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—— Abstract

We prove that a modification of Andreev’s function is not computable by (3 + « — €) logn depth
De Morgan formula with (2a — €)logn layers of AND gates at the top for any 0 < o < é and
any constant € > 0. In order to do this, we prove a weak variant of Karchmer-Raz-Wigderson
conjecture. To be more precise, we prove the existence of two functions f: {0,1}" — {0,1} and
g:{0,1}" — {0,1}" such that f(g(z) ® y) is not computable by depth (1 + « — €)n formulas with
(2a — €)n layers of AND gates at the top. We do this by a top-down approach, which was only used
before for depth-3 model.

Our technical contribution includes combinatorial insights into structure of composition with
random boolean function, which led us to introducing a notion of well-mixed sets. A set of functions
is well-mixed if, when composed with a random function, it does not have subsets that agree on
large fractions of inputs. We use probabilistic method to prove the existence of well-mixed sets.
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1 Introduction

Proving lower bounds on Boolean formulas remains one of the fundamental problems in
complexity theory. Specifically, one of the major open question here is separating classes
P and NC' by proving a super-logarithmic depth lower bound for a function from P. The
long line of prior work includes [17, 12, 1, 15, 9] up to the currently best depth lower bound
(3 —0(1))logn from the celebrated paper by Hastad [6] which stands unbeaten for two
decades up to lower order terms [18].

Karchmer, Raz and Wigderson [10] proposed an approach for attacking this problem,
introducing a block composition of two Boolean functions:
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» Definition 1. The block composition f o g: ({0,1}™)™ — {0,1} of two Boolean functions
f:{0,1}™ = {0,1} and g: {0,1}™ — {0,1} is defined as follows:

(ng)(mlv' .- 7$n) = f(g(xl)v' .- ,g(xn))
where z; € {0,1}™.

Let D(f) be the minimal depth of a formula computing f. It is easy to see that f ¢ g can
be computed by a formula of depth D(f)+ D(g). Karchmer, Raz and Wigderson conjectured
that this bound is roughly optimal.

» Conjecture 2 (KRW conjecture). For any non-constant functions f : {0,1}" — {0,1} and
g:{0,1}™ — {0,1}:

D(fog) =~ D(f)+ D(g)-

The symbol “approximately equal” could be interpreted in a number of ways, but pretty
much all reasonable interpretations, should the conjecture be proven, imply P ¢ NC!. In
fact, while in the original conjecture there is V quantifier for both f and g, the existence of
such g for every f would be quite enough.

As an example, let us formulate a weaker version of conjecture, from which P ¢ NC!
would still follow.

» Conjecture 3 (KRW conjecture, weaker version). There exists a constant ¢ such that for
any n and m and any non-constant f : {0,1}™ — {0,1} there exists g : {0,1}™ — {0,1}
such that

D(fog) = D(f) +em.

KRW conjecture was extensively studied in a series of work [4], [7], [5], [3], [13], [2], mostly
from communication complexity point of view. To present a thorough overview, we include
the necessary definitions as well.

For a function f : {0,1}" — {0,1}, let KW (Karchmer-Wigderson game for a function
f) be a communication problem, where Alice gets x € f~1(0), Bob gets y € f~1(1), and
they need to find ¢ such that x; # y;. In [11] it was observed that D(f) = CC(KWy), where
CC(R) denotes the minimal depth of a communication protocol solving relation R.

KRW conjecture can be reformulated in those terms as CC(KWyo,) =~ CC(KWy) +
CC(KW,).

Karchmer-Wigderson games have been successfully applied to a monotone setting, separ-
ating monotone NC' and NC? [11]. There have been attempts to tackle monotone KRW
conjecture [2], where the authors introduced also a semi-monotone setup. [4, 7] proved a
lower bound for a block-composition of two universal relations.

» Definition 4. The universal relation is defined as follows:
Un = {(I,y,l) ‘ T,y € {Oa 1}n7x2 7é y?} U {(os,x, J—) | T € {07 1}71}

In other words, for non-equal x and y the task is to determine the bit of difference, and
for equal strings the answer to a problem is L. !

1A more popular definition does not include L answer, but rather a promise that = # y. It is not hard to
see that difference of the communication complexities of these two versions of universal relation is at
most O(logn).
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In a sense, universal relation generalizes KW for any f, since a protocol for U,, can be
used to solve KW as well. The difference is that in U, inputs for players do not come from
two disjoint sets. The same way as universal relation generalizes KW games for functions,
their composition generalizes KW games for composition of functions.

