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Abstract
Secure function evaluation is a two-party cryptographic primitive where Bob computes a function of
Alice’s and his respective inputs, and both hope to keep their inputs private from the other party. It
has been proven that perfect (or near perfect) security is impossible, even for quantum protocols.
We generalize this no-go result by exhibiting a constant lower bound on the cheating probabilities for
any quantum protocol for secure function evaluation, and present many applications from oblivious
transfer to the millionaire’s problem. Constant lower bounds are of practical interest since they
imply the impossibility to arbitrarily amplify the security of quantum protocols by any means.
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1 Introduction

The first paper studying quantum cryptography was written by Stephen Wiesner in the 1970s
(published in 1983) [34]. In that paper, he presented a (knowingly insecure) protocol for
multiplexing where a receiver could choose to learn one of two bits of their choosing. Since
then, this task has been referred to as 1-out-of-2 oblivious transfer, and has been extensively
studied in the quantum community [16, 29, 33, 30, 21, 11, 15, 12, 18, 20]. Indeed, since the
development of quantum key distribution in 1984 [9], it has been of great interest to use
quantum mechanics to develop protocols for classical tasks and push the limits of quantum
theory to find optimal protocols (and their limitations).

On the other hand, it was shown in the late 1990s (and a few times since) that perfect
security for a number of cryptographic tasks, including secure function evaluation, could
not attain perfect, or even near perfect, security [24, 22, 23, 21, 11]. Indeed, some popular
two-party cryptographic protocols, including bit commitment [14], strong coin flipping [19],
oblivious transfer [15], strong die rolling [2], as well as many others, have all seen constant
lower bounds presented. Constant lower bounds are of great interest for several reasons, of
which we note a few. The first reason, a practical one, is that they imply that there is no
way to arbitrarily amplify the security by any means (such as repeating the protocol many
times and combining them in some way). The second reason, a theoretical one, now opens
the question as to what are the optimal security parameters. Assuming quantum mechanics
offers some advantage over their classical counterparts, the question now becomes to what
extent is this advantage.
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8:2 Lower Bounds on Quantum Secure Function Evaluation

Note that two-party cryptography has some strange behavior, making its study very
intriguing. For example, in the case of die rolling (where Alice and Bob wish to roll a die
over the (possibly quantum) telephone) there can sometimes be classical protocols that offer
decent security [31]. On the other hand, having classical protocols for something like coin
flipping, bit commitment, and oblivious transfer is impossible [19]. And while quantum
mechanics seems to deny us strong coin flipping (we have a constant lower bound [19]), it
does give us arbitrarily good security for weak coin flipping [25, 3, 7, 6]. Therefore, classifying
the behavior of two-party cryptographic primitives is a fruitful, and sometimes surprising,
endeavor. To this end, we study the broad class of two-party cryptography known as secure
function evaluation which we now discuss.

1.1 Secure function evaluation
Secure function evaluation (SFE) is a two-party cryptographic primitive in which Alice begins
with an input x ∈ X and Bob begins with an input y ∈ Y (each input is chosen uniformly at
random1) and Bob has a deterministic function f : X × Y → B. Here, we take X, Y , and B

to have finite cardinality. See Figure 1 below.

SFE

Alice Bob

x ∈ X y ∈ Y

f(x, y) ∈ B

Figure 1 A pictorial representation of SFE. Bob wants to compute his function f while he and
Alice keep their inputs private.

The goals when designing a (quantum) protocol for SFE are:
1. Completeness: If both parties are honest then Bob learns f , evaluated on their inputs x

and y.
2. Soundness against cheating Bob: Cheating Bob obtains no extra information about honest

Alice’s input x other than what is logically implied from knowing f(x, y).
3. Soundness against cheating Alice: Cheating Alice obtains no information about honest

Bob’s input y.

It is natural to assume perfect completeness of a protocol and then to quantify the extent
to which they can be made sound. In other words, we consider protocols for SFE that do
what they are meant to do when Alice and Bob follow them (that is, they compute f), and
then we try to find the ones which hide their respective inputs the best.

To quantify soundness against cheating Bob, for each such protocol we define the following
symbols.

1 We believe our analysis works for other probability distributions over the inputs as well, as long as
they are uncorrelated. The assumption of uniformity makes certain expressions cleaner, such as the
probability of Alice being able to blindly guess Bob’s input.
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BSFE: The maximum probability with which cheating Bob can guess honest Alice’s input x.
B′

SFE: The maximum probability with which cheating Bob can guess every f(x, y), for each
y ∈ Y .

