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—— Abstract

We experimentally evaluate the performance of several Max Cut approximation algorithms. In
particular, we compare the results of the Goemans and Williamson algorithm using semidefinite
programming with Trevisan’s algorithm using spectral partitioning. The former algorithm has
a known .878 approximation guarantee whereas the latter has a .614 approximation guarantee.
We investigate whether this gap in approximation guarantees is evident in practice or whether
the spectral algorithm performs as well as the SDP. We also compare the performances to the
standard greedy Max Cut algorithm which has a .5 approximation guarantee and two additional
spectral algorithms. The algorithms are tested on Erdés-Renyi random graphs, complete graphs
from TSPLIB, and real-world graphs from the Network Repository. We find, unsurprisingly, that
the spectral algorithms provide a significant speed advantage over the SDP. In our experiments, the
spectral algorithms return cuts with values which are competitive with those of the SDP.
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1 Introduction

Given as input a graph G = (V, E) and weights w, € RT for all e € E, the Max Cut problem
asks to partition V into two sets such that the sum of the weights of the edges crossing

the partition is maximized. In particular, a cut is given by a pair of sets (5,T) such that
V=8UT and SNT = (). The value of this cut is

Z W(s,t),

(s,t)EE:seS,teT

and Max Cut seeks to find a cut maximizing this quantity.

Max Cut is a problem of vast theoretical and practical significance. It is polynomial
solvable for certain classes of graphs, e.g. planar graphs [9, 15], and is well-known to be NP-
hard in general; it appears on Karp’s original list of NP-complete problems [12]. Additionally,
Max Cut has applications in fields such as data clustering [16], circuit design, and statistical
physics [1]; see Poljak and Tuza for a comprehensive survey [17].

Many researchers have made improvements towards exact solvers for Max Cut. For
general graphs of unbounded average degree, Williams presented a Max Cut algorithm
using exponential space to exactly solve (and count the number of optimal solutions) in
O(m32¢7/3) time where w < 2.376 [24]. Croce, Kaminski, and Paschos introduced an
algorithm to find a Max Cut in graphs with bounded maximum degree, A, running in
O*(2(1=2/2)m) time where O*() suppresses polynomial factors [4]. Golovnev improved this
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to O*(2(1=3/(A+1))n) [8]. Results from Hrga et al., Hrga and Povh, Krislock, Malick, and
Roupin, and Rendl, Rinaldi, and Wiegele utilize branch and bound techniques to produce
further exact solvers [10, 11, 14, 19]. However, due to the lack of an efficient (polynomial-time)
algorithm, researchers have also considered finding good approximation algorithms. An
a-approximation algorithm is a polynomial time algorithm which guarantees a solution with a
value at least an « fraction of the optimal solution. As one of the most well-studied problems
in theoretical computer science, there is a breadth of known approximation algorithms for
Max Cut varying in runtime and approximation guarantee quality.

The simplest randomized approximation algorithm assigns a vertex v € V to either S
or T with equal probability. In expectation, this is a .5-approximation algorithm. Another
.b-approximation can be achieved through a simple greedy algorithm presented by Sahni
and Gonzalez [21]. In this algorithm, start with 5,7 = (. While there are still unassigned
vertices, any unassigned vertex v is chosen and the quantities cg(v) = Zue&(u,v)eE W(w,v)
and 7 (v) = 3, cr.(uw)er W) are computed. If cs(v) > er(v), v is assigned to T' and
otherwise to S.

The .5-approximation guarantee was the best known until Goemans and Williamson [7]
presented a .878-approximation algorithm, which is the best possible guarantee assuming
the Unique Games Conjecture [13]. Their algorithm relies on a semidefinite programming
(SDP) relaxation of the Max Cut problem to find a high-value cut. While the approximation
guarantee likely cannot be surpassed by another polynomial-time algorithm, solving the SDP
can be quite costly in practice.

More recently, Trevisan [23] introduced a simple .531-approximation for Max Cut based on
spectral partitioning. Soto [22] improved this guarantee to .614. Though the approximation
guarantees are weaker than the SDP algorithm, the spectral techniques are much cheaper
to implement. In theory, there is a trade off between the computational speed and solution
quality of Goemans and Williamson’s SDP algorithm versus Trevisan’s spectral algorithm.
This paper seeks to determine whether this trade off exists in practice or if Trevisan’s
algorithm returns solutions competitive with those of the SDP.