» Definition 5. The composition of universal relations is defined as follows:

UpoUpp = {X,;U,Y,y, (Zaj) | X, Y e {05 1}n><n,m,y € {07 1}”7Xi’j # Yi;j}u
U{X,ZE,Y,y,J_| X7Y € {07 1}n><n’x’y € {Ovl}nax =y or di: X4 7é yl)X’L = }/1}

In other words, given two matrices X and Y and two vectors x and y, the task is to
determine a bit of difference in X and Y under promise x; #vy; = X; #Y; and v # y. If
the promise is broken, the answer to a problem is 1.

Universal relation can also be composed with an instance of Karchmer-Wigderson game, as
well as the other way around, both versions produce different generalizations of compositions
of functions. KWyoU, is the same as U,,oU,, but with an additional property that = € F71(0),
y € f7H(1). U, o KWy is the same as U,, o U, but now Vi : z; = f(X;),y; = f(V3).

There does not seem to be any formula lower bounds that follow from communication
lower bounds involving universal relation, but it can be considered more of a stepping stone
to hone our techniques before dealing with actual function.

Currently there exist non-trivial lower bounds in the following setups:

a lower bound on U, o U, [4, 7];

a lower bound on KW ¢ U, for any f [5, 13];

a lower bound on U,, o KW, and U, KW, for some g [14].

Here the operation H is defined in the following way:

» Definition 6 ([14]). XOR-composition fBg: {0,1}?" — {0,1} of two function f: {0,1}" —
{0,1} and g: {0,1}™ — {0,1}" is defined as follows:

(fEHg)(z,y) = f(9(z) Dy).

In the same paper, the authors stated a variant of KRW conjecture using XOR-composition

instead of block-composition. This variant of the conjecture also implies P ¢ NCh.
Moreover, [14] also introduced a variant of XOR-KRW regarding size of the formulas.

If proved, this would imply a supercubic lower bound on a modified Andreev’s function.

To outline a general idea of how different variants of KRW work, for P ¢ NC! we need
to prove a variant of conjecture of the form “Vfdg such that the depth of a formula for fog
(for a reasonable definition of o) noticeably increases in comparison to a depth of a formula
for f”. For beating cubic size lower bound for Andreev’s function, we only need to prove
that “3Jf, g such that the formula size for f o g is big enough”.

The next step following the lower bounds mentioned above would be getting rid of

universal relation as both inner and outer parts of the composition, since for formula lower
bounds of any form we need functions instead of relations there. We are able to do that with
restrictions on top gates of the formula:
» Theorem 7 (Main lemma). For any 0 < a < % and any constant 0 < € < «, with
probability 1 — o(1) for a random function f: {0,1}" — {0,1}, there exists a function
g: {0,1}" — {0,1}", such that f B g is not computable by an AND of 2= formulas of
size at most 201—a=e)n,
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AND in the statement could be replaced by OR, and « should be separated from % by an
arbitrary small constant. We also obtain a new lower bound on modified Andreev’s function,
again with the restriction on top gates of the formula.

Our approach equips a technique from [4] of tracking a suitable subadditive measure with
new combinatorial insights.

The plan of the proof of Theorem 7 could be briefly summarized as follows:

we sample a set of functions such that any big enough subset of its compositions with f
have very few zeroes in common;

we track a certain subadditive measure while we walk down the trees of formulas for the
compositions;

we consider different subformulas obtained in this way, and argue that they cannot
represent too many functions g at once, or else the measure would be too small;

then a counting argument gives a lower bound on maximal size of such subformulas.

The paper is organized in the following way. First we give the necessary definitions and
some warm-up lemmas. Then we prove Theorem 7 and derive a lower bound on modified
Andreev’s function from it, assuming the existence of a set of functions with required
combinatorial properties. Then we prove the existence of such set in Section 4.

While in our proof we rely on the fact that the top gate of a formula has a big fan-in
(which, in a setting with fan-in 2, corresponds to having a top subtree of gates of the same
type and big enough depth), this restriction seems somehow artificial. We believe that there
is a possibility that this method could be adapted for the general case.

