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Abstract
Electric Vehicle routing is often modeled as a generalization of the energy-constrained shortest
path problem, taking travel times and energy consumptions on road network edges to be deter-
ministic. In practice, however, energy consumption and travel times are stochastic distributions,
typically estimated from real-world data. Consequently, real-world routing algorithms can make
only probabilistic feasibility guarantees. Current stochastic route planning methods either fail to
ensure that routes are energy-feasible, or if they do, have not been shown to scale well to large
graphs. Our work bridges this gap by finding routes to maximize on-time arrival probability and
the set of non-dominated routes under two criteria for stochastic route feasibility: E-feasibility and
p-feasibility. Our E-feasibility criterion ensures energy-feasibility in expectation, using expected
energy values along network edges. Our p-feasibility criterion accounts for the actual distribution
along edges, and keeps the stranding probability along the route below a user-specified threshold
p. We generalize the charging function propagation algorithm to accept stochastic edge weights to
find routes that maximize the probability of on-time arrival, while maintaining E- or p-feasibility.
We also extend multi-criteria Contraction Hierarchies to accept stochastic edge weights and offer
heuristics to speed up queries. Our experiments on a real-world road network instance of the Los
Angeles area show that our methods answer stochastic queries in reasonable time, that the two
criteria produce similar routes for longer deadlines, but that E-feasibility queries can be much faster
than p-feasibility queries.
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1 Introduction

Routing methods for Electric Vehicles (EVs) cannot just minimize travel time, but must also
address driver range anxiety. EVs have limited battery capacity, charging times are long,
and the charging infrastructure remains relatively sparse, so a major concern is stranding,
which occurs when the battery’s State of Charge (SoC) reaches zero en route. A route for an
EV is hence considered feasible only if the SoC along the route never reaches zero.

Merely trying to minimize travel time greatly increases the risk of stranding, since
energy consumption is typically quadratic in vehicle speed. Standard formulations such
as [9, 14, 30] model EV routing as a generalization of the NP-hard Constrained Shortest
Path problem [26, 58], and seek to minimize travel time while maintaining a non-zero SoC
along the route. Some recent work [7, 36] even tries to exercise direct control over travel
time and route feasibility, by pre-determining and assigning optimal EV travel speeds for
each road segment.
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15:2 Stochastic Route Planning for Electric Vehicles

Most existing problem formulations also assume that travel times and energy consumption
values on road network edges are deterministic. In practice, both travel time and energy
consumption are stochastic, and difficult to estimate reliably [2, 17, 46]. In such a context,
even routing algorithms offering strong feasibility guarantees are of limited value. Approaches
that pre-determine and assign vehicle speeds for each edge are not practical, since speed is
not always a variable under driver control, but rather a result of prevalent traffic conditions.

Consequently, travel times and route feasibility may only be defined probabilistically.
Stochastic routing algorithms [12, 20, 40, 39, 38, 42, 43, 44, 27, 59], model travel times
along network edges as random variables with given probability distributions, and allow
richer query semantics, such as finding paths to maximize the probability of arrival before a
deadline [15], or finding the latest departure time and path to guarantee a certain probability
of arrival before a deadline [35]. Despite recent improvements [47], stochastic routing is
typically several orders of magnitude slower than deterministic routing, since obtaining travel
time distributions along a path requires very expensive convolutions of its edge distributions.

Limited work exists on stochastic route planning for EVs. Chen et al. [13] assume
lognormal travel-time and Gaussian energy-consumption distributions, and uses bicriteria
search to find the Pareto-optimal routes optimizing energy consumption and travel time
reliability. Jafari et al. [25] allow arbitrary distributions of travel times on edges and charging
stations, and uses multicriteria search to minimize the cost of charging and travel time, subject
to a minimum reliability threshold, on small synthetic graphs with randomly generated
edge weights and charging station placements. Shen et al. [51] allow correlated travel time
distributions between edges, and use bicriteria search on travel times and energy consumptions.
However, they assume deterministic energy consumptions, and run experiments on a network
of only a few hundred vertices.

1.1 Our Contributions
We study EV routing when both travel times and energy consumptions are stochastic. The
travel time on each edge e ∈ E of a road network G = ⟨V, E⟩ is always a random variable
Te with a known distribution (estimated from data, say). The energy consumption along
e is a function εe of EV speed and distance. We introduce two probabilistic definitions of
route feasibility: We say that a route is E-feasible if the SoC of the EV is always maintained
above zero in expectation, and p-feasible if the probability of route feasibility is at least p.
We show how to enhance stochastic routing queries for travel times with these feasibility
criteria to find non-dominated feasible routes and probabilistic budget feasible routes. Our
work addresses the four types of stochastic routing queries in the cells of the following table:

