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Abstract
The approximate degree of a Boolean function is the least degree of a real multilinear polynomial
approximating it in the ℓ∞-norm over the Boolean hypercube. We show that the approximate degree
of the Bipartite Perfect Matching function, which is the indicator over all bipartite graphs having a
perfect matching of order n, is Θ̃(n3/2).

The upper bound is obtained by fully characterizing the unique multilinear polynomial repres-
enting the Boolean dual of the perfect matching function, over the reals. Crucially, we show that
this polynomial has very small ℓ1-norm – only exponential in Θ(n log n). The lower bound follows
by bounding the spectral sensitivity of the perfect matching function, which is the spectral radius of
its cut-graph on the hypercube [1, 15]. We show that the spectral sensitivity of perfect matching is
exactly Θ(n3/2).
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1 Introduction

The approximate degree of a Boolean function is the least degree of a real polynomial
approximating the function in the ℓ∞-norm over the Boolean cube, to within constant
error. Approximate degree is an important complexity measure with applications throughout
theoretical computer science. Lower bounds on the approximate degree of a Boolean function
imply such bounds on the communication complexity (of a related composed problem) [28, 30],
and for its quantum query complexity [2]. For families of Boolean functions, upper bounds
on the approximate degree have algorithmic merit, for instance in learning theory [17, 16]
and differential privacy [31, 11], and conversely lower bounds imply separations in circuit
complexity [20, 27]. For a recent survey, we refer the reader to [10].

In this paper we study the approximate degree of the bipartite perfect matching function.
This is the Boolean function representing the decision problem of perfect matching – determ-
ining whether a given balanced bipartite graph contains a subset of edges in which every
vertex is incident to exactly one edge.

▶ Definition. The bipartite perfect matching function BPMn : {0, 1}n2 → {0, 1} is defined

BPMn(x1,1, . . . , xn,n) =
{

1 {(i, j) : xi,j = 1} has a bipartite perfect matching
0 otherwise.

The input bits of BPMn select a subset of edges from the complete bipartite graph, and
the output bit is set to 1 if and only if the chosen subgraph contains a bipartite perfect
matching of order n.

© Gal Beniamini;
licensed under Creative Commons License CC-BY 4.0

37th Computational Complexity Conference (CCC 2022).
Editor: Shachar Lovett; Article No. 1; pp. 1:1–1:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gal.beniamini@mail.huji.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2022.1
https://arxiv.org/abs/2004.14318
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 The Approximate Degree of Bipartite Perfect Matching

It is well known that any Boolean function can be uniquely and exactly represented by a
multilinear polynomial over the reals (see [25]). In [3], the unique polynomial representing
BPMn was characterized, and in particular was shown to have full degree, n2. Conversely, it
is not hard to construct low-degree polynomials approximating the perfect matching function,
if one allows pointwise errors arbitrarily close to one half. Indeed, the n × n Permanent
implies (by translation and scaling) such a polynomial of total degree n, and approximation
error exponentially close to half. Approximate degree is an interpolation between these two
settings, wherein we require the errors be bounded by an arbitrary constant less than half,
say one third. The previous best-known upper bound on the approximate degree of perfect
matching was O(n7/4), due to Lin and Lin [18], and no non-trivial lower bound was known.

Our main result is the following bound1, which is tight up to low order terms.

▶ Theorem 1 (The Approximate Degree Bipartite Perfect Matching). For every n ∈ N, the
approximate degree of the bipartite perfect matching function is:

d̃eg (BPMn) = Θ̃
(

n
3/2

)
.

Most known techniques for bounding approximate degree are applicable only to functions
which are either symmetric or block-composed (with some recent notable exceptions, e.g. [8, 9]).
The perfect matching function falls into neither category, and is thus not amenable to standard
techniques.

Our upper bound follows by investigating the “Boolean Dual” function of bipartite perfect
matching: BPM⋆

n(x1,1, . . . , xn,n) = 1 − BPMn(1 − x1,1, . . . , 1 − xn,n). In this representation,
we reverse the roles of the symbols 0 and 1. Concretely, for any input graph, the dual function
BPM⋆

n outputs 1 if and only if the complement of the graph does not contain a bipartite
perfect matching. Equivalently, by Hall’s Marriage Theorem, the output is 1 if and only if
the input graph contains a biclique over n + 1 vertices.

To present our characterization of the dual, let us introduce some notation. A balanced
bipartite graph is said to be totally ordered, if there exists an ordering of its left vertices
such that their neighbour sets form a chain with respect to inclusion, i.e. N(a1) ⊆ N(a2) ⊆
· · · ⊆ N(an). We associate with every totally ordered graph a “representing sequence”, which
encodes its biadjacency matrix up to permutations over both bipartitions. To construct this
sequence, consider the automorphism which sorts the left and right vertices in descending
order of degree. This yields a graph whose biadjacency matrix consists of a monotonically
increasing sequence of blocks, which we succinctly describe using a list of pairs of integers,
describing the width and height of each such block. By way of example, the biclique
Ks,t ⊆ Kn,n is an ordered graph whose biadjacency matrix consists of two blocks; the first
s left vertices are all adjacent to the first t vertices on the right, and the remainder are all
isolated.

Our result is the following complete characterization of the unique polynomial representing
BPM⋆

n over the reals, thereby resolving an open question of [3].

▶ Theorem 2 (The Dual Polynomial of Bipartite Perfect Matching).

BPM⋆
n(x1,1, . . . , xn,n) =

∑
G⊆Kn,n

a⋆
G

∏
(i,j)∈E(G)

xi,j

1 The same bound also holds even for approximations with exponentially small error, see Section 4.
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If G is not totally ordered, then a⋆
G = 0.

Otherwise:

a⋆
G =

(
n − kt−1 − 1

n − dt

)
·

t−1∏
i=1

f (di+1 − ki−1, di − ki−1, ki − ki−1)

where 0 ≤ d1 < d2 < · · · < dt ≤ n and 0 = k0 < k1 < k2 < · · · < kt = n form the
representing sequence of G, and f : Z3 → Z is defined:

f(n, d, k) =


(

n − 1
k

)
, d ≤ 0

−
(

n − d − 1
k − d

)(
k − 1
d − 1

)
, d > 0.

This characterization allows us to deduce that the ℓ1-norm of BPM⋆
n (i.e., the sum of the

magnitudes of its coefficients) is very small – only exponential in Θ(n log n). The approximate
degree upper bound then follows via two observations. Firstly, we relate the approximate
degree of any Boolean function and its dual. Secondly, we show that any Boolean function
whose representation over the {0, 1}-basis has low ℓ1-norm, can be efficiently approximated
in the ℓ∞-norm. The latter approach had also previously been employed by Sherstov in [29].

To obtain the lower bound on the approximate degree of matching, we consider a new
complexity measure recently introduced by Aaronson, Ben-David, Kothari, Rao and Tal [1].
For any total Boolean function f , they define the Spectral Sensitivity to be the spectral
radius of the bipartite graph defined by the f -bichromatic edges of the Hypercube (i.e., the
f -cut of the cube). The notion of spectral sensitivity had notably (implicitly) also appeared
at the heart of Huang’s breakthrough proof of the Sensitivity Conjecture [15]. The main
technical Theorem of [1] states that the spectral sensitivity of any total Boolean function
lower bounds its approximate polynomial degree – and it is this relation that we leverage.

We prove the following tight bound on the spectral sensitivity of BPMn.

▶ Theorem 3 (The Spectral Sensitivity of Bipartite Perfect Matching). The Spectral Sensitivity
of the bipartite perfect matching function is λ(BPMn) = Θ(n3/2).

One of our main motivations in studying the algebraic properties of BPMn and its dual, is
the following longstanding question: what is the least complexity of a deterministic algorithm
for bipartite matching? Hopcroft and Karp’s algorithm [14] from half a century ago attains
a running time of O

(
n

5/2
)2, and as of yet no known deterministic algorithm has been shown

to break the “n
5/2-barrier”. In the last section of this paper we explore the above barrier

through the lens of the Demand Query Model [22], which is a concrete complexity model for
matching due to Nisan. The demand model was shown in [22] to “capture” the complexity
of a wide class of algorithms (i.e., combinatorial algorithms), therefore any non-trivial lower
bound on algorithms within the model would have far reaching implications. To this end, we
draw connections between the algebraic quantities explored throughout this work, including
approximate degree and the ℓ1-norm of the dual, and the demand query complexity of
matching – see Figure 7. Furthermore, we exhibit an efficient quantum simulation for the
demand model, showing that lower bounds in the quantum query model yield corresponding
combinatorial bounds. The quantum query complexity of matching was shown by Zhang [32]
to be at least Ω

(
n

3/2
)
, and by Lin and Lin [18] to be at most O

(
n

7/4
)
. Closing this gap is

2 On dense graphs, wherein the number of edges is proportional to n2.
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1:4 The Approximate Degree of Bipartite Perfect Matching

left as an open question, and we remark that any polynomial improvement on the lower
bound would yield a non-trivial bound in the demand model3. Finally, we note that all the
bounds obtained in this paper are compatible with the existence of quasi-linear demand
query algorithms for bipartite matching, and this might be seen as weak evidence pointing
in this direction. Obtaining non-trivial bounds on the demand query complexity of matching
is left as our main open problem.

