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Abstract
Multiplicity codes are a generalization of RS and RM codes where for each evaluation point we
output the evaluation of a low-degree polynomial and all of its directional derivatives up to order s.
Multi-variate multiplicity codes are locally decodable with the natural local decoding algorithm that
reads values on a random line and corrects to the closest uni-variate multiplicity code. However,
it was not known whether multiplicity codes are locally testable, and this question has been posed
since the introduction of these codes with no progress up to date. In fact, it has been also open
whether multiplicity codes can be characterized by local constraints, i.e., if there exists a probabilistic
algorithm that queries few symbols of a word c, accepts every c in the code with probability 1, and
rejects every c not in the code with nonzero probability.

We begin by giving a simple example showing the line test does not give local characterization
when d > q. Surprisingly, we then show the plane test is a local characterization when s < q and
d < qs − 1 for prime q. In addition, we show the s-dimensional test is a local tester for multiplicity
codes, when s < q. 1 Combining the two results, we show our main result that the plane test is
a local tester for multiplicity codes of degree d < qs − 1, with constant rejection probability for
constant q, s.

Our technique is new. We represent the given input as a possibly very high-degree polynomial,
and we show that for some choice of plane, the restriction of the polynomial to the plane is a
high-degree bi-variate polynomial. The argument has to work modulo the appropriate kernels, and
for that we use Grobner theory, the Combinatorial Nullstellensatz theorem and its generalization
to multiplicities. Even given that, the argument is delicate and requires choosing a non-standard
monomial order for the argument to work.
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14:2 The Plane Test Is a Local Tester for Multiplicity Codes

1 Introduction

Multiplicity codes were defined in [17, 16, 9, 15] and are a generalization of RS and RM
codes. The code MRM(q, m, d, s) has a codeword for each degree d m-variate polynomial
p, and the codeword consists of the evaluation of p and all of its directional derivatives up
to order s on Fm

q . Thus, the length of the code is qm (one coordinate per each evaluation
point) and the alphabet size is q(m+s−1

s−1 ), consisting of one Fq value for each m-directional
derivative of order up to s. Choosing s = 1 gives us the familiar RS code (when m = 1) and
RM code (for general m). This work studies the local structure of multiplicity codes.

Let us begin with three (informal) definitions:

A code C is locally correctable with t queries if there exists a randomized algorithm A

that for any string w close to a codeword c ∈ C, and any coordinate i, A(w, i) = ci, while
making at most t queries to w.2

A code C is locally testable with t queries if there exists a randomized algorithm A that
given a string w, decides whether w is a codeword of C, or far away from any codeword
of C, while making at most t queries to w. Being a bit more precise, we require that
the rejection probability of the algorithm on words w that are δ far from the code is at
least min {αδ, c}, for some constants α, c > 0, and is zero on codewords. Note that α is
bounded from above by t, the number of queries A makes, and may be larger than 1.
With the same terminology as the last item, we say C has a local characterization if A

rejects any word w ̸∈ C with nonzero probability.

Local characterization is a necessary, but not sufficient, condition for local testability.
In both, all codewords c pass all tests. Also, in both, any non-codeword w fails some test.
However, in local testability there is an additional requirement that the rejection probability
is linked to the distance from the code, and words far away from the code should have
significant rejection probability.

We note that if C ⊂ Fm
q is a linear code, having local characterization is equivalent to

being LDPC, that is being defined by low weight linear constraints zi of the form zi · c = 0.
In this work we deal with Fq-linear codes over a large alphabet C ⊂ Σm with Σ ∼= Fr

q, in
which case the notions differ.

While at first it seems local correctability is stronger requirement than local testability,
this is not the case because local correctability only imposes conditions on the behavior of A

on words close to the code C, while local testability also imposes conditions on the behavior
of A on words w that are far away from the code C. As a result, local correctability does not
imply local testability.

Before we discuss how multiplicity codes fare with these local properties, let us first
survey the extensive research done on local properties of RM codes.

Over large enough fields, RM codes have a natural and simple local characterization: A
multi-variate polynomial is degree d iff for every line, its restriction to the line is a uni-variate
degree d polynomial. We call this the line test characterization. The if direction is simple,
while the only-if direction is more subtle and was proved in a sequence of works [8, 18, 19, 7].
Formally, when q is prime and d < q − 1, a multi-variate polynomial is degree d iff its
restriction to all lines is a degree d polynomial. When d = q − 1 the assertion is clearly

2 We say A(w, i) = b if A(w, i) is b with probability at least 2/3 over the internal random coins of A.



D. Karliner, R. Salama, and A. Ta-Shma 14:3

false, as any function from Fq to Fq can be interpolated by a degree q − 1 polynomial. For
non-prime fields Fq with characteristic p, it was shown that when d < q(1 − 1

p ) the line test
is a characterization, whereas for d = q(1 − 1

p ) it is not.
The small field case also attracted a lot of attention [2, 12, 11, 4, 10]. When q is prime

and q ≤ d + 1 the line test is not a characterization, and the next natural candidate is
the plane test, or more generally the k-dimensional test, where one chooses a random k

dimensional affine space and tests whether the restriction of the function to it agrees with a
degree d polynomial. Roughly speaking, the bottom line is that characterization by (affine)
subspaces happens as soon as it makes sense. For example, when d = q − 1 characterization
by lines does not make sense, because every function on the line can be explained by a degree
q − 1 polynomials, whereas not all functions over Fm

q can be explained by a degree q − 1
polynomial. Similarly, if d ≥ k(q −1) the k-dimensional test contains no information, because
every function on a k dimensional space can be explained by a degree k(q − 1) polynomial.
Consequently, we may define two quantities:

