
Approximating Output Probabilities of Shallow
Quantum Circuits Which Are Geometrically-Local
in Any Fixed Dimension
Suchetan Dontha #

Department of Computer Science, University of Maryland, College Park, MD, USA

Shi Jie Samuel Tan #

Department of Computer Science, Haverford College, PA, USA

Stephen Smith #

Department of Mathematics, University of South Carolina, Columbia, SC, USA

Sangheon Choi #

Department of Computer Science, Rose-Hulman Institute of Technology, Terre Haute, IN, USA

Matthew Coudron #

Department of Computer Science, University of Maryland, College Park, MD, USA

Abstract
We present a classical algorithm that, for any D-dimensional geometrically-local, quantum circuit C

of polylogarithmic-depth, and any bit string x ∈ {0, 1}n, can compute the quantity | ⟨x| C
∣∣0⊗n

〉
|2

to within any inverse-polynomial additive error in quasi-polynomial time, for any fixed dimension
D. This is an extension of the result [3], which originally proved this result for D = 3. To see why
this is interesting, note that, while the D = 1 case of this result follows from a standard use of
Matrix Product States, known for decades, the D = 2 case required novel and interesting techniques
introduced in [1]. Extending to the case D = 3 was even more laborious, and required further new
techniques introduced in [3]. Our work here shows that, while handling each new dimension has
historically required a new insight, and fixed algorithmic primitive, based on known techniques for
D ≤ 3, we can now handle any fixed dimension D > 3.

Our algorithm uses the Divide-and-Conquer framework of [3] to approximate the desired quantity
via several instantiations of the same problem type, each involving D-dimensional circuits on about
half the number of qubits as the original. This division step is then applied recursively, until the
width of the recursively decomposed circuits in the Dth dimension is so small that they can effectively
be regarded as (D − 1)-dimensional problems by absorbing the small width in the Dth dimension
into the qudit structure at the cost of a moderate increase in runtime. The main technical challenge
lies in ensuring that the more involved portions of the recursive circuit decomposition and error
analysis from [3] still hold in higher dimensions, which requires small modifications to the analysis
in some places. Our work also includes some simplifications, corrections and clarifications of the use
of block-encodings within the original classical algorithm in [3].

2012 ACM Subject Classification Theory of computation → Quantum complexity theory; Theory
of computation → Divide and conquer

Keywords and phrases Low-Depth Quantum Circuits, Matrix Product States, Block-Encoding

Digital Object Identifier 10.4230/LIPIcs.TQC.2022.9

Related Version Full Version: https://arxiv.org/abs/2202.08349

Funding Suchetan Dontha: UMD REU-CAAR.
Shi Jie Samuel Tan: UMD REU-CAAR (An Zhu-Google).
Stephen Smith: NSF-MSGI PhD summer research program.
Sangheon Choi: UMD REU-CAAR.
Matthew Coudron: NIST/QuICS.

© Suchetan Dontha, Shi Jie Samuel Tan, Stephen Smith, Sangheon Choi, and Matthew Coudron;
licensed under Creative Commons License CC-BY 4.0

17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022).
Editors: François Le Gall and Tomoyuki Morimae; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sdontha@umd.edu
mailto:stan1@haverford.edu
mailto:sjs8@email.sc.edu
mailto:chois3@rose-hulman.edu
mailto:mcoudron@umd.edu
https://doi.org/10.4230/LIPIcs.TQC.2022.9
https://arxiv.org/abs/2202.08349
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Approximating Output Probabilities of Shallow Quantum Circuits

Acknowledgements MC thanks Sergey Bravyi for helpful discussions. We thank Gorjan Alagic
and Nolan Coble for attending and contributing to some project group meetings. We thank the
REU-CAAR program (NSF grant number 1852352) which funded SD, SJST, SC over the summer of
2021.

1 Introduction

It is known that it is #P -hard to compute the quantity | ⟨x| C |0⊗n⟩ |2 to within 2−n additive
error for low-depth, geometrically-local quantum circuits C. This fact can be deduced from
early work on the hardness of simulating low-depth quantum circuits, and has a number of
variations, including average-case hardness results [7, 2, 6, 5] . These hardness results indicate
that computing output probabilities with such small additive error is almost certainly out
of reach for both classical and quantum computers. If we restrict our attention to additive
errors that are achievable with quantum computers, such as inverse polynomial additive
error achievable by taking polynomially many samples from the quantum circuit C, then
classical hardness for this estimation problem is much less clear. In fact, [1] introduced an
elegant classical polynomial time algorithm for this estimation task in the case of 2D circuits.
Their algorithm makes a novel use of 1D Matrix Product States carefully tailored to the 2D
geometry of the circuit in question. While it is not clear how to generalize the techniques
of [1] to higher dimensional circuits, [3] introduced a Divide-and-Conquer algorithm that
can compute the quantity | ⟨x| C |0⊗n⟩ |2 to within any inverse-polynomial additive error in
quasi-polynomial time for any 3D, constant-depth quantum circuit C. The algorithm in
[3] works by recursively subdividing the quantum circuit C into pieces, constructed using
block-encodings, and introduces new techniques for analyzing the extent to which quantum
entanglement between different qubits can impact the global quantity | ⟨x| C |0⊗n⟩ |2.

Given the progression of ideas required to classically approximate the output probabilities
of higher dimensional quantum circuits, it is natural to wonder what would be required to
go even further. In this work we will show that there exists a classical quasi-polynomial
time algorithm which can compute | ⟨x| C |0⊗n⟩ |2 to inverse polynomial additive error for
any constant-depth, geometrically-local quantum circuit of fixed dimension D.

▶ Theorem 1 (Main Result). For any D-dimensional geometrically-local, depth d quantum
circuit C acting on n qubits, the algorithm Afull(S = (C, L, M, N), B, δ, D) computes the
quantity | ⟨x| C |0⊗n⟩ |2 to within δ additive error in time δ−2 ·2O((dpolylog(n))D·3D

)(1/δ)1/ log2(n) .1

A key motivation for generalizing simulation results to higher dimensions exists at the
level of techniques. Historically, the simulation of low-depth and geometrically local quantum
circuits has required a new mathematical innovation every time the dimension, D, of the
geometric locality is increased. The D = 1 case is solved using the famous technique of Matrix
Product States (MPS), which is fundamental to the field and has been known for decades.
However, it was not until recently that an algorithm was discovered for estimating output
amplitudes in the case D = 2, and it requires a novel technique beyond standard MPS [1].
Finding an algorithm for the D = 3 case, [3], required a completely different approach, this
time departing from the paradigm of MPS, and requiring 50 pages of mathematics to formalize

1 For clarity we assume that the n qubits are arranged in a perfect D-dimensional cubic lattice. Here
S = (C, L, M, N) is the synthesis describing circuit C, as defined in this paper and in [3], and B is our
base-case algorithm which we specify to be the 2D algorithm of [1], and which our algorithm uses to
solve subproblems which have been recursively subdivided down to 2 dimensions.

S. Dontha, S. J. S. Tan, S. Smith, S. Choi, and M. Coudron 9:3

a divide-and-conquer algorithm. Our result shows that this trend of requiring completely
new techniques to extend from D to D + 1 need not continue. One fixed divide-and-conquer
algorithmic primitive, allows us to inductively establish an additive-error classical simulation
algorithm for any dimension D.