2 Preliminaries and Notation

2.1 Boolean Functions and Polynomial Representation
Let f : {0, 1}n → {0, 1} be a Boolean function. A polynomial p ∈ R[x1, . . . , xn] is said
to represent f , if for every x ∈ {0, 1}n, we have p(x) = f(x). We recall that any Boolean
function can be uniquely represented by a multilinear polynomial over the reals. Given
the unique multilinear polynomial p(x1, . . . , xn) =

∑
S⊆[n] aS

(∏
i∈S xi

)
representing f , we

denote by mon(f) = {S ⊆ [n] : aS ̸= 0} the set of all monomials appearing in its polynomial
representation. Furthermore, we define the following two “norms”, which are defined using
the unique representations of Boolean functions, over the Boolean and Fourier bases.

▶ Definition 4. Let f : {0, 1}n → {0, 1}, let p(x1, . . . , xn) =
∑

S⊆[n] aSΠi∈Sxi be the unique
multilinear representation of f over the reals and let {f̂S : S ⊆ [n]} be the Fourier spectrum
of f . The ℓ1-norm and ℓ1-Fourier-norm of f are defined:

∥f∥1
def= ∥p∥1

def=
∑

S⊆[n]

|aS |, and ∥̂f ∥̂1
def=

∑
S⊆[n]

|f̂S |.

The ϵ-approximate degree of a Boolean function f : {0, 1}n → {0, 1} is the least degree
of a real multilinear polynomial approximating f in the ℓ∞ norm, with error at most ϵ.
Hereafter, we use the standard notation and write d̃egϵ (f) to denote the ϵ-approximate
degree of f . In the case of ϵ = 1

3 , we omit the ϵ and instead write d̃eg (f).

▶ Definition 5. Let f : {0, 1}n → {0, 1} be a Boolean function, and let 0 < ϵ < 1
2 . The

ϵ-approximate degree of f , d̃egϵ (f), is the least degree of a real polynomial p ∈ R[x1, . . . , xn]
satisfying |f(x) − p(x)| ≤ ϵ, for all x ∈ {0, 1}n.

In the context of Boolean functions, it is sometimes useful to consider the transformation
of a Boolean vector in which an arbitrary subset of bits have been flipped. Thus, if x ∈ {0, 1}n,
and S ⊆ [n], we use the notation xS to indicate the vector in which the coordinates S have
been flipped. For any i ∈ [n], the notation xi is shorthand for x{i}. Using this notation, we
define the following two complexity measures for Boolean functions.

▶ Definition 6. Let f {0, 1}n → {0, 1}. The sensitivity of f at x ∈ {0, 1}n is:

sensf (x) =
∣∣{i ∈ [n] : f(x) ̸= f(xi)

}∣∣
and similarly, the block sensitivity of f at x is:

bsf (x) = max{s ∈ [n], such that ∃B1 ⊔ · · · ⊔ Bs ⊆ [n] : ∀i ∈ [s] : f(x) ̸= f(xBi)}.

The sensitivity and block sensitivity of f are then defined by their corresponding
measures on the worst case input, namely sens(f) = maxx∈{0,1}n sensf (x) and bs(f) =
maxx∈{0,1}n bsf (x).

3 Theorem 1 implies that this lower bound cannot be (polynomially) strengthened by the “polynomial
method”. In fact, neither can the (nonnegative-weight) Ambainis’ adversary technique, see [32].
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2.2 Graph Theory
We use standard definitions and notation relating to graphs. If G is a graph, we denote
its vertex set by V (G), its edge set by E(G), and its connected components by C(G).
The cardinalities of these sets are denoted v(G), e(G) and c(G), respectively. For any
vertex v ∈ V (G), the neighbour set of v is denoted by N(v), and its degree is denoted
deg(v) = |N(v)|. The set of all perfect matchings of G is denoted by PM(G). We also use
the following slightly less common quantity:

▶ Definition 7. The cyclomatic number of a graph is defined χ(G) def= e(G) − v(G) + c(G).

The graph G − v, where v ∈ V (G), is the graph over the vertices V (G) \ {v} in which
all the edges incident to v are omitted. If U ⊆ V (G) is a set of vertices, the notation G [U ]
refers to the induced graph on the vertices U , whose vertices are U and whose edges are
the edges of G which are incident only to vertices in U . If G ⊆ Kn,n and S ⊆ E(Kn,n) the
notation G ∪ S refers the a graph over the vertices of Kn,n, whose edge set is E(G) ∪ S.

For any graph G, the adjacency matrix AG is a symmetric matrix whose rows and
columns are labeled by V (G), and whose entries are given by (AG)u,v = 1{{u, v} ∈ E(G)}.
The spectral radius of G is defined ρ(G) def= max{|λi| : λi ∈ Spec(AG)}, i.e., the maximum
magnitude of any eigenvalue in the spectrum of AG. Since the spectrum of bipartite graphs
is symmetric, it holds that for any bipartite graph ρ(G) = λ1.

Throughout this paper, we restrict our attention to balanced bipartite graphs over the
vertices of the complete bipartite graph, Kn,n. By convention, we label the left vertices of
Kn,n by a1, . . . , an, and the right vertices by b1, . . . , bn. The notation G ⊆ Kn,n is used
to indicate that G is a balanced bipartite graph over the vertices of Kn,n. Similarly, the
notation G ⊆ H indicates that V (G) = V (H) and E(G) ⊆ E(H).

2.3 Quantum Query Complexity
We consider the standard quantum query model (see, e.g., [7]). For a recent textbook on the
framework of quantum computing, we refer the reader to [21]. In this paper, we refer to the
bounded-error quantum query complexity Q2(f), which is the smallest number d, such that
there exists a quantum query algorithm A making at most d queries, and agreeing with the
Boolean function f with probability at least two-thirds, on all Boolean inputs.

3 The Dual Polynomial of Bipartite Perfect Matching

This section centers around the proof of Theorem 2. To provide the proof, we must first
familiarize ourselves with some useful definitions and notation. To this end, we begin by
defining Boolean dual functions, and by recalling two relevant graph families: matching-
covered graphs, and elementary graphs. Then, we introduce the notion of sorted and ordered
graphs, which serve as the building blocks of our proof. Finally, we provide our proof of
Theorem 2.

3.1 Boolean Dual Functions
▶ Definition 8. Let f : {0, 1}n → {0, 1} be a Boolean function. The Boolean Dual function
of f is denoted f⋆ : {0, 1}n → {0, 1} and is defined f⋆(x1, . . . , xn) = 1−f(1−x1, . . . , 1−xn).

Intuitively, in the Boolean dual, the symbols 0 and 1 switch roles. Geometrically, if we
consider f to be a colouring of the vertices of the n-dimensional hypercube, the duality
transformation simply mirrors all vertices and inverts their colours. Algebraically, when
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1:6 The Approximate Degree of Bipartite Perfect Matching

representing the functions using multilinear polynomials over the reals, each monomial in
the “primal” function corresponds to an AND function, whereas in the dual each monomial
corresponds to an OR (over the original input bits). A Boolean function f and its dual f⋆

share many properties. For example, their Fourier spectra are identical (up to signs of Fourier
coefficients, see [25]). Nevertheless, in the {0, 1} basis, the unique multilinear polynomials
representing f and f⋆ can differ greatly. By way of example, the polynomial representing
ANDn consists of a single monomial, whereas its dual (AND⋆

n = ORn) has exactly 2n − 1
monomials.

3.2 Matching-Covered and Elementary Graphs
A graph G ⊆ Kn,n is said to be matching-covered if every edge of G participates in some
perfect matching, or equivalently if its edge set can be described as the union over a set of
perfect matchings S ⊆ PM(G).

▶ Definition 9. Let G ⊆ Kn,n be a graph. G is matching-covered if and only if:

∀e ∈ E(G) : ∃M ∈ PM(G) : e ∈ M.

Matching-covered graphs have many interesting combinatorial properties. The set of all
such graphs, together with the subset relation over the edges, forms a lattice. A key result
by Billera and Sarangarajan [5] showed that this lattice is, in fact, isomorphic to the face
lattice of the Birkhoff polytope, Bn. This lattice was later shown by [3] to be intimately
related to the multilinear polynomial representing the bipartite perfect matching function,
BPMn. Namely, the monomials of the polynomial are the elements of the lattice, and their
coefficients are the Möbius numbers of this lattice.

A closely related family of graphs are the Elementary Graphs.

▶ Definition 10. Let G ⊆ Kn,n be a graph. Then:

G is elementary ⇐⇒ G is a connected matching-covered graph.