The naive characterization dimension c̃q,d = ⌈ d+1
q−1 ⌉, and,

The characterization dimension cq,d which is the lowest k such that the k dimensional
test locally characterizes RM(q, m, d).

By the reasoning above, clearly, cq,d ≥ c̃q,d. The line of work cited above shows that in fact
when q is prime characterization happens as soon as it is possible, namely that cq,d = c̃q,d.

When q is a prime p power, a similar phenomenon exits, but the characterization
dimension should be adjusted to cq,d = ⌈ d+1

q− q
p

⌉. More precisely, the cq,d dimension test is a
characterization, and,

▶ Theorem 1 ([12], Theorem 4). Let d be an integer and q = pn a prime power. If
k <

⌈
d+1

q−q/p

⌉
there exists a function f such that:

f is not a degree d polynomial, but,
The restriction of f to any k dimensional subspace can be explained by a degree d

polynomial.

We now move on testing. We may define the RM testing dimension tq,d to be the lowest
k such that RM(q, m, d) is locally testable by the k-dimensional test. Roughly speaking,
[12, 10] show that tq,d = cq,d, though here we need to mention the parameters that are
associated with the rejection probability of the test. Being more precise:

▶ Theorem 2 ([12]). Let k =
⌈

d+1
q−q/p

⌉
. Given f : Fm

q → Fq let:
REJk,d(f) denotes the rejection probability of the test, namely, the probability over a
random k dimensional affine space, that f restricted to the space cannot be explained by a
degree k polynomial, and,
δ(f, RM(q, m, d)) be the distance of f from the code RM(q, m, d).

Then

REJk,d(f) ≥ min {α0 · δ(f, RM(q, m, d)), c0} .

where α0 = qk

2 and c0 = 1
2(k+1)qk+1 .

RM codes over large enough fields are also locally decodable with q queries when d < q [20].
A simple and natural local correction procedure is the following: Randomly choose a line
in Fm

q , read all the evaluations on points lying on the line, and answer according to the
closest degree d univariate polynomial. Other variants exist, e.g., one may replace the line

CCC 2022



14:4 The Plane Test Is a Local Tester for Multiplicity Codes

with a low-degree curve to handle larger error, but all variants use the crucial observation
that the restriction of a multi-variate degree d polynomial to a line is a degree d uni-variate
polynomial.

Having said all that we turn our attention back to multiplicity codes, that are a natural
generalization of RM codes. Which of the local properties of RM code are preserved in
multiplicity codes?

Multi-variate multiplicity codes are locally decodable [15] when d < qs. The local
correction procedure also involves reading the evaluations on points lying on a random line,
and finding the closest degree d univariate polynomial. However, this procedure only gives
partial information, and needs to be repeated several times in order to decode. Indeed, in [14]
multiplicity codes previously served as a building block for the construction of the state of
the art high-rate locally decodable codes.

The situation with regard to local characterization and local testability is different. The
question whether multiplicity codes are locally testable is already mentioned in [13], and
without local characterization there is no hope for local testability. To appreciate the problem
let us try to imitate the successful line of thought attacking the RM case. Given q, m, d and
s what is the trivial k for which there is no hope of characterizing the MRM(q, m, d, s) code
by dimension k affine spaces? Stated differently, given k, for what d every table on Fk

q giving
evaluations for the function and all directional derivatives, can be explained by a degree d

polynomial? We will see that the answer to that is d = (s − 1)q + k(q − 1). This allows for
degrees d that are significantly larger than q. For example, for k = 1 (i.e., the line test) it
allows d to go up to sq − 2. However, as we shall see soon, for k = 1 even d = q + 1 is too
large.

In this paper we study local characterization and local testing of MRM(q, m, d, s) codes.
The starting point is a simple example that local characterization by lines is not possible
(except for extreme cases). We find what comes next very surprising. We show that local
characterization by planes works as long as s ≤ q and d < sq − q

p . I.e., for a very large set of
parameters (containing the parameters that are often used in multiplicity codes) the MRM
characterization dimension is 2, regardless of q, m and d. Given this, the next natural goal is
understanding the MRM testing dimension. Our first result here is that if k is above the
RM testing dimension, then k-dimensional tests give a local MRM test. Said differently,
the MRM testing dimension is no larger than the RM testing dimension. Having that it is
natural to ask: Can it actually be smaller? Our second result shows that it indeed can be
smaller. We show that if d < q(s − 1

p ) (and notice that d may get very close to qs) then
the plane test is a local test (with parameters that depend on q and s). We devote the rest
of the introduction to explaining our results, and discussing the new techniques developed
to obtaining them. While we do not give applications of the new results, we believe our
results give us new basic understandings on this important class of codes, extending the vast
literature surveyed before on the corresponding question for RM codes (e.g. [2, 12, 11, 4, 10]).