E-Feasibility p-Feasibility
Non-Dominated Routes ✓ ✓

Probabilistic Budget Routes ✓ ✓

We address these queries by generalizing the Charging Function Propagation algorithm
of [8, 9] to accommodate stochastic edge weights. We evaluate our methods experimentally
using a realistic road network instance with travel time distributions derived from traffic speeds
observed over four and a half months in the Los Angeles area, and real-world elevations
and charging station locations. Further, we apply an uncertain variant of Contraction
Hierarchies [21] to speed up our queries and present results. Our results indicate that in
general, E-feasible routing queries can be computed much faster than p-feasible queries, and
produce similar routes for longer routes with higher time budgets.
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Stochastic
Routing

Routing Objective Distribution Type Algorithm Output

minimize E[T ]
[11, 33, 32]

maximize Pr[T < d]
[15], This work.

lower-boundPr[T < d]
[35]

In functional form
[28, 13, 51, 40]

In arbitrary form
[35, 23, 18, 20, 42,
48, 38], This work.

Driver Policy
[11, 15, 48, 27, 37]

Actual Routes
[35, 40, 39, 38, 28, 13,
51, 42, 23], This work.

Figure 1 Stochastic route planning, classified by routing objective, edge distribution, and result.
Our work finds energy-feasible routes that maximize probability of arrival before deadline.

2 Related Work

EV routing has been typically modeled as energy-aware routing, with objective functions
ranging from minimizing the total energy consumption [14, 49], to minimizing travel time
while maintaining route feasibility [3, 9, 36, 54], to multicriteria search on both travel time and
energy consumption [22]. In contrast, most prior work on routing Internal Combustion-based
vehicles merely minimizes the total travel time [4, 53].

More attention is now being paid to real-world issues. Examples include allowing battery-
swapping stations [56], partial recharges at stations [9, 30, 8, 57] and maintaining battery
buffer to relieve range anxiety [45, 24, 18]. Many challenges remain, however. The energy
consumption models are imperfect, and factors such as battery wear, driver aggressiveness [31],
or traffic conditions are hard to model, but can have a significant impact. Data also suggests
that drivers may prefer familiar paths to shortest paths [60, 29].

2.1 Stochastic Route Planning
Stochastic route planning goes back to [20], which attempted an exact solution for the
shortest path problem in stochastic graphs, using Monte Carlo simulations to derive path
weights. It is now known that driver behavior changes if travel time is stochastic [19, 52], so
problem variants have been explored. Existing work can be categorized in three ways: by
objective function, the forms assumed for edge probability distributions, and by targeted
outcome. For conciseness, we discuss our categorization here, and show references in Figure 1.

By routing objective. Routing objectives can be quite varied, such as minimizing expected
time [11, 33, 32], maximizing the on-time-arrival probability [15], maintaining on-time-arrival
probability above a given threshold [35]. Some works [51, 13, 25] apply stochastic routing
algorithms to EVs, while others [1] route multiple EVs collaboratively, on-line.

By distribution. The edge distributions assumed can have a functional form, or be arbitrary
without a closed form. This choice also affects the edge weight representations used. For
functional forms, storing the distributional parameters suffices, but arbitrary distributions
require more space-intensive representations such as histograms. Further, with functional
forms, a small number of observations can suffice to capture real-world behaviour, but
histograms require much more data. Edge weight representations have been shown to
significantly affect the runtime performance of stochastic shortest path queries [44, 47].
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Output. Adaptive methods [41, 35] output policies for drivers to make routing decisions
on-line, as they reach vertices or edges during the drive. In contrast, a-priori approaches
produce routes before travel begins. [35] showed that adaptive approaches can produce
strictly better solutions than the a-priori approaches, but are much more computationally
expensive. Recently, performance improvements to policy-based approaches, such as the
Stochastic On-Time Arrival problem have also been proposed [48, 37, 27].

3 Problem Setup

A road network is a directed graph G = ⟨V, E⟩ where V is the set of vertices and E : V × V

is the set of edges. An s-t path P = [s = v1, v2 · · · , vn = t] is a sequence of adjacent vertices
in the road network G. A set C ⊆ V is marked as charging stations.

▶ Definition 1 (State of Charge). The State of Charge (SoC) of an EV is the charge status
of the EV’s battery, lying between 0 and the battery capacity M . We denote the SoC on
arrival at a vertex v by vβ and the SoC at departure from v by βv. We have βv ≥ vβ if the
EV charges its batteries at node v, and βv = vβ otherwise.

Each c ∈ C has a monotonically increasing, piecewise-linear charging function Φc such
that Φc(cβ, tc) 7→ βc where tc is charging time. We require cβ ≥ 0, and βc ≤ M [45].

▶ Definition 2 (Leg and Prefix). A subpath L = [c1, . . . , v, . . . , c2] is a leg of path P iff c1, c2
are successive charging stations along P . Each λv = [c1, . . . , v], v ̸= c2 is a prefix of L.