Note that, while our algorithm runs in quasi-polynomial time in n for any fixed D, the
runtime is triply exponential in the dimension D. If we set D = O(log(log(polylog(n)))) and
δ to be inverse quasi-polynomial, then the algorithm still runs in quasi-polynomial time on
a constant depth geometrically local circuit. In particular, this means that the algorithm
can approximate the output probabilities of any constant depth quantum circuit that is
geometrically local in O(log(log(polylog(n)))) dimensions. It is, therefore, interesting to
consider the computational complexity of this problem as a function of D, since this could
shed light on the extent to which arbitrary low-depth quantum circuits can be efficiently
simulated. As an extreme example, an algorithm which had runtime polynomial in D

could be used efficiently on constant depth quantum circuits which are not geometrically
local at all. This is because any constant depth quantum circuit on n-qubits can be
considered to be geometrically local in dimension D = n. We do not expect that our current
approach can achieve a runtime polynomial in D, but we believe that even a runtime that is
singly exponential in D, allowing the simulation of circuits which are geometrically local in
dimension D = log(n), could have practically relevant consequences. We leave, as an open
problem, the question of the optimal D-dependence for algorithms simulating constant-depth
geometrically-local quantum circuits.

Our paper is organized as follows: In section 2 we review block-encodings and syntheses,
both of which are used extensively throughout the algorithm. Note that section 2 primarily
consists of definitions and lemmas from [3] that are tweaked for clarity and correctness. In
section 3 we provide the pseudocode for our algorithm and prove our main result. The
runtime and error analysis for our algorithm are located in sections 3.1 and 3.2 respectively.

2 Block-encodings and Syntheses

In order to state the pseudocode for our algorithms in Section 3 below we first need to
establish a way to construct the “recursive subdivisions” of the quantum circuit C that
our divide-and-conquer algorithm iteratively creates. We will concretely describe these
subdivisions as “syntheses”, as defined in [3] and reviewed here for the convenience of the
reader. Syntheses themselves use the idea of a block-encoding which we paraphrase below
from [4].

In order to understand the following discussion, which is essential to the rest
of this paper, it is necessary to read Sections 2, 3, and 4 of [3]. The lemmas
repeated in this section are only included here in order to clarify or correct
certain definitions in Section 3 of [3]. Many other definitions and lemmas from
Sections 2, 3, and 4 of [3] are not repeated here and must be read from the original
document (see the arxiv verison at https://arxiv.org/pdf/2012.05460.pdf).
▶ Definition 2 (Block-encoding). Suppose that A is an s-qubit operator, α, ϵ ∈ R+ and a ∈ N.
Then we say that the (s + a)-qubit unitary U is an (α, a, ϵ)-block-encoding of A, if∥∥∥A − α(⟨0|⊗a ⊗ I)U(|0⟩⊗a ⊗ I)

∥∥∥ ≤ ϵ.

Consider a cut B ∪ M ∪ F made anywhere in the cube and let σM∪F =
trB

(
CB∪M∪F |0⟩⟨0|B∪M∪F C†

B∪M∪F

)
. The following result is obtained by applying Lemma 45

of [4]:

TQC 2022

https://arxiv.org/pdf/2012.05460.pdf

9:4 Approximating Output Probabilities of Shallow Quantum Circuits

▶ Lemma 3 (Block-encoding for σM∪F). The following is a (1, |B ∪ M ∪ F |, 0)-block-encoding
of σM∪F :

Γ =
(

C†
B∪M ′∪F ′ ⊗ IM∪F

)
(IB ⊗ SWAPM∪F,M ′∪F ′) (CB∪M ′∪F ′ ⊗ IM∪F) .

In the above, CB∪M ′∪F ′ is notation to indicate that we will be applying the circuit CB∪M∪F

on the registers B, M ′, and F ′. In other words,

σM∪F = (⟨0|B∪M ′∪F ′ ⊗ IM∪F) Γ (|0⟩B∪M ′∪F ′ ⊗ IM∪F) .

The registers M ′ and F ′ above are copies of the registers M and F , respectively, and are
introduced by Lemma 45 of [4]. By interleaving M ′ with M and B′ with B and adding swap
gates where appropriate, we can ensure that the resulting circuit, Γ, is still geometrically-local
and has depth at most 3 times the depth of CB∪M∪F . By simply moving the M register in
Lemma 3 to the set of registers which are post-selected, we see that Γ is also a block-encoding
of ρF := ⟨0|M σM∪F |0⟩M .

▶ Lemma 4 (Block-encoding for ρF). The block-encoding introduced in Lemma 3, Γ, is a
(1, |B ∪ F | + 2|M |, 0)-block-encoding of ρF . Note that Lemma 4 is a correction of Lemma 7
of [3].

Proof.

(⟨0|B∪M ′∪F ′∪M ⊗ IF)Γ(|0⟩B∪M ′∪F ′∪M ⊗ IF)
= ⟨0|M (⟨0|B∪M ′∪F ′ ⊗ IF)Γ(|0⟩B∪M ′∪F ′ ⊗ IF) |0⟩M

= ⟨0|M σM∪F |0⟩M

= ρF ◀

Since ρF is the state that we are really interested in, we will henceforth refer to Γ as ΓρF
.

We can now iteratively apply Lemma 53 from [4] to obtain a block-encoding for ρk
F for any

integer k ≥ 1. To do this, we will need k − 1 copies of each of the registers B, M ′, F ′, and
M . Let B1 = B, M ′

1 = M ′, F ′
1 = F ′, and M1 = M . Furthermore, for each i, 1 < i ≤ k, let

Bi, M ′
i , F ′

i , Mi be copies of B, M ′, F ′, and M , respectively.

▶ Lemma 5 (Block-encoding for ρk
F). The following is a (1, k|B ∪ M ′ ∪ F ′ ∪ M |, 0)-block-

encoding of ρk
F :

Γρk
F

=
k∏

i=1

(
C†

Bi∪M ′
i
∪F ′

i
⊗ IMi∪F

)(
IBi ⊗ SWAPMi∪F,M ′

i
∪F ′

i

)(
CBi∪M ′

i
∪F ′

i
⊗ IMi∪F

)
.

In other words,

ρk
F =

(
⟨0|Bk∪M′

k
∪F ′

k
∪Mk

⊗ IF

)
Γρk

F

(
|0⟩Bk∪M′

k
∪F ′

k
∪Mk

⊗ IF

)
where Bk = B1 ∪ B2 ∪ · · · ∪ Bk, M′

k = M ′
1 ∪ M ′

2 ∪ · · · ∪ M ′
k, etc. Note that this is a correction

of equation 7 of [3]

▶ Lemma 6 (Block-encoding for ρk
B). Analogously, the following is a (1, k|F ∪M ′ ∪B′ ∪M |, 0)-

block-encoding of ρk
B:

Γρk
B

=
k∏

i=1

(
C†

B′
i
∪M ′

i
∪Fi

⊗ IMi∪B

)(
IFi ⊗ SWAPMi∪B,M ′

i
∪B′

i

)(
CB′

i
∪M ′

i
∪Fi

⊗ IMi∪B

)
.