2 Preliminaries

2.1 Notation

Let us recall the definition of the XOR-composition.

» Definition 6 ([14]). XOR-composition fBg: {0,1}?>" — {0,1} of two function f: {0,1}" —
{0,1} and g: {0,1}™ — {0,1}" is defined as follows:

(fB9)(z,y) = fg(z) & ).
Let us list some notation in regard to formula complexity.

» Definition 8. Let L(f) be the minimum number of leaves in a formula F over basis
{A,V,—} such that it computes f.

Let h(x,y) be a function of two variables. We denote as h* a function: h*(y) = h(z,y).

We also introduce the following shortcut notation for dealing with matrices. Let M be a
matrix with rows indexed by X and columns indexed by Y. We denote a submatrix with
rows indexed by A for A C X and columns indexed by Y as M#. An element of a matrix,
located in row indexed by z € X and column indexed by y € Y, is denoted as M|z, y].
Analogously, we denote a row indexed by = as M|x].

For the rest of the paper, we consider only boolean matrices whose rows and columns are
indexed by X := {0,1}" and Y := {0,1}".

» Definition 9. For a function h: {0,1}" x {0,1}" — {0,1}, we define a matriz My,:

Mh[ac,y] = h(x,y)



I. Mihajlin and A. Sofronova

» Definition 10. For a pair of functions f: {0,1}"™ — {0,1} and g: {0,1}" — {0,1}"™ we
define a matriz My 4:

My glz,y] = f(9(x) & y).
» Definition 11. For a function f: {0,1}" — {0,1} and a set of functions Z from {0,1}"™ —
{0,1}™ we define a matriz My z:
My zla,yl = \/ flg(z) & y).
geZ

For the rest of the paper, N := 2".

As we use f and g solely to denote first and second arguments of XOR-composition, we
always imply the following domains and ranges for them: f:{0,1}" — {0,1}, g:{0,1}" —
{0,1}"™. Analogously, x and y are implied to be vectors from {0,1}".

2.2  Warm-up lemmas

» Lemma 12. For a random f and arbitrarily fized g and x we have: L((fBg)*) > N1—°M)
with probability 1 — o(1).

Proof. As we fix g and z, f(g(x) ® y) depends only on y, so let h(y) = f(g(z) ® y).

Any formula for h can be transformed into a formula for f by adding negations to the
variables y; for all ¢ where g(x); = 1. But, as a random function, f does not have a formula
of size less than N1=°(1) with high probability [16]. <

The next lemma gives us connection between formula complexity of a function f and the
size of f71(0):

» Lemma 13. For f: {0,1}" — {0,1}, it holds that L(f) < |f~1(0)| - n.

Proof. Let us construct a CNF formula for f. For any z € f~1(0), we write a clause of n
variables which becomes violated iff we substitute x to those variables. It is easy to check
that a CNF formula composed exactly of |f~1(0)| such clauses represents function f. This
formula has |f~1(0)| - n leaves, which proves the inequality. <

» Lemma 14. Let h(x,y) be a function of two variables. Then L(h) > L(h®) for any x.

Proof. Taking a formula, computing h, we get a formula, computing h”, by hardwiring the
value of z into it. <

3 Proof of the main theorem

In this section, we prove Theorem 7 and, as a corollary, a lower bound on modified Andreev’s
function.

3.1 Modified Andreev’s function

» Definition 15. Modified Andreev’s function Andr’ takes (3logn + 1)n bits and outputs 1.

We will treat it’s inputs as:
first 2nlogn bits are 2logn strings of size n;
next nlogn bits represent a description of a function from {0,1}1°8™ to {0, 1}°8";
last n bits represent a description of a function from {0,1}1°8™ to {0,1}.

Andr,(zla <.y L2logns Y, f) = (f H g) (@Il, cey @xmogn)
where @ z is parity of the vector z.

13:5
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» Theorem 16. Modified Andreev’s function is not computable by an AND of n®*~¢ formulas
of size at most n>~*7¢ for any 0 < a < % and any 0 < € < «.

Again, AND in the statement could be replaced by OR.
As size of the formula is at most exponential in its depth, it immediately follows that:

» Theorem 17. Modified Andreev’s function is not computable by an a (3+a —2¢)log n-depth
formula with (2a — €)logn layers of AND gates at the top for any 0 < a < % and any
constant 0 < e < a.

