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—— Abstract

An active topic in the study of random constraint satisfaction problems (CSPs) is the geometry of

the space of satisfying or almost satisfying assignments as the function of the density, for which a

precise landscape of predictions has been made via statistical physics-based heuristics. In parallel,

there has been a recent flurry of work on refuting random constraint satisfaction problems, via

nailing refutation thresholds for spectral and semidefinite programming-based algorithms, and also

on counting solutions to CSPs. Inspired by this, the starting point for our work is the following

question: What does the solution space for a random CSP look like to an efficient algorithm?
In pursuit of this inquiry, we focus on the following problems about random Boolean CSPs at

the densities where they are unsatisfiable but no refutation algorithm is known.

1. Counts. For every Boolean CSP we give algorithms that with high probability certify a
subexponential upper bound on the number of solutions. We also give algorithms to certify
a bound on the number of large cuts in a Gaussian-weighted graph, and the number of large
independent sets in a random d-regular graph.

2. Clusters. For Boolean 3CSPs we give algorithms that with high probability certify an upper
bound on the number of clusters of solutions.

3. Balance.We also give algorithms that with high probability certify that there are no “unbalanced”
solutions, i.e., solutions where the fraction of +1s deviates significantly from 50%.

Finally, we also provide hardness evidence suggesting that our algorithms for counting are optimal.
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1 Introduction

Constraint satisfaction problems (CSPs) are fundamental in the study of algorithm design and
complexity theory. They are simultaneously simple and also richly expressive in capturing a
wide range of computational tasks, which has led to fruitful connections to other areas of
theoretical computer science (see, for example, [33, 8] for connections to cryptography, [21] for
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applications to hardness of learning, and [25] for applications to average-case hardness). Hence,
understanding them has received intense attention in the past few decades, leading to several
comprehensive theories of their complexity. Some of the highlights include: the Dichotomy
Theorem, which characterizes the worst-case complexity of satisfiability of CSPs via their
algebraic properties [69, 14, 78], inapproximability results via the PCP Theorem [35], and the
theory of optimal inapproximability based on connections between semidefinite programming
and the Unique Games conjecture [41, 42, 65].

In this work, we are interested in the algorithmic aspects of random instances of CSPs.
There has been a diverse array of phenomena about random CSPs illustrated in recent
work, of dramatically varying nature depending on the ratio of the number of constraints to
the number of variables, known as the density. Of central importance is the satisfiability
threshold, which marks a phase transition where a random CSP instance shifts from being
likely satisfiable to being likely unsatisfiable. When the density is well below the satisfiability
threshold, there are several algorithms for tasks such as counting and sampling assignments
to a random CSP instance [55, 39, 30, 11], whereas well above this threshold there are
efficient algorithms for certifying that random CSPs are unsatisfiable [5]. The densities in
the interim hold mysteries that we don’t yet fully understand, and this work is an effort
to understand the algorithmic terrain there. To make matters concrete, for now we will
specialize the discussion of the problem setup and our work to the canonical 3SAT predicate.

Consider a random 3SAT formula Z on n variables and An clauses where each clause is
sampled uniformly, independently, and adorned with uniformly random negations. Once
the density A is a large enough constant, this random instance is unsatisfiable with high
probability.! On the other hand, the widely believed Feige’s random 3SAT hypothesis [25]
conjectures that when A is any constant, there is no algorithm to certify that a random
instance is unsatisfiable. Further, the best known algorithms for efficiently certifying that it is
unsatisfiable require A 2 \/n [32, 16, 27, 5]. Moreover, when A < /n there is a lower bound
against the Sum-of-Squares hierarchy [34, 70] (known to capture many algorithmic techniques),
which suggests an information-computation gap and earns y/n the name refutation threshold.

In this picture, at both densities n'?® and n3°, Z is likely unsatisfiable but “looks”
satisfiable to an efficient algorithm. But is there a concrete sense in which a random formula
at density n'2° is “more satisfiable” than one at density n-3® from the lens of a polynomial-time
algorithm? A natural measure of a 3SAT formula’s satisfiability is its number of satisfying
assignments, which motivates the following question.

What is the best efficiently certifiable upper bound on the mumber of assignments
satisfying L ?

Our work provides an extensive study in this open direction.
In the context of 3SAT, our work proves:

» Theorem 1 (Informal). There is an efficient algorithm to certify with high probability that
a random 3SAT formula with density A = n'/?=% has at most exp(O(n>/*1%/2)) satisfying
assignments.

In addition to certifying the number of satisfying assignments, we can certify that the
solutions form clusters and upper bound the number of clusters under the refutation threshold.

L In fact, it is conjectured that there is a sharp threshold for unsatisfiability once A crosses some constant
QASAT ~ 4.267.
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Clusters. Besides the satisfiability threshold, random kSAT is conjectured to go through
other phase transitions too, as predicted in the work of [45]. In particular, the clustering
threshold is the density where the solution space is predicted to change from having one giant
component to roughly resembling a union of several small Hamming balls, known as clusters,
that are pairwise far apart in Hamming distance.