Note that often these two cheating probabilities are the same. For instance, in 1-out-of-2
oblivious transfer we have x ∈ X = {0, 1}2 as a 2-bit string, y ∈ Y = {1, 2} as an index,
and f(x, y) = xy, i.e., the y-th bit of x. Then clearly BSFE = B′

SFE, since knowing each bit
is equivalent to knowing the full string. In general, BSFE ≤ B′

SFE, since if Bob is able to
correctly learn Alice’s input x, then he can compute any function of it he wants.

Similarly, to quantify soundness against cheating Alice, we define the following symbols.

ASFE: The maximum probability with which cheating Alice can guess honest Bob’s input y.

Note that there is only the one definition for a cheating probability for Alice since she
has no output.

1.2 Main result
We now present our main result, a trade-off curve relating Alice and Bob’s cheating probabil-
ities that must be satisfied for any quantum protocol for SFE.

▶ Theorem 1. In any quantum protocol for secure function evaluation, it holds that

B′
SFE ≥ 1

|Y | ASFE
− 2 (|Y | − 1)

√
1 − 1

|Y | ASFE
(1)

where Y is the set of choices for Bob’s input.

We now discuss this bound. Note that

ASFE ≥ 1
|Y |

, (2)

since she can always blindly, or randomly, guess the value of y ∈ Y . Since Alice has no
output function (like Bob does) she may not be able to infer anything about y from the
protocol if she is honest. Therefore, sometimes her best strategy is to randomly guess, and
in this case we would have

ASFE = 1
|Y |

, (3)

which translates to perfect security against a cheating Alice. However, in that case, our
bound implies that

B′
SFE = 1, (4)

meaning Bob can compute his function perfectly for every choice of input on his side, i.e.,
complete insecurity against a cheating Bob. This implication exactly recovers Lo’s conclusion
in his 1997 paper [21], and also the conclusion in a more recent paper by Buhrman, Christandl,
and Schaffner [11]. It should be mentioned that the above two papers also discuss the “Alice
can cheat with a small probability” case as well. A key component in their proofs is the
application of Uhlmann’s theorem on purifications of the protocol to find unitaries with which
Bob can use to cheat. As evidenced later on, this is very different from our proof. In fact, at
no point in our protocol do we assume anything is pure and we only deal with POVMs, not
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8:4 Lower Bounds on Quantum Secure Function Evaluation

unitaries. The “magic ingredient” in our proof is a generalization of Kitaev’s lower bound
for strong coin flipping [19]. Moreover, we chose to quantify the security solely in terms of
Alice and Bob’s cheating probabilities, which is complementary to the results in [11].

Before continuing, we now discuss what we mean by having a “constant lower bound.”
To this end, we define the following symbols.

Arand: The maximum probability with which cheating Alice can guess honest Bob’s input y

given only black-box access to the SFE task.
B′

rand: The maximum probability with which cheating Bob can learn every f(x, y), for each
y ∈ Y , given only black-box access to the SFE task.

In other words, the cheating definitions above correspond to the information Alice and
Bob can infer only from their outputs. Of course, Alice has no output, so clearly

Arand = 1
|Y |

. (5)

However, as is illustrated in our examples, it is less clear how to write B′
rand in terms of the

parameters of a general SFE protocol.
Equipped with these symbols, we are now ready to state our constant lower bound

on SFE.

▶ Theorem 2. In any quantum protocol for secure function evaluation, either B′
rand = 1 (in

which case the protocol is completely insecure), or there exists a constant c > 1 such that

ASFE ≥ c · Arand or B′
SFE ≥ c · B′

rand. (6)

Before discussing how to find this constant, a word on our lower bound is in order. We
chose to define what it means for a constant lower bound to be a multiplicative factor.
This is because Arand and B′

rand may be dramatically different (as we demonstrate shortly).
Therefore, having a constant additive factor could be unevenly weighted between cheating
Alice and Bob and, we feel, would be less insightful in those cases. However, using our bound
one can optimize and find an additive constant if one so desires.