S. Dontha, S. J. S. Tan, S. Smith, S. Choi, and M. Coudron 9:5

In other words,

ρk
B =

(
⟨0|Fk∪M′

k
∪B′

k
∪Mk

⊗ IB

)
Γρk

B

(
|0⟩Fk∪M′

k
∪B′

k
∪Mk

⊗ IB

)
where Fk = F1 ∪ F2 ∪ · · · ∪ Fk, M′

k = M ′
1 ∪ M ′

2 ∪ · · · ∪ M ′
k, etc.

Note that this is a correction for equation 7 of [3].

Importantly, we are free to interleave all of the copies of the registers B, M and F with
their originals. We do this in such a way so that we can minimally pad each 2-qubit gate
from CB∪M∪F with swap gates so that this new ’padded’ circuit is still geometrically local.
Furthermore, the depth of this new padded circuit is at most (2k + 1) times the original
depth of C.

▶ Definition 7 (Synthesis). We say that an unnormalized quantum state ϕ is synthesized by
a quantum circuit Γ, if Γ has three registers of qubits L, M, N such that:

ϕ = ϕ(Γ,L,M,N) = trL∪M (⟨0M | Γ |0L∪M∪N ⟩ ⟨0L∪M∪N | Γ† |0M ⟩). (1)

In this case we say that the circuit Γ together with a specification of the registers L, M, N

constitutes a synthesis of ϕ. When ϕ is implicit we will call this collection (Γ, L, M, N) a
synthesis. This definition was taken directly from [3] and is only here for the convenience
of the reader. All syntheses explicitly used in the rest of this paper are defined in section 4
of [3].

3 Algorithms and Analysis

Having discussed the essential concepts of syntheses and block-encodings in Section 2 above,
we now give an explicit description of our classical simulation algorithm below. Our algorithm
is divided into two pieces, Algorithm 1 and Algorithm 2. Algorithm 1 simply handles some
technical edge cases for the error parameter δ, and sets the stage for making a call to
Algorithm 2. Algorithm 2 contains the actual divide-and-conquer structure, describing how
to perform recursive calls to itself and Algorithm 1 in one dimension lower.

The following theorem and lemmas state and prove our main result by giving runtime
bounds and error bounds for Algorithm 1. Algorithm 1 is defined in complete pseudo-code
below, for any dimension D, and our main result is proved by induction on dimension D.

▶ Theorem 8. For any D-dimensional geometrically-local, depth d quantum circuit C

acting on n qubits, the algorithm Afull(S = (C, L, M, N), B, δ, D) computes the quantity
| ⟨0⊗n| C |0⊗n⟩ |2 to within δ = 1/nlog(n) additive error in time 2O((dpolylog(n))D·3D

). Further-
more, let wD+1, wD+2, . . . be the widths of the qubit array in dimensions D + 1, D + 2, . . .

respectively. Then for any geometrically-local, depth d quantum circuit C acting on a lattice
of n qubits having side length at most wD+i in dimension D + i, the algorithm Afull(S =
(C, L, M, N), B, δ, D) computes the quantity | ⟨0⊗n| C |0⊗n⟩ |2 to within δ = 1/nlog(n) additive
error in time 2O((dpolylog(n))D3D

w1/3), where w ≡
∏∞

i=1 wD+i.2

2 We assume the n qubits are arranged in such a way that the length of each edge of the qubit lattice is
O(n1/D)

TQC 2022

9:6 Approximating Output Probabilities of Shallow Quantum Circuits

Proof. We will prove Theorem 8 by induction on the dimension D. For the base-case, D = 3,
this theorem is a direct consequence of the main result of [3]. For D > 3, assuming, by
induction, that we have already established Theorem 8 for dimension D − 1, the dimension
D version of the Theorem follows by Lemmas 9 and 10 respectively. The key inductive step
in those two analyses happens at the point in the analysis where Algorithm 2 makes calls,
such as Afull(Si,j , B, ϵ, D − 1), to a D − 1 dimensional version of Algorithm 1. At those
points the runtime and error guarantees for the D − 1 dimensional version of Afull that are
required by the analyses in Lemmas 9 and 10 are ensured by the inductive assumption that
Theorem 8 already holds for the D − 1 dimensional case. ◀

▶ Lemma 9. Let w be defined as in Theorem 8. Then Afull(S = (C, L, M, N), B, δ, D) runs
in time δ−2 · 2O((dpolylog(n))D·3D

w1/3)(1/δ)1/ log2(n) .

Proof. The runtime analysis of Afull begins the same as in [3]. Note that if the IF statement
on Line 1 is satisfied, then the specified additive error δ is so small that we can compute
the desired quantity, | ⟨0ALL| C |0ALL⟩ |2, exactly, by brute force, in 2O(n) time, and this will
still take less time than the guaranteed runtime:

T (n) = δ−2 · 2O((dpolylog(n))D·3D
w1/3)(1/δ)1/ log2(n)

.

Let T1(l, D, d, w, δ) represent the run-time of algorithm 1 for a problem with side length
l in dimension D with circuit depth d and thickness w in dimensions > D to error δ. Let
T2(l, D, d, w, ϵ) represent the same for algorithm 2. Then we may bound T1 as follows:

T1(l, D, d, w, δ) <
n1/D

10d
T1(l, D − 1, d, O(wd), E1(δ)) + T2(l, D, d, w, E2(δ)),

T1(l, 2, d, w, δ) < B(n, d, w, δ)

where E1(δ) = 2
log(δ)
2h(n) −1 − 2

log(δ)
h(n) −1 and E2(δ) = δ2−10 log(n) log(log(n)).

The term n1/D

10d T1(l, D−1, d, O(wd), E1(δ)) follows from lines 6-10 of algorithm 1. This entails
making n1/D

10d calls of algorithm 1 on a depth d synthesis in D − 1 dimensions to error E1(δ)
with thickness O(d) in dimension D. See the analysis of Theorem 28 of [3] for details on how
this sub-problem is constructed. The term T2(l, D, d, w, E2(δ)) refers to the call of algorithm
2 made in line 14 of algorithm 1. The base case follows directly from line 5 of algorithm 1.
By standard recursion analysis, we get that

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))+

D−3∑
i=0

n
i

D−i+1 T2(l, D − i, d, O(wdi), E2(E(i)
1 (δ)))

where E
(i)
1 refers to the function E1 composed with itself i times.

Similarly, we can bound T2 as follows:

T2(l, D, d, w, ϵ) < 2∆T2(3
4 l, D, d, w, ϵ) + ∆2T1(l, D − 1, d3polylog(n), O(wd), ϵ)

+ ∆22∆T1(l, D − 1, d3polylog(n), O(wd), E3(ϵ))
+ 2∆T1(l, D − 1, d2polylog(n), O(wd), ϵ) + poly(n)

T2(O(1), D, d, w, ϵ) = T1(n1/D, D − 1, d, O(w), ϵ)

where E3(ϵ) = ϵ
2∆ .