3.1 Travel Times and Energy Depletion
The travel time along each edge e is a random variable Te with a known probability
distribution. For problem tractability, we assume that the EV travels on e at a uniform
speed drawn from the distribution Te. This is reasonable, since variable travel time on an
edge can be easily modeled by splitting an edge into several smaller edges.

Let e1, e2, . . . , en−1 be the edges along path P , and let ek have travel time distribution Tk.
The aggregate travel time distribution for the path P is TP = T1 ∗ T2 ∗ · · · ∗ Tn−1, where ∗
denotes linear convolution. Let T∅ be the Dirac “delta” distribution defined so that T∅(0) = 1
and T∅(x) = 0 at x ̸= 0. Now, T∅ functions as a convolution identity, so T∅ ∗ TP = TP .

We assign to each edge e a function εe : R+ → R, which maps a travel time to the battery
energy depleted by travel along e. The total energy depletion is the sum of the work done
along e by the EV against air resistance, rolling resistance, and against gravity. The wind
resistance grows quadratically with speed. If t is the travel time along edge e, these three
terms cause εe(t) to assume the form

εe(t) = ae

t2 − be
+ ce

t
+ de. (1)

where ae, be, ce, de are fixed coefficients for each edge e. We can derive the edge energy
depletion distribution De from the travel time distribution Te using Equation 1, thereby
associating probabilities with energy depletions. A path may have negative energy depletion;
EVs have regenerative brakes, and can accumulate charge, say, when going down a slope.

We can also aggregate energy depletion distributions using convolutions. If e1, e2, . . . , en−1
are the edges along a path P , and edge ei has the depletion distribution Di, the aggregate
energy depletion distribution for P is DP = D1 ∗ D2 ∗ · · · ∗ Dn−1. By analogy with
T∅, we define D∅ to be the Dirac “delta” function corresponding to energy depletion, so
that D∅ ∗ DP = DP . Sometimes, as with expected-feasibility queries, it suffices to add
expectations directly, since E[D1 ∗ D2] = E[D1] + E[D2].
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Table 1 Symbols used in this paper.

Sym Meaning Sym Meaning

TP Travel time distribution on path P T∅ Convolution identity for T

DP Energy depletion distribution on path P D∅ Convolution identity for D

δλ Depletion function for leg prefix λ δ∅ Depletion function for null path

uβ SoC on arrival at vertex u βu SoC at departure from vertex u

Φc Charging function at charging station c εe Energy depletion function on edge e

3.2 E-Feasible Routing
In this class of queries, we assume that the travel times are stochastic, but define feasibility
in terms of the expectations for the energy depletion distributions. Say that an EV starts
from vertex s with State of Charge (SoC) βs ∈ [0, M ] and wishes to travel to vertex t along
the s-t path P . Let leg L = [c, . . . , c′] of P lie between charging stations c and c′ along P .

▶ Definition 3 (E-Feasible Path). Leg L is expected-feasible (or E-feasible) iff E[Dλ] ≤ βc,
where Dλ is the depletion distribution for all prefixes λ of L, and βc is the EV’s SoC when
it departs c. A path P = [L1, L2, . . . , Ln] is E-feasible iff each of its legs Li is E-feasible.

We consider two E-feasible queries:

▶ Query 4 (Non-Dominated E-feasible Paths). Find the set of E-feasible s-t paths such that
their travel time distributions are not dominated by any other path.

▶ Query 5 (Probabilistic Budget E-feasible Path). Find an E-feasible s-t path that maximizes
the probability of reaching t before a given deadline d.

3.3 p-Feasible Routing
▶ Definition 6 (p-Feasible Path). A path P with legs L1, L2, . . . , Ln is p-feasible iff the
probability of the EV not being stranded along P is at least p, the non-stranding probability.

The non-stranding probability of P is given by the product of non-stranding probabilities of
P ’s legs. For P to be p-feasible, each of its legs must have a non-stranding probability of at
least p. We consider two p-feasible queries:

▶ Query 7 (Non-Dominated p-Feasible Paths). Find the set of s-t paths whose travel time
distributions are not dominated by any other path, and which ensure that probability not being
stranded is at least p.

▶ Query 8 (Probabilistic Budget p-Feasible Paths). Find an s-t path which maximizes the
probability of reaching t before a given deadline d, while keeping the probability of not being
stranded is at least p.

4 Charging Function Propagation for E-Feasible Routing

The CFP algorithm of [9] uses only deterministic edge weights, but we show how to extend it
to answer expected-feasible stochastic shortest path queries. As in [9], we ensure that the SoC
on departing a charging station suffices to complete the ensuing leg. Our Dijkstra’s search
labels maintain the set of all possible tradeoffs between charging time and the resulting SoC.
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15:6 Stochastic Route Planning for Electric Vehicles

s t
2 3 1 -5 6

SoC SoC

Charging TimeCharging Time

0.0

0.2

0.4

0.6

30 60 90
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

Figure 2 E-feasible queries. Edges have two weights: a travel time distribution (below), and
an expected energy depletion (above). Shaded nodes are charging stations, with piecewise-linear
charging functions. The CFP search propagates travel time distributions using convolutions.