Much like the refutation threshold that marks where efficient algorithms can witness
unsatisfiability, it is natural to ask if there is some regime under the refutation threshold
where an efficient algorithm can witness a bound on the number of clusters of solutions. The
following more nuanced version of Theorem 1 gives an answer to this question.

» Theorem 2 (Informal). There is an efficient algorithm to certify with high probability that
the satisfying assignments of a random 3SAT formula with density A = n'/2=9
by at most exp(O(n/?+9)) diameter-O(n3/4+9/2) clusters.

are covered

Balance in the solution space. Suppose at density A, a typical 3SAT formula has ~
exp(can) satisfying assignments, then due to the uniformly random negations in clauses,
each string is satisfying with probability ~ exp((ca — 1)n). Then one can show via the first
moment method that with high probability there are no satisfying assignments with Hamming
weight outside [% — f(ca), % + f(cA)] .2 In particular, the intersection of the solution space
with the set of unbalanced strings empties out under the satisfiability threshold. This raises
the question:

Is there an efficient algorithm to certify that a random CSP instance has no unbalanced
assignments at density significantly under the refutation threshold?

We affirmatively answer this question and in the special case of 3SAT prove:

» Theorem 3 (Informal). There is an efficient algorithm to certify with high probability that a
random 3SAT formula with density A = n'/?>=% has no satisfying assignments with Hamming
weight outside

1 =~ 1 1 ~ 1
{2 -0 (n1/45/2) D) +0 (n1/45/2>} :

We illustrate our upper bounds for counting satisfying assignments and clusters in Figure 1.

We delve into the precise technical statements of our results and the techniques involved
in proving them in Section 1.1. Then to put our work in context, we survey and discuss
existing work on information-computation gaps, and algorithmic work on counting, sampling
and estimating partition functions in Section 1.2.

1.1 OQOur Contributions

In this section, we give a more detailed technical description of our contributions. To set the
stage for doing so, we first formally clarify the notion of certification and some preliminaries
on constraint satisfaction problems.

Fix a sample space 2, a probability distribution D over 2, and a function f : Q — R.

For example,  is the space of 3SAT instances, D is the distribution of instances given by
the random 3SAT model, and f is the number of satisfying assignments.

2 where f is chosen so that the number of strings outside that Hamming range is < exp((ca — 1)n).
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Bound on # of solutions

0 i 3

n n o) Number of clauses

Figure 1 Our results for 3SAT. Green: certifiable upper bound on the number of satisfying
assignments. Purple: upper bound on the number of clusters of satisfying assignments. In the case

of kSAT, the green plot looks identical but with n replaced by n+=1/2 and n3/? replaced by nk/2.

» Definition 4. We say that a deterministic algorithm A certifies that f < C with probability
over 1 — p over D if A satisfies

1. Forallw € Q, f(w) < A(w).

2. For a random sample w ~ D, A(w) < C with probability over 1 — p.

We emphasize that an algorithm that always outputs the typical value of f is not a certification
algorithm: it will satisfy the second condition but not the first. Thus, in several average-case
problems, there are gaps between the typical value and the best known certifiable upper
bound.

» Remark 5. Due to the guarantees of A, one can think of the “transcript” of the algorithm
on input w as being a proof that f(w) < A(w).

» Definition 6. A predicate P : {+1}* — {0,1} is any Boolean function that is not a
constant function. An instance I of a constraint satisfaction problem on predicate P and
vertex set [n] is a collection of clauses, where a clause is a pair (c,S) with ¢ € {£1}* and
S € [n)*. Given x € {£1}", the value of T on x is:
I(x) = % Z P(cizg,, ..., cpts,).
(¢,8)eT

We say x satisfies a clause (¢, S) if P(cixs,,...,ckTs,) =1, and say x is (1 — n)-satisfying
ifZ(z) 2 1—n. If n =0, we say x is exactly satisfying.

» Remark 7. An important predicate instrumental in all our results is the kXOR predicate,
defined as follows:

k
EXOR(z1,...,x5) = Hmz
i=1

In this work we are concerned with random CSPs. We defer an exact description of the
random model to Section 2.3 of the full version (note however that the common random
models used in the literature are all qualitatively similar; cf. [5, Appendix D]). Our first result
is an algorithm certifying a subexponential upper bound on the number of (1 — n)-satisfying
assignments for random CSPs.
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» Theorem 8. Let Z be a random kCSP instance on any predicate P on n variables and
An clauses. For everye >0 and n € [0,m0] for some constant ny > 0, there is an algorithm
that certifies with high probability that the number of (1 — n)-satisfying assignments to I is
upper bounded by

1 _ [ [pOin)2 nlte
exp (O (7710%77> ") exp | O\ =z | | exp (O <A1/<’f—2)>> '

To more easily parse the statement, let’s plug in concrete parameters.