1.1 Our results – I

1.1.1 The line test
We begin our journey by analyzing a natural candidate test for characterizing multiplicity
codes: the line test. The line test adapts the standard, well known local testing algorithm
for RM and checks whether a restriction to a line is a uni-variate MRM(q, 1, d, s) code.
Specifically:
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We are given as input an evaluation table T : Fm
q → Σm,s where for every point x ∈ Fm

q

and every directional derivative I of order up to s, we get a value in Fq and therefore
Σm,s is vector of

(
m+s−1

s−1
)

values from Fq, one value per each directional derivative.
The test chooses a random line, i.e., we choose a, b ∈ Fm

q uniformly at random and we
define ℓa,b : Fq → Fm

q by ℓa,b(t) = t · a + b.
We then query the table T at the q points of Fm

q that lie on the line ℓa,b, and we learn
the function Ta,b : Fq → Σm,s defined by T ◦ ℓa,b.

Informally, we want to test whether Ta,b is the evaluation table of some degree ≤ d

uni-variate polynomial and its derivatives up to order s. Formally, we should first apply a
transformation ϕa,b that converts multi-variate derivatives to uni-variate derivatives over
the line (see Lemma 17). With this transformation at hand we test whether ϕa,b ◦ T ◦ ℓa,b is
a codeword of MRM(q, 1, d, s).

It is straight forward to check completeness, i.e., that the restriction to a line of an
m-variate multiplicity codeword is indeed a uni-variate multiplicity codeword, and therefore
an m-variate codeword passes all tests. However, it turns out soundness sometimes fails:

▶ Theorem 3 (informal). Fix a prime power q = pr, m and s ≤ d. Let C = MRM(q, m, d, s).
When q ⩽ d the line test is not a local characterization for C.
When q − q

p ⩾ d + 1 the line test is a local characterization for C.

Formal statements appear in Theorem 49 and Corollary 52.
The first item states that the line test fails when q ≤ d. To see that let us look at an

example. Set Q(x, y) = (xq − x)y − x(yq − y) = xqy − xyq. Q is a degree q + 1 homogeneous
polynomial that vanishes on Fm

q . When we restrict to the line ℓa,b we get the polynomial

Q ◦ ℓa,b(t) = Q(at + b) = Q(a1t + b1, a2t + b2),

which is a degree q polynomial rather then a degree q + 1 polynomial, because the coefficient
of tq+1 is Q(a1, a2) = 0 because Q vanishes on F2

q . It therefore follows that the restriction of
Q to lines behaves as a degree q polynomial, whereas Q itself is not degree q and the line
test wrongly accepts Q.

We now turn to the second item. In the terminology of this paper, the case of s = 1 and
q ≥ d + 2 was proved in [7] and we generalize the q ≥ d + 2 case to larger s. The second
item is a special case of a more general claim, that we discuss next.

1.1.2 The k-dimensional test
We next consider the k-dimensional test, that tests whether the restriction to k-dimensional
affine spaces reduces the the m-variate multiplicity code to a k-variate multiplicity code.
More formally, we are given as input a table T : Fm

q → Σm,s. We choose h = (h0, h1, . . . , hk)
with each hi uniformly at random from Fm

q conditioned on h1, . . . , hk being independent
and define the k-dimensional affine space ℓh : Fq → Fm

q by

ℓh(y1, . . . , yk) =h0 +
k∑

i=1
yihi.

We check whether the restriction T ◦ ℓh is a k-dimensional multiplicity code, when applying
the appropriate conversion ϕh (see Lemma 19), i.e., we check whether ϕh ◦ T ◦ ℓh : Fk

q → Σk,s

is a codeword of MRM(q, k, d, s). As before completeness is easy, and the big question is
whether soundness holds. In Section 5 we prove:

CCC 2022
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▶ Theorem 4. Let Fq be a field of size q, and assume s ≤ min {d, q − 1}. Suppose for
RM(q, m, d) there exists α > 0 and c0 ≤ 1 such that for every f

REJRM
k,d (f) ≥ min {α · δ(f, RM(q, m, d)), c0} . (1)

Then, for every T we have

REJMRM
k,d (T ) ≥ min {α′ · δ(T, MRM(q, m, d, s)), c0} (2)

for

α′ = q − (s − 1)
q

1
1 + qd/(q−1) 1

α

. (3)

We have used REJRM
k,d (f) to denote the rejection probability of the RM k-dimensional test on

f , and REJMRM
k,d (T ) to denote the rejection probability of the MRM k-dimensional test on T .