Hereafter, we denote by MCn = {G ⊆ Kn,n : G is matching-covered} the set of all
matching-covered graphs, and similarly we denote ELn = {G ⊆ Kn,n : G is elementary}
for all elementary graphs. Elementary graphs were studied at length, both by Lovász and
Plummer [26], and earlier by Hetyei [13]. Through their works they formulated robust
characterizations of elementary graphs. In particular, we require the following theorem, due
mostly to Hetyei:

▶ Theorem 11 ([13]). Let G = (A ⊔ B, E) be a bipartite graph. The following are equivalent:
G is elementary.
G has exactly two minimum vertex covers, A and B.
|A| = |B| and for every ∅ ≠ X ⊂ A, |N(X)| > |X|.
G = K2, or v(G) ≥ 4 and for any a ∈ A, b ∈ B, G − a − b has a perfect matching.
G is connected and every edge is “allowed”, i.e., appears in a perfect matching of G.

3.3 Ordered Graphs
▶ Definition 12. Let G ⊆ Kn,n. G is a totally ordered graph, if there exists an ordering
π ∈ Sn of its left vertices, such that N(aπ(1)) ⊆ N(aπ(2)) ⊆ · · · ⊆ N(aπ(n)).
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Given a totally ordered graph G, we may permute the vertices in its left and right
bipartitions (separately) so that both bipartitions are sorted in decreasing order of degree.
This automorphism produces a graph H ∼= G, which we refer to as a “sorted ordered graph”.
Our motivation in applying such a transformation is due to the fact that BPM⋆

n is invariant
to permutations over its bipartitions. Thus, the dual coefficient of any ordered graph and its
corresponding sorted ordered graph are identical.

▶ Definition 13. Let G ⊆ Kn,n. G is a sorted ordered graph if:

deg(a1) ≤ deg(a2) ≤ · · · ≤ deg(an), and ∀i ∈ [n] : N(ai) = {b1, . . . , bdeg(ai)}.

The adjacency relation of a sorted ordered graph can be succinctly and uniquely described
by a short sequence of integers, which we dub the “representing sequence” of the graph.

▶ Definition 14. Let G ⊆ Kn,n be a sorted ordered graph. The representing sequence of
G is defined by SG = {(d1, k1), . . . , (dt, kt)}, where:

0 ≤ d1 < d2 < · · · < dt ≤ n, and 0 < k1 < k2 < · · · < kt = n

and furthermore:

∀i ∈ [n] : N(ai) =



{b1, . . . , bd1}, 0 < i ≤ k1

{b1, . . . , bd2}, k1 < i ≤ k2

...
...

{b1, . . . , bdt
}, kt−1 < i ≤ kt.

The representing sequence SG of a sorted ordered graph G ⊆ Kn,n is essentially a
“compressed” form of its degree sequence; each pair (di, ki) in the sequence indicates a run
of (ki − ki−1) left vertices, all of whose neighbour sets are exactly {b1, . . . , bdi}. Thus, the
biadjacency matrix of G is simply described in terms of SG, as shown in Figure 1.

1 1 1
1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1




a1 a2 a3 a4 a5 a6 a7 a8

b1

b2

b3

b4

b5

b6

b7

b8

k1 k2 − k1 k3 − k2

d1

d2 − d1

d3 − d2

n

n

Figure 1 The biadjacency matrix of a sorted ordered graph G. The representing sequence of G is
SG = {(d1, k1), (d2, k2), (d3, k3)}.

The building blocks in our proof of Theorem 2 consist of particular family of simple
sorted ordered graphs – those whose representing sequence is of length exactly 2. In other
words, these are the graphs whose left vertices can be partitioned into two sets, those having
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1:8 The Approximate Degree of Bipartite Perfect Matching

full degree n, and those whose neighbour set is (the same) strict subset of the right vertices.
This family also trivially includes all bicliques Ks,n. For this family of graphs, we introduce
the following notation.

▶ Notation 15. Let 0 ≤ d ≤ n and 0 < k < n. The notation ⟨n, d, k⟩-block refers to the
sorted ordered graph G ⊆ Kn,n, whose representing sequence is S⟨n,d,k⟩ = {(d, k), (n, n)}.

1 1
1 1
1 1

1 1 1 1 1
1 1 1 1 1




k

n

d

Figure 2 The biadjacency matrix of an ⟨n, d, k⟩-block.

3.4 Proof of Theorem 2
▶ Definition 16. Let BPM⋆

n : {0, 1}n2 → {0, 1} be the Boolean dual function of BPMn:

BPM⋆
n(x1,1, . . . , xn,n) =

{
1 {(i, j) : xi,j = 0} does not have a bipartite perfect matching
0 otherwise.

In [3], a complete characterization of the multilinear polynomial representing BPMn over
the reals was obtained, using a connection between the Möbius function of the Birkhoff
polytope’s face lattice, and the cyclomatic numbers of matching-covered graphs. The
polynomial representing BPM⋆

n may be similarly expressed through the Möbius function of
some lattice (that of graphs covered by “Hall Violators”, i.e., bicliques over n + 1 vertices).
These representations allowed for a partial description of the support of BPM⋆

n, which we
require for our proof of Theorem 2 and will therefore now recall. The first two lemmas
restrict the support of monomials in the dual polynomial to the set of totally ordered graphs,
which are not matching-covered.

▶ Lemma 17 ([3]). Let G ⊆ Kn,n. If G is not totally ordered, then a⋆
G = 0.

▶ Lemma 18 ([3]). Let G ⊆ Kn,n. If G ∈ MCn, then a⋆
G = 0.

The third lemma relates the Möbius numbers of the lattice of matching-covered graphs,
with the dual coefficients of any graph G ⊆ Kn,n, thereby giving a closed-form expression
for computing the dual coefficients (albeit by summing over possibly exponentially many
summands).

▶ Lemma 19 ([3]). Let G ⊆ Kn,n. The dual coefficient of G is:

a⋆
G = (−1)e(G)+1

∑
H⊇G

H∈MCn

(−1)χ(H).
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▶ Corollary 20. Let G ⊆ Kn,n be a graph. If all the left vertices or all the right vertices of
G are in the same connected component, then:

a⋆
G =

∑
G⊆H⊆Kn,n

H∈ELn

(−1)|E(H)\E(G)|.

Proof. Recall that every connected component of a matching-covered graph is elementary.
Furthermore, elementary graphs are balanced. Thus, G ⊆ H ∈ MCn =⇒ H is elementary,
and we have:

a⋆
G = (−1)e(G)+1

∑
H⊇G

H∈MCn

(−1)χ(H)

= (−1)e(G)+1
∑

H⊇G
H∈ELn

(−1)e(H)−2n+1 =
∑

H⊇G
H∈ELn

(−1)|E(H)\E(G)|. ◀

3.4.1 Reducing to Permitted Edges
We now make the following observation: if G is a totally ordered graph whose coefficient we
wish to compute using Lemma 19, then we may restrict our attention to a particular subset
of edges. Whereas Lemma 19 mandates that we consider every possible “completion” of G

to a matching-covered graph, the following lemma shows that we can instead only consider
completions which are confined to the set of “permitted edges” for G.

▶ Definition 21. Let G ⊆ Kn,n be a sorted ordered graph, and let SG = {(d1, k1), . . . , (dt, kt)}
be its representing sequence. The permitted edges for G, denoted PG, are defined as follows:

(ai, bj) ∈ PG ⇐⇒



d1 < j ≤ d2, 0 < i ≤ k1

d2 < j ≤ d3, k1 < i ≤ k2

...
...

dt < j ≤ n, kt−1 < i ≤ kt.

1 1
1 1

1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1




k1 k2 − k1 k3 − k2 k4 − k3

d2

d3 − d2

d4 − d3

n − d4

Figure 3 A sorted ordered graph G, with SG = {(d1, k1), (d2, k2), (d3, k3), (d4, k4)}.
Orange blocks indicate the edges of G, and green blocks indicate the permitted edges, PG.
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1:10 The Approximate Degree of Bipartite Perfect Matching

▶ Lemma 22. Let G ⊆ Kn,n be a sorted ordered graph. Then:

a⋆
G =

∑
G⊆H∈ELn

(E(H)\E(G))⊆PG

(−1)|E(H)\E(G)|.

Proof. Let S = E(Kn,n) \ (PG ⊔ E(G)). By Lemma 19, Corollary 20, and using the
inclusion-exclusion principle, we have:

a⋆
G = (−1)e(G)+1

∑
H⊇G

H∈MCn

(−1)χ(H)

=
∑

G⊆H∈ELn
(E(H)\E(G))⊆PG

(−1)|E(H)\E(G)| + (−1)e(G)+1
∑

G⊆H∈MCn
E(H)∩S ̸=∅

(−1)χ(H)

=
∑

G⊆H∈ELn
(E(H)\E(G))⊆PG

(−1)|E(H)\E(G)| + (−1)e(G)+1
∑

∅̸=T ⊆S

(−1)|T |
∑

(G⊔T )⊆H∈MCn

(−1)χ(H).

