
An Adaptive Refinement Algorithm for
Discretizations of Nonconvex QCQP
Akshay Gupte1 #Ñ

School of Mathematics, The University of Edinburgh, UK

Arie M. C. A. Koster #Ñ

Lehrstuhl II für Mathematik, RWTH Aachen University, Germany

Sascha Kuhnke # Ñ

Lehrstuhl II für Mathematik, RWTH Aachen University, Germany

Abstract
We present an iterative algorithm to compute feasible solutions in reasonable running time to
quadratically constrained quadratic programs (QCQPs), which form a challenging class of nonconvex
continuous optimization. This algorithm is based on a mixed-integer linear program (MILP) which
is a restriction of the original QCQP obtained by discretizing all quadratic terms. In each iteration,
this MILP restriction is solved to get a feasible QCQP solution. Since the quality of this solution
heavily depends on the chosen discretization of the MILP, we iteratively adapt the discretization
values based on the MILP solution of the previous iteration. To maintain a reasonable problem size
in each iteration of the algorithm, the discretization sizes are fixed at predefined values. Although
our algorithm did not always yield good feasible solutions on arbitrary QCQP instances, an extensive
computational study on almost 1300 test instances of two different problem classes – box-constrained
quadratic programs with complementarity constraints and disjoint bilinear programs, demonstrates
the effectiveness of our approach. We compare the quality of our solutions against those from
heuristics and local optimization algorithms in two state-of-the-art commercial solvers and observe
that on one instance class we clearly outperform the other methods whereas on the other class we
obtain competitive results.

2012 ACM Subject Classification Theory of computation → Mixed discrete-continuous optimization;
Mathematics of computing → Nonconvex optimization

Keywords and phrases Quadratically Constrained Quadratic Programs, Mixed Integer Linear
Programming, Heuristics, BoxQP, Disjoint Bilinear

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.24

Supplementary Material Software (Source Code): https://github.com/skuhnke/qcqp_sourcecode

Funding The second and third authors’ visit was supported by a grant from DAAD, the German
Academic Exchange Service.
Akshay Gupte: Initial phase of this research supported by NSF grant DMS-1913294.

Acknowledgements This research was initiated during the second and third authors’ visit to Clemson
University, USA, in 2019, where the first author was a faculty member.

1 Introduction

A quadratically constrained quadratic program (QCQP) is the optimization problem

z∗ = max
x

x⊤ Q0 x + c⊤
0 x

s.t. x⊤ Qr x + c⊤
r x ≤ br, r ∈ R

x ∈ P

1 Corresponding author

© Akshay Gupte, Arie M. C. A. Koster, and Sascha Kuhnke;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshay.gupte@ed.ac.uk
https://www.maths.ed.ac.uk/school-of-mathematics/people/a-z?person=820
https://orcid.org/0000-0002-7839-165X
mailto:koster@math2.rwth-aachen.de
https://www.math2.rwth-aachen.de/koster
https://orcid.org/0000-0002-8035-7012
mailto:kuhnke@math2.rwth-aachen.de
https://www.math2.rwth-aachen.de/de/mitarbeiter/kuhnke
https://doi.org/10.4230/LIPIcs.SEA.2022.24
https://github.com/skuhnke/qcqp_sourcecode
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Adaptive Discretizations for QCQP

where x = (x1, . . . , xn) ∈ Rn, the set P ⊆ Rn is a polytope, the index set R is allowed to be
empty so that only the objective is quadratic, and all the data are of conformable dimensions.
We assume that the matrices Qr are symmetric for all r ∈ R ∪ {0}. When at least one
of these matrices has at least one negative eigenvalue (i.e., is not positive semidefinite),
then the QCQP instance is nonconvex, which are of interest to us in this paper since they
are global optimization problems and solving them to optimality is NP-hard in general.
It is common practice in global optimization to assume finite lower and upper bounds on
the variables, these bounds may either be pre-specified in the problem or implied by the
quadratic constraints or P . The assumption of P being in the nonnegative orthant can be
easily achieved by translating the variables. We assume feasible instances.

1.1 Background
QCQPs are a rich and important class of nonconvex optimization with a wide-range of
applications. There has been active research for many decades on solution algorithms for
them, but a majority of the literature is devoted to convex relaxations and cutting planes
that can be used in spatial branch-and-cut algorithms to find a global optimum. The focus
of this paper is on generating strong primal (upper) bounds on z∗. A standard choice for
doing this is to employ a nonlinear solver to search for a local optima and possibly improve
on this local optimum [23]. Although local search heuristics work well sometimes on specific
problems, such as box-constrained QPs [4] and also those arising from independent set
problem in graphs [22], in general, local solutions can be far away from the global optimum
and local solvers have been shown to either fail or produce not-so-good solutions when there
are many difficult-to-satisfy nonconvex quadratic constraints. Employing primal heuristics,
such as [2, 3, 7, 8, 18, 20], that generate feasible solutions of general mixed-integer nonlinear
problems is another approach, but these primarily use integrality of variables and are not
always effective for continuous nonconvex problems such as in QCQP. A third way is to solve
a convex relaxation of the problem and then round its solution so that it becomes feasible to
QCQP; however, a general rounding scheme is not known and difficult to characterise.

Another method for primal bounds is to develop restrictions (i.e., inner approximations)
of the feasible region and optimize the objective over it. A common choice for generating
restrictions is variable discretization, wherein the domain of a subset of variables is constrained
to take values in a pre-defined finite set of reals. Although this idea is elementary, to the
best of our knowledge, we have not seen it being widely employed for QCQP, except for the
aforementioned pooling problem [16, 1, 24, 15, 10], for applications in energy systems [13]
and water treatment [17], and for BoxQP [12], which is a subclass of QCQP wherein R = ∅
(no quadratic constraints) and P = [0, 1]n. Discretising a QCQP yields a mixed-integer QCQP
which can be reformulated as a mixed-integer LP (MILP) using different ways of expressing
an integer variable as a linear function of binary variables [14]. Convexification studies for
such binarization transformations have been carried out for MILPs [9]. The MILP approach to
obtaining primal bounds for QCQP is attractive due to many decades of advances in solving
MILPs and very sophisticated and powerful commercial solvers available for them. It also
complements MILP-based relaxation techniques [5].