However, complexities arise since we use stochastic travel times. The deterministic case
can simply use a min-priority queue ordered by travel times, but distributions can be ordered
in different ways. For simplicity, we will use usual stochastic ordering [50] to order the travel
time distributions in the priority queue, under which two random variables X and Y obey
X ⪯ Y iff Pr[X > x] ≤ Pr[Y > x], ∀x ∈ (−∞, ∞). Other stochastic orderings, such as the
hazard rate or likelihood ratio ordering, may result in interesting tradeoffs for the EV, but are
beyond the scope of this paper. Also, deterministic travel times can be simply added along a
path, but travel time distributions must be convolved to aggregate travel time distributions.

For expected-feasible routes, we will use stochastic travel times, but expected values for
energy depletion. That is, let e1, e2, . . . , en be the edges comprising a path P , and let edge ei

have travel time and energy depletion distributions Ti and Di. For expected-feasible routing,
the aggregate travel time distribution TP = T1 ∗ T2 ∗ · · · ∗ Tn, and the aggregate energy
depletion value is E[DP ] = E[D1] + E[D2] + . . . + E[Dn].

4.1 The Depletion Function Along Route Legs

Even if the energy depletion over leg L = [c1, . . . , v, . . . , c2] is deterministic with value EL,
departing c1 with an SoC of βc1 = EL may not suffice to complete L. For instance, L may
go up a hill, climbing which requires more energy than βc1 . Similarly, c2

β, the arrival SoC at
c2, may not equal βc1 + EL when EL < 0, since the SoC can never exceed M .

Consider a prefix λ = [c, . . . , v] of some leg that starts with charging station c. Let sλ be
the minimum starting SoC required to traverse λ, eλ be the maximum ending SoC possible
at v, and let cλ = E[Dλ]. The depletion function δλ (similar to SoC profiles in [8, 9]) for
prefix λ maps the SoC at the start of λ to the SoC at the end of λ, and is defined as

δλ(βc) = vβ =


−∞, if βc < sλ,

eλ, if βc − cλ > eλ,

βc − cλ, otherwise.
(2)

The depletion function for a null path comprising a single vertex s is the identity depletion
function δ∅ : βs 7→ βs. Let P1 = [vi, vi+1, . . . , vj ] and P2 = [vj+1, vj+2, . . . , vk] be contiguous
segments, and P = P1P2 = [vi, . . . , vk] be their concatenation. In this case, we have
sP = max{sP1 , cP1 + sP2}, eP = min{eP2 , eP1 − cP2} and cP = cP1 + cP2 .
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4.2 Dijkstra Search for E-feasible Routes
We find expected-feasible paths via Dijkstra search using two types of priority queues: the
global queue QG holds the travel time distributions from s to all other vertices in the road
network G, and per-vertex queues Lu(v) and Ls(v). Lu(v) and Ls(v) hold the unsettled and
settled search labels at vertex v respectively. All priority queues are ordered by T[s...v] using
the usual stochastic ordering ⪯ defined above. Each label in Ls(v) corresponds to an s-v
path already known to be feasible, and gives the required charging time at the last charging
station. Consequently, as in [9], we maintain the invariant that the minimum element in
Lu(v) is not dominated by any label in Ls(v).

The EV leaves s having acquired an SoC of βs at s, so we treat s as a charging station,
by default. One of our major challenges in the search will be to determine at which stations
to charge, and for how long. Our search hence remembers the last charging station c along
the route in the search labels, since dropping to an SoC below a permissible threshold signals
the need to include a charging time at c, and update route times accordingly.

4.2.1 The Search Algorithm
When the search reaches vertex v, the label at v is a four-tuple ⟨T[s...v], cβ, c, δ[c...v]⟩, where
T[s...v] is the travel time distribution for the subpath [s . . . v], c is the last charging station
en route from s to v, cβ is the arrival SoC at c, and δ[c...v] is the depletion function of the
subpath [c . . . v]. We note that the charging times at some charging stations may be zero.

A label is extracted from Lu(v) on each search iteration, where v is the minimum-travel
time vertex in QG. It is then settled, and added to Ls(v). A label in Ls(v) represents a
path from s to v that we know to be feasible, along with the exact charging time at the
last charging station. A label in Lu(v) represents a potentially feasible path that we haven’t
checked for feasibility. If an unsettled label in Lu(v) is dominated by a label in Ls(v), we
can discontinue search along that path and discard that label, because we already know a
better feasible path. The search proceeds as follows:
1. At s: Mark s as a charging station. Add the label ⟨T∅, sβ, s, δ∅⟩ to Lu(s).
2. At a non-charging vertex v: Let ℓ = ⟨T[s...v], cβ, c, δ[c...v]⟩ be the label extracted from

Lu(v). Since ℓ indicates that c is the last charging station encountered, add label
⟨T[s...v], δ[c...v](cβ), c, δ[c...v]⟩ to Lu(v) and update the travel times for v in QG.