Observe that for every ∅ ≠ T ⊆ S, the graph G ⊔ T is not totally ordered. Therefore, by
Lemma 17, every summand

∑
(G⊔T )⊆H∈MCn

(−1)χ(H) in the above expression vanishes, thus
concluding the proof. ◀

3.4.2 Factorizing into ⟨n, d, k⟩-blocks
Having shown that only “permitted edges” need be considered, our next step is to reduce
the computation of the dual coefficient a⋆

G, to that of dual coefficients of simpler graphs. In
order to do so, we must first handle the following “degenerate” case.

▶ Lemma 23. Let G ⊆ Kn,n be a sorted ordered graph and let SG = {(d1, k1), . . . , (dt, kt)}
be the representing sequence of G. If ∃i ∈ [t − 1] such that di+1 ≤ ki, then a⋆

G = 0.

Proof. Let i ∈ [t − 1] such that di+1 ≤ ki, and let X = {a1, . . . , aki
} ⊊ {a1, . . . , an}. Then,

a⋆
G =

∑
G⊆H∈ELn

(E(H)\E(G))⊆PG

(−1)|E(H)\E(G)|

by Lemma 22, and therefore it suffices to show that any graph H ⊇ G with (E(H) \ E(G)) ⊆
PG is not elementary. Let H be such a graph. Then |NH(X)| ≤ di+1 ≤ ki = |X|, and by
Theorem 11, H is indeed not elementary. ◀

Any sorted ordered graph G whose representing sequence is not degenerate in the above
sense, can be neatly factorized into a set of ⟨n, d, k⟩-blocks. In the following lemma we
construct such a decomposition, and relate the dual coefficients of the each component with
that of the original graph.

▶ Lemma 24. Let G ⊆ Kn,n be a sorted ordered graph. Let SG = {(d1, k1), . . . , (dt, kt)} be
the representing sequence of G, where ∀i ∈ [t − 1] : di+1 > ki. Denote k0 = 0, dt+1 = n, and:

∀i ∈ [t] : Ai = {aki−1+1, . . . , adi+1}, Bi = {bki−1+1, . . . , bdi+1}

Furthermore, ∀i ∈ [t] let Gi = G [Ai ⊔ Bi] be the induced graph on the vertices Ai ⊔ Bi. Then:

a⋆
G =

t∏
i=1

a⋆
Gi

.
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Proof. For all i ∈ [t], let Si = {aki−1+1, . . . , aki} and Ti = {bdi+1, . . . , bdi+1}. Observe that
the permitted edges for G are partitioned by the sets Si, Ti as follows: PG =

⊔t
i=1(Si × Ti).

Furthermore, since ∀i ∈ [t] : di > ki−1, we have:

∀i ∈ [t] : (Ai × Bi) ∩ PG = (Si × Ti).

Thus, each induced graph Gi “covers” the set (Si × Ti), and the set of all induced graphs
covers all the permitted edges PG. Since di > ki−1, then ∀i ∈ [t − 1] : Gi has at least one
left vertex, adi+1 , whose neighbour set in Gi is the entire right bipartition Bi. Similarly, in
Gt the neighbour set of the right vertex bkt−1+1 is the entire left bipartition At. Thus, by
Corollary 20:

∀i ∈ [t] : a⋆
Gi

=
∑

Gi⊆H
H is elementary

(−1)|E(H)\E(G)|.

To complete the proof, it remains to show a bijection between elementary completions of
G using the permitted edges PG, and elementary completions of each of the graphs Gi.

1 1
1 1

1 1 1 1
1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1




k1 k2 − k1 k3 − k2 k4 − k3

d2

d3 − d2

d4 − d3

n − d4

Figure 4 A sorted ordered graph G, with SG = {(d1, k1), (d2, k2), (d3, k3), (d4, k4)}. The permitted
edges are covered. Orange blocks indicate the edges of G, green blocks indicate the permitted edges,
and blue blocks are the induced graphs Gi.

Let G ⊆ H ∈ ELn such that (E(H) \ E(G)) ⊆ PG. For all i ∈ [t], let Hi = H [Ai ⊔ Bi].
Since H ⊇ G, clearly also ∀i ∈ [t] : Hi ⊇ Gi. It remains to show that every such Hi is
elementary. To this end, we use Theorem 11: let i ∈ [t] and let ∅ ≠ X ⊊ Ai. If X ∩ Ai+1 ̸= ∅
then Hi has a vertex of full degree, and so |NHi

(X)| = |Bi| = |Ai| > |X|. Otherwise,
if X ∩ Ai+1 = ∅ then let X ′ = X ⊔ {a1, . . . , aki−1}. Observe that NH(X ′) = NH(X) =
NHi

(X)⊔{b1, . . . , bki−1}. However, H is elementary, therefore |NH(X ′)| > |X ′| = |X|+ki−1.
In both cases we have |NHi(X)| > |X| and Hi is elementary.

Conversely, let H1 ⊇ G1, . . . , Ht ⊇ Gt be elementary graphs. Then it suffices to show that
H ⊇ G whose edges are E(H) = E(G) ∪ E(H1) ∪ E(H2) ∪ . . . . . . E(Ht) is also elementary.
Let X ⊊ A, let i be the largest index such that ai ∈ X, and let j be the index for which
kj−1 < i ≤ kj . Thus:

NH(X) = NHj
(X ∩ Aj) ⊔ {b1, . . . , bki−1}.

If X ∩ Aj = Aj , then NHj
(X ∩ Aj) = Bj and thus |NH(X)| = ki−1 + |Bj | = dj+1 > kj ≥

|X|, and indeed H is elementary. Otherwise, since Hj is elementary and (X ∩ Aj) ⊊ Aj , we
have |NHj

(X ∩ Aj)| > |X ∩ Aj |, and therefore:

|NH(X)| = |NHj (X ∩ Aj)| + ki−1 > |X ∩ Aj | + ki−1 ≥ |X|. ◀

CCC 2022
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3.4.3 The Dual Coefficients of ⟨n, d, k⟩-blocks

Finally, having reduced the computation of the dual coefficient of an arbitrary ordered
graph G to that of simple “blocks”, we are left with the task of directly computing the dual
coefficient for any such block.

▶ Lemma 25. Let 0 ≤ d ≤ n, 0 < k < n. Then, the coefficient of the ⟨n, d, k⟩-block is:

a⋆
⟨n,d,k⟩ =


(

n − 1
k

)
, d = 0

−
(

n − d − 1
k − d

)(
k − 1
d − 1

)
, d > 0.

(⋆)

Proof. The proof is by induction on n, d and k. For the base case, let G be an ⟨2, d, 1⟩-block,
where d ∈ {0, 1, 2}. In all three cases, only K2,2 ⊇ G is elementary, thus by Corollary 20
they all satisfy equation (⋆), as required. Next, we use complete induction. Let G be an
⟨n, d, k⟩-block, where n > 2, and assume equation (⋆) holds for all ⟨n′, d′, k′⟩-blocks, such
that:

(n′ < n) ∨ (n′ = n ∧ k′ = k ∧ d′ > d).

If d > k, then ∀X ⊊ {a1, . . . , an} : |N(X)| > |X|, thus by Theorem 11, G is elementary
and by Lemma 18, a⋆

G = 0. Otherwise, d ≤ k. In this case, denote S = {(a1, bn), . . . , (ak, bn)},
and partition the set of all elementary graphs containing G into two disjoint sets,

H1 = {G ⊆ H ∈ ELn : E(H) ∩ S ̸= ∅} , and H2 = {G ⊆ H ∈ ELn : E(H) ∩ S = ∅} ,

and by Corollary 20, the dual coefficient of G is given by the sum over these sets:

a⋆
G =

∑
H∈H1

(−1)|E(H)\E(G)| +
∑

H∈H2

(−1)|E(H)\E(G)|.

The contributions of H1. To sum the contributions of all graphs in H1, we use the inclusion-
exclusion principle. First, note that BPM⋆

n is invariant to permutations over each bipartition
(that is, if H ∼= G then a⋆

G = a⋆
H). Therefore, for every subset T ⊆ S of selected edges, we

may, without loss of generality, “sort” the graph to obtain an isomorphic sorted ordered
graph. Consequently, denote ∀t ∈ [k] : Gt = G ∪ {(ak−t+1, bd+1), . . . , (ak, bd+1)}. By the
inclusion-exclusion principle, we have

∑
H∈H1

(−1)|E(H)\E(G)| =
k∑

t=1
(−1)t+1

(
k

t

)
· (−1)t · a⋆

Gt
= −

k∑
t=1

(
k

t

)
· a⋆

Gt
.