» Remark 9. Let’s fix the predicate to be kSAT for any k > 3, n = 0, and A = nk/2-11,

The quantity of interest is the number of exactly satisfying solutions to a random kSAT

k/2—1)

formula at a density strictly smaller than the refutation threshold of ﬁ(n . Then, we

get an algorithm that with high probability certifies that the number of exactly satisfying
assignments is at most: exp(O(n°®)), which is a subexponential bound. More generally, our
algorithms certify a subexponential bound on the number of satisfying assignments for k<SAT

for A = n*/2=15%¢ for any ¢ > 0 and this bound improves as we increase c.

The proof of Theorem 8 relies on 3 ingredients of increasing complexity. The first is the
simple observation that given a kCSP instance Z on any predicate P, there is a transformation
to a kSAT instance Z’ such that:

(i) For any n > 0, if x is (1 — n)-satistying for Z, then it is also (1 — n)-satisfying for Z'.
(i) If Z is a random instance of a CSP on P with density A, then Z’ is a random instance
of kSAT with density A.
This reduction is described in the proof of Corollary 4.8 of the full version.

The second ingredient is a generalization of the “3XOR-principle” of [25, 27], which
we call the “6XOR-principle”. The kXOR principle, which we state below, reduces count
certification/refutation for a random ASAT formula to the same task on a random AXOR
formula.

» Lemma 10. Let Z be a random kSAT formula on m = An clauses. There is an efficient
algorithm that with high probability certifies that any (1 — n)-satisfying assignment of T must

kXOR-satisfy at least <1 —-0(n) -0 (\/ W)) m clauses.

We detail the proof in Section 3 of the full version, which is close to the reduction from
generic CSP refutation to kXOR refutation in [5] based on the Fourier expansion.

For the sake of a notationally simple sketch, let’s restrict ourselves to the case n = 0.

We can write kSAT(xq,...,2x) = (1 —27%) + 27 Fpy29 - -2 + q(1,...,2) Where ¢ is a
degree-(k — 1) polynomial without a constant term. Thus, given a random kSAT instance Z
and any satisfying assignment x:

k
_ _r 1 1
1=T(x)=1-2""+2 km E HCixSi + ] g qg(c1zs,, ..., crts, ).
(e,8)eT i=1 ¢,Sex

Once A > nk=3)/2 the refutation algorithm of [5] can be employed to certify that the last
term is insignificantly small by virtue of the last term being a degree-(k — 1) polynomial with
no constant term. This would force 2*’“% Z(C,S)EI Hle c;xs, to be near 1, which is the
same as saying x must kXOR-satisfy most clauses.

3 We use the convention that 7 log % = 0 when n = 0.
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Our third ingredient for Theorem 8 is a count certification algorithm for AXOR, which we
prove in Section 4 of the full version.

» Theorem 11. For constant k > 3, consider a random kXOR instance with n variables and
An clauses. For any constant € > 0, there is a polynomial-time algorithm that certifies with
high probability that the number of (1 — n)-satisfying assignments is at most

1 n1+6
exp (O (nlog 77) n) - exp (O (W)) .

In fact, the certification algorithm only depends on the hypergraph structure of the kXOR
instance and not the signings of each clause. This is crucial since our algorithm recursively
looks at (k — 1)XOR subinstances with unknown signings. The stronger statement we prove
is:

» Theorem 12. For constant k > 2, consider a random k-uniform hypergraph H on n
vertices and An hyperedges where A > logn. For e > 0, there is a polynomial-time algorithm
that certifies with high probability that the number of (1 — n)-satisfying assignments to any
kXOR instance on H is at most

1 1 ifk=2
exp (O <77 log > n> : ~ [ gi+e )
Theorem 12 is of interest beyond algorithmic considerations as it gives a high-probability
bound on the number of approximate solutions for any kXOR formula on a random hyper-
graph.

» Remark 13. Gaussian elimination is able to count exact solutions to an explicit AXOR
instance but fails for counting (1 —n)-satisfying assignments or when the signings are unknown.

We now give a brief sketch of our proof of Theorem 12. Given a random k-uniform
hypergraph, we would like to certify that any kXOR instance on this hypergraph has no more
than exp (O(n log %})n) - exp (O (%)) approximate solutions. We will first present
an overview in the context of 2XOR as the “base case”, and then explain the algorithm for
3XOR to illustrate the “recursive step”.

2XOR sketch. Let’s consider a random graph G on n vertices and An edges where
A > logn. Then, its degrees concentrate and its normalized Laplacian has a large spectral
gap (more precisely, a spectral gap of 1 —O (ﬁ) ). As a consequence of Cheeger’s inequality,
any set S containing fewer than half the vertices has roughly half its edges leaving — which
quantitatively would be around A|S|. We prove that a large spectral gap and concentration
of degrees is all that is necessary for any 2XOR instance to have an appropriately bounded
number of satisfying assignments.