3. At a charging vertex v: Let label ℓ = ⟨T[s...v], cβ, c, δ[c...v]⟩ be the minimum element
extracted from Lu(v). Let tc be the charging time at the last charging station c, so that
βc = Φc(cβ, tc) is the SoC when the EV departs c.
The CFP algorithm of [8, 9] uses only deterministic travel times, but our travel times are
distributions. As [8] shows, however, the charging times corresponding to the breakpoints
of the charging function Φc(·) capture the information required to make the required
tradeoffs between charging times and travel times. To see how we approach the problem,
let τ represent some value for the travel time from s to v, and compute

bℓ(tc, τ) :=
{

δ[c...v](βc) if tc > 0 and T[s...v](τ) > 0
−∞ otherwise

Since the charging function Φc(·) is assumed to be piecewise linear, its breakpoints induce
breakpoints for bℓ. For a given value of τ we need to create one label per breakpoint of
bℓ [8]. For a fixed τ and each breakpoint B = (tB , SoCB) of bℓ, we add to Lu(v) the label
⟨tB , SoCB , v, T∅⟩, and update the travel times to v in QG.
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Figure 3 p-Feasible queries. Travel time and energy depletion are both distributions., propagated
by the CFP search using convolutions. While the non-dominated search stops only when QG becomes
empty, the probabilistic budget route search can stop when TP (t) drops to 0.

In principle, τ can take an infinite number of values. We handle this difficulty by
discretizing the domain of Te. We use histograms to represent Te in our implementation,
and generate only one set of breakpoints per histogram bin.

4. At the destination t: End search, backtrack using parent pointers to extract an s-t path.

A label ℓ is said to dominate another label ℓ′ if bℓ(t, τ) ≥ bℓ′(t, τ) for all t > 0 and all τ > 0.

If we end the search only when QG is empty, not simply when t is reached, we obtain the
E-feasible non-dominated paths. For E-feasible probabilistic budget paths, we end the search
when TP (d) = 0, i.e. the probability of reaching t within the time budget d drops to 0.

5 Charging Function Propagation for p-Feasible Routing

For p-feasible routing, we must consider the actual depletion distribution DP for a path
P , not simply E[DP ], which sufficed for expected-feasible paths. As with expected-feasible
paths, we must also deal with the travel time distribution TP . If path P has the edges
e1, e2, . . . , en, then TP = T1 ∗ T2 ∗ · · · ∗ Tn and DP = D1 ∗ D2 ∗ · · · ∗ Dn. We can use p to
place a bound on the maximum energy depletion we can accommodate over a path P . Let

cP (p) = arg max x{DP (x) ≤ p},

so that cP (p) is the highest energy depletion that could occur along P with a probability of
no more than p, that is, to ensure a non-stranding probability of p.
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We define the stochastic depletion function analogously to Equation 2. Let sP (p) be
the minimum starting SoC at s required to traverse P with non-stranding probability p.
Similarly, let eP (p) be the maximum SoC possible on arriving at vertex t with at least
probability p, and cP = DP . The stochastic depletion function for P is

σP (βs, p) = tβ =


−∞, if βs < sP (p),
eP (p), if βs − cP (p) > eP (p),
βs − cP (p), otherwise.

(3)

Let σ∅ be the identity stochastic depletion profile for a null path, so that σ∅(βs, p) = βs. If
P1 = [vi, vi+1, . . . , vj ] and P2 = [vj+1, vj+2, . . . , vk], the depletion profile of the concatenated
path P = P1P2 = [vi . . . vk] is given by sP (p) = max{sP1(p), cP1(p) + sP2(p)}, eP (p) =
min{eP2(p), eP1(p) − cP2(p)} and cP = cP1 ∗ cP2 .

5.1 Dijkstra Search for p-feasible Routes
The label at vertex v is a four-tuple ⟨T[s...v], cβ, c, σ[c...v]⟩, where T[s...v] is the travel time
distribution for the subpath [s . . . v], c is the last charging station enroute from s to v, cβ is
the arrival SoC at c, and σ[c...v] is the stochastic depletion function of the subpath [c . . . v].