A consequence of the theorem is that if k is above the RM testing dimension, then,
automatically, the k dimensional MRM test gives local testing for MRM codes. For example,
if q is prime and d < 2(q − 1), the RM testing dimension is 2 and by Theorem 2 the
plane test satisfies Equation (1) with α = q2

2 and c0 = 1
6q3 . Hence, by the theorem, the

plane test is a local testing procedure for MRM(q, m, d, s), for any s < q, with α′ ≥ 1
3q in

Equation (2), as d/(q − 1) < 2. If s ≤ q
2 we have α′ ≥ 1

6 . In essence this means that if k is
above the Reed Muller testing dimension, then the k-dimensional test is also a local testing
algorithm for MRM(q, m, d, s) for any s as large as q − 1, and if, say, s < q/2 we even get
constant α′. Generally, if d < k(q − 1), the k-dimensional test is a local testing procedure for
MRM(q, m, d, s) for s up to q − 1. Item 2 in the previous subsection is the special case of
this theorem when we pick k = 1 (i.e., we consider the line test) and we replace the testing
property with the weaker characterization property.

The proof idea is as follows. Let us first consider characterization. When k is above
the testing dimension, the evaluation of the function itself that are given in the input T ,
without the evaluations of the derivatives that are given in T , suffice to uniquely characterize
the function. More precisely, if all the line tests pass the MRM test, then in particular the
restriction of the function to all lines is a degree d polynomial. Then, by Theorem 2 the
function itself is a degree d polynomial (because k is above the testing dimension). Let us call
this polynomial P . This polynomial is the only possible candidate for a MRM explanation
of the given input. What remains to show is that the given values of the derivatives in the
input T are consistent with the derivatives of the global function P . To explain the problem,
notice that every successful dimension k test gives us information about k-variate derivatives
in P and T , while we need to claim about m-variate derivatives in P and T .

The crux of the solution uses the fact that given a specific k dimensional subspace H,
the k-variate derivatives of T |H at the point x are a linear combination of the m-variate
derivatives at the point x. We then show that the set of these linear combinations derived
from observing the k-variate derivatives at x for different subspaces H form a good code.
Thus, if a point x ∈ Fm

q is good in the sense that many of the tests passing through it
are good, then we get a codeword which is close to the codeword obtained by taking the
restrictions for P . When these two codewords are closer than the distance of this code, we
know the m-variate derivatives given in P and T coincide. A similar (but technically more
complicated) approach proves the local testing version, giving the theorem.

The theorem is satisfying in that it gives a local testing procedure for multiplicity codes.
However, a natural question arises: Claim 44 shows every table T : Fk

q → Σk,s can be
explained by a degree (s − 1)q + k(q − 1) polynomial P (meaning that EVAL(P ) = T ).
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Thus, if our strategy is to use the k-dimensional test to restrict a MRM(q, m, d, s) code
to a MRM(q, k, d, s) code, then this approach breaks down when d ≥ (s − 1)q + k(q − 1).
Thus, we can define the naive MRM characterization dimension to be ⌈ d+1−(s−1)q

q−1 ⌉, which
is the minimal k needed for this approach to have chances to work. We have seen that the
⌈ d+1

q−q/p ⌉-dimensional test is a local testing procedure for MRM(q, d, m, s), but considering
the naive bound we must consider whether this is, perhaps, a gross overkill. After all, as far
as the naive bound is concerned even the line test might have worked. True, we have already
seen that the line test does not give a characterization. Yet, is it possible that the plane test
already gives a characterization, or, perhaps, even a local test?

1.1.3 The plane test
So next we analyze the plane test, that tests whether the restriction to two-dimensional
planes reduces the the m-variate multiplicity code to a two-dimensional multiplicity code.
More formally, we are given as input a table T : Fm

q → Σ2,s. We choose a, b, c uniformly
at random from Fm

q conditioned on a, b being linearly independent and define the plane
ℓa,b,c : Fq → Fm

q by ℓa,b,c(t, r) = t · a + r · b + c. We check whether the restriction T ◦ ℓa,b,c
is a two-dimensional multiplicity code, when applying the appropriate conversion ϕa,b,c
(see Lemma 18), i.e., we check whether ϕa,b,c ◦ T ◦ ℓa,b,c : F2

q → Σ2,s is a codeword of
MRM(q, 2, d, s). As before completeness is easy, and the big question is whether soundness
holds. Our main result is the surprising Theorem 9 which shows that the plane test is
a good local tester with nontrivial soundness. The main ingredients in the proof are the
reduction from RM local testing explained in the previous section, as well as the following
local characterization result:

▶ Theorem 5 (The plane test - informal). Fix q, m, d, s such that q is a power of the prime p

and s ≤ q. Suppose d < (s − 1
p )q. Let C = MRM(q, m, d, s). Then, the plane test is a local

characterization for C.

See Section 6 for a formal statement. We mention that we do not know if the condition
s ≤ q is redundant or not.

1.1.4 Why are planes better than lines?
In this subsection, we present an informal discussion on why the line test fails, while the
plane test doesn’t.