If t = k, then Gt is an ⟨n, d + 1, k⟩-block, for which the induction hypothesis holds.
Otherwise, for t ∈ [k − 1], the biadjacency matrix of each graph Gt can be partitioned into
blocks, as follows:
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1 1
1 1
1 1
1 1

1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1




k − t t n − k

d

1

n − d − 1

If t < k − d, then by Definition 21 the permitted edges for the vertices {a1, . . . , ak−t}
in Gt are only those connecting them to bd+1. Therefore, Gt cannot be completed to an
elementary graph using only permitted edges, and by Lemma 22, a⋆

Gt
= 0. Otherwise, by

Lemma 24, the coefficient a⋆
Gt

is the product of coefficients for each of the three blocks. The
first two are an ⟨d + 1, d, k − t⟩-block and a ⟨n − k + t, d + 1 − k + t, t⟩-block. The third is a
complete bipartite graph over n − k vertices, and thus does not affect the coefficient of G.

1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




k − t

d + 1
d

(a) ⟨d + 1, d, k − t⟩-block.

1 1
1 1
1 1

1 1 1 1 1
1 1 1 1 1




t

n − k + t

d + 1 − k + t

(b) ⟨n − k + t, d + 1 − k + t, t⟩-block.

Observe that if k − d < t < k, then the ⟨d + 1, d, k + 1⟩-block is elementary, thus by
Lemma 18, its dual coefficient is zero. Consequently, only two potentially non-zero cases
remain: t = k and t = k − d. For both cases, the induction hypothesis holds. Observe that if
d = 0, both cases converge to a single case. Thus:

d > 0:

−
k∑

t=1

(
k

t

)
· a⋆

Gt
= −

(
k

k − d

)
· a⋆

⟨d+1,d,d⟩ −
(

k

k

)
· a⋆

⟨n,d+1,k⟩

= −
(

n − d − 2
k − d − 1

)
·
[(

k

k − d

)
+

(
k − 1

d

)]
= −

(
n − d − 2
k − d − 1

)(
k − 1
d − 1

)
.

d = 0:

−
k∑

t=1

(
k

t

)
· a⋆

Gt
= −

(
k

k

)
· a⋆

⟨n,1,k⟩ =
(

n − 2
k − 1

)
.

CCC 2022
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The contributions of H2. If k = n − 1, then H2 = ∅, thus there are no contributions
from H2. This assertion follows since for any H ⊇ G with E(H) ∩ S = ∅, we have
|N({a1, . . . , an−1})| ≤ n − 1 = |{a1, . . . , an−1}|. Thus, by Theorem 11, H is not elementary.
Otherwise, if k < n − 1, we claim that:∑

H∈H2

(−1)|E(H)\E(G)| = a⋆
⟨n−1,d,k⟩.

Since the induction hypothesis holds for the ⟨n − 1, d, k⟩-block, proving the above identity
would yield an expression for the contributions of H2. Denote the ⟨n − 1, d, k⟩-block by G′.
To prove the aforementioned identity, it remains to show a bijection between elementary
graphs G′ ⊆ H ′ ∈ ELn−1, and elementary graphs G ⊆ H ∈ ELn, where E(H) ∩ S = ∅.
Furthermore, we must also maintain |E(H ′) \ E(G′)| = |E(H) \ E(G)|, for any two graphs
H ′ and H which are mapped to one another by the bijection. The bijection is defined as
follows:

H 7→ H ′: Let H ⊇ G be an elementary graph such that E(H) ∩ S = ∅. We claim
that H ′ = H − an − bn is also elementary. By Theorem 11, it suffices to show that
∀X ⊊ {a1, . . . , an−1} : |NH′(X)| > |X|. If X ∩ {ak+1, . . . , an−1} ̸= ∅, then NH′(X) =
{b1, . . . , bn−1}. Thus |NH′(X)| = n − 1 > |X|. Otherwise, if X ∩ {ak+1, . . . , an−1} = ∅, then
NH′(X) = NH(X) and therefore: |NH′(X)| = |NH(X)| > |X|, as required.

H ′ 7→ H: Let H ′ ⊇ G′ be an elementary graph. We claim that the graph H ⊆ Kn,n

where E(H) = E(H ′) ⊔ {(ak+1, bn), . . . , (an, bn)}, is also elementary. Once again, we use
Theorem 11. Let X ⊊ {a1, . . . , an}. If X ∩ {ak+1, . . . , an} ̸= ∅, then NH(X) = {b1, . . . , bn}.
Thus |NH(X)| = n > |X|. Otherwise, if X ∩ {ak+1, . . . , an} = ∅, then NH(X) = NH′(X)
and therefore: |NH(X)| = |NH′(X)| > |X|, as required.

Summing up the contributions. Finally, we have reduced the computation of the coefficient
a⋆

⟨n,d,k⟩ to a sum of coefficients a⋆
⟨n′,d′,k′⟩ for which the induction hypothesis holds. It now

remains to sum up the contributions for each possible case. If d > 0 and k = n − 1, then:

a⋆
G =

∑
H∈H1

(−1)|E(H)\E(G)| = −
(

n − d − 2
k − d − 1

)(
k − 1
d − 1

)
= −

(
n − d − 1

k − d

)(
k − 1
d − 1

)
.

If d > 0 and k < n − 1, then:

a⋆
G =

∑
H∈H1

(−1)|E(H)\E(G)| +
∑

H∈H2

(−1)|E(H)\E(G)| = −
(

n − d − 1
k − d

)(
k − 1
d − 1

)
.

If d = 0 and k = n − 1, then:

a⋆
G =

∑
H∈H1

(−1)|E(H)\E(G)| =
(

n − 2
k − 1

)
=

(
n − 1

k

)
.

And lastly, if d = 0 and k < n − 1, then:

a⋆
G =

∑
H∈H1

(−1)|E(H)\E(G)| +
∑

H∈H2

(−1)|E(H)\E(G)| =
(

n − 2
k − 1

)
+

(
n − 2

k

)
=

(
n − 1

k

)
.◀

3.4.4 Putting It Together
We are now ready to prove Theorem 2.
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Proof. Let G ⊆ Kn,n. If G is not totally ordered, then by Lemma 17, a⋆
G = 0. Otherwise, if

G is totally ordered and there exists some i ∈ [t − 1] such that di+1 ≤ ki, then by Lemma 23,
a⋆

G = 0, and indeed:

f (di+1 − ki−1, di − ki−1, ki − ki−1) =
(

di+1 − ki−1 − 1
ki − ki−1

)
= 0.

Finally, if G is totally ordered, and ∀i ∈ [t − 1] : di+1 > ki, then let Ai =
{aki−1+1, . . . , adi+1}, Bi = {bki−1+1, . . . , bdi+1}, ∀i ∈ [t], where k0 = 0 and dt+1 = n. Fur-
thermore ∀i ∈ [t], let Gi = G [Ai ⊔ Bi] be the induced graph on the vertices Ai ⊔ Bi.
By Lemma 24, we have a⋆

G =
∏t

i=1 a⋆
Gi

. Observe that ∀i ∈ [t − 1], the graph Gi is an
⟨di+1 − ki−1, di − ki−1, ki − ki−1⟩-block. Thus, its coefficient is given by the expression in
Lemma 25. However, the last graph Gt may not be a “block”. In fact, there are two possible
cases: either dt = n, in which case Gt is a complete bipartite graph, and thus a⋆

G = 1.
Otherwise, dt < n, and Gt is a biclique joining n − kt−1 left vertices to n − dt right vertices.
In this case, since a⋆

G is invariant to swapping the two bipartitions, then without loss of
generality we may do so, thus obtaining an isomorphic ⟨n − kt−1, 0, n − dt⟩-block. Thus, we
have:

a⋆
Gt

=


1, dt = n(

n − kt−1 − 1
n − dt

)
, dt < n

=
(

n − kt−1 − 1
n − dt

)
.

Putting it all together, we obtain:

a⋆
G =

t∏
i=1

a⋆
Gi

=
(

n − kt−1 − 1
n − dt

)
·

t−1∏
i=1

a⋆
⟨di+1−ki−1,di−ki−1,ki−ki−1⟩

=
(

n − kt−1 − 1
n − dt

)
·

t−1∏
i=1

f (di+1 − ki−1, di − ki−1, ki − ki−1) . ◀

3.5 Corollaries of Theorem 2: The ℓ1-norms of BPMn

Theorem 2 allows us to compute the dual coefficient of any graph G ⊆ Kn,n. It is not hard to
see that for some graphs G ⊆ Kn,n, the coefficient a⋆

G may be exponential in n. For instance,
the biclique Kn,n/2 is an ordered graph whose representing sequence is

(
n
2 , n

)
. Therefore its

dual coefficient is
(

n−1
n
2

)
∼ 2n

poly(n) . We claim that the aforementioned bound is qualitatively
tight. Namely, for every graph G ⊆ Kn,n, the coefficient a⋆

G is at most exponential in 2n.

▶ Lemma 26. Let G ⊆ Kn,n. The dual coefficient of G is bounded by |a⋆
G| ≤ 22n.