S. Dontha, S. J. S. Tan, S. Smith, S. Choi, and M. Coudron 9:7

The term 2∆T2(3
4 l, D, d, w, ϵ) follows from the calls to A(SL,i, η − 1) and A(Si,R, η −

1) for each i. The term ∆2T1(l, D − 1, d3polylog(n), O(wd), ϵ) refers to the calls
to Afull(Si,j , B, ϵ, D − 1) for each i and j > i. The term ∆22∆T1(l, D −
1, d3polylog(n), O(wd), E3(ϵ)) refers to the calls to
Afull

((
⊗k∈σΠK

Fk
⟨0Mk

|
)

ϕi,j

(
⊗k∈σ |0Mk

⟩ ΠK
Fk

)
, B, ϵ

2∆ , D − 1
)

for each i, j > i, and σ. The
term 2∆T1(l, D − 1, d2polylog(n), O(wd), ϵ) refers to the calculation of κT,ϵ for each i. For
details regarding the construction of the sub-problems for the last three terms, refer to the
run-time analysis of algorithm 2 of [3]. The final poly(n) term follows from the calculation of
the region Z detailed in line 8 of algorithm 2. The base case follows from the fact that if
we have a problem in D dimensions with an O(1) sized edge, we may apply an algorithm
in D − 1 dimensions to solve it at the cost of an extra O(1) sized thickness. By standard
recursion analysis, we get that

T2(l, D, d, w, ϵ) <(2∆)η · T2((3
4)ηl, D, d, w, ϵ)

+
η−1∑
i=0

(2∆)i(∆2T1((3
4)il, D − 1, d3polylog(n), O(wd), ϵ)

+ ∆22∆T1((3
4)il, D − 1, d3polylog(n), O(wd), E3(ϵ))

+ 2∆T1((3
4)il, D − 1, d2polylog(n), O(wd), ϵ) + poly(n)).

Now, as we begin to substitute the recurrence relation for T2 (in terms of T1) into the
recurrence relation for T1 (in terms of T2), we need to define ηi, the number of recursive calls
made by T2 to T1 in the i-th dimension. Let us define ηi as the following:

ηi = log3/4(n−1/i) = log(n)
i · log(4/3) . (2)

Now that we have defined ηi, let us substitute the T2 recurrence relation into T1:

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+
D−3∑
i=0

n
i

D−i+1

[
(2∆)ηD−i T1

(
l, D − i − 1, d, O(wdi), E2(E(i)

1 (δ))

)

+
ηD−i−1∑

j=0

(2∆)j

(
∆2T1

((3
4

)j

l, D − i − 1, d3polylog(n), O(wdi+1), E2(E(i)
1 (δ))

)

+ ∆22∆T1

((3
4

)j

l, D − i − 1, d3polylog(n), O(wdi+1), E3(E2(E(i)
1 (δ)))

)

+ 2∆T1

((3
4

)j

l, D − i − 1, d2polylog(n), O(wdi+1), E2(E(i)
1 (δ)))

)
+ poly(n)

)]

where the first T1 term on the right-hand side comes from unrolling the T2 term in T2’s
recurrence relation down to its base-case.

We can then continue to simplify the upper bound by combining the three terms in the second
summation term into 3∆22∆T1

((3
4
)j

l, D − i − 1, d3polylog(n), O(wdi+1), E3(E2(E(i)
1 (δ)))

)
since 3∆22∆ ≥ (2∆ + ∆22∆ + ∆2) and E3(E2(E(i)

1 (δ))) ≤ E2(E(i)
1 (δ)).

TQC 2022

9:8 Approximating Output Probabilities of Shallow Quantum Circuits

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+
D−3∑
i=0

n
i

D−i+1

[
(2∆)ηD−i T1

(
l, D − i − 1, d, O(wdi), E2(E(i)

1 (δ))
)

+
ηD−i−1∑

j=0

(2∆)j

(
3∆22∆T1

((3
4

)j

l, D − i − 1, d3polylog(n), O(wdi+1), E3(E2(E(i)
1 (δ)))

))]

Next, we can unpack the bracket in the first summation term to get the following:

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+
D−3∑
i=0

n
i

D−i+1 (2∆)ηD−iT1

(
l, D − i − 1, d, O(wdi), E2(E(i)

1 (δ))
)

+
D−3∑
i=0

ηD−i−1∑
j=0

(2∆)jn
i

D−i+1

(
3∆22∆T1

((
3
4

)j

l, D − i − 1, d3polylog(n),

O(wdi+1), E3(E2(E(i)
1 (δ)))

))

The following expression can be obtained by extracting the T1 terms from the summation
terms. We do that by bounding all the T1 terms in the first summation term by
T1

(
l, D − 1, d, O(wdD), E2(E(D)

1 (δ)
)

since the runtime will be longer when we start on higher
dimension D instead of dimension D − i − 1, larger thickness O(wdD) instead of thickness
O(wdi), and smaller error E2(E(D)

1 (δ)) instead of E2(E(i)
1 (δ)). A similar argument could be

made for the T1 terms in the second summation term.

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+ T1

(
l, D − 1, d, O(wdD), E2(E(D)

1 (δ))
)D−3∑

i=0

n
i

D−i+1 (2∆)ηD−i

+ 3∆22∆T1

(
l, D − 1, d3polylog(n), O(wdD), E3(E2(E(D)

1 (δ)))
)D−3∑

i=0

ηD−i−1∑
j=0

(2∆)jn
i

D−i+1

In the following step, for the first summation term, we bound the n
i

D−i+1 term by poly(n)
and the (2∆)ηD−i term by 2polylog(n) since ∆, η = O(log(n)). Since we have O(D) terms in
the first summation term, we get O(Dpoly(n)2polylog(n)). Likewise, we can do the same thing
for the second summation term to get the same upper bound.

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+ T1

(
l, D − 1, d, O(wdD), E2(E(D)

1 (δ))
)

O(Dpoly(n)2polylog(n))

+ 3∆22∆T1

(
l, D − 1, d3polylog(n), O(wdD), E3(E2(E(D)

1 (δ)))
)

O(Dpoly(n)2polylog(n)).

The following expression can be obtained by combining the second and third term in the
previous expression. We get T1

(
l, D − 1, d3polylog(n), O(wdD), E3(E2(E(D)

1 (δ)))
)

since

d3polylog(n) > d and E3(E2(E(i)
1 (δ))) ≤ E2(E(i)

1 (δ)) which would give us a larger runtime
bound. The 3∆22∆ can be absorbed into the O(Dpoly(n)2polylog(n)) term.

S. Dontha, S. J. S. Tan, S. Smith, S. Choi, and M. Coudron 9:9

T1(l, D, d, w, δ) < nDB(n, d, O(wdD), E
(D−2)
1 (δ))

+ T1

(
l, D − 1, d3polylog(n), O(wdD), E3(E2(E(D)

1 (δ)))
)

O(Dpoly(n)2polylog(n))

Now, we substitute the BGM algorithm’s runtime from Theorem 5 of [1] into the first
term to get the recurrence for T1 in dimension D in terms of T1 in one dimension lower.