Variable discretization algorithms do not fix variables values, and in that sense they bear
an advantage to some primal heuristics that obtain feasible solutions by fixing a subset of
the variables to certain values [3] (typically obtained through a convex relaxation of the
feasible set) and then optimizing over the variables that were left unfixed. However, as
they are currently designed and implemented, they have the drawback of requiring that the
discretised variables and values be pre-specified. Thus, these methods are “static” in the



A. Gupte, A. M. Koster, and S. Kuhnke 24:3

sense that they solve only once and do not adapt to the solution that has been found, i.e.,
once a MILP has been solved and feasible solution obtained, there is no guidance on how to
solve another MILP to improve on the current solution. An arbitrary discretization can likely
miss close-to-optimal values that may be suggested by a convex relaxation. Of course, one
could employ immense computing power and parallelise the solve of multiple MILPs, each
with a different discretization scheme, and then take the best primal bound out of all these
runs. However, such a brute-force approach is undesirable since it relies on a great amount of
computing power and time that may not always be available, and can be rendered needless
if instead one adopts a dynamic/adaptive approach where the discretization scheme gets
updated according to the previous solution. We know of only two studies [13, 17] that take
an adaptive discretization approach for nonconvex problems, but they are focused on specific
applications. There are also other areas of optimization where adaptive schemes are used,
for e.g., in stochastic programming [25].

1.2 Contributions of this Paper
We devise an adaptive variable discretization algorithm for any QCQP and test it extensively
on different problem classes. Our iterative algorithm solves in each iteration an MILP
restriction of the original QCQP based on discretization. The discretizations of the MILP
restrictions are adapted after each iteration based on the previous solution. The numerical
experiments show that our adaptive discretization algorithm yields very good feasible solutions
that are competitive and frequently superior than those obtained from global solvers (which
employ local solvers and also MILP heuristics) and other discretizations from literature, not
only in terms of objective value but also in terms of the running time required for obtaining
them. We remark that dynamic updating has been recently carried out for MILP relaxations
[6, 19] of nonconvex problems, and so our algorithm serves as a complement and lays the
groundwork for future work on a global optimization algorithm where both dual and primal
bounds are computed by adapting MILP problems.

Section 2.1 introduces the procedure to discretize the quadratic terms. Then, we present
in Section 2.2 a procedure to decide which variables in the quadratic terms to discretize.
Section 2.3 explains the adaption of the discretization which we apply in each iteration of
the algorithm. In Section 2.4, we present the whole adaptive discretization algorithm. Our
computational experiments are described in section 3. The algorithms used in this study are
introduced in Section 3.1 while details about their implementations are given in Section 3.2.
Subsequently, we apply the algorithms to two different problem classes. Then, we perform in
Section 3.3 calculations on a huge test set of 1230 BoxQPcc instances. Finally, in Section 3.4,
we evaluate the performance of the algorithms on 60 DisjBLP instances.

2 Adaptive Discretization Algorithm

2.1 Discretization of Quadratic Terms
To solve nonconvex QCQPs to optimality, a global optimization algorithm is required which
handles the quadratic terms xixj . Global solvers such as BARON sometimes struggle to
compute good feasible solutions in reasonable running time for several mid-size instances.
Therefore, a common approach to obtain strong feasible solutions for such problems is
discretization. In this paper, we reduce the solution space of the QCQP by restricting at
least one of the continuous variables in each quadratic term to certain discrete values. This
restriction can be equivalently reformulated into an MILP which is likely to be easier to solve
than the original QCQP.

SEA 2022



24:4 Adaptive Discretizations for QCQP

We propose a discretization method which is similar to the unary expansion [14]. To
introduce this discretization method, we consider a single quadratic term wij = xi xj where
xi ∈ [ℓi, ui] and xj ∈ [ℓj , uj ] with ℓi < ui and ℓj < uj . This term can also be strictly quadratic,
i.e., i = j. Let u ≥ 2 be a positive integer which defines the size of the discretization. Then,
we allow the originally continuous variable xi to assume only one of the predefined equidistant
values xi1 < · · · < xiu with xi1 ≥ ℓi and xiu ≤ ui. This means we have xi ∈ {xin | n ∈ N}
where N := {1, . . . , u} is the set of indices of the discretized values. In the following, we
express wij using linear expressions instead of a quadratic one. To this end, we introduce
additional binary variables zi1, . . . , ziu which are used to set xi equal to one of the values xin:

xi =
∑
n∈N

xin zin,
∑
n∈N

zin = 1, zin ∈ {0, 1} ∀n ∈ N. (1)

We first consider the case where wij is bilinear, i.e., i ̸= j. In this case, we add non-negative
continuous variables yij1, . . . , yiju defined by yijn := xj zin for all n ∈ N . In the unary
expansion, the bilinear terms xj zin are linearized by applying their McCormick envelopes
which consist of 4 u additional constraints. By exploiting the SOS-1 property of the binary
variables zin, we use an equivalent but smaller linearization with only 2 u + 1 additional
constraints:

xj =
∑
n∈N

yijn, ℓj zin ≤ yijn ≤ uj zin ∀n ∈ N. (2)

The above constraints (1)-(2) allow us to rewrite the bilinear term wij as a linear term where
we sum over each discretized value xin multiplied by corresponding additional variable yijn:

wij =
∑
n∈N

xin yijn . (3)

In the second case where wij is strictly quadratic, i.e., i = j, the additional continuous
variables yijn and their corresponding linearization (2) are not necessary. Along with
constraints (1), we can rewrite wii as follows:

wii =
∑
n∈N

x2
in zin . (4)

It is known from the results in [14] that the above linearization of the bilinear terms xjzin is
stronger than the standard one using McCormick envelopes.

By discretizing all quadratic terms in the QCQP as described above, the continuous
non-convex problem turns into a mixed-integer linear problem which we denote as discretized
MILP. This discretized MILP is likely to be easier to solve than the original QCQP since the
solution methods for MILPs are very advanced and modern MILP solvers are able to solve
very large instances quickly. All feasible solutions to the discretized MILP are also feasible to
the original QCQP. However, since we restricted the solution space of the original problem by
discretization, an optimal solution to the discretized MILP may not be an optimal solution
to the original QCQP.

2.2 Selection of Discretized Variables
To apply the discretization from Section 2.1 to general QCQPs, we have to decide which
variables in the quadratic terms we discretize. To this end, we consider a graph G = (V, E)
where the set of nodes V is equal to the set of variables of the QCQP and the set of edges E



A. Gupte, A. M. Koster, and S. Kuhnke 24:5

k = 2

(a) Internal point.

k = 5 ∧ xik < u

(b) End point within feasible region.

k = 1 ∧ xik = ℓ

(c) End point on boundary.