Several previous papers have experimentally compared Max Cut algorithms and heuristics.
Bertoni, Campadelli, and Grossi compare cuts computed by their .39-approximation Lorena
algorithm, inspired by Goemans-Williamns SDP, to the SDP and a neural .5-approximation
algorithm [3]. They found, on average, Lorena provided larger cuts on random graphs
in significantly less time than the SDP and comparable time to the neural algorithm.
Dolezal, Hofmeister, and Lefmann compare cuts from six algorithms, including the SDP,
on random graphs concluding that the computationally-cheap random .5-approximation
algorithm provides the best tradeoff between runtime and cut quality [5]. Goemans and
Williamson also included computational results in their initial paper demonstrating the SDP
often outperforms its .878 approximation guarantee. Berry and Goldberg tested several
graph partitioning heuristics against each other and against the SDP, finding the heuristics
consistently produce larger cuts than the SDP [2]. Dunning, Gupta, and Silberholz performed
a systematic review of Max Cut heuristics and computationally tested 19 of them [6]. As
far as we are aware there are no previously published results comparing Trevisan’s spectral
algorithm.

In this paper, we evaluate the performances of the SDP, spectral, and greedy algorithms
on a variety of graphs. Section 2 provides more complete descriptions of the five algorithms
considered. Section 3 describes the experiments and presents the results of the algorithms on
different classes of graphs. Finally, Section 4 concludes with a summary of the performances
and introduces a few possible directions for future theoretical study.
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2  Algorithms

This section describes the five algorithms that we implemented for Max Cut. Section 2.1 de-
scribes the benchmark greedy .5-approximation algorithm for Max Cut. Section 2.2 describes
Trevisan’s spectral algorithm for Max Cut, while Section 2.3 describes two simplifications of
this algorithm. Finally Section 2.4 describes the SDP algorithm.

2.1 Greedy Algorithm

The first Max Cut algorithm we consider is the standard greedy algorithm. This fast and
simple algorithm provides a benchmark for the speed and cut value of the others. For a
graph G = (V, E), we return a cut (L, R) by greedily assigning vertices to either L or R one
at a time. We start with L, R = (). In each step of the algorithm, we choose a vertex v € V'
yet to be assigned to L or R. Then we add v to L or R by choosing the larger of the two
cuts (LU {v}, R) and (L, RU{v}) at this step.

2.2 Trevisan’s Algorithm

The next algorithm for finding a large cut in a graph is Trevisan’s spectral algorithm. Trevisan
proved a .531 approximation ratio for the algorithm, while Soto improved the analysis to
.614. Here, we describe Soto’s presentation of the algorithm. Given a graph G = (V, E) with
|[V| = n, the adjacency matrix A = (a;;) is given by a;; = 1 if (4,j) € E and 0 otherwise.
Then the normalized adjacency matrix A is given by A = D~Y2AD~1/2 where D = diag(d)
for d(i) the degree of vertex i. In our implementation of the algorithm, we compute the
eigenvector, x, corresponding to the minimum eigenvalue of I + A. After normalizing x so
that max; |z;| = 1, a number ¢? is drawn uniformly at random from [0,1]. We let

L={v:z, <-t},
R={v:z, >1t}, and
V' =V\(LUR).

Now (L, R) represents a partial cut of the vertices with V' being the vertices yet to be
partitioned.
Given L, R, and V', we compute

C = total weight of the edges between L and R,
X = total weight of the edges between L U R and V', and
M = total weight of all edges — total weight of the edges between vertices of V.

If C+ X/2— M/2 <0, we use the greedy algorithm to partition the vertices instead of ¢
as the expected value of the cut is worse than that of greedy. If C + X/2 — M/2 > 0, we
keep the partial cut and recurse to find a cut of the vertices in V' given by (L', R’). Finally,
we return the larger of the cuts (LU L', RUR’) and (LUR',RUL’).

Since the results of Trevisan’s algorithm are highly reliant on the t? value chosen, one
could ask if there are ways to modify the algorithm to increase the likelihood of choosing a
good t? value. We tested two methods. The first chooses more than one t? value at each
stage of the algorithm. In particular, T' = max(5,n/k) values were chosen where k was tested
for £k =1,2,5,10,15,25,50,100. The idea here was that choosing many random numbers
should increase the probability of choosing a “good” random number. The major roadblock
is deciding which partial cut corresponding to one of the t? values the algorithm should
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recurse on. We tested the greedy choice. More specifically, C, X, and M were computed
for each drawn t? value as above, and we kept the partial cut maximizing C' + X/2 — M/2.
We made this selection because it represents the partial cut that is currently performing
better than the greedy algorithm by the largest margin. In particular, given a partial cut
due to a partial assignment of vertices, we can consider three types of edges: edges with
both endpoints assigned, edges with exactly one endpoint assigned, and edges with neither
endpoint assigned. The third type are not affected by the partial cut and aren’t considered
in this iteration. However, C' computes the value of the cut in Trevisan’s algorithm due to
the first type of edge. X/2 is the expected value added to this cut from the edges of the
second type if the remaining vertices are greedily assigned, and M /2 is the expected value of
the greedy cut due to edges of both of the first two types. Therefore, if C + X/2 > M/2,
the partial cut being considered is performing better than the greedy algorithm would be in
expectation. The greater the difference between C' + X /2 and M/2, theoretically the better
Trevisan’s algorithm is performing compared to greedy. It is not obvious that this is the best
heuristic, but it does allow the algorithm to test several random values quickly.