To find this constant c > 1, note that our lower bound on B′
SFE (the right-hand side of

Inequality (1)) is a continuous, decreasing function with respect to ASFE. Therefore, if we
assume

ASFE ≤ cA

|Y |
, (7)

for some fixed constant cA ≥ 1, then we may conclude via our bound that

B′
SFE ≥ 1

cA
− 2 (|Y | − 1)

√
1 − 1

cA
. (8)

Now, assuming that

B′
SFE = cB · B′

rand (9)

for some cB ≥ 1, we now have the inequality

cB ≥ 1
B′

rand

(
1

cA
− 2 (|Y | − 1)

√
1 − 1

cA

)
. (10)
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We shall now assume that B′
rand < 1 so that 1

B′
rand

> 1. Note that when cA = 1, we have
the right-hand side of (10) equalling 1

B′
rand

> 1 and when cA = 1
B′

rand
we have the right-hand

side being strictly less than 1. Thus, by continuity of the right-hand side and the intermediate
value theorem, we know there exists a constant c > 1 satisfying the equation

c = 1
B′

rand

(
1
c

− 2 (|Y | − 1)
√

1 − 1
c

)
. (11)

Note that this constant c > 1 is exactly what we want, since if cA ≤ c then we have cB ≥ c.
Now, in theory one can solve for c above for a general SFE task, but it is complicated and

perhaps not very insightful. However, when it comes to particular instances or families of
SFE, then one can easily solve the above equation and get a constant (and possibly decent)
lower bound for any quantum protocol for that task. We demonstrate this several times
below.

1.3 Applications
Since our bound is general, we can apply it to many different scenarios. However, since each
scenario is quite different and requires discussion, we delegate these discussions to the full
version of the paper and simply summarize the cryptographic tasks below and a few of the
special cases in which we found some exact formulas for lower bounds. Note that all of the
special cases presented below are new lower bounds as far as we are aware.

1-out-of-n oblivious transfer. This is where Alice has a database and Bob wishes to
learn one item (his input is an index). We present lower bounds on either how much
Alice can learn Bob’s index or how much Bob can learn all of Alice’s database. A special
case is when Alice has 3 bits and Bob wants to learn 1 of them. We present a new lower
bound that either

BOT ⪆ 0.2581 > 0.2500 or AOT ⪆ 0.3442 > 0.3333. (12)

Note that we define the cheating probability symbols above in the full version, but they
should be clear from context for this abbreviated discussion. This is also the case for the
cheating probability symbols below.

k-out-of-n oblivious transfer. This is the same as 1-out-of-n oblivious transfer except
Bob’s input is now a proper subset instead of an index (so Bob learns k < n entries in
Alice’s database). We present lower bounds on either how much Alice can learn Bob’s
proper subset or how much Bob can learn all of Alice’s database. A special case is when
Alice has 4 bits and Bob wants to learn 2 of them. We present a new lower bound that
either

BknOT ⪆ 0.2514 > 0.2500 or AknOT ⪆ 0.1676 > 0.1667. (13)

XOR oblivious transfer. This is similar to 1-out-of-2 oblivious transfer (where Alice’s
database consists of 2 bit strings) but Bob now has a third option of learning the bit-wise
XOR of the two strings. We present lower bounds on either how much Alice can learn
Bob’s choice (first string, second string, or the XOR) or how much Bob can learn both
of Alice’s strings. A special case is when Alice’s strings have length 1 (so, they are just
bits). We present a new lower bound that either

BXOT ⪆ 0.5073 > 0.5000 or AXOT ⪆ 0.3382 > 0.3333. (14)

TQC 2022



8:6 Lower Bounds on Quantum Secure Function Evaluation

Equality/one-way oblivious identification. This is when Alice and Bob each have
the same set of inputs and Bob learns whether or not their inputs are equal. We present
lower bounds on either how much Alice or Bob can learn the other’s input. A special
case is when the input set has cardinality 3. We present a new lower bound that either

BEQ ⪆ 0.671 > 0.667 or AEQ ⪆ 0.3355 > 0.3333. (15)

Inner product. This is when Alice and Bob each input an n-bit string and Bob learns
their inner product. We present lower bounds on either how much Alice or Bob can learn
the other’s input. A special case is when n = 3. We present a new lower bound that
either

BIP ⪆ 0.251 > 0.250 or AIP ⪆ 0.1434 > 0.1429. (16)

Millionaire’s problem. This is when (rich) Alice and Bob have lots of money and Bob
wishes to learn who is richer without either revealing their wealth. A special case is when
n = 109 (bounding each of their bank accounts at a billion dollars). We present a new
lower bound that either

B $ ⪆ 2 × 10−9 + 5 × 10−28 > 2 × 10−9 or

A $ ⪆ 1 × 10−9 + 1 × 10−18 + 1.25 × 10−27 > 1 × 10−9 + 1 × 10−18 + 1 × 10−27. (17)

We can also study a more realistic version by setting n = 10. We present a new lower
bound that either

B $ ⪆ 0.2005 > 0.2000 or A $ ⪆ 0.1114 > 0.1111. (18)

Therefore, some information about either Alice or Bob’s wealth is necessarily leaked.