Figure 1 Adaption of discretization for u = 5.

contains an edge {xi, xj} if and only if the quadratic term xi xj exists in the QCQP. In this
graph, a vertex cover is equivalent to a feasible discretization for the QCQP where at least
one variable in each quadratic term is discretized. It is desirable to discretize as few variables
as possible because the problem size of the discretized MILP increases with the number of
discretized variables. However, since the minimum vertex cover problem is NP-complete,
solving it to optimality might become too time consuming for larger instances. Therefore,
we apply the greedy heuristic to obtain a good vertex cover in fast running time.

This heuristic creates a vertex cover by successively adding variables to the set D. After
initializing the set D = ∅, we first add all strictly quadratic variables to D and afterwards
remove them along with its adjacent edges from G. Then, we iteratively determine the node
with the highest degree in the current graph, add it to D if its degree is positive, and remove
it from G afterwards. When the graph is empty, the set D consists of a vertex cover, i.e., D

represents a feasible discretization for the QCQP. On our instances, this heuristic performed
better than other well-known factor 2 approximation algorithms for the vertex cover problem.

2.3 Adaption of Discretization
The quality of the optimal solution of the discretized MILP depends on the chosen discretized
values xi1, . . . , xiu of each discretized variable xi ∈ D. Using a big discretization size u

might lead to better solutions, but the corresponding discretized MILPs get too large and
computationally intractable. On the other hand, if we use a reasonable discretization size,
it is unlikely to choose an initial discretization that leads to a very good solution for the
original problem. Therefore, we use a computationally tractable discretization size u and
iteratively adapt the discretization values xi1, . . . , xiu while keeping the size u fixed. This
leads to an iterative algorithm which allows us to improve the discretization quality in each
iteration based on the previous solution of the discretized MILP. By keeping the discretized
values corresponding to the solution of the previous iteration, the adapted discretized MILPs
yield solutions at least as good as the previous one. Moreover, since the discretization size is
fixed, we are able to solve each discretized MILP in reasonable running time.

Let us again consider the discretization of a single quadratic term wij = xi xj and let
k ∈ N be the selected index in the solution of the previous discretized MILP, i.e., we have
xi = xik with zik = 1. To adapt the discretization, we consider three different cases depending
on xik as proposed by [13]. First, we consider the case 1 < k < u where the previous solution
xik is an internal point of the discretization. Here, we halve the length of the discretization
by moving the new discretized values closer around xik. This procedure is illustrated in
Figure 1a where the second discretized value xi2 is selected in the solution of the previous
discretized MILP. Second, we consider the case k ∈ {1, u} where the previous solution is an
end point of the discretization which lies strictly within the feasible region and not on its
boundary, i.e., xik ∈ (ℓi, ui). Then, we shift the discretization towards xik without reducing

SEA 2022



24:6 Adaptive Discretizations for QCQP

Algorithm 1 Adaption of discretization.
Input: Discretized values xin for n ∈ N , Previous solution zin for n ∈ N

Output: Adapted discretized values xin for n ∈ N

1: Choose k ∈ N such that zik = 1
2: if 1 < k < u then ▷ Internal point
3: δ ← (xi2 − xi1) / 2 ▷ Step size of new discretization
4: m← ⌈u

2 ⌉ ▷ New selected index
5: else if k ∈ {1, u} ∧ xik ∈ (ℓ, u) then ▷ End point within feasible region
6: δ ← (xi2 − xi1)
7: m← ⌈u

2 ⌉
8: else if k = 1 ∧ xik = ℓ then ▷ End point on left boundary
9: δ ← (xi2 − xi1) / 2

10: m← 1
11: else if k = u ∧ xik = u then ▷ End point on right boundary
12: δ ← (xi2 − xi1) / 2
13: m← u

14: end if
15: while xik + (1−m) δ < ℓ do ▷ New discretization is outside of feasible region
16: m← m− 1 ▷ Shift to the right into feasible region
17: end while
18: while xik + (u−m) δ > u do ▷ New discretization is outside of feasible region
19: m← m + 1 ▷ Shift to the left into feasible region
20: end while
21: xi ← xik ▷ Store previous selected discretized value
22: for n ∈ N do
23: xin ← xi + (n−m) δ ▷ Assign new discretized values
24: end for

its length. See Figure 1b for a visualization of this adaption where the last point of the
discretization is selected. Lastly, we consider the case k ∈ {1, u} where the previous solution
is an end point of the discretization which lies on the boundary of the feasible region, i.e.,
xik ∈ {ℓi, ui}. We then halve the length of the discretization by moving the discretized values
towards xik while keeping xik as an end point of the new discretization. This situation is
shown in Figure 1c where xik lies on the left boundary of the feasible region. In all three cases,
we ensure that the new discretization is equidistant and that it still contains the previous
solution xik. If parts of the new discretization are located outside the feasible region, we shift
the discretization back into the feasible region by keeping the previous solution xik in the
discretization. A detailed description of the whole adaption can be found in Algorithm 1.

To adapt the whole discretized MILP, we perform the above adaption for all discretized
variables xi ∈ D. Since the solution of the previous problem is also feasible to the adapted
discretized MILP, it can be used as MILP warm start for the latter. This guarantees that the
adapted discretized MILP yields a solution at least as good as the previous one.

2.4 Iterative Algorithm
Now we present the adaptive discretization algorithm for the calculation of feasible solutions
to QCQPs. A flowchart of this algorithm is displayed in Figure 2. We start the algorithm by
determining the set of discretized variables D according to Section 2.2 and then choosing



A. Gupte, A. M. Koster, and S. Kuhnke 24:7

Start Initialize discretization

Solve

discretized MILP

Feasible QCQP solution

Stop criterion?

Adapt discretization

based on

previous MILP solution

no

Use previous solution

as MILP Warm-Start

Stop

yes

Figure 2: Adaptive discretization algorithm

zero and cv while the flow on each arc a has to be between zero and ca. Each arc a also has
a weight fa 2 R for each unit of flow. Moreover, we have a set K of specifications with given
values �i

k 2 R at each input i 2 I for all k 2 K. At the pools and outputs, the specifications
are mixed linearly, i.e., the specification values at these nodes are equal to the weighted average
specification value of all entering flows. The specifications at each output j 2 J have to be
between the given lower bounds �j

k 2 R and upper bounds �j
k 2 R for all k 2 K. While

satisfying the above constraints, the objective of the pooling problem is to maximize a linear
function where the weights fa on each arc are multiplied by its corresponding flows.