Now let Z be any 2XOR instance on G. The key observation is that if z and 2’ are two
(1—mn)-satisfying assignments for Z, then the pointwise product y := zoz’ is (1—2n)-satisfying
for 7, the 2XOR instance on G obtained by setting the sign on all constraints to +1. The
constraints violated by y are the ones on the cut between Sy and S_, the positive and
negative vertices in y respectively. There are roughly A - min{|Sy|,|S—|}, and consequently
min{|Sy|,|S—|} < 2nn since y is (1 — 2n)-satisfying. In particular, y either has at most
2nn positive entries or 2nn negative entries. The upshot is the number of (1 — n)-satisfying
assignments of Z is at most exp(O(nlog %)n)) This sketched argument is carefully carried
out in Section 4.1 of the full version.
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3XOR sketch. Now, let H be a random hypergraph on n vertices and An hyperedges. The
observation here is that for any 3XOR instance Z on H, any assignment z that (1 —n)-satisfies
7 also approximately satisfies a particular induced 2XOR instance of a fixed subset of variables
S. The induced 2XOR instance’s underlying graph G is fixed and distributed like a random
graph, and only the signings on the edges vary as we vary x. That lets us run the algorithm
for 2XOR on G to obtain an upper bound F' on all induced instances on G, which then yields
a bound of 2!5! . F. This is where we use that our algorithm depends only on the underlying
graph, hence avoiding an enumeration of all assignments to variables in S.

We immediately see that for a fixed subset S, the above procedure throws away most of
the clauses (keeping only clauses that have 1 variable in S). Thus, it is clearly suboptimal to
look at just one subset S. To resolve this, we partition the variables into subsets Si, ..., Sy,
run the algorithm on each of them, and aggregate the results. This is explained in detail in
the proofs of Lemma 4.6 and Theorem 4.4 of the full version.

Clustering. Our next result is an algorithm to upper bound the number of clusters formed
by the solutions. Given z € {£1}", we call the Hamming ball B(x,r) a radius-r cluster or
diameter-2r cluster. For 3CSPs we prove in Corollary 5.2 of the full version:

» Theorem 14. Let P be any 3-ary predicate, and let Z be a random instance of P on
n variables and An clauses. Let n € [0,19] where ng is a universal constant, and let

0:=8n+ 0 log;”). There is an algorithm that certifies with high probability that the

(1 —n)-satisfying assignments to I as a P-CSP instance are covered by at most
exp(O(62 log(1/6))n)
diameter-(6n) clusters.

Inspecting the proof of counting 2XOR (specifically the argument about Z ), we see that
it additionally certifies that the approximate solutions form clusters. In a similar fashion,
we certify that any pair of (1 — 7)-satisfying assignments to a random 3SAT instance must
have Hamming distance close to 0 or roughly %, i.e. the solutions form clusters where the
clusters are roughly 5 apart. The main ingredient is an efficient algorithm to certify an
important structural result of random 3-uniform hypergraphs, allowing us to reason about
the constraints violated in Z, . In fact, this ingredient will also be a crucial step in refuting
CSPs under global cardinality constraints in Section 6 of the full version. The upshot is that
we will be able to certify that any pair of solutions is either p-close or 1;" -far.

The second ingredient is a result in coding theory. Since the clusters are roughly %n

apart in Hamming distance, the number of clusters must be upper bounded by the cardinality
of the largest p-balanced binary error-correcting code. The best known upper bound is
20(p* log(1/p))n by [49] (see also [7]), which yields our final result. Complete details are in
Section 5 of the full version.

Balance. We observe that the idea of hypergraph expansion can be applied to the problem
of strongly refuting random CSPs with global cardinality constraints. This problem was
first investigated by Kothari, O’Donnell, and Schramm [43], where they proved that under
the refutation threshold n*/2, the polynomial-time regime of the Sum-of-Squares hierarchy
cannot refute the instance even with the global cardinality constraint Y., x; = B for any
integer B € [—O(y/n), O(y/n)] (here we assume x € {£1}"). On the other hand, they proved
once that |B| > n3/4, Sum-of-Squares could indeed refute a random kXOR instance up to a
factor of v/n under the refutation threshold.

11:7
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We say an assignment z is p-biased if % ’Zie[n] xi‘ > p. We give a strong refutation
algorithm for random instances of all Boolean CSPs under the constraint that the solution is
“unbalanced”.

» Theorem 15. Let P be any k-variable predicate and let Z be a random CSP instance on
k—1

m:=n"z 8 clauses where 8 > 0. For every constant p > 0, there is an efficient algorithm

that certifies that I has no 2p-biased assignment which (1 — O(p*))-satisfies T as a P-CSP

instance.