Each of these cryptographic tasks are described further and analyzed in the full version
of the paper.

1.4 Proof idea and key concepts

There are two main ingredients in proving our lower bound which we discuss at a high level
below, and continue in more detail in the following sections. The magic ingredient is Kitaev’s
constant lower bound for die rolling [19, 2]. Effectively what we do is use a generic SFE
protocol to create a die rolling protocol, then apply Kitaev’s lower bound. However, the glue
that makes SFE and die rolling play well together is a new technical result that we prove
which deals with sequential gentle measurements, which we discuss next.

1.4.1 Sequential gentle measurements

The idea behind much of quantum cryptography is the concept of measurement disturbance.
To put it simply, measuring to obtain certain information from a quantum state may cause it
to collapse, possibly rendering it unusable for future purposes, or to simply alert honest parties
that a cheating attempt was made. However, there is a concept of a gentle measurement,
which is described at a high level below.
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Gentle measurement lemma (ϵ-free version). If a measurement outcome has a large
probability of occurring, then the measured quantum state is not largely disturbed if that
measurement outcome does indeed happen. (See references [36, 37] or Section 2 to see formal
statements of gentle measurement lemmas.)

How does this help us? Well, suppose for a cheating Bob who wishes to learn every
f(x, y), for all y, he may wish to measure some quantum state several times. Suppose for
a fixed y1 ∈ Y that Bob can learn f(x, y1) with probability close to 1. Then, if he were to
measure it, and achieve the correct value, then the state is not greatly disturbed, and thus
more information can possibly be extracted. If a second measurement can extract the correct
value of f(x, y2) for some y2 ∈ Y \ {y1} with a high probability, we can repeat the process.

Now, we (intentionally) glossed over the concept of learning, that is, we did not precisely
define it means to learn the correct value, in our cryptographic context. We elaborate on
this in Section 2. However, it can be made precise and be put into a framework suitable for
the application of a modified gentle measurement lemma. For now, we just state the main
technical result of this paper below, and leave its proof for Subsection 2.2.

▶ Lemma 3 (Sequential measurement lemma). Let f1, . . . , fn : X → B be fixed functions
and suppose Bob has a quantum encoding of x ∈ X (where x is chosen from a probability
distribution known to Bob). Suppose Bob can learn fi(x) with probability pi for each i ∈
{1, . . . , n} and let p = 1

n

∑n
i=1 pi be his average success probability of learning the function

values. Then Bob can learn all values f1(x), . . . , fn(x) with probability at least

p − 2(n − 1)
√

1 − p. (19)

Notice that if p ≈ 1 (meaning that Bob has a high average success probability of learning
the function values) then he can learn all the values with probability still very close to 1.
Note that this aligns with the intuition one obtains from the gentle measurement lemma. The
measurement that achieves the success probability in Lemma 3 is given in Subsection 2.2.

1.4.2 Die rolling
Die rolling (DR) is a two-party cryptographic task akin to coin flipping, where Alice and
Bob try to agree on a value n ∈ {0, 1, . . . , N − 1}. The goals when designing a die rolling
protocol are outlined below.
1. Completeness: If both parties are honest then their outcomes are uniformly random and

identical.
2. Soundness against cheating Bob: Cheating Bob cannot influence honest Alice’s outcome

distribution away from uniform.
3. Soundness against cheating Alice: Cheating Alice cannot influence honest Bob’s outcome

distribution away from uniform.

For this work, we only consider perfectly complete die rolling protocols. To quantify the
soundness of a die rolling protocol, we define the following symbols.

BDR,n: The maximum probability with which cheating Bob can influence honest Alice to output
the number n without Alice aborting.

ADR,n: The maximum probability with which cheating Alice can force honest Bob to output
the number n without Bob aborting.