3.2 Mathematical Formulation

A well studied and frequently used formulation for the pooling problem is the pq-formulation
proposed by [TS02] which uses proportion variables for the inlet flows of pools. In this paper,
we consider the tp-formulation introduced by [AH13] which is symmetric to the pq-formulation,
i.e., it has proportion variables for the outlet flows of pools instead for the inlet flows. We use
the tp-formulation instead of the pq-formulation because our computational experiments on the
discretization introduced in Section 2.1 yield much better results for the former formulation.
We remark that there are also some other formulations that are in a similar vein to pq and tp
and were studied by [BKR16], but for now we do not experiment with all of them.

In the following, we present the tp-formulation for the pooling problem. This formulation
contains three different kinds of variables. The first kind are the flow variables yij which are
equal to the flow on each arc (i, j) 2 A with i 2 I and j 2 L[J . Second, the path flow variables
vilj represent the flow along the path from input i via pool l to output j. Finally, for each pool
l and output j, the variable qlj is the proportion of flow in arc (l, j) to the total outlet flow
of pool l. The whole tp-formulation is given by (8)-(20). Its objective is to maximize a linear
weight function over the flow variables:

max
y,v,q

X

i2I,j2J
fij yij +

X

i2I,l2L,j2J

�
fil + flj

�
vilj . (8)

9

Figure 2 Adaptive discretization algorithm.

Algorithm 2 Adaptive discretization algorithm.
Input: QCQP instance T , Discretization size u

Output: Feasible solution x for T
1: Determine discretized variables D

2: for xi ∈ D do ▷ Initialize discretization
3: δ ← (u− ℓ) / (u− 1) ▷ Initial step size
4: for n ∈ N do
5: xin ← ℓ + (n− 1) δ ▷ Assign initial discretized values
6: end for
7: end for
8: repeat
9: Compute solution (x, y, z) to discretized MILP ▷ Use MILP start

10: for xi ∈ D do
11: Adapt discretization of xi with Algorithm 1 ▷ Use previous solution z

12: end for
13: until Stop criterion is fulfilled

an initial discretization xi1, . . . , xiu for each discretized variable xi ∈ D. Usually, this initial
discretization covers the whole feasible region, i.e., it has the end points xi1 = ℓi and xiu = ui.
Next, we solve the corresponding discretized MILP (see Section 2.1) which yields a first feasible
solution to the original QCQP. Then, we check if a stop criterion of the algorithm is fulfilled.
If no stop criterion is fulfilled, we enter the iteration loop and adapt the discretization of
each discretized variable xi ∈ D based on the previous MILP solution as stated in Section 2.3.
Subsequently, we solve the new discretized MILP where we pass the solution of the previous
problem as MILP start. This speeds up the calculations of the current discretized MILP and
ensures that the current solution is at least as good as the previous one. Once we calculated
the next feasible solution to the original QCQP, we again check for stop criteria. If one of
the stop criteria is now fulfilled, we terminate the algorithm instead of entering the next
iteration loop and return the QCQP solution calculated in the last iteration. Algorithm 2
describes the above steps in detail.

Our computational experiments in the next section show that this adaptive discretization
algorithm computes high quality solutions in reasonable running time for many instances.
One drawback of this algorithm is that no feasibility is guaranteed in the first iteration. It

SEA 2022



24:8 Adaptive Discretizations for QCQP

could occur that the discretized MILP with the initial discretization is infeasible even though
the original QCQP is feasible. In this case, one could either increase the discretization size u

or modify the discretized MILPs to obtain a relaxation instead of a restriction [17]. We do
not address in this paper the question of selecting a suitable discretization that is feasible
and leave it as a question for separate work in the future.

3 Computational Study

We present an extensive computational study where we apply the adaptive discretization
algorithm to two problem classes of QCQP which we describe in the subsequent sections. In
preliminary testing, we did try some arbitrary instances of QCQP from the library QPLib [11];
however, for many of these instances it was not easy to determine a initial discretization that
is feasible and hence our algorithm would terminate without computing a primal bound.

The source code for our implementations and the instances we used are both available
upon request.

3.1 Algorithms
To evaluate the performance of our adaptive algorithm, we use performance profiles to
compare objective values and running times to the commercial global solvers BARON and
Gurobi, which are well-known to be state-of-the-art for solving nonconvex QCQP. We also
compared against the popular global solver SCIP which employs some MILP-based primal
heuristics [2, 3], but it performed much worse than BARON and Gurobi and our algorithm,
and so we do not include SCIP in the results reported in this paper. As far as we are aware,
BARON uses a variety of local solvers to compute feasible solutions to nonlinear problems,
whereas Gurobi employs some MILP heuristics on a disjunctive formulation for QCQP. Thus,
our numerical experiments showcase the advantages of our MILP discretizations not only
over local solvers but also over other MILP heuristics.

Our adaptive refinement algorithm is denoted by AD-u, using the discretization and
adaption from Section 2.1 and Section 2.3, respectively, and where the parameter u represents
the size of the discretizations used in the algorithm. We calculate solutions to the original
QCQPs with the global solvers BARON and Gurobi. Beside primal solutions, the global solvers
also yield dual bounds which allow us to evaluate the optimality gap of our solutions.

3.2 Implementation
GAMS 31.1.1 is used along with its Python API as the mathematical modeling system.
Gurobi 9.1.1 is used to solve all discretized MILPs, and it is also used as a global solver for
the original QCQP. We also compare against the global solver BARON 20.4.14. For all solvers,
we use a feasibility tolerance 10−6 and an integrality tolerance 10−5. For MILPs solved by
Gurobi, we set the option mipstart = 1 and for QCQPs solved by Gurobi, we set the option
nonconvex = 2. All remaining solver options are the standard values. Each calculation is
performed on a single core of a Linux machine with an Intel Core i9-9900 CPU with 4.7 GHz
clock rate and 32 GB RAM where 14 GB RAM is reserved for this calculation.