» Remark 16. Compared to [43], our result is a strong refutation algorithm for all CSPs,
whereas their algorithm is specific for kXXOR and only a weak refutation (refuting only
exactly satisfying assignments). For k = 3, we match their cardinality constraint requirement.
However, for k > 4, we require a slightly stronger cardinality assumption.

The formal statements and proofs are detailed in Section 6 of the full version. Akin to
the case for counting solutions, we employ the reduction of every kCSP to kSAT and the
kXOR principle to reduce the problem to strongly refuting kXOR under global cardinality
constraints.

The first main insight is that given a graph G which is a sufficiently good spectral
expander, we can efficiently certify that any 2XOR instance on G, where the number of
positive constraints is roughly equal to the number of negative constraints, has no unbalanced
approximately satisfying assignments. The proof of this is based on using the expander
mixing lemma to show that any imbalanced assignment z must satisfy x,x, = +1 for > %
of the edges, which then lets us lower bound the number of negative constraints that are
violated.

Then given a random kXOR instance Z, we pick some set of pn vertices S and consider
all clauses with exactly k — 2 vertices in S and 2 variables outside S. If we place an
edge between the two variables outside S for every clause, we get some random graph G.
Now consider any assignment y to the variables in S. For this chosen set of clauses to be
(nearly) satisfied, the assignment to variables outside S must nearly satisfy the induced
2XOR instance on the graph G whose signings are determined by y. The second insight is
that we can efficiently certify that for any assignment y the induced 2XOR instance has a
roughly equal number of positive and negative constraints. This is possible since the quantity
#positive constraints(y) — #negative constraints(y) is the objective value of a particular
random (k — 2)XOR instance on assignment y, which we can certify tight bounds on using
the algorithm of [5].

Certified counting for subspace problems. So far, we have developed certification algorithms
for CSPs mainly based on analyses of random hypergraphs. For other inherently different
problems such as counting solutions to the SK model, we turn to a different technique. Our
main insight is that for several problems, the approximate solutions must lie close to a
small-dimensional linear subspace. Thus, we can reduce the problem to counting the number
of (Boolean) vectors close to a subspace. We name this technique dimension-based count
certification since the algorithms and their guarantees only depend on the dimension of the
subspace.

» Theorem 17. Let V be a linear subspace of dimension an in R™. For any e € (0,1/4),

n
the number of Boolean vectors in {i%} that are € away from V is upper bounded by

2(H2(452)+a log %)n .
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We note that the upper bound is almost tight.

We now give a brief overview of the proof of Theorem 17. First, we upper bound the
maximum number of (normalized) Boolean vectors that can lie within any e’-ball. Secondly,
we take an e-net of the unit ball in the subspace V' (i.e. B1(0) N'V). We simply multiply the
two quantities to get the upper bound, which only depends on the dimension of V.

Next, we apply this technique to two problems: the Sherrington-Kirkpatrick model and
the independent sets in random d-regular graphs.

Sherrington-Kirkpatrick (SK). Given M sampled from GOE(n), the SK problem is to
compute

OPT(M) = I?ﬁ(} z" M.
TE "

This problem can also be interpreted as finding the largest cut in a Gaussian-weighted

graph. The SK model arises from the spin-glass model studied in statistical physics [71].

Talagrand [73] famously proved that OPT(M) concentrates around 2P*n3/? ~ 1.526n3/2,
where P* is the Parisi constant, first predicted by Parisi [61, 62].

Recently, the problem of certifying an upper bound for OPT(M) has received wide
attention. A natural algorithm is the spectral refutation: OPT(M) < n - Apax(M). Since
Amax (M) concentrates around 2+/n, the algorithm certifies that OPT(M) < (2 + o(1))n?/2,
which we call the spectral bound. Clearly, there is a gap between the spectral bound and the
true value, and it is natural to ask whether there is an algorithm that beats the spectral
bound. Surprisingly, building on works by [58, 54, 46], Ghosh et. al. [31] showed that even
the powerful Sum-of-Squares hierarchy cannot certify a bound better than (2 — o(1))n*/? in
subexponential time. We also mention an intriguing work by Montanari [56] where he gave
an efficient algorithm for the search problem — to find a solution with objective value close
to OPT(M) with high probability (assuming a widely-believed conjecture from statistical
physics). However, we emphasize that his algorithm is not a certification algorithm (recall
Definition 4).

In the spirit of this work, a natural question is to certify an upper bound on the number
of assignments # € {+1}" such that " Mz > 2(1 — n)n®/? for some 1 > 0.

» Theorem 18. Let M ~ GOE(n). Given n € (0,m0) for some universal constant no,

/5 10g L
there is an algorithm certifying that at most 9O(*'® log 7)n

T Mz > 2(1 —n)n’/2.

assignments © € {£1}"™ satisfy

Our proof first looks at the eigenvalue distribution of M, which follows the semicircle
law. This shows that any x that achieves close to the spectral bound must be close to the
top eigenspace of M (of dimension determined by the semicircle law). Then, we directly
apply Theorem 17. See Section 7.1 of the full version for complete details.