Kitaev proved in [19] that when N = 2, any quantum protocol for die rolling satisfies

ADR,0BDR,0 ≥ 1
2 and ADR,1BDR,1 ≥ 1

2 . (20)

TQC 2022



8:8 Lower Bounds on Quantum Secure Function Evaluation

Note that die rolling with N = 2 is simply referred to as (strong) coin flipping as Alice and
Bob decide on one of two outcomes. Note that coin flipping is a much more studied task than
die rolling, the latter being a generalization of the former. Kitaev’s proof of these inequalities
for coin flipping easily generalizes to similar inequalities for die rolling, namely that for any
quantum protocol for die rolling, we have

ADR,nBDR,n ≥ 1
N

, for all n ∈ {0, 1, . . . , N − 1}. (21)

This is indeed a constant lower bound, as we would strive to have ADR,n = BDR,n = 1
N for

all n. However, Inequality (21) implies that

max{ADR,n, BDR,n} ≥ 1√
N

, for all n ∈ {0, 1, . . . , N − 1} (22)

making it impossible to get anywhere near perfect security.

1.4.3 Die rolling via secure function evaluation - gluing the two
ingredients together

The first step is to create a DR protocol from a fixed SFE protocol, as shown below.

▶ Protocol 4 (DR from SFE).
Alice and Bob input uniformly random chosen inputs into a SFE protocol such that Bob
learns f(x, y).
Alice selects a uniformly chosen b ∈ Y , independent from the SFE protocol. She sends b

to Bob.
Bob reveals his SFE input y ∈ Y and also his SFE output f(x, y).
Alice computes f(x, y) using x and y. If Bob’s function value he sent to Alice does not
match Alice’s computation of the function, she aborts the protocol.
If Alice does not abort, they both output (b + y) mod |Y |. We assume an ordering of the
elements of Y is known to both Alice and Bob before the protocol, i.e., we may think of
them as elements of the set {1, . . . , |Y |}.

Protocol 4 is pictorially shown in Figure 2 below.
We now describe what Alice and Bob may do to cheat the die rolling protocol.

1.4.3.1 Cheating Alice

Suppose cheating Alice wants to force honest Bob to output the number 0. In this case,
Alice must send b in the second to last message such that b = y. Since she may not know y,
the probability she can successfully cheat is equal to the maximum probability with which
she can learn y from the SFE protocol. However, this is precisely the definition of ASFE.
Thus, the case of cheating Alice is simple, we have that ADR,0 = ASFE.

1.4.3.2 Cheating Bob

Similar to cheating Alice, we wish to relate how much Bob can cheat in the DR protocol, say
the quantity BDR,0, and how much he can cheat in the SFE protocol, namely B′

SFE. Suppose
cheating Bob wants to force an honest Alice to output the number 0. In this case, he needs
to send back y such that y = b in the last message. However, for Alice to accept this last
message, he must also correctly learn the value f(x, y) from his part of the state after the
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SFE

Alice Bob

x ∈ X y ∈ Y

f(x, y) ∈ B

b ∈ Y

y, f(x, y)

(b + y) mod |Y | (b + y) mod |Y |

Alice checks f(x, y)

Figure 2 Protocol 4: Die rolling via secure function evaluation.

SFE subroutine. In other words, before he sends his last message, he has an encoding of x

from which he may measure to learn something. Since Alice’s message b is randomly chosen,
independent of the SFE protocol, he is tasked with revealing a y with uniform probability.
To say it another way, BDR,0 is equal to the average probability that Bob is able to learn
f(x, y), for each y, after the SFE subroutine.

Now, to obtain a cheating strategy for Bob in SFE, consider the following. Imagine if
Bob uses his optimal die rolling strategy to communicate with Alice to create the encoding
of x as described above at the end of the SFE protocol. Well, we know the average success
probability of Bob learning each function value; it is equal to BDR,0, as explained above. If
we now apply the sequential gentle measurement lemma, Lemma 3, we see that Bob can
learn all the values of f(x, y) with probability at least

BDR,0 − 2(|Y | − 1)
√

1 − BDR,0. (23)

Since this is a valid strategy for Bob to learn all the values of f(x, y), it is a lower bound
on B′

SFE.
Collecting all the above pieces of information together, and adding Kitaev’s lower bound,

we have
ASFE = ADR,0;
B′

SFE ≥ BDR,0 − 2(|Y | − 1)
√

1 − BDR,0;
ADR,0 · BDR,0 ≥ 1

|Y | .
Combining these we get a proof of our main theorem, Theorem 1.