T1(l, D, d, w, δ) < poly(nD)(E(D−2)
1 (δ))−22d3w1/D

+ T1

(
l, D − 1, d3polylog(n), O(wdD), E3(E2(E(D)

1 (δ)))
)

O(Dpoly(n)2polylog(n))

Before we begin to unroll the recurrence relation for T1 with respect to its dimension, let
us first define f(d), the depth of the block-encoding (at this point in the analysis), and f (k)(d),
the depth of the block-encoding after unrolling the recurrence relation for k dimensions

f(d) = d3polylog(n)

f (k)(d) < d3k

(polylog(n))3k

We can also define g(d, w), the thickness of the circuit (at this point in the analysis), and
g(k)(d), the thickness of the circuit after unrolling the recurrence relation for k dimensions
as follows:

g(d, w) = O(wdD)

g(k)(d, w) = g(k−1)(d, w)(f (k−1)(d))D

= g(k−2)(d, w)(f (k−2)(d))D(f (k−1)(d))D

= g(k−ℓ)(d, w)
ℓ∏

i=1
(f (k−i)(d))D

= g(d, w)
k−1∏
i=1

(f (k−i)(d))D

< O(wdD)(
k−1∏
i=1

(dpolylog(n))3i

)D

< O(wdD)(dpolylog(n))D3k

.

Now, we want to write the unrolling of the recurrence relation for T1 with respect
to dimensions in terms of f(d) and g(d, w). To simplify the writing, we define E5(δ) =
E3(E2(E(D)

1 (δ))). The following expression is obtained by unrolling T1’s recurrence relation
for an arbitrary dimension D to dimension 2 which is the base-case for T1.

T1(ℓ, D, d, w, δ) < O((Dpoly(nD)2polylog(n))D−2)T1(ℓ, 2, f (D−2)(d), g(D−2)(d, w), E
(D−2)
5 (δ))

+
D−3∑
i=0

O((Dpoly(nD)2polylog(n))i)poly(n)
(

E
(D−i−2)
1

(
E

(i)
5 (δ)

))−2
2(f(i)(d))3(g(i)(d,w))

1
D−i

.

To further simplify, we replace each occurrence of i in order to maximize each quantity,
then replace each occurrence of D − 2 with D. Note that the more we compose E1 and
E5, the smaller they get and hence their inverse-squared form will be larger. For f(d) and

TQC 2022

9:10 Approximating Output Probabilities of Shallow Quantum Circuits

g(d, w), the more we composed them, the greater the depth and the thicker the thickness
of the block-encoding which gives us an upper bound for the runtime. Note how we chose
the upper bound for the exponent of the g(D)(d, w) to be 1

3 to get the smallest root form to
maximize the exponent of the 2 term.

T1(ℓ, D, d,w, δ) < O((Dpoly(n)2polylog(nD))D)T1(ℓ, 2, f (D)(d), g(D)(d, w), E
(D)
5 (δ))

+ D · O((Dpoly(nD)2polylog(n))D)poly(n)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2
2(f(D)(d))3(g(D)(d,w))

1
3

Next, we write the first term of the right-hand side of the first inequality according to
BGM’s runtime as given in Theorem 5 of [1] and then brought the D · poly(n) coefficient
in the second term into the second term’s big-O. The second inequality comes from the
fact that the first term is smaller than the second term and hence can be absorbed into the
second term.

T1(ℓ, D, d, w, δ) < O((poly(nD))D+1(D2polylog(n))D)(E(D)
5 (δ))−22(f(D)(d))2(g(D)(d,w))1/D

+ O((Dpoly(nD))D+1(2polylog(n))D)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2
2(f(D)(d))3(g(D)(d,w))

1
3

< O((Dpoly(nD))D+1(2polylog(n))D)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2
2(f(D)(d))3(g(D)(d,w))

1
3

Now, we substitute the upper bounds for f (k)(d) and g(k)(d, w) as previously defined into
the above expression to get the following inequality:

T1(ℓ, D, d, w, δ) < O((Dpoly(nD))D+1(2polylog(n))D)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2

· 2(dpolylog(n))3D+1
(O(wdD)

1
3 (dpolylog(n))D3D−1

)

= O((Dpoly(nD))D+1(2polylog(n))D)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2

· 2O(wdD)
1
3 (dpolylog(n))(9+D)3D−1

< O((Dpoly(nD))D+1(2polylog(n))D)
(

E
(D)
1

(
E

(D)
5 (δ)

))−2

· 2O(d(3D+1+D/3+D3D−1)(polylog(n))(3D+1+D3D−1)w1/3)

<
(

E
(D)
1

(
E

(D)
5 (δ)

))−2
· 2O(d(3D+1+D/3+D3D−1)(polylog(n))(3D+1+D3D−1)w1/3)

<
(

E
(D)
1

(
E

(D)
5 (δ)

))−2
· 2O((dpolylog(n))D3D

w1/3)

Now note that
E1(δ) = 2

log(δ)
2h(n) −1 − 2

log(δ)
h(n) −1 = 1

2 (2
log(δ)
2h(n) − 2

log(δ)
h(n)) ≥ ln 2

2 2
log(δ)
h(n) (log(δ)

2h(n) − log(δ)
h(n)) =

− log(δ)
4h(n) 2

log(δ)
h(n) · ln 2

Hence, by monotonicity,

E1(E1(δ)) = − log(E1(δ))
4h(n) 2

log(E1(δ))
h(n) · ln 2

≥ −
log
(

− log(δ)
4h(n) 2

log(δ)
h(n) · ln 2

)
4h(n) 2

log

(
− log(δ)

4h(n) 2
log(δ)
h(n) ·ln 2

)
h(n) · ln 2

= −
log
(

− log(δ)
4h(n)

)
+ log

(
2

log(δ)
h(n)

)
+ log(ln 2))

4h(n) 2

log

(
− log(δ)

4h(n) 2
log(δ)
h(n) ·ln 2

)
h(n) · ln 2

S. Dontha, S. J. S. Tan, S. Smith, S. Choi, and M. Coudron 9:11

≥ − log(ln 2)
4h(n) 2

log

(
− log(δ)

4h(n) 2
log(δ)
h(n) ·ln 2

)
h(n) · ln 2

= − log(ln 2)
4h(n) 2

log(E1(δ))
h(n) · ln 2

≥ − log(ln 2)
4h(n) (E1(δ))

1
h(n) · ln 2

≥ − log(ln 2)
4h(n) E1(δ) · ln 2

And so for some constant a we get,

E1(aδ) ≥ − log(ln 2)
4h(n) aδ · ln 2

Therefore

E
(D)
1 (δ) ≥ (− log(ln(2)) ln(2)

4h(n))D−1E1(δ) ≥ (− log(ln(2)) ln(2)
4h(n))Dδ

=⇒ E5(δ) = E3(E2(E(D)
1 (δ))) ≥ 2−10 log(n) log(log(n))−∆(− log(ln(2)) ln(2)

4h(n))Dδ

=⇒ E
(D)
5 (δ) ≥ 2D(−10 log(n) log(log(n))−∆)

(
− log(ln(2)) ln(2)

4h(n)

)D2

δ

=⇒ (E(D)
1 ◦ E

(D)
5)(δ) ≥ 2D(−10 log(n) log(log(n))−∆)

(
− log(ln(2)) ln(2)

4h(n)

)D2+D

δ

Thus with ∆ = log(n) we get that

(
(E(D)

1 ◦ E
(D)
5)(δ)

)−2
≤ 2D(10 log(n) log(log(n))+∆)

(
− log(ln(2)) ln(2)

4h(n)

)−2D2−2D

δ−2

= 2Dpolylog(n)
(

− log(ln(2)) ln(2)
4h(n)

)−2D2−2D

δ−2

Plugging this into our run-time bound we get

T1(ℓ, D, d, w, δ) < 2Dpolylog(n)
(

− log(ln(2)) ln(2)
4h(n)

)−2D2−2D

δ−2 · 2O((dpolylog(n))D3D
w1/3)

= δ−2 · 2O((dpolylog(n))D3D
w1/3) ◀

▶ Lemma 10. Afull(S = (C, L, M, N), B, δ, D) returns an δ-additive error approximation of
| ⟨0ALL| C |0ALL⟩ |2

Proof. Refer to Appendix A for proof. ◀

TQC 2022

9:12 Approximating Output Probabilities of Shallow Quantum Circuits

Algorithm 1 Afull(S = (C, L, M, N), B, δ, D): Quasi-Polynomial Time Additive Error
Approximation for | ⟨0ALL| C |0ALL⟩ |2.