Independent sets in d-regular graphs. The largest independent set size (the independence
number) in a random d-regular graph has been studied extensively. It is well-known that
with high probability, the independence number is < % for a sufficiently large constant
d (cf. [12, 76]). The current best known certifiable upper bound is via the smallest eigenvalue
of the adjacency matrix (often referred to as Hoffman’s bound, cf. [26, 13]): Let A be the
adjacency matrix, and let A\ ;== —Apin(A). Then, |S] < d%\n for all independent sets S.

Tt is also well-established that A\ < 2v/d — 1 + o(1) with high probability. Thus, we can
_ _2Vd—1

certify that the independence number is at most Cyn where Cy := TV

11:9
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The natural question for us is to certify an upper bound on the number of independent
sets larger than Cy(1 — n)n for some n > 0.

» Theorem 19. For a random d-reqular graph on n vertices, given n € (0,m9) for some

3/510g 1
universal constant ng, there is an algorithm certifying that there are at most 90(*/* log 5)n

independent sets of size Cq(1 — n)n.

The proof is very similar to the SK model. We first map each independent set S to a
vector yg € R™ such that if .S is large, then yg is close to the bottom eigenspace of A. Then,
using a variant of Theorem 17, we upper bound the number of such vectors that are close to
the eigenspace. We carry out the proof in full detail in Section 7.2 of the full version.

Optimality for counting KCSP solutions. Finally, we give evidence suggesting that our
algorithmic upper bounds are close to optimal. Our hardness results are built on the
hypothesis that there is no efficient strong refutation algorithm for random AXOR under the
refutation threshold (in the regime n® <« A < n*/2=1). Although no NP-hardness results are
known, this hypothesis is widely believed to be true. In particular, the problem was shown
to be hard for the Sum-of-Squares semidefinite programming hierarchy [34, 70, 44], which is
known to capture most algorithmic techniques for average-case problems. Thus, improving
our results would imply a significant breakthrough.

We show that assuming this hypothesis is true, then we cannot certify an upper bound
on the number of (1 — n)-satisfying assignments better than exp(O(nn)).

» Theorem 20. If there is an efficient algorithm that with high probability can certify a
bound of exp({5z) on the number of (1 — n)-satisfying assignments to I, then there is an
efficient algorithm that with high probability can certify that T has no (1 — n/2)-satisfying

assignments.

This shows that the term exp(O(nlog %)n) in Theorem 8 and Theorem 11 is tight up to
log factors. Our proof is simple: given a (1 — n/2)-satisfying assignment and a small set S,
we can flip the assignments to .S arbitrarily and still be (1 — n)-satisfying. Hence the number

ISI. Thus, an upper bound better than this

of (1 — n)-satisfying assignments is at least 2
would imply that there is no (1 — n/2)-satisfying assignments. See Section 8.1 of the full
version for complete details.

Surprisingly, the optimality of Theorem 8 suggests that there is a phase transition for
certifiable counting at the refutation threshold. For concreteness, take random kSAT for

example,

» Remark 21. At m = Q(n*/2), there is a strong refutation algorithm [5] which certifies that
no (1 — n)-satisfying assignment exists (even for constant n < 1/2). However, at m = n*/2¢
and take n = n‘i"’%, we can at best certify that the number of (1 —n)-satisfying assignments
is at most exp(O(ni+%)). See also Figure 1 for illustration.

Optimality for counting independent sets. We also show barriers to improving Theorem 19,
which can be viewed as a weak hardness evidence. Specifically, we show that improving the
upper bound of Theorem 19 to exp (O(nlog(1/n)n)) would imply beating Hoffman’s bound
by a factor of 1 — 1/2 (for any small constant 1), which would be an interesting algorithmic
breakthrough.
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» Theorem 22. Let G be a random d-regular graph. Given constant n € (0,1/2), if there is
an efficient algorithm that with high probability certifies a bound of exp (%nlog(l/n)n) on
the number of independent sets of size Cy(1 — n)n, then there is an algorithm that with high
probability certifies that G has no independent set of size (1 —n/2)Cyn.

The proof is a simple observation that for any independent set .S, all subsets of S are also
independent sets. Thus, if S is of size (1 —7/2)Cyn, then we can lower bound the number
of subsets of size (1 — n)Cyqn. We give a short proof in Section 8.2 of the full version. We
3/5

note the interesting gap between 7°/° and 7 in the exponent of the upper and lower bounds

respectively, and we conjecture that there may be an algorithm matching the lower bound.