Note that lower bounds for different values of « are incomparable, since for increasing
depth we have to pay with increasing number of same-type layers.

This beats current lower bounds on the formula depth of an explicit function, but it is
conditioned on the form of the formula. To the best of our knowledge, this is the first depth
lower bound for formulas with restrictions on their top gates.

Let us first show how a lower bound for a modified Andreev’s function follows from

Theorem 7. We will follow the classical proof of hardness for Andreev’s function. We will take
2Inlogn

show that it both shrinks well and remains hard with high probability. The only technical
difficulty we need to overcome is that we need shrinkage to occur for many subformulas

a look at how modified version behaves under random restriction R,, where p := and

simultaneously. To do this we use concentration inequality on shrinkage proved in [8].

Let R, be a distribution on partial assignments, such that for any variable z we inde-
pendently assign:

x = * with probability p;

x := 1 with probability (1 — p)/2;

2 := 0 with probability (1 — p)/2;
1

NN

Pr |L(f | Rp)) = p*L(f) M| <

» Lemma 18 ([8]). For any p >

L™

As in [8] this lemma is proved somewhat implicitly, we refer the reader to the Appendix A.1
for a more detailed explanation for which families of random restrictions their result works.

Proof of Theorem 16 from Theorem 7. We can take any pair of functions f, g and hardwire
it into Andr’. We pick those for which f B g is not computable by AND of n2*~% formulas
of size at most n'~*~%. Such functions exist due to Theorem 7.

Let us take a look at how Andr’ with hardwired f and g behaves under random restriction

21lnlogn
n

R,, where p = . We have 2logn blocks of n variables that serve as an input to

functions f and g.
Pr[all variables in a block are fixed by a R,] = (1 —p)" =

_ (1 ~ 2Inlogn

n
) < e—2lnlogn _ (lOgTL)_Q.
n >

As there are 2logn input blocks, with probability 1 — o(1) we have at least one variable
in each block that is not fixed. We pick exactly one such variable per block and fix other
variables to arbitrary values. Now as there is exactly one variable in each block which is
not fixed we end up with a function that is equal to f H g up to possible negation of some
variables. This means that with high probability Andr’ is not computable by AND of n2*—9

formulas of size at most n'~*~° under random restriction R,.



I. Mihajlin and A. Sofronova

2a—e¢
Now suppose that modified Andreev’s function equals to A, a;, where each q; is
computable by n

3—a—¢ gize formula for some € > § > 0.

We prove that under restriction Ry, all a; shrink to a size less than pl=a=9,

For any ¢ we have 3 different cases depending on L(a;):

L(a;) < n'=27¢. In this case we are already done, as the formula size cannot increase
under random restriction.

1
D2 T’
Pr [L(ai | Ry) > nl_a_e"'o(l)] < La) M <L

— nb

L(a;) > n'=@¢. In this case, we apply Lemma 18. Since L(a;) < n3727¢,

p < ﬁ, L(a;) > n'727¢. In this case, we invoke monotonicity of Pr[L(a; |

. — 1 . 2+0(1) .
R,) > k] on p with fixed k. Let ¢ : T then Pr[L(a; | R,) > ¢ L(a;)] <
Pr[L(a; | Ry) 2 ¢**°M L(a;)] < L(ai)™" < 35, and ¢+ L(a;) = L(a;)*™.

Hence, with probability 1—o(1) there is no i such that L(a; | R,) > n'=®=9 > pl-a—eto(l)
for § < e. Then with probability very close to 1 function Andr’ under random restriction R,

1-a—4

is computable by AND of n?*~% formulas of size at most n , which is a contradiction.

3.2 Proof of Theorem 7

Now we prove Theorem 7.

» Theorem 7 (Main lemma). For any 0 < a < % and any constant 0 < ¢ < «, with
probability 1 — o(1) for a random function f: {0,1}" — {0,1}, there exists a function
g: {0,1}" — {0,1}", such that f B g is not computable by an AND of 2= formulas of

size at most 200—a—e)n,
To achieve that, we need to define a notion of well-mized set of functions.

» Definition 19 (Well-mixed set of functions). A set of functions G from {0,1}" — {0,1}"
is (Q, D, P)-well-mized for f if VZ C G,|Z| = Q, there exists a set K C {0,1}", |K| < P,
such that M;?K has no more than D zeroes in total.