Alternatively, we also experimented with running Trevisan’s algorithm for several iter-
ations and maintaining the best cut that was found. The advantage here as opposed to
the previous modification is we do not have to determine which ¢ value to keep. However,
the runtime is slower because the entire algorithm is run several times instead of adding
additional quick random draws.

The results of these modifications for two of the tested graphs are provided in Figure 1.
In each figure, the line represents the results from trials of running the algorithm multiple
times (1, 2, 5, 10, 20, 35, and 50 times). Note that the line is not monotonically increasing.
This is because each group of runs was unique and not a cumulative total. For example,
when considering how well Trevisan’s algorithm performs when running 10 iterations, we run
10 new iterations and do not build off of the 5 from the previous data point. The single dot
represents the average runtime and cut value of the best result when implementing the first
modification of multiple ¢? values.

The experiments were run on a variety of graphs and these are a representative sample.
In general, it seems running the algorithm multiple times is more effective in increasing cut
quality than choosing multiple ¢? values. However, the number of iterations needed is not
obvious, though it appears at least 5 are beneficial. Due to this observation, we use this
method of running Trevisan’s algorithm 5 times and keeping the best cut for the experiments
presented in this paper.

2.3 Simple Spectral and Sweep Cuts Algorithms

The simple spectral algorithm is a modification of Trevisan’s algorithm described in the previ-
ous section. Instead of drawing a random number ¢ in [0, 1], we return the cut corresponding
to t = 0. In particular, let « be the eigenvector corresponding to the smallest eigenvalue
as before. Since scaling numbers by a positive factor does not change their sign, we may
skip the normalizing step for . We let L = {v : 2, <0} and R =V \ L and return the cut
(L, R). This modified simple spectral algorithm has no known approximation guarantee.

The sweep cuts algorithm works in a similar fashion. Here, we consider n — 1 different
cuts and return the best. Given the smallest eigenvector x, we sort the entries so that
xy < my, < --- <z, . Then we calculate the sweep cut value for L; = {i1,...,4,;} and
R; =V \L,for j=1,...,n—1. The sweep cuts algorithm returns the cut (L;, R;) of
maximal value.
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Figure 1 Plots depicting the effects on runtime and returned cut quality of running Trevisan’s
algorithm multiple times on the johnnson16-2-4 and ca-netscience graphs. The X and Y axes are
the time in seconds and the cut value, respectively. The light gray ‘x’ is presented for comparison
and is the result of running Trevisan’s algorithm once, but testing many random values.

It is worth noting that the sweep cuts algorithm will always perform at least as well as
the simple spectral algorithm in terms of cut value since one of the sweep cuts will be the
same as the ¢t = 0 cut. However, it is interesting to see how much better the sweep cuts

algorithm performs since it is also guaranteed to have a slower runtime for the same reasons.

2.4 SDP Algorithm

Goemans and Williamson introduced a .878 approximation algorithm for Max Cut. Instead
of directly solving

1
MazxCut(G) = m‘érgla)il} 3 Z w;ii (1 —zx5)
et i<j

where again w;; is the weight of edge (4, ), they relax this program to one solvable by a
semidefinite program. In particular, instead of requiring z; € {1, —1}, they require v; € R"
to be unit vectors and replace z;2; with (v;,v;). Given a solution to this SDP relaxation,
they draw a random vector r € R™ uniformly from the unit sphere and partition the vertices
according to

L={i:(r,v;) <0} and
R={i: (r,v;) > 0}.

This gives the .878 approximation in expectation. For our testing purposes, we draw 100
random vectors instead of 1. In terms of computation time, this is a cheap modification as
the SDP does not have to be rerun. We return the maximum cut resulting from these 100
random vectors.

3 Experiments

All algorithms were implemented in Julia. They were run on a machine with a 2 GHz Intel
Core i5 processor with 8 GB 1867 MHz LPDDR3 memory. The SDP algorithm was computed
with the JuMP modeling language for Julia and the SCS package providing the splitting
cone solver. The LinearAlgebra package was used for the eigenvector computations of the
spectral algorithms.
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We measured the algorithms’ performance with three types of test data. We used 20
Erdés-Renyi random graphs with 50-500 vertices, 16 complete graphs from TSPLIB [18] with
29-280 vertices (average 124), and 17 sparser graphs from the Network Repository [20] with
39-1133 vertices (average 327).