So far, we have seen Theorem 3 which shows that the degree up to which the line test
is a local characterization is not much better than in the Reed-Muller case. In contrast,
Theorem 5 shows that when s < p, the plane test is effective up to degree (s − 1

p )q, which is
close to the highest degree we could have hoped for - (s − 1)q + 2(q − 1). The failure of the
line test is demonstrated by the polynomial

Q(x, y) = xqy − yxq.

This polynomial is a special case of the Moore determinant

▶ Definition 6 (Moore determinant). Let n ≥ 1 be an integer. The order n Moore matrix
Mn is a matrix over Fq[x1, . . . , xn] given by

(Mn)i,j = xqj

i .

The order n Moore determinant Dn is det(Mn).

CCC 2022
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For example,

M3 =

x1 xq
1 xq2

1

x2 xq
2 xq2

2

x3 xq
3 xq2

3

 .

The determinant D3 is a degree q2 + q + 1 polynomial in 3 variables. It can be shown
similarly to Theorem 3 that this polynomial is of degree at most q2 + q when restricted to
any plane.

However, for this polynomial to not be equivalent (in the sense of having the same values
and derivatives) to a lower degree polynomial it is required that s ≥ q + 2.

Therefore, D3 demonstrates the plane test stops being effective, but only does so for quite
large s. For the line test, this failure already happens at s = 2 with the example Q = D2.
This means it’s never significantly more useful than in the Reed-Muller case s = 1.

We devote the next part of the introduction to an informal explanation of our approach
and technique for proving the planet test characterization theorem, Theorem 5.

1.2 A warm-up proof for RM codes
As a warm-up towards the proof we first prove the line test is a characterization for RM
codes (i.e., when s = 1) and q is prime. This claim is well known. It appears as a well known
claim in Rubinfeld Sudan [19] but only for the case q ≥ 2d + 1. In [7] another proof is given
that holds for all fields Fq of characteristic p, as long as (1 − 1

p )q ≥ d + 1. In particular, when
q is prime, the proof works for all q ≥ d + 2. As mentioned above, [7] also show the bound is
tight, i.e., that if d is such that d + 1 > (1 − 1

p )q, then the line test is not a characterization.
Here, when q is prime we give yet another proof of the claim that is somewhat simpler than
the one in [7] and will be easier to generalize to larger s. Other proofs exist, see, e.g., [11,
Section 1.4].

The starting point is the same as in [7]. Suppose T : Fm
q → Fq is some function. There

exists a polynomial P : Fm
q → Fq in Fq[X1, . . . , Xm] that agrees with T on Fm

q . The
polynomial P is not unique, but it is unique modulo Im,1 which is the ideal of all polynomials
in Fq[X1, . . . , Xm] that vanish on Fm

q . If we choose P to be the polynomial of minimal degree
agreeing with T , then from the Combinatorial Nullstellensatz (see Theorem 32) we see that
we can represent P as

P (x1, . . . , xm) =
∑

0≤i1,...,im<q

αi1,...,im
xi1

1 . . . xim
m .

For ease of notation let us denote I = (i1, . . . , im) and XI = xi1
1 . . . xim

m . Before we go on
notice that while the individual degree of P in each of the m variables is smaller than q, the
total degree of P ,deg(P ), may be as large as m(q − 1) and in particular much larger than q.

When we restrict P to the line ℓa,b(t) we see that:

Pa,b(t) def= P ◦ ℓa,b(t) =P (at + b) =
∑

I

αI(at + b)I

and we can express

Pa,b(t) =
deg(P )∑

k=0
Ak(a, b)tk,

where Ak ∈ Fq[a1, . . . , am, b1, . . . , bm].
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At first it seems our task is to show that if deg(P ) > d, then Adeg(P )(a, b) is non-zero,
and therefore for some a, b ∈ Fq

mwe have Pdeg(P )(a, b) ̸= 0. Then, when we test the line
ℓa,b, the restricted function P ◦ ℓa,b is a degree deg(P ) > d uni-variate polynomial, and
therefore fails the line test. This argument is, however, flawed in two essential points:

1. First, we should look not at Pa,b but rather at Pa,b mod I1,1, i.e., modulo the ideal
of functions that vanish on Fq. This is because from our point of view a table can be
associated with a degree d polynomial iff there exists a degree d polynomial with such an
evaluation table, and two polynomials that differ by an element from I1,1 have the same
valuation table. The ideal I1,1 is generated by g(t) = tq − t and so we need to look at
Pa,b(t) mod (tq − t).

2. It is not enough to show that Ak is non-zero in Fq[a1, . . . , am, b1, . . . , bm] but rather that
Ak has a non-zero evaluation point in F2m

q . By the Combinatorial Nullstellensatz this is
equivalent to Ak mod I2m,1 being non-zero.

The way we fix these two issues is different than [7]. We say I is a maximal monomial of
P if deg(XI) = deg(P ). We say (I0, I1) is a partition of I if I0 + I1 = I and I0, I1 ≥ 0, where
I0, I1 ∈ Zm and the addition and inequality are in each of the m coordinates. We also let
w(I), the weight of I, be

∑m
j=1 ij . We claim:

▶ Lemma 7. Assume q is prime. Let I be a monomial of P of weight at least d + 1 and
I0, I1 a partition of I with w(I0) = d + 1. Then Ad+1(a, b) is a non-zero polynomial in
Fq[a1, . . . , bm] and furthermore aI0bI1 appears in it as a non-zero monomial.