We call the set K unlucky rows, and we call the set X \ K lucky rows.

Informally, we say that a set is well-mixed if all of its subsets behave close to how a
random subset of functions would behave.

The key assumption for proving Theorem 7 is that there exists large enough well-mixed
set of functions G with suitable parameters.

» Theorem 20. For 0 < a < 1, let G be a family of functions {0,1}" — {0,1}" of size
N%le, each sampled uniformly at random. Then G is (N, 2N?72% 2N1=%)_well-mized

set for a random function f with probability at least 1 — W}m(n))'

We leave proving this theorem until next section, and for now let us prove Theorem 7
under this assumption.
Let us recall that N stands for 2", as this notation is used heavily below.

Proof. Let us randomly pick a function f. Then we take a set of functions G such that
|G| = N#¥'"" and G is (N®,2N2722 2N1=%)_well-mixed. We aim to show that f g is
hard for some g € G.

13:7
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We assume the contrary. Suppose for all ¢ € G the XOR-composition f H g can be
represented as AND of small enough formulas. Formally, for any g € G:

N20(75
f H g = /\ hg,i
i=1
where all hy; are computable by formulas of size N l—a—e  For any g we fix the smallest
formula for f H g of such form, and we denote it Fy,.
We define a measure C'(h) of any function h of two arguments:

C(h) =Y L(h").
zeX
Let us note that C'(fHg) > N-L(f) > N?>~°(1). We prove that this measure is subadditive
in the following sense:

» Lemma 21. Let h(z,y) = o(g1, 92, .-, 9k)(2,y), where o is either A or V. Then C(h) <
Clg1) + ...+ Clg)-

Proof. If we prove that the inequality holds for any specific 2, namely, L(h*) < L(g7) +
...+ L(g}), the lemma immediately follows.

Since h(z,y) = o(g1, 92, - - -, gk )(x,y), we can construct a formula computing h*, applying
operation o to formulas computing each g7. The inequality follows. <

2a0—e
It means that for any g € G and Fj; = /\fil hg: we can fix 1 <4 < N22=¢ gyuch that

for hy;, the measure is big enough, namely:
C(hgz ) > N272a+570(1)
2lg/) —

We are going to arrive at a contradiction by showing that this measure is smaller than it
should be. For that, we are going to use two different upper bounds on L(h;iq) for any x. As
we assumed that formulas for hg;  are small enough, L(hg;, ) < N'~“. Then for any = € X:

L(hy ;) < L(hg,) < N7
On the other hand,

L(hg,,) < |(hg:,) "' (0)] - n

gvig

by Lemma 13.

Now let Zj, be a subset of G' such that Vg € Zj, : hy;, = h for some fixed h.

We consider two cases depending on the size of Z,. First, suppose that |Z,| > N*. We
are going to arrive at a contradiction with this assumption. Without losing generality, assume
|Z1| = N%, as we can take a subset of Z}, of exactly this size. Since G is (N, 2N272¢ 2 N1=a)_
well-mixed, we can consider a matrix My z, and distinguish set of unlucky rows K and set
of lucky rows X \ K in it.

From the properties of well-mixed set, we know that:

[K| <2N'~%;
there is an upper bound on number of zeroes in M;(;}K, which are exactly common zeroes
ofallg € Zp, on X \ K:

SN @) o) < 2w

:EQK gEZp
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Let us also note that M, > My z,, since (f B g)(z,y) = 1 for any g € Z;, implies
h(z,y) = 1.

C(h)=> L(h")=Y_ L")+ Y L(h") <

z€K ¢ K
<L)+ 1050 0 <
z€K ¢ K
< 2N NPTy Z ‘ ﬂ (g‘”)_l(O)‘ n <
¢ K gE€Zn

< 9N2 2 + IN22a n = N2—2a+0(1)

since we have no more than 2N2~2% zeroes in all lucky rows in My z, , therefore, the number of
zeroes in rows = ¢ K in M), does not exceed this as well. We know that C(h) > N2~2a+e—o(l)
though, so this is a contradiction.
So |Z| < N%, and then the number of different h’s is at least ]‘\% > NN (A—e(1),
Now let s := maxy, L(h). The number of functions with formulas of size at most s is at
most s*(1+o() go g5(1Fe(1) > NN (1=0(1)) and slog s(1+0(1)) > IN'"*log N(1—o(1)).
Then s > N'~®7¢, and this completes the proof. |

4  The existence of a well-mixed set of functions

Let us restate the definition of a well-mixed set:

» Definition 19 (Well-mixed set of functions). A set of functions G from {0,1}" — {0,1}"
is (Q, D, P)-well-mized for f if VZ C G,|Z| = Q, there exists a set K C {0,1}", |K| < P,
such that MfZK has no more than D zeroes in total.