3.1 Erdés-Renyi Random Graphs

The first class of graphs tested was Erdds-Renyi random graphs. An Erdés-Renyi random
graph G(n, p) is a graph on n vertices where each possible edge is included independently with
probability p. We tested random graphs with n = 50, 100, 200, 350, 500 and p = .1,.25,.5,.75.
In our model, each included edge was given an edge weight of 1.

In terms of speed, the simple spectral algorithm significantly outperformed the other
algorithms on all but three tested random graphs (where greedy was faster). On the other
end of the spectrum, the SDP was far slower than the alternative algorithms. The time
statistics are presented in Table 1. The plots in Figure 2a and Figure 2b illustrate how the
computation times of each algorithm grow as the number of vertices increases. For these
plots, we use the data from Table 1 with p = .5 fixed.

Table 1 The time in seconds each algorithm took to compute a cut of an Erdés-Renyi random

graph.

’ Graph Greedy Trevisan Simple Spectral ~ Sweep Cuts SDP
G(50,0.1) 5560 x 1073 2,503 x 107!  5.192x 1072  3.485x 1072 5.556 x 107!
G(50,0.25) 7.600 x 107* 1.533x 1072  6.600 x 10™*  2.410x10~® 4.711 x 107!
G(50,0.5) 1.280x107% 2.354x 1072  7.800x 10™*  4.760 x 107®  4.502 x 107!
G(50,0.75) 1.870x107% 1.741x 1072  8.000x 10™*  8.690 x 10~® 9.727 x 107!
G(100,0.1) 2.000 x 1073  3.597 x 1072 2.380x 10~®  1.106 x 1072 2.929

G(100,0.25) 3.860 x 1073  6.945 x 1072  2.340x 1073 1.849 x 1072 3.440

G(100,0.5) 7.330x107% 1.021 x 107!  2.370x 1073  3.206 x 1072 7.235

G(100,0.75) 1.064 x 1072  1.162x 10  9.960 x 10~  2.653 x 107* 5.823

G(200,0.1) 1.222x1072 2464 x107%  3.299x 1072 6.941 x 1072 2.575 x 10*
G(200,0.25) 2.963 x 1072 2444 x 107" 8.650x 1073  1.892 x 10™'  2.942 x 10'
G(200,0.5) 5428 x 1072 6.949 x 107! 1.266 x 1072 3.853 x 10”'  3.848 x 10
G(200,0.75)  7.809 x 1072 6.463 x 107" 9.900 x 1073 4.740 x 107! 4.945 x 10!
G(350,0.1)  6.192 x 1072 1.022 2407 x 1072 4184 x 107! 1.216 x 10°
G(350,0.25) 1.737 x 107+ 1.201 3.009 x 10~2 1.138 1.726 x 102
G(350,0.5) 3.013x 107" 1.718 3.848 x 1072 2.342 2.058 x 102
G(350,0.75)  4.438 x 1071 2.015 3.324 x 1072 3.015 2.798 x 102
G(500,0.1)  1.668 x 107" 1.875 7.049 x 1072 1.622 3.355 x 102
G(500,0.25) 3.937 x 107! 2.239 5.936 x 10~2 3.325 3.919 x 102
G(500,0.5) 7.859 x 107" 4.587 6.472 x 1072 6.598 5.669 x 102
G(500,0.75) 1.260 5.263 7.195 x 1072 9.837 8.116 x 107

The spectral algorithms also performed the best in terms of the returned cut quality for
random graphs. The SDP returned the best result for three graphs but one of the cuts was
matched by Trevisan’s algorithm. Trevisan’s algorithm provided the best cut for 5 graphs,
and the sweep cuts algorithm was the second best option for all of these, in addition to being
the best for 14 graphs. These results are provided in Table 2.
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(a) All tested algorithms excluding the SDP. (b) All tested algorithms.

Figure 2 Plots depicting the effects on runtime of increasing the number of vertices of an
Erd6s-Renyi graph with p = .5. The X and Y axes are the number of vertices and the computation
time in seconds, respectively.

Table 2 The value of the cut each algorithm returned for an Erd&s-Renyi random graph.

’ Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP

G(50,0.1)  8.700 x 10'  9.600 x 10* 9.400 x 10* 9.500 x 10'  9.200 x 10*
G(50,0.25)  1.970 x 10>  2.060 x 102 2.060 x 102 2.080 x 10> 2.100 x 10?
G(50,0.5)  3.480 x 10>  3.600 x 102 3.560 x 10? 3.600 x 10>  3.600 x 102
G(50,0.75)  5.140 x 10>  5.140 x 10® 4.990 x 10? 5.190 x 10> 5.240 x 10?
G(100,0.1)  3.210 x 10> 3.290 x 102 3.420 x 102 3.430 x 102 3.290 x 102
G(100,0.25)  7.640 x 10>  7.830 x 10? 7.850 x 102 7.880 x 102 7.860 x 102
G(100,0.5)  1.351 x 10*  1.363 x 103 1.346 x 10° 1.375 x 10> 1.361 x 10°
G(100,0.75)  2.019 x 10*®  2.024 x 10° 2.020 x 10° 2.026 x 10®  2.016 x 10°
G(200,0.1) 1.212 x 10>  1.250 x 103 1.234 x 10° 1.242 x 10°  1.211 x 10®
G(200,0.25)  2.795 x 10*  2.859 x 10° 2.847 x 10° 2.861 x 10®  2.778 x 10°
G(200,0.5)  5.388 x 10°  5.420 x 10° 5.412 x 10? 5.423 x 10®  5.326 x 10°
G(200,0.75)  7.784 x 10*  7.855 x 10° 7.831 x 10° 7.875 x 10®  7.815 x 103
G(350,0.1)  3.556 x 10°  3.582 x 10° 3.639 x 10° 3.651 x 10®  3.611 x 10°
G(350,0.25) 8.378 x 10°  8.544 x 10° 8.583 x 10° 8.585 x 10®  8.236 x 10°
G(350,0.5)  1.623 x 10*  1.627 x 10* 1.643 x 10* 1.649 x 10*  1.603 x 10*
G(350,0.75)  2.356 x 10*  2.378 x 10* 2.374 x 10* 2.374 x 10*  2.353 x 10*
G(500, .1)  7.155 x 10*  7.155 x 10® 7.303 x 10° 7.329 x 10®  7.097 x 10°
G(500, .25) 1.673 x 10*  1.697 x 10" 1.712 x 10* 1.714 x 10*  1.652 x 10*
G(500, .5)  3.272 x 10*  3.275 x 10* 3.313 x 10* 3.314 x 10*  3.311 x 10*
G(500, .75)  4.820 x 10*  4.852 x 10* 4.847 x 10* 4.849 x 10*  4.813 x 10*
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Table 3 The time in seconds each algorithm took to compute a cut of a complete graph from

TSPLIB.
Graph Greedy Trevisan Simple Spectral ~ Sweep Cuts SDP
bayg29  4.300 x 107*  5.040 x 107°  3.100 x 10~™*  9.700 x 10* 1.945 x 107!
bays29  7.500 x 107*  9.660 x 107 6.900 x 10™*  1.160 x 10~®  3.002 x 107!
berlin52  2.190 x 10~  3.058 x 1072 2540 x 107  7.580 x 107  9.291 x 107!
bierl27  3.674 x 1072  3.520 x 107! 1.370 x 102 1.125 x 107! 6.832
brazil58  3.260 x 1073 3.237 x 1072 4.370 x 1073 8.490 x 1073 1.229
brgl80  9.482 x 102 1.223 2.028 x 1071 3.072x 107!  1.548 x 10!
ch130  3.371x 1072 3.355 x 10~* 1.221 x 1072 1.352 x 107! 7.503
ch150  5.701 x 1072 9.769 x 10~* 1.811 x 10™2 1.745 x 1071 1.209 x 10!
d198 1.094 x 107! 1.402 3.997 x 1072 4.869 x 1071 3.844 x 10*
eill0l  1.912x 1072 5535 x 107  8870x 1073  7.724 x 1072 3.982
gri20 2376 x 1072 4.412x 107!  1.050 x 1072 1.153 x 107!  1.372 x 10!
gri37  4.262x 1072 6.078 x 107!  1.493x 1072  1.665 x 107!  1.452 x 10*
gr202  1.194 x 107* 2.471 2.662x 1072  4.779x 107!  3.067 x 10"
gro6 1.632x 1072 3.044x 107"  4.690x 1073  5.674 x 1072 4.753
kroA100 1.880 x 1072  2.037 x 1071 7.720 x 1073 5.644 x 1072 3.285
2280 2.988 x 107! 4.439 6.127 x 10~2 1.534 1.555 x 102

3.2 Complete Graphs

The algorithms were also tested on 16 complete graphs from TSPLIB, an online library of
sample instances for the Travelling Salesman Problem and related graph problems. The
performance in regards to time largely mirrored that of the random graphs. The simple
spectral algorithm was significantly faster than the rest of the algorithms on the vast majority
of graphs, followed by the greedy, Trevisan’s, and sweep cuts algorithms with relatively quick
computation times, and the SDP with a massive slowdown. This data is presented in Table 3.