For the adaptive discretization algorithms AD-u and ADP-u, we set a global time limit of
3600 seconds. Furthermore, we specify a time limit of 1200 seconds and a relative optimality
gap of 0.01% for each discretized MILP. Besides the global time limit of 3600 seconds, the
overall algorithm also stops if the relative improvement of the best solution over the last two
iterations is smaller than 0.01%. For the QCQP solvers BARON and Gurobi, calculations are



A. Gupte, A. M. Koster, and S. Kuhnke 24:9

stopped if the global time limit of 4 hours or a relative optimality gap of 0.01% is reached.
Here, we allow a longer calculation time of 4 hours to obtain good dual bounds as well as
to show the difficulties of QCQP solvers to find competitive primal solutions even with this
advantage in terms of running time.

3.3 Study I: BoxQPs with Complementarity Constraints
A BoxQP has a quadratic objective and lower and upper bounds on variables as the only
constraints. Due to triviality of the constraints, good primal bounds for BoxQP can generally
be computed very quickly by local solvers, and so it is of no interest to apply our discretization
algorithm to BoxQP directly. Instead, we consider BoxQPs with complementarity constraints

(BoxQPcc) : max
x

x⊤ Q x + c⊤ x

s.t. xi xj = 0 ∀ (i, j) ∈ E,

0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , n},

where E is some given subset of the Cartesian product of {1, . . . , n} with itself. The
complementarity constraints enforce that at least one of the variables xi and xj is zero.

Based on the 246 BoxQPs from [21], we generate a test set of 1230 BoxQPcc instances. Let
ρ ∈ {0, 0.125, 0.25, 0.375, 0.5} be a fixed probability and T be one of the BoxQP instances.
Then, we create a new BoxQPcc instance Tρ by adding for each quadratic term xi xj that
occurs in the objective function of T the constraint xi xj = 0 with probability ρ. This means
that the instances T0 are equal to the original 246 BoxQP instances while the remaining
instances Tρ for ρ ∈ {0.125, 0.25, 0.375, 0.5} have additional quadratic complementarity
constraints. We only consider probabilities ρ ∈ {0, 0.125, 0.25, 0.375, 0.5} in this study since
higher probabilities yield instances with a very high density of complementarity constraints
which force many quadratic terms to zero and thus make the instances very easy for most
algorithms.

Now we compare the adaptive discretization algorithm AD-u for u ∈ {2, 3, 4, 5} with the
global solvers BARON and Gurobi. Since the gaps for most of the BoxQPcc instances are
relatively large, performance profiles using relative optimality gaps are not very informative
for these instances. Therefore, we only present performance profiles with relative objective
values for the BoxQPcc instances.

Figure 3a shows the performance profile with relative objective values for the BoxQPcc
instances with ρ = 0, i.e., the original BoxQP instances. We see that BARON calculates by
far the strongest objectives with the best objective values for 99% of the instances. The
second best results are achieved by AD-2 with objectives at most 5% worse than the best
for 88% of the instances and all instances at most 77% worse than the best solutions. The
remaining adaptive discretization algorithms perform even weaker and only manage to solve
all instances with objective values at most 5 times worse than the best. Gurobi achieves
clearly the weakest results by terminating for 65% of the instances with objectives more than
5 times worse than the best solutions.

A performance profile with relative objective values for the BoxQPcc instances with
ρ = 0.125 is presented in Figure 3b. Here, the results look very different as the adaptive
discretization algorithms AD-3, AD-4, and AD-5 perform clearly best and outclass all remaining
algorithms. AD-2 yields weaker objectives than the other discretization algorithms but is
still much stronger than BARON and Gurobi for up to 95% of the instances. Gurobi only
calculates better objective values than AD-2 for percentages between 95% and 100%. While
the performance of BARON has heavily dropped, Gurobi achieves stronger results as for ρ = 0.

SEA 2022



24:10 Adaptive Discretizations for QCQP

1.0 2.0 3.0 4.0 5.0

0.2

0.4

0.6

0.8

1.0

Relative objective

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

(a) ρ = 0.

1.0 3.0 5.0 7.0 9.0

0.4

0.6

0.8

1.0

Relative objective

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

(b) ρ = 0.125.

1.0 2.0 3.0 4.0 5.0

0.4

0.6

0.8

1.0

Relative objective

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

(c) ρ = 0.25.

1.0 1.5 2.0 2.5 3.0

0.5

0.6

0.7

0.8

0.9

1.0

Relative objective

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

(d) ρ = 0.375.

1.0 1.2 1.4 1.6 1.8

0.6

0.7

0.8

0.9

1.0

Relative objective

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

(e) ρ = 0.5.

Figure 3 Relative objective values of AD-u and QCQP solvers for BoxQPcc instances.

For ρ = 0.25, a corresponding performance profile is depicted in Figure 3c. The adaptive
discretization algorithms still yield the best objectives with their results relatively close to
each other and AD-3 being the strongest and AD-2 being the weakest. However, AD-2 is now
very close behind the remaining discretization algorithms and beats both QCQP solvers by
far. While BARON and Gurobi are beaten by magnitudes, Gurobi now has clearly stronger
objective values than BARON.

Figure 3d shows the performance profile with relative objective values for the BoxQPcc
instances with ρ = 0.375. While the adaptive discretization algorithms are still on top,
Gurobi is now relatively close behind them and is even stronger than AD-4 and AD-5 for
less than 80% of the instances. AD-2 and AD-3 reach the best results where the former is
even able to find the best solution for 80% of the instances. The discretization algorithms
terminate for all instances with objective values at most 1.63 times worse than the best
solution while Gurobi achieves this only with objective values more than 3 times worse than
the best. BARON is beaten by magnitudes by all other algorithms.

The performance profile for the BoxQPcc instances with ρ = 0.5 is illustrated in Figure 3e.
Here, only AD-2 performs stronger than Gurobi for all percentages of instances while the
remaining discretization algorithms are weaker than Gurobi for less than 97% of the instances
and outperform Gurobi for 97% to 100% of the instances. While Gurobi can only guarantee
a relative objective value of at most 66% worse than the best, all discretization algorithms
achieve achieve a value of less than 40% while AD-2 even guarantees objective values at most
26% worst than the best ones. Again, BARON is outclassed by all other algorithms.