As for E-feasible routes, we maintain a global priority queue QG storing the travel time
distributions from s, and queues Lu(v) and Ls(v) to store the unsettled and settled labels at
vertex v respectively. All queues use the usual stochastic ordering. On each search iteration,
a label is extracted from Lu(v), where v is the minimum-travel time vertex in QG, settled,
and added to Ls(v). Each label in Ls(v) represents a feasible path from s to v, including
the charging time at the last charging station. Each label in Lu(v) represents a potentially
feasible path whose feasibility is yet unverified. If a label ℓ ∈ Lu(v) is dominated by ℓ′ ∈ Ls(v),
we can prune the search along that path and discard ℓ, because a faster feasible path is
already known. p-feasible queries have four parameters: the source vertex s, the destination
vertex t, the βs, and the given p. The search proceeds as follows:
1. At s: Mark s as a charging station. Add the label ⟨T∅, sβ, s, σ∅⟩ to Lu(s).
2. At a non-charging vertex v: Let ℓ = ⟨T[s...v], cβ, c, σ[c...v]⟩ be the label extracted from

Lu(v). Since c is the last charging station encountered on the route represented by ℓ, add
label ⟨T[s...v], σ[c...v](cβ, p), c, σ[c...v]⟩ to Lu(v) and update the travel times for v in QG.

3. At a charging vertex v: Let ℓ = ⟨T[s...v], cβ, c, σ[c...v]⟩ be the label extracted from Lu(v).
Let tc be the charging time at the last charging station c, so βc = Φc(cβ, tc). As with
E-feasible routes, the charging times corresponding to breakpoints of Φc(·) suffice to make
the required trade-off between charging and travel times. Let τ represent some value for
travel time from s to v, and compute

b′
ℓ(tc, τ, p) :=

{
σ[c...v](βc, p) if tc > 0 and T[s...v](τ) > 0
−∞ otherwise

Since Φc(·) is piecewise linear, its breakpoints induce breakpoints for bℓ. Moreover, p is
already known at query time, so for a given value of τ , we only need to create one label
per breakpoint of b′

ℓ [8]. For a fixed τ and each breakpoint B = (tB , SoCB) of b′
ℓ, we add

to Lu(v) the label ⟨tB , SoCB , v, T∅⟩, and update the travel times to v in QG.
As with E-feasible routes, τ can take an infinite number of values, but we use histograms
to represent Te, and we need to generate only one set of breakpoints per histogram bin.
Lastly, we verify p-feasibility of path [s . . . v], by maintaining the running product of the
non-stranding probabilities of all legs over this path. If this product falls below p, the
path [s . . . v] is no longer p-feasible. The search is pruned and labels for v are dropped.
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4. At the destination t: End search, backtrack using parent pointers to extract an s-t path.
For a given p, a label ℓ dominates another label ℓ′ if b′

ℓ(t, τ, p) ≥ b′
ℓ(t, τ, p) for all t > 0 and

τ > 0. If the search terminates only when QG is empty, the resulting s-t paths are the
p-feasible Non-Dominated Paths. For Probabilistic Budget queries, we end the search only
when it reaches far enough for the probability of reaching t within the time budget d is 0.

6 Stochastic Contraction Hierarchies

For deterministic queries, Contraction Hierarchies (CHs) [21] are widely used for speed up.
Graph vertices are ranked, and contracted in ranked order. If u-v-w is a shortest path from
u to w, vertex v is contracted by adding an edge u-w, and removing v from the graph. Such
shortcuts significantly speed up the query-time Dijkstra search. The vertex ranks and the
edge-weight hierarchy significantly affect preprocessing and query times [6]. A multicriteria
CH variant is used in [55] for constrained shortest paths with positive weights. The CHArge
algorithm [9, 8] combines a partial multicriteria CH with A* search. It contracts most graph
vertices, creating a partial multicriteria CH but keeps an uncontracted core with charging
stations. A* search using potential functions is used in the core to find routes at query time.

CHs have also been applied recently to stochastic route planning [42, 47]. However, we
are interested in finding feasible routes that satisfy the energy bounds on EVs. Our queries
are stochastic, and in fact doubly so. Travel time is always stochastic, and energy depletion
is also stochastic for p-feasible queries. The stochastic dominance criterion is known to be
too restrictive in practice [61], so it is hard to find dominating paths for most shortest paths
in the network. Since the added shortcuts in CHs must not violate correctness, we can only
avoid adding a shortcut covering a shortest path P only if we can find another witness path
that dominates P [21, 55].

We solve this problem by relaxing our definition of dominance as follows. For distributions
TP and DP , we use the restricted-dominance criterion of [10], which checks if the CDF of one
distribution is greater than that of the other within a fixed interval I, which we set to two
standard deviations on each side of E[TP ] or E[DP ]. For search labels, we use a definition
of ϵ-dominance similar to that of [5, 45]. We say that a label ℓ1 dominates another label ℓ2
if all breakpoints of bℓ1 or b′

ℓ1
have SoCB values within ϵ of bℓ2 or b′

ℓ2
. We set ϵ = 2% of

battery capacity in our experiments.

7 Experiments

Our algorithms were implemented in Rust 1.60.0-nightly with full optimizations and run on
an Intel core i5-8600K processor with 3.6GHz base clock, 192KB of L1, 1.5 MB of L2, and 9
MB of L3 cache and equipped with 64GB of dual-channel 3200MHz DDR4 RAM.