Again, the spectral algorithms most frequently returned the highest quality cut; these
results are summarized in Table 4. For % (93.75%) of these graphs, the best cut was found
by either the simple spectral algorithm (5 times), Trevisan’s algorithm (3 times) or the sweep
cuts algorithm (12 times). Furthermore, for the graph d198 where the SDP computed the
best cut, the loss in quality from the spectral solutions was quite small. These values are
given in Table 5.

In Figure 3a, Figure 3b, Figure 4a, and Figure 4b, we provide a representative sample
of the trade-off between runtime and returned cut value of the algorithms using the a280,
ch150, and eil101 graphs.

3.3 Sparser Graphs

The third group of graphs is composed of a variety of graphs from the Network Repository,
an online and interactive collection of network graph data coming from a variety of sources
and applications. Though more structured than a random graph, these 17 graphs are sparser
than the complete graphs tested in Section 3.2 and were chosen from a range of real-world
scenarios. Unsurprisingly, the relationships between relative computation times remains
unchanged. The simple spectral and greedy algorithms each accounted for about half of the
fastest times while the SDP was consistently considerably slower (Table 6).



R. Mirka and D. P. Williamson

Table 4 The value of the cut each algorithm returned for a complete graph from TSPLIB.

Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP
bayg29  3.837 x 10 4.225 x 10* 4.269 x 10* 4.269 x 10*  4.269 x 10*
bays29  4.831 x 10*  5.393 x 10* 5.369 x 10* 5.399 x 10*  5.386 x 10*
berlin52  4.532 x 10°  4.616 x 10° 4.465 x 10° 4.681 x 10°  4.522 x 10°
bierl27  2.162 x 107 2.300 x 107 2.322 x 107 2.330 x 107  2.320 x 107
brazil58  2.319 x 10¢  2.319 x 10° 2.315 x 108 2.315 x 10 2.180 x 10°
brgl80  4.118 x 10"  4.616 x 107 4.531 x 107 4.551 x 107 4.330 x 107
ch130  1.777 x 10°  1.885 x 10° 1.888 x 106 1.888 x 106  1.887 x 10°
ch150  2.500 x 10°  2.521 x 10° 2.526 x 10° 2.526 x 10®  2.434 x 10°
d198 9.635 x 10  1.286 x 107 1.292 x 107 1.293 x 107 1.293 x 107
eil101 1.052 x 10°  1.070 x 10° 1.063 x 10° 1.064 x 10°  1.058 x 10°
gri20  2.123 x 10°  2.147 x 10° 2.156 x 10° 2.157 x 10¢  2.154 x 10°
gri37  2.241 x 10”7 3.044 x 107 3.066 x 107 3.070 x 107 3.070 x 107
gr202  1.372x 107 1.533 x 107 1.559 x 107 1.593 x 107  1.581 x 107
gro6 8.967 x 10°  1.156 x 107 1.166 x 107 1.166 x 107 1.157 x 107
kroA100 5.848 x 10  5.850 x 10° 5.897 x 10° 5.897 x 10¢  5.897 x 10°¢
2280 2.447 x 10 3.151 x 10° 3.21 x 10° 3.21 x 10  2.970 x 10°

Table 5 The percent decrease in cut value from the SDP to the spectral cuts.

’ Graph  Trevisan Simple Spectral Sweep Cuts ‘

[ d198  ~.6% ~ 1% ~.06% |

Greedy Trevisan 'V Simple Spectral 4 Sweep Cuts Greedy Trevisan ¥ Simple Spectral 4 Sweep Cuts A SDP

3.3E+06 3.3E+06
v © h 4

3.075E+06 3.075E+06

A
2.85E+06 2.85E+06
2.625E+06 2.625E+06

BARS 1.25 25 3.75 5 HE 40 80 120 160

(a) All tested algorithms excluding the SDP.

(b) All tested algorithms.

Figure 3 Plots depicting the computation time and returned cut values of algorithms on the a280
graph. The X and Y axes are the runtime in seconds and the returned cut value, respectively.
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Greedy Trevisan ¥ Simple Spectral @ Sweep Cuts Greedy Trevisan ¥ Simple Spectral 4@ Sweep Cuts

2.53E+06 108000.0
2.52E+06 107250.0
2.51E+06 106500.0 ‘

2.5E+06 105750.0
2.49E+06 105000.0

0 0.25 0.5 0.75 1 0 0.15 03 0.45 0.6
(a) ch150. (b) eil101.

Figure 4 Plots depicting the computation time and returned cut values of algorithms excluding
the SDP on the ch150 and €il101 graphs. The X and Y axes are the runtime in seconds and the
returned cut value, respectively.