The above five performance profiles are summarized in Figure 4a. This figure shows
for each considered probability ρ the geometric mean of the relative objective values of
the corresponding 246 instances calculated by each algorithm. We see that the adaptive
discretization algorithms AD-3, AD-4, and AD-5 yield the most consistent results. They
achieve top results for all probabilities except ρ = 0 where they are beaten by AD-2 and
BARON. AD-2 is also very strong for most probabilities but fails for ρ = 0.125. While BARON



A. Gupte, A. M. Koster, and S. Kuhnke 24:11

0 0.125 0.25 0.375 0.5

1

2

3

4

5

6

7

Probability ⇢

R
el
at
iv
e
ob

je
ct
iv
e
(m

ea
n)

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

Figure 16: Summary of relative objective values of AD-n and QCQP for BoxQPCC instances

tions, we adapt the discretization of the MILP after each iteration based on the previous MILP
solution. During this adaption, we only change the discretization values while the discretization
sizes remain the same.

We applied this adaptive discretization algorithm to the standard pooling problem which
can be formulated as a computationally challenging BLP. Moreover, we introduced a specifically
tailored modification of the adaptive discretization algorithm to the pooling problem. In addition
to the discretization values, this adaption allows a dynamic change of the discretization sizes in
each iteration based on the previous solution.

To evaluate the performance of the adaptive discretization algorithms in comparison to
commercial QCQP solvers, we conducted an extensive computational study which is divided
into three parts. In the first part, we applied the algorithms on 70 medium- to large-scale
test instances of the pooling problem. After clarifying what discretization sizes work best for
these instances, we showed that the adaptive discretization algorithm outperforms a previous
discretization approach from the literature as well as the QCQP solvers BARON and Gurobi
in terms of objective values. The second part of the study is devoted to BoxQPs with com-
plementarity constraints. On a large test set of 1230 instances, we showed that the adaptive
discretization algorithms are more consistent than BARON and Gurobi and calculate stronger
objective values than the global solvers for most instances. In the last part of the study, we
consider 60 test instances for disjointly constrained BLPs. Here, the adaptive discretization
algorithms and the QCQP solvers performed very similar with a slight advantage for Gurobi.
In all calculations, the discretizations were given only one quarter of the running time of the
global QCQP solvers. Altogether, these studies show that the adaptive discretization algorithm
yields strong competitive solutions in terms of objective values and running times for different
instance classes.

Future work in this area could point in two directions. On the one hand, one could improve
the presented approach of adaptive discretization for QCQPs. This could be done either by
developing more efficient solution approaches for the MILP restriction through reformulating
constraints or adding valid inequalities, or by enhancing the adaption process similar to the

30

(a) All profiles.

0 0.125 0.25 0.375 0.5

1

1.1

1.2

1.3

1.4

Probability ⇢

R
el
at
iv
e
ob

je
ct
iv
e
(m

ea
n)

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

Figure 17: Zoomed summary of relative objective values of AD-n and QCQP for BoxQPCC
instances

dynamic adaptive discretization introduced in this paper for the pooling problem. Moreover,
one could use different discretization techniques than the one presented here to design further
adaptive discretization algorithms for QCQPs. On the other hand, this approach could be
extended from solving QCQPs to more general problem classes and be incorporated into a
metaheuristic for non-convex optimization problems.

Bibliography
[Ala+01] S. Alarie, C. Audet, B. Jaumard, and G. Savard. “Concavity cuts for disjoint bilinear

programming”. In: Mathematical Programming 90.2 (2001), pp. 373–398.

[AH11] M. Alfaki and D. Haugland. “Comparison of discrete and continuous models for the pool-
ing problem”. In: 11th Workshop on Algorithmic Approaches for Transportation Modeling,

Optimization, and Systems: ATMOS 2011, ed. by A. Caprara et al. Vol. 20. OpenAccess
Series in Informatics (OASIcs). 2011, pp. 112–121.

[AH13] M. Alfaki and D. Haugland. “Strong formulations for the pooling problem”. In: Journal of
Global Optimization 56.3 (2013), pp. 897–916.

[Ans12] K. M. Anstreicher. “On convex relaxations for quadratically constrained quadratic pro-
gramming”. In: Mathematical Programming 136.2 (2012), pp. 233–251.

[Aud+00] C. Audet, P. Hansen, B. Jaumard, and G. Savard. “A branch and cut algorithm for non-
convex quadratically constrained quadratic programming”. In: Mathematical Programming

87.1 (2000), pp. 131–152.

[BST11] X. Bao, N. Sahinidis, and M. Tawarmalani. “Semidefinite relaxations for quadratically con-
strained quadratic programming: A review and comparisons”. In: Mathematical Program-

ming 129.1 (2011), pp. 129–157.

[BST09] X. Bao, N. V. Sahinidis, and M. Tawarmalani. “Multiterm polyhedral relaxations for non-
convex, quadratically constrained quadratic programs”. In: Optimization Methods and Soft-

ware 24.4-5 (2009), pp. 485–504.

31

(b) Zoomed summary.

Figure 4 Summary of relative objective values of AD-u and QCQP for BoxQPcc instances.

only achieves competitive results for ρ = 0, Gurobi gets stronger with increasing probabilities
with competitive objective values for ρ = 0.5. To evaluate the performance of the individual
adaptive discretization algorithms, we show the same figure zoomed to smaller relative
objective values in Figure 4b. From this figure follows that AD-3 overall performs most
consistent among the adaptive discretization algorithms. AD-4 and AD-5 yield slightly weaker
results than AD-3 while AD-2 performs very unstable. On the one hand, AD-2 beats the
remaining discretization algorithms for ρ ∈ {0, 0.375, 0.5} and, on the other hand, it performs
poorly for ρ = 0.125.

3.4 Study II: Disjointly Constrained Bilinear Programs
Another subclass of QCQP that we consider are disjoint bilinear programs

(DisjBLP) : max
x,y

x⊤ Q y + c⊤ x + d⊤ y

s.t. A x ≤ a, B y ≤ b

with variables x ∈ Rn, y ∈ Rm and inputs Q ∈ Rn×m, c ∈ Rn, d ∈ Rm, A ∈ Rr×n, B ∈ Rs×m,
a ∈ Rr and b ∈ Rs. These are called disjoint because they are bipartite due to the variables
being partitioned into two sets x and y, and the feasible set is the Cartesian product of a
polyhedron in x-space and a polyhedron in y-space.