To see why the lemma is true first notice that the coefficient of aI0bI1 in (at + b)I is
( I

I0

)
which is non-zero if q is prime (see Section 2.1 for the notation

( I
I0

)
)3 and it appears as a

coefficient of tw(I0) mod (tq − t) = td+1 mod (tq − t) = td+1. In general, other terms may
contribute to the coefficient of td+1, and we should make sure none of these terms cancel the
monomial aI0bI1 . For this, we notice that from aI0bI1 we can recover I0, I1, and therefore
I = I0 + I1. Hence, for all J ̸= I, aI0bI1 is not obtained in (at + b)J. Thus, there is a unique
way to obtain aI0bI1 , and it appears with a non-zero coefficient and therefore Ad+1(a, b)
has the monomial aI0bI1 with a non-zero coefficient, and the lemma follows.

For the second issue we notice that for every k, Ak(a, b) is a polynomial in Fq[a1, . . . , bm]
with individual degree at most q − 1, and therefore it is already reduced modulo I2m,1. We
can therefore conclude that for some a, b ∈ Fm

q the polynomial Pa,b(t) mod (tq − t) is a
non-zero polynomial of degree at least d + 1, and therefore the line test fails for this choice
of a, b.

1.3 The general case
We now want to explore whether we can generalize the argument to show the plane test
is a characterization for s > 1. Suppose we are given a table T of function and derivative
evaluations, T : Fm

q → Σm,s. Every table T has some (possibly high degree) polynomial
P such that T is the codeword of P . The functions whose table is identically zero are
those polynomials that vanish on Fm

q with multiplicity s. Let Im,s denote the set of m-
variate polynomials that vanish on Fm

q with multiplicity s. Im,s is an ideal of the ring
Fq[X1, . . . , Xm]. I1,1 is the ideal of all uni-variate functions that vanish on Fq, and is

3 One can give an analogous argument for a prime power q, and we indeed do that for later on, but we
skip it here because this is just a warm-up exercise.
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generated by g(x) = Πα∈Fq (x − α) = xq − x. Similarly, I1,s is generated by g(x)s (and
I1,s = Is

1,1). From the combinatorial nullstellensatz [1] one can deduce that Im,1 is generated
by {g(x1), . . . , g(xm)} and a further generalization [3] shows that Im,s = Is

m,1 and is therefore
generated by

Gm,s =
{

g(X)I | w(I) = s
}

,

where we use the notation g(X)I = g(x1)i1 · . . . · g(xm)im . It turns out that Gm,s is a Grobner
basis for Im,s (see Section 2.3). This implies that a basis for Fq[X1, . . . , Xm] mod Im,s (as a
vector space) is

Bm,s =
{

g(X)I · XJ | (I, J) ∈ Ms,q

}
.

Where (I, J) ∈ Ms,q iff w(I) < s and j1, . . . , jm < q. Notice that there are basis elements in
Bm,s whose degree is as large as m(q − 1) + (s − 1)q ≫ sq. For more details see Section 3.

We will occasionally abuse notation and refer to members of Bm,s as “monomials”.
Going back to the plane test, we are given a table T : Fm

q → Σm,s and we want to check
whether the polynomial P that represents T is a degree d polynomial or not. W.l.o.g., we can
assume P is reduced modulo Im,s and we express P (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] mod Im,s

in the basis Bm,s:

P (X) =
∑

(I,J)∈Ms,q

αI,J · g(X)IXJ.

We let Pa,b,c be P restricted to the plane ℓa,b,c, i.e., Pa,b,c
def= P ◦ ℓa,b,c ∈ Fq[t, r]. We want

to check whether Pa,b,c belongs to MRM(q, 2, d, s) and we therefore take Pa,b,c modulo I2,s.
We express

Pa,b,c(t, r) mod I2,s =
∑

i+j<s,k,ℓ<q

Ai,j,k,ℓ(a, b, c) · g(t)ig(r)jtkrℓ

Our plan is to show that if P has degree larger than d, then for some a0, b0, c0 ∈ Fm
q it must

be that Pa0,b0,c0(t, r) mod I2,s is a polynomial of degree larger than d, and therefore the
test a0, b0, c0 fails. Equivalently, we want to show that for some i0, j0, k0, ℓ0 with i0 + j0 < s

and k0, ℓ0 < q it holds that:
Ai0,j0,k0,ℓ0(a, b, c) mod I3m,1 is non-zero, and therefore for some a0, b0, c0 ∈ Fm

q we have
Ai0,j0,k0,ℓ0(a0, b0, c0) ̸= 0 and the monomial g(t)i0g(r)j0tk0rℓ0 survives, and,
q · (i0 + j0) + k0 + ℓ0 > d and therefore deg(Pa0,b0,c0) > d.