Input : Synthesis S = (C, L, M, N) where C is a D-Dimensional
Geometrically-Local depth-d circuit, B a base case algorithm for 2D
circuits, approximation error δ, dimension D

Output : An approximation of | ⟨0ALL| C |0ALL⟩ |2 to within additive error δ.
/* We begin by handling the case in which δ is so small that it

trivializes our runtime, and the case in which δ is so large that
it causes meaningless errors: */

1 if δ ≤ 1/nlog2(n) then
2 return The value | ⟨0ALL| C |0ALL⟩ |2 computed with zero error by a “brute force”

2O(n)-time algorithm.
3 if δ ≥ 1/2 then return 1/2
4 if D = 2 then
5 return B(S, δ)

/* Here begins the non-trivial part of the algorithm: */
6 Let N be the register containing all of the qubits on which C acts. Since these qubits

are arranged in a hyper-cubic lattice, the sides of the hyper-cube N must have length
n

1
D . We will call the length of this side the “width” and will now describe how to

“cut” the hyper-cube N , and the circuit C, perpendicular to this particular side.
7 Select 1

10d n
1
D light-cone separated slices Ki of 10d width in N , with at most 10d

distance between adjacent slices. Let h(n) = log7(n). Run Algorithm
Afull(S, B, 2

log(δ)
2h(n) −1 − 2

log(δ)
h(n) −1, D − 1) to check if at least 1

10d n
1
D − h(n) of the slices

obey:
8

∣∣tr (⟨0Mi | C |0ALL⟩ ⟨0ALL| C† |0Mi⟩
)∣∣ ≥ 2

log(δ)
h(n) .

9 OR, there are fewer than 1
10d n

1
D − h(n) slices that obey:

10

∣∣tr (⟨0Mi
| C |0ALL⟩ ⟨0ALL| C† |0Mi

⟩
)∣∣ ≥ 2

log(δ)
h(n) .

/* See the runtime analysis in the proof of Theorem 28 of [3] for a
detailed explanation of how the aforementioned run of Afull can
efficiently distinguish between the above two cases (via Remark 6
in [3]). */

11 if Fewer than 1
10d n

1
D − h(n) of the slices obey Line 10 then return 0

12 if At least 1
10d n

1
D − h(n) of the slices obey Line 10 then

13 We will denote the set of these slices by Kheavy. Note that the maximum amount
of width between any two adjacent slices in Kheavy is 10d · h(n). Furthermore,
the maximum amount of width collectively between ∆ slices in Kheavy is
10d∆ + 10d · h(n). Now that the set Kheavy has been defined, we will use this
fixed set in the recursive algorithm, Algorithm 2.

14 return A(S, η = log(n)
D log(4/3) , ∆ = log(n), ϵ = δ2−10 log(n) log(log(n))), h(n) =

log7(n), Kheavy, D, B)

S. Dontha, S. J. S. Tan, S. Smith, S. Choi, and M. Coudron 9:13

Algorithm 2 A(S, η, ∆, ϵ, h(n), Kheavy, D, B): Recursive Divide-and-Conquer Subroutine
for Algorithm 1.

Input : D-dimensional Geometrically-Local, depth-d synthesis S, number of
iterations η, number of cuts ∆, positive base-case error bound ϵ > 0, a set
of heavy slices Kheavy, dimension D, B a base case algorithm for 2D circuits

Output : An approximation of the quantity ⟨0N | ϕS |0N ⟩ where ϕS is the
un-normalized mixed state specified by the D-dimensional
geometrically-local, depth-d synthesis S, and |0N ⟩ is the 0 state on the
entire N register of that synthesis.

1 Given the geometrically-local, depth-d synthesis S = (Γ, L, M, N), let us ignore the
registers L and M as they have already been measured or traced-out.

2 Let ℓ be the width of the N register of the synthesis S. Define the stopping width
w0 ≡ 20d(∆ + h(n) + 2).

3 if ℓ < w0 = 20d(∆ + h(n) + 2) OR η < 1 then
4 Compute the quantity ⟨0N | ϕS |0N ⟩ to within error ϵ.
5 return Afull(S, B, ϵ, D − 1)
6 else
7 We will “slice” the D-Dimensional geometrically-local, depth-d synthesis S in ∆

different locations, as follows:
8 Since N is D-Dimensional we define a region Z ⊂ N to be the sub-hyper-cube of

N which has width 10d(∆ + h(n) + 2), and is centered at the halfway point of N

width-wise (about the point ℓ/2 of the way across N). Since the maximum
amount of width collectively between ∆ slices in Kheavy is 10d∆ + 10d · h(n) (see
Algorithm 1), we are guaranteed that the region Z will contain at least ∆ slices,
K1, K2, . . . , K∆, from Kheavy. For any two slices Ki, Kj ∈ Kheavy, let the
un-normalized states |φL,i⟩ , |φi,j⟩ , |φj,R⟩, and corresponding sub-syntheses
SL,i, Si,j , Sj,R be as defined in Definition 23 from [3], with K = log3(n). We will
use these to describe the result of our division step below.

9 For each Ki ∈ Kheavy pre-compute the quantity κi
T,ϵ, with T = log3(n), and

ϵ = δ2−10 log(n) log(log(n))).
10 return

∆∑
i=1

1
(κi

T,ϵ
)4K+1 A(SL,i, η − 1) · A(Si,R, η − 1) (3)

−
∆∑

i=1

∆∑
j=i+1

1
(κi

T,ϵ
κj

T,ϵ
)4K+1

A(SL,i, η − 1) · Afull(Si,j , B, ϵ, D − 1) · A(Sj,R, η − 1) (4)

+
∆∑

i=1

∆∑
j=i+2

1
(κi

T,ϵ
κj

T,ϵ
)4K+1

A(SL,i, η − 1) · A(Sj,R, η − 1)

·

[∑
σ∈P({i+1,··· ,j−1})\∅

(−1)|σ|+1Afull

((
⊗k∈σΠK

Fk

〈
0Mk

∣∣)ϕi,j

(
⊗k∈σ

∣∣0Mk

〉
ΠK

Fk

)
, B,

ϵ

2∆ , D − 1
)]

(5)11

/* Note that for brevity it is implied that
A(S, η) = A(S, η, ∆, ϵ, h(n), Kheavy, D, B). */

TQC 2022

9:14 Approximating Output Probabilities of Shallow Quantum Circuits

References
1 Sergy Bravyi, David Gosset, and Ramis Movassagh. Classical algorithms for quantum mean

values. QIP, 2020. arXiv:1909.11485.
2 Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd. Classical simulation of commuting

quantum computations implies collapse of the polynomial hierarchy. Proc. R. Soc. A., 467:459–
472, 2010. doi:10.1098/rspa.2010.0301.