We generate 60 DisjBLP test instances following the procedure in [26]. For all generated
instances, we use the parameters δ = 2.5, ρ = 1.5, and randomized them with Householder
matrices defined by unit vectors with random numerators and a denominator of 1000. The
size of the instances depends on the parameters κ1 and κ2 where the total number of variables
and constraints is equal to κ1 + 3 κ2 and κ1 + 5 κ2. Here, we generate six classes of DisjBLP
instances where each class contains 10 instances with size κ1 ∈ {50, 100, 150, 200, 300, 400}
and κ2 = 2 κ1. For each instance, we used the random seed κ1 + κ2 + δ + ρ + k where
k ∈ {0, . . . , 9} is the number of the instance. After the instance generation, we applied LP
based bound tightening on all variables. Moreover, we discovered that the kernel problem 2
described by [26] does not have the optimal solution stated by them in Property 6. Therefore,
we added the constraint y ≥ 1 to kernel problem 2 to fix this issue.

The adaptive algorithm AD-u for u ∈ {5, 6} is compared with the QCQP solvers BARON
and Gurobi on the 60 generated instances. Here, we only use greater discretization sizes
since the smaller sizes u ∈ {2, 3, 4} struggle to find competitive feasible solutions for many
instances due to the randomized bounds on the variables. Figure 5 presents a performance
profile with the relative optimality gaps of the above algorithms. This figure shows that

SEA 2022



24:12 Adaptive Discretizations for QCQP

0.00 0.01 0.02 0.03

0.0

0.2

0.4

0.6

0.8

1.0

Relative gap

P
e
r
c
e
n
t
a
g
e
o
f
in
s
t
a
n
c
e
s

AD-5

AD-6

BARON

Gurobi

Figure 18: Relative gaps of AD-5, AD-6, and the QCQP solvers for DisjBLP instances

[BHH20] B. Beach, R. Hildebrand, and J. Huchette. Compact mixed-integer programming relaxations

in quadratic optimization. arXiv Preprint. 2020. arXiv: 2011.08823 [math.OC].

[BGN09] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series In
Applied Mathematics. Princeton University Press, 2009.

[BH96] J. M. Bloemhof-Ruwaard and E. M. Hendrix. “Generalized bilinear programming: An ap-
plication in farm management”. In: European Journal of Operational Research 90.1 (1996),
pp. 102–114.

[BKR16] N. Boland, T. Kalinowski, and F. Rigterink. “New multi-commodity flow formulations for
the pooling problem”. In: Journal of Global Optimization 66.4 (2016), pp. 669–710.

[BD02] I. M. Bomze and E. De Klerk. “Solving standard quadratic optimization problems via linear,
semidefinite and copositive programming”. In: Journal of Global Optimization 24.2 (2002),
pp. 163–185.

[BGL18] P. Bonami, O. Günlük, and J. Linderoth. “Globally solving nonconvex quadratic program-
ming problems with box constraints via integer programming methods”. In: Mathematical

Programming Computation 10.3 (2018), pp. 333–382.

[Bon+19] P. Bonami, A. Lodi, J. Schweiger, and A. Tramontani. “Solving quadratic programming by
cutting planes”. In: SIAM Journal on Optimization 29.2 (2019), pp. 1076–1105.

[BKK14] S. Burer, S. Kim, and M. Kojima. “Faster, but weaker, relaxations for quadratically con-
strained quadratic programs”. In: Computational Optimization and Applications 59.1-2
(2014), pp. 27–45.

32

Figure 5 Relative gaps of AD-5, AD-6, and the QCQP solvers for DisjBLP instances.

all considered algorithms perform relatively similar on the DisjBLP instances as the scale
of the relative gaps only reaches to 3%. Gurobi yields slightly better objective values than
the rest while BARON yields slightly worse. The adaptive discretization algorithms AD-5 and
AD-6 show very similar results and are even able to compete with Gurobi for above 90% of
the instances. On the other hand, BARON is able to terminate for all instances with the best
gap of at most 2% while the other algorithms are very close behind. Altogether, these four
algorithms perform very similar on the DisjBLP instances where Gurobi calculates marginally
better objective values than the rest.

4 Conclusion

We presented an iterative algorithm that adaptively refines a MILP restriction of a QCQP.
This restriction arises from discretizing all quadratic terms, and our adaptive step modifies
the discretization of the MILP after each iteration based on the previous MILP solution.
During this adaption, we only change the discretization values while the discretization sizes
remain the same. Since arbitrary instances of QCQP are not always amenable to a MILP
discretization approach due to the difficulty of finding a good feasible discretization to begin
with, for our computational testing, we chose two problem classes of QCQP. On a large test
set of 1230 instances of box-constrained quadratic programs with complementarities, we
showed that our adaptive discretization algorithm calculates much better objective values
than the heuristics employed in global solvers BARON and Gurobi. For 60 test instances of
disjointly constrained BLPs, the solutions obtained by all methods were of similar value with
a slight advantage for Gurobi.

References
1 Mohammed Alfaki and Dag Haugland. Comparison of discrete and continuous models for the

pooling problem. In Alberto Caprara and Spyros Kontogiannis, editors, 11th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, volume 20
of OpenAccess Series in Informatics (OASIcs), pages 112–121, 2011. doi:10.4230/OASIcs.
ATMOS.2011.112.

2 Timo Berthold. RENS. Mathematical Programming Computation, 6(1):33–54, 2014. doi:
10.1007/s12532-013-0060-9.

https://doi.org/10.4230/OASIcs.ATMOS.2011.112
https://doi.org/10.4230/OASIcs.ATMOS.2011.112
https://doi.org/10.1007/s12532-013-0060-9
https://doi.org/10.1007/s12532-013-0060-9


A. Gupte, A. M. Koster, and S. Kuhnke 24:13

3 Timo Berthold and Ambros M Gleixner. Undercover: a primal MINLP heuristic ex-
ploring a largest sub-MIP. Mathematical Programming, 144(1-2):315–346, 2014. doi:
10.1007/s10107-013-0635-2.

4 Endre Boros, Peter L Hammer, and Gabriel Tavares. Local search heuristics for quadratic
unconstrained binary optimization (QUBO). Journal of Heuristics, 13(2):99–132, 2007.

5 Samuel Burer and Anureet Saxena. The MILP road to MIQCP. In Jon Lee and Sven Leyffer,
editors, Mixed Integer Nonlinear Programming, volume 154 of IMA Volumes in Mathematics
and its Applications, pages 373–405. Springer, 2012.

6 Robert Burlacu, Björn Geißler, and Lars Schewe. Solving mixed-integer nonlinear programmes
using adaptively refined mixed-integer linear programmes. Optimization Methods and Software,
35(1):37–64, 2020.

7 C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. Experiments with a feasibility pump
approach for nonconvex MINLPs. In P. Festa, editor, Experimental Algorithms, volume 6049
of Lecture Notes in Computer Science, pages 350–360. Springer, Berlin, Heidelberg, 2010.
doi:10.1007/978-3-642-13193-6_30.