7.1 Preparing a realistic routing instance
We extracted traffic speeds from Mapbox Traffic Data1 for Tile 0230123,2 between 15th July
and 30th November, 2019. Tile 0230123 covers Los Angeles county between Long Beach
and Oxnard, and yielded a graph with 559,271 vertices and 1,058,450 edges. The dataset
contained speed updates for an edge subset at 5-minute intervals, which we aggregated

1 https://www.mapbox.com/traffic-data
2 https://labs.mapbox.com/what-the-tile

https://www.mapbox.com/traffic-data
https://labs.mapbox.com/what-the-tile
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into weekday and weekend speed histograms. We discarded the weekend histograms due to
sparsity, and used only the weekday speeds for our experiments. We added latitudes and
longitudes for each vertex from the OSM dataset taken from GeoFabrik,3 contracted the
degree-2 vertices, and extracted the largest connected component. This step resulted in the
final routing graph of 244,728 vertices and 453,942 edges.

We added elevation data from the NASADEM dataset [34] at 30M resolution to each
vertex, using bilinear interpolation to estimate elevations at vertex locations. Lastly, we
obtained charging stations from the Alternative Fuels Data Center,4 marking the vertex
closest to each charging station as the charging vertex. The charging function Φc on each
vertex c was linear, and either (1) a slow, charging to 100% in 100 minutes, or (2) fast,
charging up to 80% in 30 minutes, and up to 100% in 60 minutes. We randomly assigned the
slow charging function to 70% of charging stations, the fast charging function to the rest.

Energy consumption parameters for εe on all edges e were derived using the vertex
elevations and the values ae, be, ce, de used for Nissan Leaf 2013 in [16]. To force the search
to require charging en route for feasibility, we assumed that the EV had a 12 kWh battery.

Choice of edge weight representation. Histograms capture arbitrary Te and De distribu-
tions, but take more space. Functions may be less faithful to real-world distributions, but are
compact and may lead to faster queries in some cases [47]. We used histograms to represent
the travel time and energy consumption distributions on edges since our dataset had enough
data for most edges. This allows us to represent arbitrary distributions while keeping the
implementation simple.

Applying Contraction Hierarchies. Building a full CH by contracting all vertices of the
graph can be prohibitively expensive due to the high cost of contracting the highest ranked
vertices [9]. So, we build a only partial CH by contracting 97% of the vertices, keeping an
uncontracted core containing all the charging stations on the network. Queries are run in
three stages—from s to a vertex in the core restricted to using only (upward) edges from lower
to higher ranked vertices, backward search from t to a vertex in the core using downward
edges, and a simple bidirectional search within the core of the network.

7.2 Results
Using stochastic edge weights raises many challenges that do not arise for deterministic weights.
Two obvious issues are maintaining route feasibility, and aggregating edge distributions Te

and De into path distributions TP or DP , which requires expensive convolutions. Several
other issues also arise, two of which we will discuss.

Number of histogram bins. The time and energy value ranges in the path distributions
TP , DP increases linearly with the number of edges in P , so more histogram bins are needed
to maintain accuracy. As in the deterministic case, the Dijkstra search labels track the travel
time-charging time tradeoff. The labels represent histograms, so the label sizes increase with
the number bins used for TP and DP . Labels become progressively larger for longer routes,
raising the cost of all operations on the distributions, (convolution, dominance checks, etc.).

3 https://download.geofabrik.de/north-america/us/california/socal.html
4 https://afdc.energy.gov/fuels/electricity_locations.html
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At charging stations, moreover, we must create a set of breakpoints per bin of the energy
depletion histogram. More breakpoints are created for charging stations further along the
route, increasing costs and making label dominance checks labels more difficult.

We also note that the CH shortcuts represent longer routes, whose histograms have more
bins than the original graph edges. Shortcut edges are hence more expensive to handle than
original graph edges, decreasing the utility of shortcuts in speeding up route planning queries.

Ensuring stochastic feasibility. Standard probabilistic budget routes use a single criterion,
such as travel time [42, 47]. In contrast, our queries must handle search with two criteria to
maintain feasibility. Further, the number of breakpoints in the charging functions along a
route determines the number of labels generated.

For deterministic edge weights, path costs are just sums of edge costs, so routing takes
just microseconds even on continent-sized road networks [4]. Routing with stochastic edge
weights is far slower, since the convolutions needed to get path costs are very expensive.
Prior work [42, 47] deals only with stochasticity in time, ignoring energy feasibility, but we
consider both aspects. Our methods take tens of seconds, which is comparable to these prior
methods. In preliminary experiments, our use of stochastic, multicriteria CH yielded a 2–2.4
factor speedup over queries not using CH. In deterministic settings, similar methods have
been reported to achieve speedups of two to three orders of magnitude [21]. This lower gain
can be attributed to the weaker “hierarchy” with stochastic edge weights, causing far more
shortcuts to be added to the original graph. This forces the Dijkstra search to scan many
more edges on settling each vertex.