For this group of graphs, the algorithms’ relative cut quality is more varied than with the
previous. Of the 17 graphs tested, the SDP returned the best cut for 7 instances whereas
the spectral algorithms combined for 11 best (with one instance of a tie between the SDP
and simple spectral) (Table 7).

In Figure 5a, Figure 5b, Figure 6a, and Figure 6b, we provide a representative sample
of the trade-off between runtime and returned cut value of the algorithms using the graphs
ia-infect-dublin, email-enron-only, and soc-dolphins.

4 Conclusion

The goal of this paper was to compare Max Cut algorithms with varying approximation
guarantees in practice. In particular, we know the SDP has the provably best approximation
guarantee; however, it is also the costliest in terms of computational space and time. This
raises the question of whether or not the “cheaper” spectral Max Cut algorithms can perform
competitively to the SDP in practice. Furthermore, if yes, can the approximation guarantees
be improved? As demonstrated, the spectral and greedy algorithms provide a significant speed
advantage over the SDP. Additionally, they often compute cuts better than or comparable to
the cuts returned by the SDP, despite the disparity in approximation guarantees. The results
of this experiment appear to illustrate spectral algorithms are competitive with the SDP
algorithm in practice. This suggests that the investigation into approximation guarantees is
a direction for further theoretical study.

In terms of practical implementations, for the graphs that the SDP seems to perform
better on, one could consider running Trevisan’s algorithm for even more than 5 iterations
and choosing the best cut returned. The magnitude of the speed advantage of Trevisan’s
algorithm would allow for many runs before being as costly as the SDP, especially since the
initial eigenvector only needs to be computed once. Additionally, finding a viable heuristic
to use when choosing multiple ¢2 values would also provide implementation benefits. We
attempted to improve Trevisan’s algorithm through drawing additional random #? values
and greedily choosing one. However, it is not obvious that this choice in heuristic is optimal.
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Table 6 The time in seconds each algorithm took to compute a cut of a graph from the Network

Repository arising in the real-world.

Graph # vertices # edges  Greedy Trevisan  Simple Spectral Sweep Cuts SDP
ENZYMESS 88 133 1.370x 10™2 4.342 x 1072 1.776 x 10~' 1.015 x 10~2 2.356 x 10!
eco-stmarks 54 356 5.900 x 10™* 2.146 x 1072 1.993 x 10~ 2.597 x 1072 6.939

johnson16-2-4 120 5460 2.519 x 1072 1.603 x 107! 2.600 x 10™3  8.544 x 1072 8.178 x 10~}
hamming6-2 64 1824 3.540 x 1072 5.081 x 1072 1.190 x 1073  1.558 x 1072 9.926 x 10~ *
ia-infect-hyper 113 2196  8.920 x 107° 1.248 x 107!  3.280 x 10™3  4.649 x 1072 6.279
soc-dolphins 62 159  4.600 x 10~* 1.845 x 1072 8.900 x 10~* 1.690 x 1073 2.464
email-enron-only 143 623  5.960 x 107° 1.174 x 10! 5.650 x 1072 1.575 x 1072 5.681 x 10!
dwt_ 209 209 976  1.349 x 1072 3.012 x 107! 8.380 x 1073  4.641 x 1072 7.073 x 10*
inf-USAir97 332 2126 5.780 x 10~2 2.944 7.350 x 1072 2.258 x 10~ 3.361 x 102
ca-netscience 379 914 2590 x 1072 5.124 x 107! 8.440 x 1072 1.146 x 10~% 3.584 x 10?
ia-infect-dublin 410 2765  6.480 x 1072 9.720 x 107! 4.770 x 1072 2.387 x 10~ 6.438 x 10?
road-chesapeake 39 170 4.000 x 10~* 8.000 x 10™%  5.000 x 10~* 1.200 x 10~2 2.759 x 10+
Erdos991 492 1417 4.490 x 10~2 2.634 6.090 x 1072 1.933 x 10~ 5.143 x 102
dwt_ 503 503 3265 7.240 x 1072 2.039 6.640 x 1072 3.471 x 10~! 1.081 x 10°
p-hat700-1 700 60999 1.264 1.009 x 10*  1.591 x 10~! 9.273 1.270 x 10°
DD687 725 2600 9.390 x 1072 4.332 3.816 x 107" 6.521 x 107" 3.320 x 10°
email-univ 1133 5451 2.081 x 10! 1.345 x 10! 1.179 2.703 7.572 x 10%

Table 7 The value of the cut each algorithm returned for a graph from the Network Repository.