Proof. If G is not totally ordered then by Lemma 17 a⋆
G = 0. Otherwise, let

{(d1, k1), . . . , (dt, kt)} be the representing sequence of G, let k0 = 0, and let:

f(n, d, k) =


(

n − 1
k

)
, d ≤ 0

−
(

n − d − 1
k − d

)(
k − 1
d − 1

)
, d > 0.

Observe that both in the case d ≤ 0 and in the case d > 0, we have |f(n, d, k)| ≤ 2n−d+k

(by bounding every binomial coefficient). Therefore, using Theorem 2 we obtain:

|a⋆
G| =

(
n − kt−1 − 1

n − dt

)
·

t−1∏
i=1

|f (di+1 − ki−1, di − ki−1, ki − ki−1) | ≤ 2n+dt ≤ 22n. ◀

CCC 2022
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Thus, the multilinear polynomial representing BPM⋆
n is “simple” in the following sense:

its ℓ1-norm (the sum of absolute values of its coefficients) is small, over both the {0, 1} and
Fourier basis.

▶ Corollary 27. Let n > 2. Then:

∥BPM⋆
n∥1 = 2Θ(n log n), and furthermore ∥̂ BPMn ∥̂1 = ∥̂ BPM⋆

n ∥̂1 = 2O(n log n).

Proof. In [3], the number of monomials in BPM⋆
n was bounded by:

(n!)2 ≤ |mon (BPM⋆
n)| ≤ (n + 2)2n+2

thus, using Lemma 26, we deduce:

(n!)2 ≤ ∥BPM⋆
n∥1 ≤ (n + 2)2n+2 · 22n ⇒ ∥BPM⋆

n∥1 = 2Θ(n log n).

As for the Fourier ℓ1-norm, we note that the magnitudes of the Fourier coefficients of any
Boolean function and its dual are identical (see e.g., [25]), therefore ∥̂ BPMn ∥̂1 = ∥̂ BPM⋆

n ∥̂1.
Furthermore, recall that ∀S ⊆ [n], ∥̂ ANDS ∥̂ = ∥̂Πi∈Sxi∥̂ = 1. Thus, by subadditivity and
homogeneity:

∥̂ BPMn ∥̂1 = ∥̂ BPM⋆
n ∥̂1 ≤

∑
G⊆Kn,n

|a⋆
G| · ∥̂ ANDG ∥̂ = ∥BPM⋆

n∥1 = 2O(n log n). ◀

4 The Upper Bound on d̃egϵ (BPMn)

In this section we obtain an upper bound on the approximate degree of the bipartite perfect
matching function, which holds even for exponentially small values of ϵ.

▶ Theorem 28. Let 2−n log n ≤ ϵ ≤ 1
3 . The ϵ-approximate degree of BPMn is bounded by:

d̃egϵ (BPMn) = O(n3/2
√

log n).

This bound is essentially a corollary Theorem 2, alongside two further observations. First,
we show that the approximate degree of any Boolean function and its dual are identical (for
all ϵ > 0). We then prove that Boolean functions whose representing polynomials have small
ℓ1-norm over the {0, 1} basis, can be efficiently approximated by low degree polynomials.
The latter approach was also employed by Sherstov in [29]. Let us remark that, to obtain the
upper bound on the approximate degree of BPMn it would have sufficed to merely show that
the magnitudes of all dual coefficients are, at most, exponential in Θ(n log n). However, we do
not know of a simpler proof of this fact, other than leveraging the complete characterization
of BPM⋆

n given by Theorem 2.

▶ Lemma 29. Let f : {0, 1}n → {0, 1} be a Boolean function, and let f⋆ be its dual. Then:

∀0 < ϵ <
1
2 : d̃egϵ (f) = d̃egϵ (f⋆) .

Proof. Let ϵ > 0, and let p ∈ R [x1, . . . , xn] be a real polynomial that ϵ-approximates f

pointwise. Let p⋆ ∈ R [x1, . . . , xn] be the real polynomial defined by: p⋆(x1, . . . , xn) =
1 − p(1 − x1, . . . , 1 − xn) (i.e., replace each variable xi with (1 − xi), negate all coefficients,
and add 1). Observe that deg(p⋆) ≤ deg(p), since p⋆ is obtained by a linear transformation
on p, thus the degree cannot increase. Furthermore, ∀x1, . . . , xn ∈ {0, 1}, we have:

|f⋆(x1, . . . , xn) − p⋆(x1, . . . , xn)| = |1 − f(1 − x1, . . . , 1 − xn) − (1 − p(1 − x1, . . . , 1 − xn))|
= |f(1 − x1, . . . , 1 − xn) − p(1 − x1, . . . , 1 − xn)| ≤ ϵ.

The converse similarly follows, since (f⋆)⋆ = f . ◀
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For the second lemma, we require a well known Theorem regarding the approximate
degree of the ANDn function. Nisan and Szegedy [23] first showed that for the regime of
ϵ = Θ(1), we have d̃eg1/3 (ANDn) = Θ(

√
n). Their result was extended by Buhrman, Cleve,

De Wolf and Zalka [6], who determined the approximate degree of AND for any ϵ > 0.

▶ Theorem 30 ([6]). Let n ∈ N and let 2−n ≤ ϵ ≤ 1
3 . Then:

d̃egϵ (ANDn) = Θ
(√

n · log(1/ϵ)
)

.

Consider a Boolean function f . If the representing polynomial of f has small ℓ1-norm,
then one may use the following straightforward approach for constructing a low-degree
approximating polynomial for f : approximate (with sufficiently small ϵ) every monomial of
the representing polynomial. Since each monomial is an AND function, we may appeal to
Theorem 30 to obtain a low-degree approximation. Thus, the polynomial approximating f is
given by summing the approximating polynomials for each of its monomials. This scheme is
implemented in the following lemma, whose proof appears in the full version of this paper.

▶ Lemma 31. Let f : {0, 1}n → {0, 1} be a Boolean function and let p ∈ R [x1, . . . , xn] be
the unique multilinear polynomial representing f . If 3 < ∥p∥1 < 2n, then:

∀ϵ ∈
(

1
∥p∥1

,
1
3

)
: d̃egϵ (f) = O

(√
n · log ∥p∥1

)
.

The proof of Theorem 28 now follows.

Proof. Let 2−n log n ≤ ϵ ≤ 1
3 . Then, using Corollary 27 and Lemmas 29 and 31, we have:

d̃egϵ (BPMn) = d̃egϵ (BPM⋆
n) = O(n3/2

√
log n). ◀

5 The Lower Bound d̃eg (BPMn) = Ω(n
3/2)

In this section we obtain a lower bound on the approximate degree of perfect matching,
which matches the upper bound of Theorem 28, up to the low order term

√
log n.

▶ Theorem 32. The approximate degree of BPMn is bounded by d̃eg (BPMn) = Ω(n3/2).

Aaronson, Ben-David, Kothari, Rao and Tal [1] recently proved that for any total Boolean
function f , deg(f) = O

(
d̃eg (f)2

)
(which is optimal, as exemplified by the ORn function).

Their proof is composed of two primary steps. First, they make the key observation that, at
the heart of Huang’s proof for the sensitivity conjecture [15], there (implicitly) lies a new
complexity measure: Spectral Sensitivity. Their main technical Theorem is to then show
that this aforementioned quantity lower-bounds approximate degree. It is this relation that
we wish to leverage. 4

4 From the quadratic relation between degree and approximate degree [1] and using the fact that BPMn

has full degree [3], the weaker lower bound of d̃eg (BPMn) = Ω(n) also immediately follows.
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5.1 Spectral Sensitivity and the Sensitivity Graph
▶ Definition 33 (Sensitivity Graph [1]). Let f : {0, 1}n → {0, 1} be a Boolean function. The
Sensitivity Graph of f is the graph Gf over the vertices {0, 1}n whose edges are:

∀x, y ∈ {0, 1}n : {x, y} ∈ E(Gf ) ⇐⇒ |x ⊕ y| = 1 ∧ f(x) ̸= f(y).

Thus, Gf is the subgraph containing all the bi-chromatic edges of the n-dimensional Hypercube
whose vertices are labeled by f (the “f -cut” of the Hypercube).

▶ Definition 34 (Spectral Sensitivity [1]). Let f : {0, 1}n → {0, 1} be a Boolean function and
let Gf be its sensitivity graph. The Spectral Sensitivity of f is defined by λ(f) def= ρ(Gf ).

Observe that the sensitivity graph of any Boolean function f is a bipartite graph whose
bipartitions are given by f−1(0) (hereafter, the “left” vertices) and f−1(1) (the “right”
vertices). Clearly as all the edges of the sensitivity graph are bi-chromatic, these two sets
form a valid bipartition. In the case of BPMn, we note that (perhaps rather confusingly) the
sensitivity graph is a bipartite graph in which each vertex x ∈ {0, 1}n2 is, itself, associated
with a bipartite graph (corresponding to the input x).