We call the set K unlucky rows, and we call the set X \ K lucky rows.

The goal of this section is to prove the following theorem:

» Theorem 20. For 0 < a < i, let G be a family of functions {0,1}" — {0,1}" of size
N%Nlﬂ, each sampled uniformly at random. Then G is (N, 2N?72% 2N1=%)_well-mized

set for a random function f with probability at least 1 — m.

Note that we sample G as a family of functions, with possible repetitions, which
1yl—o

N1
1lyl—«
we use heavily in the proof. But with probability at least <1 _ oy ) >

NN

in
Nz R
(1 - NQN) >e ~NN2 >11— W all functions turn out to be different from each
4
other.

The plan of the proof is as follows:

We identify which rows are supposed to be unlucky, and there will be two kinds of those:
good and bad.
For each kind of unlucky rows, we do three steps:
we prove that for a fixed row the probability to be of this kind for a random family of
functions is very low;
we amplify this probability further, calculating the probability that some number of
rows fail us simultaneously;
we sum the error over subsets of the random family.

CCC 2022
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The first kind of unlucky rows would be a bad row.

» Definition 22. Let Z be a family of functions {0,1}" — {0,1}", each function sampled
uniformly at random. We call x a bad row for Z, if dim <span (UgEZ{g(x)}D < 2an, and
a good row otherwise. Here the vector space is defined over Fy in a natural way.

We bound the probability that a given x is bad for a random Z:

» Lemma 23. Let Z be a random family of functions {0,1}™ — {0,1}™ of size Q. Then for
a fized x:

Q
. (1
Pér dim | span U{g(x)} <2an| < N2 (N1—2a) .
=

Proof. The proof is a simple counting argument. To have a vector subspace of dimension
2an, we need to pick 2an generating vectors. There are 229" = N2¢ vectors in such space,
and for each of @ functions from Z we pick its value in point z from those possibilities,
versus N? possibilities in general case. So we have:

i < <
PZr dim | span LEJZ{g(as)} <2an| <
g

Q
< N2an ( 1 > <
— N1—2a :

Now let us prove that with high probability, we have no more than N'~® bad rows for a
random Z.

» Lemma 24. Let Z be as in Lemma 23. Then

[;r [EIV CX,|V|=N"%:vVz eV :dim (span (U {g(m)})) < Zan‘| < N~(17200QNT T (1—0(1))
geZ
if Q =w(n).

Proof. Since each function in Z is sampled uniformly at random, for each z the event of
“being bad” is independent of others. So for random Z the probability that a fixed set of

11—«

N'=2 g’s is bad can be bounded by (NQO‘" (NI%Q)Q> . After that we apply a union
bound over all sets of z’s.
We get:
NNl’“NQaan’“ 1 QN _ N2an+1 Nt _
N1-2«a N1-20)Q
_ N (120)QU-FAEHINTT
< N—(1-20)QN'"%(1-0(1))
for Q = w(n). <

At last, we apply union bound over all choices of Z from G.
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» Lemma 25. Let G be as in Theorem 20. Then:
Py [az C G2 =Q,3VCX,[V|=N'"":Ve € V: a is bad for Z} < N~V o)

Proof. For any specific Z C G we can apply Lemma 24, as each function in G is sampled
uniformly at random. We sum the error over all possible choices of Z and get:

Nilea
NA=2a)N'=>(1-0

Q
|G|QN—(1—2a)QN1—a(l—O(l)) - < (1))> < N-ENT(1-o(1) <

Hence, for every Z C G there are no more than N!'~% bad rows with high probability.

We consider bad rows unlucky. After we take those out of consideration, we prove that
almost all good rows are lucky.

To do that, first we consider a technical Lemma:

» Lemma 26. Let f be a function {0,1}™ — {0,1}, chosen uniformly randomly, S be any
set of functions from {0,1}" — {0,1}" such that for a fized x values g(x) for all g € S are
linearly independent, 2 < |S| < 5. Then:

]?I' |:Mf7s[x] haS 2N2_‘S| 267’065} S 2(71+1)|S‘_2n72\5|72.