Table 2 Single-criterion probabilistic budget routing queries [47] vs. our E-feasible and p-feasible
queries on the Tile 0230123 graph. Query times (seconds) are averages over 100 random vertex pairs.
The EV is a Nissan Leaf 2013 with 12 kWh battery and 50% starting SoC.

d Feasibility Ignored [47] E-feasible Routes p-feasible Routes

p = 0.8 p = 0.85 p = 0.9

5 min. 6.192 10.662 12.993 11.99 10.31
15 min. 19.999 24.711 38.71 38.9 36.2
25 min. 45.384 38.123 75.05 73.8 71.34

Table 2 quantifies the overhead of maintaining feasibility of routes in stochastic settings,
and compares the query times for single-criteria probabilistic budget routes (time only,
feasibility ignored) with those of our two-criteria feasible probabilistic budget routes. Single-
criteria routing is fastest, followed by E-feasible routing, and p-feasible routing. The anomaly
for d = 25 minutes can be understood as follows. Multicriteria search must explore a larger
set of routes from the source than single-criteria queries, because it needs to return the
pareto frontier of routes, rather than a single route. The E-feasible and p-feasible queries
must also carry and update per-vertex labels, and maintain more information in each label
to capture the travel time-charging time tradeoffs. However, we use the restricted dominance
criterion for E-feasible and p-feasible routes but not for the single-criteria routes, making the
cost per convolution is slightly lower for the two feasible-path queries. This suffices to make
E-feasible routing slightly faster for longer routes than even single-criterion queries.

Table 3 compares E-feasible and p-feasible queries, for longer deadlines. E-feasible queries
are generally faster than p-feasible queries because they must convolve only TP , but p-feasible
queries convolve both TP and DP . p-feasible queries with higher p thresholds tend to run
slightly faster, as they can prune the search quicker than searches run with lower p.
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Table 3 E-feasible and p-feasible query performance on the Tile 0230123 graph, with real-world
charging station and elevation data. Query times (seconds) are over 500 random vertex pairs. EV
used is a Nissan Leaf 2013 fitted with a 12 kWh battery and 50% starting SoC.

Query Type Feasibility Threshold Time Budget (d)

10 min. 20 min. 30 min. 40 min.

E-feasible — 18.01 34.975 48.662 72.198

p = 0.8 33.1 52.895 81.94 91.04
p = 0.85 27.1 49.58 80.35 98.312
p = 0.9 26.43 47.901 78.419 96.51p-feasible

Table 4 Average Jaccard Index for 500 random E-feasible and p-feasible routes, with p = 0.85.
The index is 0 when the routes are edge-disjoint, and 1 when they are identical.

Queries Compared d Avg. Jaccard Index

10 min. 0.73
20 min. 0.74
30 min. 0.87
40 min. 0.94

E-feasible and p-feasible,
for p = 0.85

Table 4 shows how similar the E-feasible and p-feasible routes are, using the average
Jaccard Similarity between the set edges of a route chosen by each of them. The Jaccard
similarity for two routes P1 and P2 is the number of edges common to both divided by the
number of edges in their union. That is,

J(P1, P2) = |{e ∈ P1} ∩ {e ∈ P2}|
|{e ∈ P1} ∪ {e ∈ P2}|

The Jaccard index clearly increases with the time budget, so the E-feasible and p-feasible
routes are more similar when the routes are longer. This is because longer routes require
more convolutions, making DP closer to the Gaussian, which is more concentrated near its
mean. In such cases, the pruning of edges forced by the feasibility criterion brings the set
of edges of E-feasible routes closer to the set of edges for p-feasible routing. For shorter
routes, however, the difference between the two types of queries is higher. Hence, if stronger
feasibility guarantees are desired for shorter routes, p-feasible queries may be better.

8 Conclusion and Future Work

EV routing methods usually model the problem as a generalized constrained shortest-path
problem, with deterministic travel times and energy consumptions. This is unrealistic since
these are really stochastic parameters. Current stochastic route planning methods either
fail to ensure that routes are energy-feasible, or when they do, have not been shown to
scale well to large graphs. In this work, we address this shortcoming by making travel
time and energy consumption stochastic, and requiring paths to be energy-feasible. We
defined two energy-feasibility criteria, namely, E-feasibility and p-feasibility. We showed
how to generalize the standard Charging Function Propagation algorithm of [8, 9] to accept
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stochastic edge weights, while allowing recharging stations. We also applied a multicriteria
variant of stochastic Contraction Hierarchies to speed up our queries, using the restricted
stochastic dominance criterion of [10] and the ϵ-dominance among labels. We demonstrated
that our techniques were feasible in the real world by running experiments on a realistic
routing instance, using real-world travel speeds in the Los Angeles area collected over four
and a half months. The similarity between E-feasible and p-feasible routes indicates the
potential applicability of a tiered-hierarchy style approach [47] to help speed up stochastic
feasible routing queries even further, and could be an interesting avenue for further work.
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