Under this notation, the main Theorem of [1] states the following.

▶ Theorem 35 ([1]). For any total Boolean function f : {0, 1}n → {0, 1}, we have:

λ(f) = O(d̃eg (f)).

5.2 A Tight Bound on the Spectral Sensitivity of BPMn

In what follows, we obtain tight bounds on the Spectral Sensitivity of BPMn.

▶ Theorem 36. The spectral sensitivity of matching is bounded by λ(BPMn) = Θ(n3/2).

This tight bound on λ(BPMn) yields our approximate degree lower bound, and also shows
that this is the best bound attainable by the method of Spectral Sensitivity for the perfect
matching function.

▶ Corollary 37. The approximate degree of matching is bounded by d̃eg (BPMn) = Ω(n3/2).

Proof. Follows from Theorem 36 and Theorem 35. ◀

5.2.1 The Upper Bound λ(BPMn) = O(n
3/2)

The spectrum of bipartite graphs has several nice properties. Their eigenfunctions come
in pairs with negated eigenvalues (thus their spectrum is symmetric). Another well-known
result regarding the spectrum of bipartite graphs is Hölder’s inequality for matrix norms:

▶ Proposition 38. Let G be a bipartite graph and let ∆L and ∆R be the maximal left and
right degrees, correspondingly. Then, ρ(G) ≤

√
∆L∆R.

Recall that the degree of any vertex in the sensitivity graph is equal, by definition,
to the number of bi-chromatic edges incident to it – which is its sensitivity. Thus, by
Proposition 38, for any Boolean function f we have λ(f) ≤

√
s0(f) · s1(f), where sb(f) def=

maxx∈f−1(b) sensf (x), ∀b ∈ {0, 1}. This simple observation suffices to obtain the upper
bound:

▶ Proposition 39. For any n ≥ 1, we have λ(BPMn) ≤ n
3/2.
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Proof. Recall that λ(BPMn) ≤
√

s0(BPMn) · s1(BPMn). Since the sensitivity of any input
is at most n2 (the number of input bits), we immediately have s0(BPMn) ≤ n2 (and in
fact, s0(BPMn) = Θ(n2)). As for the 1-sensitivity, clearly for every G ∈ BPM−1

n (1), the
only sensitive edges are those present in some matching. The union of all matchings is
matching-covered, and every edge in an elementary component is sensitive if and only if the
component is K2 (see Theorem 11), thus s1(BPMn) ≤ n. ◀

5.2.2 The Lower Bound λ(BPMn) = Ω(n
3/2)

Let us now consider the lower bound. By Cauchy’s Interlace Theorem (and using the fact
that for bipartite graphs, ρ(G) = λ1), it holds that for any bipartite graph G, the spectral
radius of G is no smaller than that of any induced subgraph of G. Thus, it suffices to exhibit
an induced subgraph of the sensitivity graph of BPMn, whose spectral radius is large. In the
following Theorem, we construct such a connected bi-regular induced subgraph, and bound
its spectral radius.

▶ Theorem 40. For any n > 2 we have λ(BPMn) ≥ n
3/2

3
√

3
− O(n) = Ω(n3/2).

Proof. Let n > 2 and let n+1
3 < k < n be a natural number. Let A = A1 ⊔ A2 and

B = B1 ⊔ B2 be disjoint sets such that |A1| = |B1| = k and |A2| = |B2| = n − k. For every
t ∈ N+, denote the set of all matchings joining t vertices of A2 with t vertices of B2, by
Mt(A2, B2). Consider the following two sets of graphs:

R = {G = (A ⊔ B, (A1 × B2) ⊔ (A2 × B1) ⊔ E(M)) : M ∈ Mn−2k(A2, B2)}
L = {G = (A ⊔ B, (A1 × B2) ⊔ (A2 × B1) ⊔ E(M)) : M ∈ Mn−2k−1(A2, B2)} .

Let GBPMn be the sensitivity graph of BPMn, and let H = GBPMn [L ⊔ R] be its induced
subgraph over the aforementioned set of graphs (vertices). By Cauchy’s Interlace Theorem
the spectral radius of H is at most that of G, therefore λ(BPMn) = ρ(GBPMn) ≥ ρ(H).

Observe that every graph G ∈ R has a perfect matching, which can be constructed by
taking the (n − 2k)-size matching between A2 and B2 and matching the remaining k vertices
of A2 with B1, and similarly the remaining k vertices of B2 with A1 (this can always be done,
since the bicliques KA2,B1 , KA1,B2 are subgraphs of G). Conversely, every graph G ∈ L

does not have a perfect matching. For example, the set A2 violates Hall’s condition, since:
|N(A2)| = n − 2k − 1 + k = n − k − 1 < n − k = |A2|. Thus, R is the right bipartition of H,
and L is its left bipartition.

Let us characterize the edges of H. Let G ∈ R and let M be its corresponding (n−2k)-size
matching between A2 and B2. For every edge e ∈ M , we have by construction (G \ {e}) ∈ L.
Furthermore, for any edge e ∈ (E(G) \ M), the graph (G \ {e}) does not contain one of the
bicliques KA2,B1 , KA1,B2 , and is therefore not in R. Consequently the degree of each right
vertex of H is dR = degH(G) = |M | = n − 2k.

Similarly, let G ∈ L and let M be its (n − 2k − 1)-size matching between A2 and B2.
Denote by S, T the left and right vertices of M , correspondingly. Then, for any u ∈ (A2 \ S),
v ∈ (B2 \ T ), the graph G ⊔ {(u, v)} has a (n − 2k)-size matching, and is thus in R. Adding
any other edge e to G would either join a vertex from A1 to a vertex from B1, or e would be
incident to a vertex in M . In both cases, G ⊔ {e} is not in L. Thus the degree of each left
vertex of H is dL = degH(G) = (|A2| − |S|) · (|B2| − |T |) = (k + 1)2.
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Figure 6 The induced subgraph H = GBPMn [L ⊔ R] of the sensitivity graph for BPMn.

Finally, observe that any bi-regular bipartite graph, and in particular H, satisfies ρ(H) ≥√
dL · dR (this follows, for example, by considering the eigenfunction which places weight

√
dL

on each left vertex, and
√

dR on each right vertex)5. To conclude the proof, fix k = ⌊ n
3 ⌋ − 1.

Thus:

λ(BPMn) = ρ(G) ≥ ρ(H) ≥
√(⌊n

3

⌋)2
·
(

n − 2
(⌊n

3

⌋
− 1

))
= n

3/2

3
√

3
− O(n). ◀
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A Towards Fine Grained Bounds for Bipartite Perfect Matching

The main thrust of this section, and indeed one of the motivating factors for the work in this
paper, revolves around the following longstanding open question:

▶ Open Problem 41 (The n
5/2-Barrier for Bipartite Matching6). Is there a deterministic

algorithm for bipartite perfect matching running in time o(n5/2)?

Hopcroft and Karp’s [14] algorithm, designed half a century ago, attains a runtime of
O

(
n

5/2
)

when applied to dense graphs (i.e., when the number of edges is Θ(n2)). Since then,
no known deterministic algorithm has been able to break this barrier, in the dense regime.
To make matters concrete, in what follows let us consider the decision variant of the problem,
as represented by BPMn; we are given a balanced bipartite graph with n vertices in each
bipartition, and wish to determine whether a perfect matching exists. Secondly, let us fix
the following computational model.

The Demand Query Model

In recent work, Nisan [22] introduced a new concrete complexity model for bipartite matching,
known as the “Demand Query Model”. This model appears to be particularly well-suited for
the matching problem, for two primary reasons. Firstly, Nisan showed that combinatorial
matching algorithms can be efficiently simulated within the model (in fact, this holds even
for parallel, online, approximate and other classes of algorithms, see [22]). For instance,
Hopcroft and Karp’s algorithm, whose running time is O(n5/2), can be “translated” into
demand query algorithm making O(n3/2) queries. Since each query can be trivially simulated
in O(n) time, this appears to capture the complexity of the aforementioned algorithm in a
fine-grained manner. Secondly, the queries in this model are simple enough that we could
hope to prove lower bounds against them.

In this framework, algorithms are modeled by decision trees. Each internal node corres-
ponds to a demand query, and each leaf is labeled by an output, either 0 or 1. A demand
query consists of a left vertex u and an ordering π ∈ Sn, induced on the right vertices. The
result of such a query is the first right vertex v, according to the ordering π, for which the
edge (u, v) exists in the graph (or ⊥ if no such edge exists). A root-to-leaf path in the tree
corresponds to a particular set of answers to the queries made along the path. Thus, the
set of all such paths partitions the set of all graphs G ⊆ Kn,n, whereby each graph G is
associated with a single leaf. Any graph G ⊆ Kn,n which is “consistent” with the answers
made along a root-to-leaf path, must also be consistent with the labeling of that leaf. The
“cost” of an algorithm in this model is measured by the depth of the tree (i.e., the worst-case
amount of queries made on any particular input). As this is an information-theoretic model,
we disregard the amount of computation necessary to construct (or deduce the existence of)
a perfect matching, and instead only measure the minimal amount of information required
to do so.