This is a corollary from the following statement by Kaave Hosseini (from personal
communication):

» Lemma 27. Let B C {0,1}" be a random set, where each point lies with probability %,
L =uxy,...,xx be linearly independent vectors, k > 2. Then:

2n—2k72

f;r [|(B + xl) n...N (B + xk)| > 2n—k+1} < o(n+1)k—

First we show how Lemma 26 follows from Lemma 27.

Proof of 26 from 27. The value of M [z, y] is zero iff Vg € S : f(g(x) & y) = 0. Plugging
B = f710), k =S|, L = {g(z)}4es in 27, we get 26, since zeroes of f(g(x)BHy) are shifted
by vector g(x) in comparison with zeroes of f.

Now we prove Lemma 27.

Proof. To upper bound |(B + 1) N...N (B + x)|, let us consider the following sum:

A= > x+z)x(y+2) . x(y+ )
ye{0,1}"
where x is a characteristic function of a set B. This sum equals [(B+ z1) N ... N (B + xy)|
exactly.
Let us now extend set L = {z1,...,7x} to a basis and split {0,1}" onto 2 parts,

depending on whether a vector contains z; in its decomposition onto basis vectors or not.

Each part contains 2"~ % different points. Let us consider one of those parts, without losing
generality we pick:

P = {y | y does not contain any of x; in decomposition}.

In the sum Ap == > x(y+z1)...x(y+zx) every point in {0,1}" occurs as an argument
yeP
of x no more than once, so all summands and all multipliers in them are independent.
If we interpret every summand as a Bernoulli variable which equals 1 with probability
55, we can apply Chernoff bounds.

The exact form that we use here is the following:
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» Theorem 28 (Chernoff bounds, multiplicative form). For independent random X, ..., X,
from {0,1} and 0 < § < 1:

52,
S e "3

Pr lZXZ >(1+0)p

K2

where i is the expected value of ), X.

Here the expected value of Ap equals 27 2%,

27172k72

Pr[Ap > (148)2" ] < =09

This holds regardless of the choice of a part P. We apply union bound and sum the error
over all possible parts:

%r [A > (1 + 5)2"—k] < f];r [HP: Ap > (1 + 5)2"_2k] < ok . e(_52)2n72k—2.
At last, we apply union bound over all possible choices of L:
%r [HL A> (1 + 5>2n_k] < onk ok e(_(52)2n—2k72.

We pick 0 := 1 and get:

2n72k72

Pr [A > 2n—k+l] < 2(n+1)k—
B
This finishes the proof of the Lemma. |

We use the Lemma to bound the number of zeroes in good rows. First, let us remember

that « is separated from % by some small constant. Let that constant be v, so a + v = %

» Lemma 29. Let x be a good row for a family of functions Z. Then:

P}r [My z[2] has 2N'2* zeroes| < 9= N (1-0(1))

Proof. Since z is good for Z, we can find a subset S C Z such that |S| = 2an and {g(z)}4es
are linearly independent. By Lemma 26 and the fact that n — 2 - 2an > (a + 5v)n, we
immediately have an upper bound on number of zeroes in a row x:

[My z[2] has 2N'~3* zeroes] <

Pr
f
< P}r [My s[z] has 2N~ zeroes| <
< 2(n+1)20¢n72(“+57)"’72

— 9= N (1-0(1)) <

» Lemma 30. Let Z be a random family of functions from {0,1}™ — {0,1}™. Then:

f; [EIV,V is a set of good rows for Z,|V| = N'"%: VY& € V: My z[z] has 2N'~>* zemes} <

< 9~ N (1-0(1))
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Proof. Again, as Z is picked uniformly at random, the events regarding every z are inde-
pendent for a fixed V. Now let us sum the error over all choices of V:

}35 [EIV, V is a set of good rows for Z,|V| = N'"%: V& € V: My z[x] has 2N'~3* zeroes] <

l—a

< N\ (pmerra—em)V T o
g <

< ( jlva)z_Nw“_"“” <

< 2Nl—“-logN ) 2—(1—0(1))N1+5"’ <

< 27(170(1))1\1“57. <

Now, we are ready to sum over all possible choices of Z in a random G.