Graph # vertices # edges  Greedy Trevisan  Simple Spectral Sweep Cuts SDP
ENZYMESS 88 133 1.170 x 10> 1.260 x 10>  1.260 x 102  1.260 x 102 1.260 x 10?
eco-stmarks 54 356  8.891 x 10> 1.190 x 103  9.354 x 10>  9.354 x 10> 9.601 x 102

johnson16-2-4 120 5460 3.036 x 103 3.036 x 10> 2.958 x 10°  2.986 x 10° 2.918 x 10°
hamming6-2 64 1824  9.920 x 102 9.920 x 102 9.680 x 10>  9.690 x 10> 9.760 x 102
ia-infect-hyper 113 2196 1.213 x 10° 1.233 x 10®  1.227 x 10°  1.227 x 10° 1.211 x 10°
soc-dolphins 62 159 1.120 x 10> 1.120 x 10> 1.190 x 10>  1.210 x 102 1.150 x 10?
email-enron-only 143 623  3.920 x 10> 4.130 x 102 3.710 x 10> 3.800 x 10> 3.960 x 102
dwt_ 209 209 976  5.250 x 102> 5.270 x 10> 5.250 x 10> 5.270 x 10> 5.400 x 102
inf-USAir97 332 2126  9.661 x 10' 9.820 x 10! 8.184 x 10*  9.337 x 10! 1.074 x 10?
ca-netscience 379 914  5.830 x 10> 5.880 x 10> 5.270 x 10>  5.270 x 10> 6.110 x 102
ia-infect-dublin 410 2765 1.648 x 10° 1.659 x 10°  1.550 x 10>  1.558 x 10° 1.664 x 103
road-chesapeake 39 170 1.230 x 10> 1.230 x 102 1.210 x 10> 1.230 x 10> 1.250 x 10?
Erdos991 492 1417 9.330 x 10> 9.340 x 102  7.350 x 10>  7.580 x 10%> 9.240 x 10?
dwt_ 503 503 3265 1.822 x 10° 1.822 x 10> 1.921 x 10® 1.921 x 10% 1.909 x 10°
p-hat700-1 700 60999 3.261 x 10* 3.269 x 10*  3.215 x 10*  3.305 x 10* 3.304 x 10*

DD687 725 2600 1.669 x 10° 1.671 x 10>  1.616 x 10>  1.617 x 10> 1.680 x 103
email-univ 1133 5451 3.546 x 10% 3.546 x 10  3.341 x 10> 3.344 x 10® 3.264 x 10°
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Greedy Trevisan V¥ Simple Spectral 4 Sweep Cuts Greedy Trevisan ¥ Simple Spectral 4 Sweep Cuts A SDP
1700.0 1700.0
1650.0 1650.0
1600.0 1600.0

18500 W ’ 1550.0 ’

1500.0
1500.0 0 175 350 525 700

(a) All tested algorithms excluding the SDP. (b) All tested algorithms.

Figure 5 Plots depicting the computation time and returned cut values of algorithms on the
ia~-infect-dublin graph. The X and Y axes are the runtime in seconds and the returned cut value,

respectively.
Greedy Trevisan v Simple Spectral @ Sweep Cuts Greedy Trevisan V¥ Simple Spectral @ Sweep Cuts

200 121.0 ‘

407.5 1185

205.0 116.0

3825 ‘ 1135

ar00 W 111.0

0 0.03 0.06 0.09 012 o 0.005 0.01 0015 0.02

(a) email-enron-only. (b) soc-dolphins.

Figure 6 Plots depicting the computation time and returned cut values of algorithms excluding
the SDP on the email-enron-only and soc-dolphins graphs. The X and Y axes are the runtime in
seconds and the returned cut value, respectively.
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In particular, perhaps it is more useful to draw a fixed number of t? values but finish the
algorithm’s entire partitioning instead of estimating at that point in time. The magnitude by
which the spectral algorithms are faster than the SDP allows this to be a reasonable option.

It is also worth noting the performances of the simple spectral and sweep cuts algorithms.
Particularly for large graphs, these two algorithms along with the greedy algorithm are
much faster than even Trevisan’s algorithm, with the simple spectral almost always being
several times faster than greedy (and sweep cuts being slightly slower than greedy). It is
known that the greedy algorithm has a .5 approximation guarantee, but to the best of our
knowledge, there is no known approximation guarantee for the simple spectral or sweep cuts
algorithms. This raises the question of whether any approximation guarantee can be proven
for either of these algorithms. A desired guarantee would be greater than greedy’s .5; given
the performance results presented here, it seems possible that this is achievable.

Relatedly, there is no indication that Soto’s .614 approximation guarantee for Trevisan’s
algorithm is tight. It is clear that the algorithm often far surpasses this in practice. Can the
analysis of this algorithm be improved?
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