A.1 The Demand Query Complexity of Matching
Open Problem 41 remains as of yet unsettled. In light of the efficient simulation of combin-
atorial algorithms by the demand model, one could formulate the following closely related
question: “can one construct quasi-linear demand-query algorithms for matching?”, or in the
contrapositive:

6 In fact we are only interested in polynomial improvements to this running time, i.e., bounds of the form
n5/2−ε for some constant ε > 0.
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▶ Open Problem 42 (The Demand Query Complexity of Matching). Is there some constant
ε > 0 such that Demand(BPMn) = Ω(n1+ε)?

To better understand Demand(BPMn), we have drawn connections between the demand
query complexity of BPMn and other, mostly algebraic, complexity measures relating to
BPMn and its dual – a representative collection of which are detailed in Figure 7.

Figure 7 Relations between complexity measures of BPMn. An arrow f(n) → g(n) indicates
that f = Õ(g) (excluding logs) – with two exceptions. The arrow Q2(BPMn) → Demand(BPMn)
incurs a

√
n-factor loss, see Subsection A.3, and the arrow d̃eg (BPMn) → log ∥BPM⋆

n∥1 represents
the bound provided by Lemma 31. Green blocks correspond to bounds on their adjacent quantity.
Every arrow f → g is accompanied by the corresponding citation in blue, apart from trivial relations
wherein they are omitted. Bounds and relations marked [Here] denote results shown in this paper.

The following table details the complexity measures appearing in Figure 7.

Query Complexity Measures

Measure Definition

Demand(BPMn) The least depth of a decision tree computing BPMn, whose internal nodes are
labeled by demand queries.

DOR(BPMn) The least depth of a decision tree computing BPMn, whose internal nodes are
labeled by ORs over arbitrary subsets of the input bits.

DDISJ(BPMn) The least depth of a decision tree computing BPMn, whose internal nodes are
labeled by disjunctions over literals, e.g. (x1 ∨ x̄3 ∨ x7).

DTSIZE(BPMn) The least amount of leaves in a classical decision tree computing BPMn.

Q2(BPMn) The bounded-error quantum query complexity of BPMn.

CCC 2022



1:24 The Approximate Degree of Bipartite Perfect Matching

Communication Complexity Measures

Measure Definition

CC(BPMn) The two-party deterministic communication complexity of BPMn, where we
fix an arbitrary partition over the input bits.

rk(MBPMn ) The real rank of the communication matrix corresponding to the above com-
munication problem.

Algebraic Complexity Measures

Measure Definition

|mon(BPM⋆
n)| Number of non-zero coefficients in the unique representing polynomial.

∥BPM⋆
n∥1 Sum of magnitudes of coefficients in the unique representing polynomial.

λ(BPMn) The spectral sensitivity of BPMn (see Definition 34).

d̃eg (BPMn) The approximate degree of BPMn.

A.2 Drawing the Connections
Decision Tree Measures

It is not hard to see that every demand query can be simulated by at most logarithmically
many OR-queries, by performing binary search on the right vertices. Similarly trivially,
every OR query can be seen as a disjunction wherein no literal is negated, thus we also have
DDISJ(BPMn) ≤ DOR(BPMn). The latter quantity, DDISJ(BPMn), is of particular interest –
Nisan observed [22] that for any Boolean function the least depth of a disjunction decision
tree computing the function is equivalent, up to a log n-factor, to the minimum size (i.e.,
number of leaves) of a classical decision tree computing it. The minimum decision tree size
computing a Boolean function is known to be related to Fourier-analytic properties of the
function. For example, a folklore result states that it is lower bounded by the Fourier ℓ1-norm
of the function (see e.g. [25]).

Communication Complexity Measures

Given a disjunction decision tree computing a Boolean function, one naturally obtains a
corresponding 2-party deterministic communication protocol. The protocol simply simulates
the tree by “solving”, at every step, the current disjunction. This simulation can be done
efficiently, since any disjunction requires only 2-bits of communication (Alice and Bob
compute their parts of the disjunction separately, and communicate the answer bits to one
another). In the argument above, the actual partition determining Alice and Bob’s shares
of the input bits is inconsequential. For any such fixed partition, one can consider the
communication matrix, which is the Boolean matrix whose rows are indexed by Alice’s inputs,
and columns by Bob’s inputs. It is well known (by a result of [19]), that the log of the real
rank of this matrix yields a lower bound on the deterministic communication complexity of
its corresponding problem.

The ℓ1-norm of BPM⋆
n

A surprisingly pivotal complexity measure arising in Figure 7 is the ℓ1-norm of the dual
function of matching. Firstly, this measure trivially bounds the number of monomials
appearing in its representing polynomial (since all coefficients are integers), which in turn
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bounds the rank of the communication matrix, by a classical result of [24] (every monomial
corresponds to a rank-1 matrix). The same quantity, ∥BPM⋆

n∥1, also bounds the Fourier
ℓ1-norm of BPMn (equivalently BPM⋆

n), as we observe in Corollary 27, as well as yielding
bounds on the approximate degree, via the scheme detailed in Lemma 31. With regards to
lower bounds, in [3] it was shown that for any Boolean function f it holds that log ∥f⋆∥1
lower bounds the least depth of an OR decision tree computing f .

Through our complete characterization of the dual polynomial given in Theorem 2, we
were able to deduce the tight bound log ∥BPM⋆

n∥1 = Θ(n log n) (see Corollary 27), thereby
implying all of the aforementioned bounds. We conjecture that this low-norm representation
of BPM⋆

n has more far-reaching consequences – in particular, that it can be used to construct
a quasi-linear deterministic communication protocol for the bipartite matching problem.7

Approximate Degree and Quantum Query Complexity

The “polynomial method” in quantum computation [2] states that the acceptance probability
of any d query quantum algorithm can be written as a degree 2d polynomial. Thus, the
approximate degree of any Boolean function serves as a lower bound on its Quantum
query complexity. In this paper we have obtained tight upper and lower bounds on this
quantity, showing that d̃eg (BPMn) = Θ̃(n3/2). To complete the connections specified in
Figure 7, it remains to relate the quantum query complexity to our main object of study;
Demand(BPMn).

A.3 Quantum Bounds Imply Combinatorial Bounds
In this section, we make one final simple observation regarding the demand query model:
demand query algorithms can be efficiently simulated by quantum queries. Recall that every
demand query can be simulated by logarithmically many OR-queries, each over at most n

bits (corresponding to the right vertices). In his seminal paper, Grover [12] showed that the
ORn function can be computed, to constant error, using O(

√
n) quantum queries (which is

tight, see [4]). Thus, replacing each demand query by the majority over several invocations
of Grover’s algorithm, and using Chernoff’s bound to suitably reduce the error, we obtain:8

▶ Proposition 43. If there exists a demand query algorithm for BPMn making at most d

queries, then:

Q2(BPMn) = O(
√

n · d · polylog(d)).

Consequently, any lower bound of the form Q2(BPMn) = Ω(n3/2+ε), for some constant
ε > 0, would imply a (polynomially) super-linear lower bound on the demand query complexity
of BPMn, thereby resolving Open Question 42. Such a result might suggest that quasi-linear
combinatorial algorithms for bipartite perfect matching are improbable, which we consider a
very interesting prospect. Nevertheless, at present the quantum query complexity of BPMn
remains undetermined. Lin and Lin [18] constructed an efficient quantum algorithm, yielding

7 Indeed, it is not hard to show that for any monotone Boolean function f : {0, 1}n → {0, 1} and any
partition over its inputs, we have CC(f) ≤ min {|mon(f)|, |mon(f⋆)|}2, which can be seen as a single
step towards this direction.

8 In fact, by a similar approach we can also show that for any Boolean function f : {0, 1}n → {0, 1}, the
quantum query complexity is bounded by Q2(f) = O

(√
n · log DTSIZE(f) · log log DTSIZE(f)

)
, where

DTSIZE(f) is the minimal size of a classical decision tree computing f . This observation might be useful
in cases where there exist relatively “unbalanced” decision trees computing f .
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an upper bound of O
(
n

7/4
)
. Conversely, through Ambainis’ adversary technique, Zhang [32]

has obtained an upper bound of Ω
(
n

3/2
)
. Our main theorem (Theorem 1) implies that this

lower bound cannot be (polynomially) strengthened by the “Polynomial Method”. In fact,
neither can Ambainis’ adversary bounds be used to this end, since it is known (see e.g. [32])
that the best bound attainable by this method cannot exceed

√
C0(f)C1(f). Closing this

gap is left as an open problem.

▶ Open Problem 44 (Quantum Query Complexity of Matching). Close the gap on Q2(BPMn).
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