» Lemma 31. Let G be as in Theorem 20. Then:
Pfr 3Z C G,|Z| = Q,3V,V is a set of good rows for Z,|V| = N'7%:
Vr € V: My z[z] has 2N*~2 zeroes} < NQN'""g=(1—o())N"F?Y

Proof. This is a union bound over all choices of a subset Z of size @ from set G of size
NN <

Now we are ready to prove Theorem 20.
Let us take a family G of functions from {0,1}" — {0,1}" of size N3V " where each

function is sampled uniformly at random. With probability 1 — all functions turn

out to be different from each other.

Let us take any Z C G of size N®. We plug @ := N® into Lemma 25 and get that with
probability at least 1 — N~V """ we have no more than N1~ bad rows for our Z.

Plugging this parameter in Lemma 31, we get that with probability 1 —
NiNg=N"""(1—o(1)) — 1 _ 2=N"""(1-0(1) 1o more than N'~* good rows have 2N1—2¢
zeroes in them.

So, with very high probability, all properties hold. We say that both bad rows and good
rows with at least 2N'172 zeroes are our unlucky rows, and this is a set K from Theorem 20.

Now, as every lucky row has at most 2N ~2% zeroes, and there are no more than N lucky
rows, there are no more than 2N2~2% zeroes in all lucky rows, which gives us the statement

of Theorem 20.

5 Notes and open questions

Note that our result works for « that is separated from % by some constant. With more
accurate analysis in Section 4 it might be possible to push « up. So the first natural question
is: can we prove variant of the main theorem for o < %?

The second question concerns the balance of the parameters. In our current result, one
can say that we are trading one arbitrary layer for two AND layers. Can this trade-off be
made more favorable?

But the main question that arises from our work is whether this method could be adapted
to work without restrictions on top gates of the formula, or with weaker restrictions. The first
natural extension would be to to prove a lower bound for ACy formula on top of arbitrary
De Morgan formulas.
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» Conjecture 32. For any positive integer d, there exists a > 0 and ¢ > 1 such that modified
Andreev’s function is not computable by an ACy formula of depth d and size n®® on top of
(3 — a)logn-depth De Morgan formulas.

6  Another important statement

The contents of this section had to be modified for the reasons of safety of the authors,
compared to the original version, as the recently adopted Russian laws effectively establish
censorship.

Nevertheless, we are deeply upset about the events that started in Ukraine on February
24th and wish for peace more than anything.
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A Appendix

A.1 Notes on Shrinkage Lemma

As the formulation of Lemma 18 is proven in [8] somewhat implicitly, we give some notes on
that. The following notation is consistent with [8].

Let a p-regular distribution on partial assignments to variables x1, ..., x, be the one for
which for any variable x;: Priz; = %] = p.

For random restriction p, let supp(p) = {z; | p(z;) # *}.

[8] use a notion of an independent sequence of restrictions. While it is defined naturally
on families of restrictions to which shrinkage is applicable, defining this in general can be
quite technical. Below we explain the usage of this notion in [§].

The authors construct a random restriction p as a sequence of r k-wise independent
restrictions py, ..., p,.. First they sample p;, and then py is sampled independently on those
variables x for which p;(z) = * and so on. Note that supports of such restrictions are not
independent of each other, so formalizing this in general would require some accuracy with
probability space. Nevertheless, this construction is truly independent for a sequence of
uniform distributions with the same parameter.

Let us now present a general statement, which follows [8] almost to a letter.

» Lemma 33 (Lemma 4.8 in [8]). Let I' :=2. For a constant ¢ > 11, p>m~=/" r > 11, a
formula f on < m wvariables with L(f) = m and any p-regular random restriction p which is
a sequence of r independent (¢ = p%)—regular k-wise independent restrictions:

Pr[L(f | p) 2 257 "pPm] < m~.

Note that in [8] authors argue the existence of such distribution and take great care of
minimizing the number of random bits needed to generate it. Nevertheless, their proof works
for any distribution with mentioned properties and we use it for uniform distribution.

The uniform distribution R, can be broken up to a sequence of r distributions R, where
q= p%. All of them are k-wise independent for any k, so, plugging in the parameters along
with ¢ = 11, we get Lemma 18.

In terms of uniform distribution this statement was also mentioned in [18].
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