8 Claudia D’Ambrosio, Antonio Frangioni, Leo Liberti, and Andrea Lodi. A storm of feasibility
pumps for nonconvex MINLP. Mathematical Programming, 136(2):375–402, 2012. doi:
10.1007/s10107-012-0608-x.

9 Sanjeeb Dash, Oktay Günlük, and Robert Hildebrand. Binary extended formulations of
polyhedral mixed-integer sets. Mathematical Programming, 170(1):207–236, 2018. doi:10.
1007/s10107-018-1294-0.

10 Santanu S Dey and Akshay Gupte. Analysis of MILP techniques for the pooling problem.
Operations Research, 63(2):412–427, 2015. doi:10.1287/opre.2015.1357.

11 Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nick
Gould, Leo Liberti, Andrea Lodi, Ruth Misener, Hans Mittelmann, et al. QPLIB: a library of
quadratic programming instances. Mathematical Programming Computation, 11(2):237–265,
2019.

12 Laura Galli and Adam N Letchford. A binarisation heuristic for non-convex quadratic
programming with box constraints. Operations Research Letters, 46(5):529–533, 2018.

13 S. Goderbauer, B. Bahl, P. Voll, M.E. Luebbecke, A. Bardow, and A.M.C.A. Koster. An
adaptive discretization MINLP algorithm for optimal synthesis of decentralized energy supply
systems. Computers & Chemical Engineering, 95:38–48, 2016. doi:10.1016/j.compchemeng.
2016.09.008.

14 Akshay Gupte, Shabbir Ahmed, Myun S. Cheon, and Santanu S Dey. Solving mixed integer
bilinear problems using MILP formulations. SIAM Journal on Optimization, 23(2):721–744,
2013. doi:10.1137/110836183.

15 Akshay Gupte, Shabbir Ahmed, Santanu S. Dey, and Myun Seok Cheon. Relaxations and
discretizations for the pooling problem. Journal of Global Optimization, 67(3):631–669, 2017.
doi:10.1007/s10898-016-0434-4.

16 Scott P Kolodziej, Ignacio E Grossmann, Kevin C Furman, and Nicolas W Sawaya. A
discretization-based approach for the optimization of the multiperiod blend scheduling problem.
Computers & Chemical Engineering, 53:122–142, 2013.

17 Arie M. C. A. Koster and Sascha Kuhnke. An adaptive discretization algorithm for the design
of water usage and treatment networks. Optimization and Engineering, 20(2):497–542, June
2019. doi:10.1007/s11081-018-9413-6.

18 Leo Liberti, Nenad Mladenović, and Giacomo Nannicini. A recipe for finding good solutions
to MINLPs. Mathematical Programming Computation, 3(4):349–390, 2011. doi:10.1007/
s12532-011-0031-y.

19 Harsha Nagarajan, Mowen Lu, Site Wang, Russell Bent, and Kaarthik Sundar. An adaptive,
multivariate partitioning algorithm for global optimization of nonconvex programs. Journal of
Global Optimization, 74(4):639–675, 2019.

SEA 2022

https://doi.org/10.1007/s10107-013-0635-2
https://doi.org/10.1007/s10107-013-0635-2
https://doi.org/10.1007/978-3-642-13193-6_30
https://doi.org/10.1007/s10107-012-0608-x
https://doi.org/10.1007/s10107-012-0608-x
https://doi.org/10.1007/s10107-018-1294-0
https://doi.org/10.1007/s10107-018-1294-0
https://doi.org/10.1287/opre.2015.1357
https://doi.org/10.1016/j.compchemeng.2016.09.008
https://doi.org/10.1016/j.compchemeng.2016.09.008
https://doi.org/10.1137/110836183
https://doi.org/10.1007/s10898-016-0434-4
https://doi.org/10.1007/s11081-018-9413-6
https://doi.org/10.1007/s12532-011-0031-y
https://doi.org/10.1007/s12532-011-0031-y


24:14 Adaptive Discretizations for QCQP

20 Giacomo Nannicini and Pietro Belotti. Rounding-based heuristics for nonconvex MINLPs.
Mathematical Programming Computation, 4(1):1–31, 2012. doi:10.1007/s12532-011-0032-x.

21 Carlos J Nohra, Arvind U Raghunathan, and Nikolaos Sahinidis. Spectral relaxations and
branching strategies for global optimization of mixed-integer quadratic programs. SIAM
Journal on Optimization, 31(1):142–171, 2021.

22 Foad Mahdavi Pajouh, Balabhaskar Balasundaram, and Oleg A Prokopyev. On characterization
of maximal independent sets via quadratic optimization. Journal of Heuristics, 19(4):629–644,
2013. doi:10.1007/s10732-011-9171-5.

23 Jaehyun Park and Stephen Boyd. General heuristics for nonconvex quadratically constrained
quadratic programming. arXiv Preprint, May 2017. arXiv:1703.07870.

24 V. Pham, C. Laird, and M. El-Halwagi. Convex hull discretization approach to the global
optimization of pooling problems. Industrial and Engineering Chemistry Research, 48(4):1973–
1979, 2009.

25 Wim van Ackooij, Welington de Oliveira, and Yongjia Song. Adaptive partition-based
level decomposition methods for solving two-stage stochastic programs with fixed recourse.
INFORMS Journal on Computing, 30(1):57–70, 2018. doi:10.1287/ijoc.2017.0765.

26 Luis N Vicente, Paul H Calamai, and Joaquim J Júdice. Generation of disjointly constrained
bilinear programming test problems. Computational Optimization and Applications, 1(3):299–
306, 1992.

https://doi.org/10.1007/s12532-011-0032-x
https://doi.org/10.1007/s10732-011-9171-5
http://arxiv.org/abs/1703.07870
https://doi.org/10.1287/ijoc.2017.0765

	1 Introduction
	1.1 Background
	1.2 Contributions of this Paper

	2 Adaptive Discretization Algorithm
	2.1 Discretization of Quadratic Terms
	2.2 Selection of Discretized Variables
	2.3 Adaption of Discretization
	2.4 Iterative Algorithm

	3 Computational Study
	3.1 Algorithms
	3.2 Implementation
	3.3 Study I: BoxQPs with Complementarity Constraints
	3.4 Study II: Disjointly Constrained Bilinear Programs

	4 Conclusion