2 Learning and gentle measurements

In this section we first discuss the gentle measurement lemma and then generalize the concept
to fit our needs. Then, we discuss the context in which we consider learning and show how
to apply our generalized gentle measurement lemma.

TQC 2022



8:10 Lower Bounds on Quantum Secure Function Evaluation

2.1 Gentle measurements
Before we dive into gentle measurements, we must first define some essential matrix operations.
Consider two matrices A and B ∈ Cm×n. The trace inner product is defined as

⟨A, B⟩ = Tr (A∗B) (24)

where A∗ represents the complex conjugate transpose of A. The trace norm of a matrix A is
given by

∥A∥tr = Tr(
√

A∗A). (25)

The operator norm of a matrix A is given by

∥A∥op = sup {∥Av∥2 : ∥v∥2 = 1} (26)

where ∥v∥2 denotes the Euclidean norm
√

⟨v, v⟩.
The idea behind gentle measurements is that if a measurement operator, when applied to

a quantum state, produces a given result with high probability, then the post-measured state
will be relatively close to the original state. For our purposes, this allows for more information
to be gleaned from the state in a successive measurement. This process is formally scoped
below.

▶ Lemma 5 (Gentle measurement operator [36, 37]). Consider a density operator ρ and a
measurement operator Λ where 0 ≤ Λ ≤ I. Suppose that

⟨Λ, ρ⟩ ≥ 1 − ε, (27)

where ε ∈ [0, 1]. Then we have

∥ρ −
√

Λρ
√

Λ∥tr ≤ 2
√

ε. (28)

We now use this to prove the following.

▶ Lemma 6 (Sequential gentle measurement operators). Consider a density operator ρ and
measurement operators Λ1, . . . , Λn where 0 ≤ Λk ≤ I for each k ∈ {1, . . . , n}, where n ≥ 2.
Suppose that

⟨Λk, ρ⟩ ≥ 1 − εk, (29)

where εk ∈ [0, 1] for each k ∈ {1, . . . , n}. Then we have

⟨ρ,
√

Λn · · ·
√

Λ2Λ1
√

Λ2 · · ·
√

Λn⟩ ≥ 1 − ϵ1 − 2
n∑

i=2

√
εi. (30)

Proof. We prove this by induction.

Base case: n = 2. Consider the following quantity

|⟨ρ, Λ1⟩ − ⟨ρ,
√

Λ2Λ1
√

Λ2⟩| = |⟨ρ, Λ1⟩ − ⟨
√

Λ2ρ
√

Λ2, Λ1⟩| = |⟨ρ −
√

Λ2ρ
√

Λ2, Λ1⟩|. (31)

By applying Hölder’s inequality, we get

|⟨ρ −
√

Λ2ρ
√

Λ2, Λ1⟩| ≤ ∥ρ −
√

Λ2ρ
√

Λ2∥tr∥Λ1∥op ≤ 2
√

ε2, (32)

where the last inequality follows from the gentle measurement operator lemma (Lemma 5)
and the assumption that 0 ≤ Λ1 ≤ I. This implies that

⟨ρ,
√

Λ2Λ1
√

Λ2⟩ ≥ ⟨ρ, Λ1⟩ − 2
√

ε2 ≥ 1 − ε1 − 2
√

ε2. (33)
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Inductive step. Assume it is true up to some k ∈ {3, . . . , n − 1}. We have, again, that

|⟨ρ −
√

Λk+1ρ
√

Λk+1,
√

Λk · · ·
√

Λ2Λ1
√

Λ2 · · ·
√

Λk⟩| (34)

≤ ∥ρ −
√

Λk+1ρ
√

Λk+1∥tr∥
√

Λk · · ·
√

Λ2Λ1
√

Λ2 · · ·
√

Λk∥op (35)

≤ ∥ρ −
√

Λk+1ρ
√

Λk+1∥tr∥
√

Λk∥op · · · ∥
√

Λ2∥op∥Λ1∥op∥
√

Λ2∥op · · · ∥
√

Λk∥op (36)
≤ 2√

εk+1, (37)

noting that the operator norm is submultiplicative. Similar to the base case, this implies that

⟨ρ,
√

Λk+1 · · ·
√

Λ2Λ1
√

Λ2 · · ·
√

Λk+1⟩ (38)

≥ ⟨ρ,
√

Λk · · ·
√

Λ2Λ1
√

Λ2 · · ·
√

Λk⟩ − 2√
εk+1 (39)

≥

(
1 − ε1 − 2

k∑
i=2

√
εi

)
− 2√

εk+1 (40)

= 1 − ε1 − 2
k+1∑
i=2

√
εi (41)

as desired. ◀

This bound is related to the quantum union bound. See [27, 17] for good versions of this
bound, and also [26] for a simple proof of it. While our bound is not always stronger, it can
be viewed as complementary.