3 Nolan J. Coble and Matthew Coudron. Quasi-polynomial time approximation of output
probabilities of geometrically-local, shallow quantum circuits. In 62nd Annual Symposium on
Foundations of Computer Science, FOCS 2021, 2021.

4 András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value
transformation and beyond: exponential improvements for quantum matrix arithmetics. STOC,
2019. arXiv:1806.01838.

5 Yasuhiro Kondo, Ryuhei Mori, and Ramis Movassagh. Fine-grained analysis and improved
robustness of quantum supremacy for random circuit sampling, 2021. arXiv:2102.01960.

6 Ramis Movassagh. Quantum supremacy and random circuits. QIP, 2020. arXiv:1909.06210.
7 Barbara M. Terhal and David P. DiVincenzo. Adaptive quantum computation, constant

depth quantum circuits and arthur-merlin games. Quantum Inf. Comput., 4(2):134–145, 2004.
doi:10.26421/QIC4.2-5.

A Proof of Lemma Statement

▶ Lemma (Restatement of Lemma 10). Afull(S = (C, L, M, N), B, δ, D) returns an δ-additive
error approximation of | ⟨0ALL| C |0ALL⟩ |2

Proof. The error analysis of the error obtained by Afull(S, B, δ, D) can be broken into four
cases according to the IF statements on Lines 1, 3, 11, and 12 of Algorithm 1. The first
three cases can be easily shown to return the value in δ-additive error within the promised
runtime as shown in page 16 and 20 of [3].

In the event that Line 12 is satisfied, Algorithm 1 returns the following quantity:

A(S, η = log(n)
D log(4/3) , ∆ = log(n), ϵ = δ2−10 log(n) log(log(n))), h(n) = log7(n), Kheavy, D, B),

which we know is an f(S, ηD, ∆, ϵ, D)-additive error approximation of | ⟨0ALL| C |0ALL⟩ |2.
Recall the definition of ηD defined in Equation 2. Since ηD = log(n)

D log(4/3) , by Equation 8, we
know that:

f(S, η, ∆, ϵ) ≤ ηD(20∆2)ηD
(
(2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

)
= ηD(20∆2)ηD 3∆2O (E3(n, K, T, ϵ, ∆))

= ηD(20∆2)ηD 3∆2O
(
2∆(2e(n))K + 2∆K

(
e(n)2T + ϵ

)
+ ϵ
)

= log(n)
D log(4/3)

(
20 log2(n)

) log(n)
D log(4/3) 3 log2(n)O

(
2log(n)(2(1 − 2

log(δ)
log7(n)))log3(n)

+2log(n) log3(n)
(

(1 − 2
log(δ)

log7(n))2 log3(n) + ϵ

)
+ δ2−10 log(n) log(log(n))

)
≤ (log(n))2 log(n) · poly(n) ·

(
(2(1 − 2

log(δ)
log7(n)))log3(n) + ϵ + δ2−10 log(n) log(log(n))

)
≤ (log(n))2 log(n) · poly(n) ·

((
O

(
1

log4(n)

))log3(n)

+ 2 · δ2−10 log(n) log(log(n))

)

http://arxiv.org/abs/1909.11485
https://doi.org/10.1098/rspa.2010.0301
http://arxiv.org/abs/1806.01838.
http://arxiv.org/abs/2102.01960
http://arxiv.org/abs/1909.06210.
https://doi.org/10.26421/QIC4.2-5

S. Dontha, S. J. S. Tan, S. Smith, S. Choi, and M. Coudron 9:15

≤ 22 log(n) log(log(n)) · poly(n) ·
(

O

(
1

log4(n)

))log3(n)

+ δ2−8 log(n) log(log(n))

≤ o(1) · δ + o(1) · δ = o(1) · δ (6)

where the first inequality follows from our result from the next subsection and the rest follows
by calculation, noting that E3(n, K, T, ϵ, ∆) ≥ (2e(n) + 2g(n))∆ for our specific choice of
parameters (in particular ∆ = log(n)). Note from [3] that e(n) ≤ (1−2

log(δ)
log7(n)) = O(1/ log4(n))

(since δ ≥ n− log2(n) = 2− log(n)3 as verified in Algorithm 1), K = log3(n), T = log3(n), and
ϵ = δ2−10 log(n) log(log(n)). The final inequality, which claims 22 log(n) log(log(n)) · poly(n) ·(

O
(

1
log4(n)

))log4(n)
= o(1) · δ, again follows because δ ≥ n− log2(n) as verified in the driver

algorithm, Algorithm 1.
As described on page 22 of [3], ⟨0ALL|Ψ∅⟩ ⟨Ψ∅|0ALL⟩ is the quantity that we wish for

Algorithm 2 to output. Refer to Definition 17 and Lemma 18 from [3] for the definition
of |Ψ∅⟩ and |Ψσ⟩ for the subsequent analysis. Since Algorithm 2 depends on recursively
calling itself, recall ηi from Equation 2 that defines the number of recursive calls for some
dimension i. The error between the returned output of Algorithm 2, (defined on Line 10 of
that algorithm) and the desired output quantity ⟨0ALL|Ψ∅⟩ ⟨Ψ∅|0ALL⟩ is written below:

f(S, ηD, ∆, ϵ, D) ≤
∥∥∥ ⟨0ALL|Ψ∅⟩ ⟨Ψ∅|0ALL⟩ − A(S, ηD, D, ϵ)

∥∥∥
≤
∥∥∥ ⟨0ALL|Ψ∅⟩ ⟨Ψ∅|0ALL⟩ −

∑
σ∈P([∆])\∅

(−1)|σ|+1 ⟨0ALL|Ψσ⟩ ⟨Ψσ|0ALL⟩
∥∥∥

+
∥∥∥ ∑

σ∈P([∆])\∅

(−1)|σ|+1 ⟨0ALL|Ψσ⟩ ⟨Ψσ|0ALL⟩ − A(S, ηD, D, ϵ)
∥∥∥

≤ (2e(n) + 2g(n))∆ +
∥∥∥ ∑

σ∈P([∆])\∅

(−1)|σ|+1 ⟨0ALL|Ψσ⟩ ⟨Ψσ|0ALL⟩ − A(S, ηD, D, ϵ)
∥∥∥

= (2e(n) + 2g(n))∆ +
∥∥∥∥ ∑

σ∈P([∆])\∅

(−1)|σ|+1 ⟨0ALL|Ψσ⟩ ⟨Ψσ|0ALL⟩

−
(∆∑

i=1

1
(κi

T,ϵ)4K+1 A(SL,i, ηD − 1, D, ϵ) · A(Si,R, ηD − 1, D, ϵ)

−
∆∑

i=1

∆∑
j=i+1

1
(κi

T,ϵκj
T,ϵ)4K+1

A(SL,i, ηD − 1, D, ϵ) · Afull(Si,j , B, D − 1, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

+
∆∑

i=1

∆∑
j=i+2

1
(κi

T,ϵκj
T,ϵ)4K+1

A(SL,i, ηD − 1, D, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

·
[∑

σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1Afull

((
⊗k∈σΠK

Fk
⟨0Mk

|
)