1.2 Context and related work

Information-computation gaps in CSPs. This work is very closely related to the line of
work on information-computation gaps. In the context of certification in random CSPs, the
most well-understood information-gaps are in that of refutation of random CSPs. Feige’s
random 3SAT hypothesis was one of the earliest conjectured gaps. As discussed earlier,
while unsatisfiability for random 3SAT set in at constant density, it was conjectured by
Feige that certifying this was hard at all constant densities. Further, integrality gaps for the
Sum-of-Squares hierarchy of [34, 70] seem to point to hardness up to density y/n. The wide
information-computation gap is a main motivation for us to understand what an efficient
algorithm can certify about the landscape of solutions in the regime between the satisfiability
threshold and the refutation threshold. We refer the reader to the introduction of [5] for
a comprehensive treatment of the literature on information-computation gaps for refuting
random CSPs prior to their work, CSPs more broadly, as well as connections to other areas
of theoretical computer science.

The situation for general constraint satisfaction problems beyond XOR and SAT was
considered in the work of [5], which gave algorithms to refute all CSPs at density n*/2~!
where ¢ is the smallest integer such that there is no ¢t-wise uniform distribution supported on
the predicate’s satisfying assignments. Then somewhat surprisingly, the work of [66] gave
algorithms for refuting random CSPs between constant density and the n*/2~! threshold
from [5], whose running time smoothly interpolated between exponential time at constant
density to polynomial time at the [5] threshold, with a (steadily improving) subexponential
running time in the intermediate regime. The algorithms of [5, 66] are spectral, and can be
captured within the Sum-of-Squares hierarchy. Finally the work of [44] (presaged by [9])
established that the algorithm of [66] was tight for Sum-of-Squares in all regimes, thereby
nailing a characterization for the exact gaps (up to logarithmic factors) for all random CSPs.

Solution geometry in random CSPs. One of the earlier predictions using nonrigorous
physics techniques was the location of the 3SAT satisfiability threshold in the works of [53, 52].
In particular, they conjectured that there is a sharp threshold at a constant agat ~ 4.267.
These works put forth the “l-step replica symmetry breaking hypothesis” (a conjectured
property of the solution space in random kSAT; we refer the reader to the introduction
of [22] for a description), which was the starting point for several subsequent works. These
techniques were used to precisely predict the kSAT satisfiability threshold for all values of
k [50], proved for large k in a line of work culminating in [22] and building on [2, 3, 18, 19].

Eventually, the works of [45, 57] predicted that besides the satisfiability threshold, random
kSAT goes through other phase transitions too, and gave conjectures for their locations. A
notable one connected to this work is the clustering threshold, for which there has been
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rigorous evidence given in the works of [51, 4, 1]. Above the clustering threshold, the solution
space is predicted to break into exponentially many exponential-sized clusters far away from
each other in Hamming distance. More precisely, there is some function ¥ for which there are
exp(X(s, A)n) clusters of size approximately exp(sn) each. In particular, this leads to the
prediction that the number of solutions at density A is roughly max,{exp((s + (s, A))n)}.
Another phase transition of interest is the condensation threshold, where the number of
clusters of solutions drops to a constant.

Approximate Counting for CSPs. Approximate counting of solutions in CSPs has attracted
much attention in recent years. There have been numerous positive algorithmic results for
approximately counting solutions in (i) sparse CSPs in the worst case, (ii) sparse random
CSPs well under the satisfiability threshold. The takeaway here is that even though the
problems we consider get harder as we approach the satisfiability threshold, if one goes well
under the threshold the algorithmic problems once again become tractable.

One exciting line of research for worst-case CSPs is the problem of approximately counting
satisfying assignments of a kSAT formula under conditions similar to those of the Lovisz
Local Lemma (LLL) [24]. A direct application of the LLL shows that if the maximum degree
D of the dependency graph is < 2F /e, then the formula is satisfiable. Building on works of
[55, 28, 29, 38|, Jain, Pham, and Vuong [39] recently showed that there is an algorithm for
approximate counting well under the LLL thresholds, i.e. when D < 2k/5-741 (hiding factors
polynomial in k), using techniques similar to an algorithmic version of the LLL. Further, the
algorithms of [55, 38] are deterministic, which may suggest their techniques are amenable
to obtaining certifiable counts. However, it was shown that the problem of approximately
counting solutions to a kSAT formula is NP-hard when D > 2F/2 by [11], well in the sparse
regime, which suggests a hard phase between the highly sparse setting and the dense setting
we are concerned with.

For random kSAT, the exact satisfiability threshold that was established by Ding, Sly,
and Sun [22] takes on value agar = 2¥In2—1(1+1n2)+o0x(1). And similarly, well below the
satisfiability threshold, Galanis, Goldberg, Guo, and Yang [30] adapted Moitra’s techniques
[65] to the random setting and developed a polynomial-time algorithm when the density
A < 2F/301 and k sufficiently large.