The crux of the proof is finding an order on monomials under which the following lemma
is true:

▶ Lemma 8. If (Imax, Jmax) is such that g(X)ImaxXJmax is a maximal monomial in P in
the monomial order, then for any partition of Jmax to Jb

max + Jc
max such that q · w(Imax) +

w(Jb
max) < qs and

(Jmax
Jb

max

)
≠ 0 mod p, the monomial aImaxbJb

maxcJc
max appears with a non-zero

coefficient at

A
w(Imax),⌊ w(Jb

max)
q ⌋,0,w(Jb

max) mod q
(a, b, c) mod I3m,1.

See Lemma 61 for a formal statement. There is no requirement for this order to be a
monomial ordering in the sense usually used for Grobner bases. The proof is much more
delicate than the one we presented before for the RM case (where s = 1) and we give some
essential ideas below. We omit some of the technical details, and, as a result, we do not see,
e.g., why in the proof we also need the assumption q ≥ s. The full proof appears in Section 6.



D. Karliner, R. Salama, and A. Ta-Shma 14:11

Pa,b,c(t, r) = p(at + br + bc) is a polynomial in a1, . . . , am, b1, . . . , bm, c1, . . . , cm, t and r.
We first note that (recalling that g(x) = xq − x)

g(at + br + c) =(at + br + c)q − (at + br + c) = ag(t) + bg(r),

and so g(at+ br + c) behaves as a total degree q polynomial in t, r, and as a linear polynomial
in a = a1, . . . , am and b = b1, . . . , bm. In particular g(X)IXJ(at + br + c) has total degree
w(I) + w(J) in a, b, where by P (X)(at + br + c) we mean P (at + br + c).

One crucial difference between the s = 1 and s > 1 case is that now we may get monomials
aI1bI2cI3 that are not reduced modulo I3m, e.g., aq

1 = a1 is a monomial that appears in
g(X1)Xq−1

1 (at + br + c). In general, if for some coordinate j ∈ [m] we have Ij + Jj ≥ q, we
get (among other things) a monomial in a, b, c that gets reduced. This complicates things
for us, because a monomial that has more then one “source” may cancel out.

To solve this problem we do two things:
First, we choose a monomial order that first order monomials g(X)IXJ by w(I) + w(J),
and then orders monomials by w(I).
Second, we focus on special monomials in a, b, c and degrees of t, r. We fix (Imax, Jmax)
with maximal w(Imax) + w(Jmax) in P , and we take some partition Jb

max + Jc
max of Jmax.

We look at the monomial aImaxbJb
maxcJc

max .

We observe that the monomial aImaxbJb
maxcJc

max (which is reduced modulo I3m,1) is always
obtained in a reduced I3m,1 form, i.e., it cannot appear as a reduction from g(X)IXJ for
some (I, J) ̸= (Imax, Jmax). This is because it has maximal w(Imax) + w(Jmax) weight, and if
it was to appear as reduction from (I, J), then those (I, J) would have a higher w(I) + w(J)
weight.

The monomial aImaxbJb
maxcJc

max is obtained from g(X)ImaxXJmax(at+br+c) as a coefficient
of tqw(Imax)rw(Jb

max). We claim that this is the only way to obtain aImaxbJb
maxcJc

max as
a coefficient of tqw(Imax)rw(Jb

max). To see that suppose aImaxbJb
maxcJc

max is obtained as a
coefficient of tqw(Imax)rw(Jb

max) from some g(X)IXJ(at + br + c). Since the degree in t is
qw(Imax), i.e., q times the total degree in a, it must be that the a part is obtained from
g(X)I(at + br + c), because only the g part behaves as a linear function in a ∈ Fq and a
degree q polynomial in t. Furthermore w(I) ≥ w(Imax). Since (Imax, Jmax) is maximal and
monomials that have the maximal w(I) + w(J) are then ordered by w(I), we must have
w(I) = w(Imax). From that it is easy to conclude that (I, J) = (Imax, Jmax).

Next, we need to force the monomial in t, r to have degree d + 1 when taken modulo
I2,s. We take advantage of the fact that our claims work for any partition of a maximal
monomial, and therefore we can shift weight from c to b in the partition of the maximal
monomial. Each time we shift weight one from c to b we change the degree in t, r by one,
and this is true even when working modulo I2,s. If the degree of P is larger than d, then
there is a way to put just the right weight on b such that the resulting polynomial in t, r is
degree at least d + 1 even when taken modulo I2,s. In fact, one can calculate explicitly how
the weight should be partitioned (see Lemma 62). This concludes the proof of Lemma 8.

Having the lemma, there exist some a0, b0, c0 ∈ F3m
q such that P restricted to the plane

a0t + b0r + c0 is degree larger than d, even after doing the reduction modulo I2,s, because
the corresponding coefficient polynomial in a, b, c is non-zero modulo I3m,1. Hence the test
a0, b0, c0 fails!

