A.26)
to get

H(m)(a) = exp
[
−1

2

p∑
j,k=−p

ΓjΓkajak

( ∑
b

f(b)H(m−1)(b)bjbk

)]
, (A.27)

lim
D→∞

νp(D, γ, β) = i

2

p∑
j=−p

Γj

( ∑
a

f(a)H(p)(a)a0aj

)( ∑
b

f(b)H(p)(b)b0bj

)
(A.28)

and noticing that the quantity
∑

a f(a)H(m)(a)ajak appears repeatedly. For 0 ≤ m ≤ p

and −p ≤ j, k ≤ p, define

G
(m)
j,k :=

∑
a

f(a)H(m)(a)ajak. (A.29)

For m = 0, this is

G
(0)
j,k =

∑
a

f(a)ajak. (A.30)

For 1 ≤ m ≤ p, we plug Eq. (A.27) into Eq. (A.29) to get

G
(m)
j,k =

∑
a

f(a)ajak exp
[
−1

2

p∑
j′,k′=−p

G
(m−1)
j′,k′ Γj′Γk′aj′ak′

]
. (A.31)

Finally, Eq. (A.28) can be written as

lim
D→∞

νp(D, γ, β) = i

2

p∑
j=−p

Γj(G(p)
0,j )2 (A.32)

which establishes the iteration stated in Section 3.2.
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