2.2 Quantum encodings, and proof of Lemma 3
In this section, we pin down what it means for Bob to learn something about Alice’s input.

We may assume that Alice creates the following state∑
x∈X

px|x⟩⟨x| (42)

where px is the probability of her choosing x, then control all of her actions on it. That is,
this is a classical register that Alice holds. After some communication, Alice and Bob will
share some joint state

ρ :=
∑
x∈X

px|x⟩⟨x| ⊗ ρx (43)

where ρx is a (quantum) encoding of Alice’s bit x.
Suppose Bob wants to learn some information about x. We may assume that Alice

measures her classical register in the computational basis {Nx : x ∈ X} to obtain the
outcome x and it is this value about which Bob wants to learn some information.

Let us assume that Bob uses the measurement {Mb : b ∈ B} if he wants to learn the value
of the function f : X → B. In the context of SFE, this function is of the same form once a
y ∈ Y has been fixed. Now, we can calculate the probability of Bob successfully learning the
function f as〈

ρ,
∑
x∈X

Nx ⊗ Mf(x)

〉
. (44)

Note that the structure of ρ is not really all that important, only so much as to imply that
we can assume Nx is a basis measurement.

TQC 2022



8:12 Lower Bounds on Quantum Secure Function Evaluation

Now, suppose that for a function fi, for i ∈ {1, . . . , n}, Bob has a POVM {M i
b : b ∈ B}

such that he learns the correct value with probability at least 1 − εi. Then from the above
expression, we can write〈

ρ,
∑
x∈X

Nx ⊗ M i
fi(x)

〉
≥ 1 − εi. (45)

By defining

Λi =
∑
x∈X

Nx ⊗ M i
fi(x) (46)

we can apply Lemma 6 to get that

⟨ρ,
√

Λn · · ·
√

Λ2Λ1
√

Λ2 · · · Λn⟩ ≥ 1 − ε1 − 2
n∑

i=2

√
εi. (47)

Now, the neat thing is that since {Nx} is a basis measurement, we have that√
Λn · · ·

√
Λ2Λ1

√
Λ2 · · ·

√
Λn =

∑
x∈X

Nx⊗
√

Mn
fn(x) · · ·

√
M2

f2(x)M
1
f1(x)

√
M2

f2(x) · · ·
√

Mn
fn(x). (48)

This suggests we define the POVM

{M̃b1,...,bn
: b1, . . . , bn ∈ B} (49)

where

M̃b1,...,bn
:=
√

Mn
bn

· · ·
√

M2
b2

M1
b1

√
M2

b2
· · ·
√

Mn
bn

. (50)

One can check that this is a valid POVM and Inequality (47) and Equation (48) show that
this POVM learns fi(x) for every i ∈ {1, . . . , n}, with probability at least

1 − ε1 − 2
n∑

i=2

√
εi. (51)

Note that since the measurement operators have the POVM {M1
b : b ∈ B} “in the middle,”

and this choice was arbitrary, then we can see that Bob can create another measurement
with {M i

b : b ∈ B} “in the middle” for any choice of i he wants. Thus, if he randomly
chooses which measurement is “in the middle,” then we see that we can average the success
probability as

1
n

n∑
j=1

1 − εj − 2
n∑

i̸=j

√
εi

 = 1 −
∑n

i=1 εi

n
− 2(n − 1)

n

n∑
i=1

√
εi. (52)

Using Cauchy-Schwarz, one can prove that

n∑
i=1

√
εi ≤

√
n

√√√√ n∑
i=1

εi. (53)

Therefore, the average success probability is bounded below by

1 −
∑n

i=1 εi

n
− 2(n − 1)√

n

√√√√ n∑
i=1

εi. (54)

In the context of Lemma 3, we have that pi = 1 − εi is the probability of guessing fi(x).
Substituting this into (54), we finish our proof of Lemma 3.
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