Closely related to the counting problem is approximating the partition function of random
kSAT, for which there have also been positive algorithmic results. Specifically, given a
random KSAT instance Z, the partition function is defined as Z(Z, ) == e BH() where
H (o) is the number of unsatisfied clauses under assignment o. The partition function can
be viewed as a weighted (or “permissive”) version of the counting problem. Montanari and
Shah [59] first showed that the Belief Propagation algorithm approximately computes the
partition function at A ~ w; their analysis is based on correlation decay (or the Gibbs
uniqueness property). Recently, [17] further showed that Belief Propagation succeeds as long
as the random ASAT model satisfies a replica symmetry condition, conjectured to hold up to
A ~ 2% Ink/k. See also the works of [45, 60, 15] for further details of this matter.

Counting independent sets and related problems. Another counting problem that has been
the subject of active study is that of counting independent sets, especially in the statistical
physics community. For a graph G with maximum degree d, let IS(G) be the set of independent
sets in G. The task is to estimate the independence polynomial Za(X) =3 1c15(c) M1 also
known as the partition function of the hard-core model with fugacity A in the physics literature.
Earlier works by [23, 74] developed randomized algorithms based on Glauber dynamics to
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estimate Zg(A) when A < %. In a major breakthrough, Weitz [75] showed a deterministic
algorithm, based on correlation decay, that approximates Zg(A) when 0 < A < A, where
Ao = %. Sly and Sun [72] later proved that this is tight: no efficient approximate
algorithm for Zg(\) exists for A > A, unless NP = RP.

Recently, Barvinok initiated a line of research on estimating partition functions using
the interpolation method (see Barvinok’s recent book [10]). The main idea is to estimate the
low-order Taylor approximation of log Zg(\) provided that the polynomial Zg(\) does not
vanish in some region in C. This approach led to deterministic algorithms that match Weitz’s
result and work even for negative or complex A’s [63, 64]. These polynomial-based approaches
were also used to obtain deterministic algorithms for counting colorings in bounded degree
graphs [47], estimating the Ising model partition function [48], and algorithms for a counting
version of the Unique Games problem [20].

There has also been works on worst-case upper bounds of Zg () for d-regular graphs.
Zhao proved that for any d-regular graph G' and any A > 0, Zg()\) < (2(1 + N4 —1)"/24 [77].

In particular, setting A = 1, this shows that the total number of independent sets is bounded
by (2441 —1)"/24 settling a conjecture by Alon [6] and Kahn [40].

Certifying bounds on partition functions and free energy. A recent line of work [67, 68, 37]
is focused on an approach based on a convex programming relaxation of entropy to certify
upper bounds on the free energy of the Ising model (weighted 2XOR), both in the worst case
and in the average case. While on the surface level, these approaches differ significantly from
ours, an interesting direction is to investigate if these entropy-based convex programming
relaxations can achieve our algorithmic results.

1.3 Open directions

In this section we suggest a couple of avenues for further investigation on the themes related
to this work.

Worst-case complexity of certified counting. In this work, we deal mostly with random
CSPs. Here we present a worst-case version of the problem, specialized to 3SAT. A classic
result due to [35] is that it is NP-hard to distinguish between a (7/8 + ¢)-satisfiable 3SAT
formula from a fully satisfiable 3SAT formula. However, it is unclear what the complexity of

a version of this question is when there is a stronger promise on the satisfiable 3SAT formula.

» Question 23. Consider the following algorithmic task:

Given a 3SAT formula Z under the promise that it is either (7/8 + ¢)-satisfiable, or
has at least T fully satisfying assignments, decide which of the two categories Z falls
into.

What is the complexity of the above problem?

We remark that this problem is similar to counting-3SAT, but subtly different.

Certifying optimal bounds on number of exactly satisfying kSAT solutions. In the context
of kSAT, while our algorithms can certify subexponential bounds for both exactly satisfying
assignments and approximately satisfying assignments, the matching evidence of hardness is
only for the approximate version of the problem. Thus, it is still possible that there is an
algorithm to certify an even tighter bound than ours for the problem of counting exactly
satisfying assignments to a random kSAT formula. This motivates the following question:
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» Question 24. What is the tightest bound an efficient algorithm can certify on the number
of solutions to a random kSAT instance?

We conjecture that the algorithms presented in this paper are indeed optimal. An approach
to providing hardness evidence for this is to construct a hard planted distribution, and prove
it is hard within the low-degree likelihood ratio framework of [36]. We outline a possible
approach in Section 8.3 of the full version to construct a planted distribution for readers
interested in this problem.

Properties of arbitrary CSP instances on random hypergraphs. In the context of ap-
proximate kXOR, our certification algorithms for solution counts and cluster counts depend
only on the hypergraph structure and not the random negations. Hence, they also prove
nontrivial statements about the solution space of any XOR instance on a random hypergraph,
which are potentially useful in the context of quiet planting or semi-random models of CSPs.
However, our certification algorithms for other CSPs, such as kSAT, heavily make use of the
random signings in the reduction to £XOR.

» Question 25. Can all the results related to certifying bounds on number of solutions/
clusters in this work for random kSAT instances be generalized to arbitrary kSAT instances
on random hypergraphs?
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