ϕi,j

(
⊗k∈σ |0Mk

⟩ ΠK
Fk

)
, B, D − 1, E3(ϵ)

)])∥∥∥∥
Grouping analogous terms and using triangle inequality gives:

f(S, ηD, ∆, ϵ, D) ≤ (2e(n) + 2g(n))∆

+

∥∥∥∥ ∆∑
i=1

(〈
0ALL

∣∣Ψ{i}

〉〈
Ψ{i}

∣∣0ALL

〉
−

1
(κi

T,ϵ
)4K+1 A(SL,i, ηD − 1, D, ϵ) · A(Si,R, ηD − 1, D, ϵ)

)

+
∆∑

i=1

∆∑
j=i+1

(
1

(κi
T,ϵ

κj
T,ϵ

)4K+1
A(SL,i, ηD − 1, D, ϵ) · Afull(Si,j , B, D − 1, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

−
〈

0ALL

∣∣Ψ{i,j}

〉〈
Ψ{i,j}

∣∣0ALL

〉)
TQC 2022

9:16 Approximating Output Probabilities of Shallow Quantum Circuits

−
∆∑

i=1

∆∑
j=i+2

∑
σ∈P({i+1,...,j−1})\∅

(
1

(κi
T,ϵ

κj
T,ϵ

)4K+1
A(SL,i, ηD − 1, D, ϵ)

· A(Sj,R, ηD − 1, D, ϵ) · (−1)|σ|+1Afull

((
⊗k∈σΠK

Fk

〈
0Mk

∣∣)ϕi,j

(
⊗k∈σ

∣∣0Mk

〉
ΠK

Fk

)
, B, D − 1, E3(ϵ)

)
− (−1)|σ|+1

〈
0ALL

∣∣Ψ{i,j}∪σ

〉〈
Ψ{i,j}∪σ

∣∣0ALL

〉)∥∥∥∥
≤ (2e(n) + 2g(n))∆

+
∆∑

i=1

∥∥∥∥(〈0ALL

∣∣Ψ{i}

〉〈
Ψ{i}

∣∣0ALL

〉
−

1
(κi

T,ϵ
)4K+1 A(SL,i, ηD − 1, D, ϵ) · A(Si,R, ηD − 1, D, ϵ)

)∥∥∥∥
+

∆∑
i=1

∆∑
j=i+1

∥∥∥∥(1
(κi

T,ϵ
κj

T,ϵ
)4K+1

A(SL,i, ηD − 1, D, ϵ) · Afull(Si,j , B, D − 1, E3(ϵ)) · A(Sj,R, ηD − 1, D, ϵ)

−
〈

0ALL

∣∣Ψ{i,j}

〉〈
Ψ{i,j}

∣∣0ALL

〉)∥∥∥∥
−

∆∑
i=1

∆∑
j=i+2

∥∥∥∥ ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1

(
1

(κi
T,ϵ

κj
T,ϵ

)4K+1
A(SL,i, ηD − 1, D, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

· Afull

((
⊗k∈σΠK

Fk

〈
0Mk

∣∣)ϕi,j

(
⊗k∈σ

∣∣0Mk

〉
ΠK

Fk

)
, B, D − 1, E3(ϵ)

)
−
〈

0ALL

∣∣Ψ{i,j}∪σ

〉〈
Ψ{i,j}∪σ

∣∣0ALL

〉)∥∥∥∥ (7)

We will now use Lemma 11, 12, and 13 that are adapted versions of Lemma 29, 30, and
31 from [3] to bound the last three terms of the above inequality. Because their bounds are
independent of dimensions, the proofs for the three lemmas will be similar to the proofs
in [3].

f(S, ηD,∆, ϵ, D) ≤ (2e(n) + 2g(n))∆ + ∆ (E1(n, K, T, ϵ) + 2f(S, ηD − 1, ∆, ϵ, D))

+ ∆2 (E2(n, K, T, ϵ) + 2f(S, ηD − 1, ∆, ϵ, D))

+ ∆2 (E3(n, K, T, ϵ, ∆) + 16f(S, ηD − 1, ∆, ϵ, D))

≤ (2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆) + 20∆2f(S, ηD − 1, ∆, ϵ, D)

= (2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

+ 20∆2

[
(2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆) + 20∆2f(S, ηD − 2, ∆, ϵ, D)

]

=
ηD−1∑

i=0

[
(20∆2)i

(
(2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

)]
+ (20∆2)ηD f(S, 0, ∆, ϵ, D)

≤ ηD(20∆2)ηD

(
(2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

)
+ (20∆2)ηD ϵ

≤ ηD(20∆2)ηD
(
ϵ + (2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

)
≤ ηD(20∆2)ηD

(
(2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ϵ, ∆)

)
(8)

where the above inequalities follow because E3(n, K, T, ϵ, ∆) ≥ E2(n, K, T, ϵ) ≥ E1(n, K, T, ϵ)
and f(S, 0, ∆, ϵ, ·) ≤ ϵ ≤ E3(n, K, T, ϵ, ∆) ◀

S. Dontha, S. J. S. Tan, S. Smith, S. Choi, and M. Coudron 9:17

▶ Lemma 11.∥∥∥∥∥
(

1
(κi

T,ϵ)4K+1 A(SL,i, ηD − 1, D, ϵ) · A(Si,R, ηD − 1, D, ϵ) −
〈
0ALL

∣∣Ψ{i}
〉 〈

Ψ{i}
∣∣0ALL

〉)∥∥∥∥∥
≤ E1(n, K, T, ϵ) + 2f(S, ηD − 1, ∆, ϵ, D),

where E1(n, K, T, ϵ) ≡ 10K(e(n)2T + 6g(n) + ϵ).

▶ Lemma 12.∥∥∥∥∥
(

1
(κi

T,ϵκ
j
T,ϵ)4K+1

A(SL,i, ηD − 1, D, ϵ) · Afull(Si,j , B, D − 1, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

−
〈
0ALL

∣∣Ψ{i,j}
〉 〈

Ψ{i,j}
∣∣0ALL

〉) ∥∥∥∥∥
≤ E2(n, K, T, ϵ) + 2f(S, ηD − 1, ∆, ϵ, D), (9)

where E2(n, K, T, ϵ) ≡ 10K(e(n)2T + 6g(n) + ϵ) + ϵ

▶ Lemma 13.∥∥∥∥∥ ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1

(
1

(κi
T,ϵκj

T,ϵ)4K+1
A(SL,i, ηD − 1, D, ϵ) · A(Sj,R, ηD − 1, D, ϵ)

· Afull

((
⊗k∈σΠK

Fk
⟨0Mk |

)
ϕi,j

(
⊗k∈σ |0Mk ⟩ ΠK

Fk

)
, B, D − 1, E3(ϵ)

)
−
〈
0ALL

∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣0ALL

〉) ∥∥∥∥∥ (10)

≤ E3(n, K, T, ϵ, ∆) + 16f(S, ηD − 1, ∆, ϵ, D),

where E3(n, K, T, ϵ, ∆) ≡ O
(
2∆(6g(n)) + 2∆K

(
e(n)2T + ϵ

)
+ ϵ
)

TQC 2022

	1 Introduction
	2 Block-encodings and Syntheses
	3 Algorithms and Analysis
	A Proof of Lemma Statement