1.4 Our results – II
We have seen two results so far:
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The k-dimensional test, for k above the RM testing dimension gives a MRM local tester,
and,
The planes test gives a MRM local characterization,

where for both results we assume s < q. We now combine the two results to show that the
plane test gives a MRM local tester, with constant parameters when s is constant. We prove:

▶ Theorem 9. Suppose q is a prime power, s ≤ q and d < q(s − 1
p ). Let T : Fm

q → Σm,s be
a table and let δ = δ(T, MRM(q, m, d, s)). Then

REJMRM
2,d (T ) ≥ min {αδ, c}

with α = Ω(q−6s+5) and c = Ω(q−8s+4).

The proof idea is follows. Suppose T is far from MRM(q, m, d, s). By the first result
mentioned above, a random k dimensional affine space H (for k above the RM testing
dimension) cannot be explained a MRM(q, k, d, s) polynomial. Then, by the second result,
some plane in H cannot be explained by a MRM(q, 2, d, s) polynomial. Hence, that plane
rejects. The number of planes in k dimensional space is about q3k, and so, intuitively, the
rejection probability should be about q−3s times the rejection probability of the k-dimensional
test, which we already saw is quite good. We give the details in Section 7.

1.5 Organization and open problems
In Section 2 we introduce notation, recall multiplicity codes and some basic results about
ideals in polynomial rings (Grobner theory and combinatorial nullstellensatz). In Section 3, we
develop an understanding of the relation between tables of valuations and polynomials which
are consistent with them. This is done by relying on the theory of Grobner bases [5], and the
combinatorial nullstellensatz [1] and a generalization of the combinatorial nullstellensatz for
multiplicities higher than one [3]. In Section 4 we prove the line test is not a characterization
when d > q + 1. In Section 5 we prove the k-dimensional test is a MRM local tester
when k is above the RM testing dimension. In Section 6 we prove the plane test is a local
characterization of the MRM code, and in Section 7 we combine the two results to show the
plane test is a local tester for MRM codes.

Finally, we state some open problems:

A self-evident open problem that arises from our work is whether the parameters of the
plane test in Section 7 can be made better.
Another intriguing question is whether the condition s ≤ q is necessary or not. We remark
that in the usual setting of the parameters q ≫ s. Nevertheless, we think it is interesting
to know whether the condition is required, and this is likely to improve our understanding
of the code.
In Theorem 49 we show that for d ≥ q + 1 the line test is not a local characterization for
MRM(q, m, d, s) for any s > 1. When s > 1 and d < q(1 − 1

p ) it follows from Section 5
that the line test is a local characterization. An open problem is pinning down where in
the range q(1 − 1

p ) ≤ d < q + 1 the line test stops being a local characterization.
Similarly, in Claim 44 we show that the plane test has no hope of being a local character-
ization for MRM(q, m, d, s) when d ≥ q(s − 1) + 2(q − 1) = qs + q − 2. When d < q(s − 1

p )
Theorem 60 tells us that the plane test is a local characterization. The same question
can be asked about where in the range q(s − 1

p ) ≤ d < qs + q − 2 the plane test stops
being a local characterization.
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Another natural open problem, pointed to us by Tali Kaufman, is understanding the
d ≫ (s − 1

p )q case. As we mentioned before, For RM codes (where s = 1) the problem
attracted a lot of attention, see, e.g., [2, 12, 11, 4, 10] and it is natural to ask what
happens to multiplicity codes over such small fields.

2 Preliminaries

2.1 Notation
We denote vectors by bold letters. For X = X1, . . . , Xm we denote by F[X] the set of
multivariate polynomials in the variables X1, . . . Xm. We denote by F[X]⩽d the set of
polynomials of individual degree at most d , and by F[X]loc⩽d the set of polynomials of
individual degree at most d (i.e degree in each variable). Given a vector I = (i1, . . . , im) ∈ Nm,
we use the notation

XI def=
m∏

k=1
Xik

k .

For a vector I ∈ Nm, and a set S ⊆ [m], we define the vector IS by (IS)j =
{

Ij , j ∈ S

0, j /∈ S
.

Recall The definition of the binomial and multinomial coefficients for natural numbers:(
a

b

)
def= a!

b!(a − b)!(
a

b1, . . . , bℓ

)
= a!

b1! · · · bℓ!

where
∑

bi = a. We extend this definition to I, I1, J, J1, . . . , Jℓ ∈ Nm where J = J1 + . . .+Jℓ

by (
I

I1

)
def=

m∏
k=1

(
Ik

(I1)k

)
(

J

J1, . . . , Jℓ

)
def=

m∏
k=1

(
Jk

(J1)k, · · · , (Jℓ)k

)
.

We mention Lucas theorem, that if p is prime, q = pw for w ∈ N, and a, b ∈ N have base
p representation a =

∑w
ℓ=0 aℓp

ℓ, b =
∑w

ℓ=0 bℓp
ℓ with 0 ≤ aℓ, bℓ < p, then(

a

b

)
mod p = Πw

ℓ=0

(
aℓ

bℓ

)
, (4)

where we use the convention that
(

c
d

)
= 0 when d > c. Thus,

(
a
b

)
mod p ≠ 0 iff aℓ ≥ bℓ for

all ℓ = 0, . . . , w − 1.
Finally, we let g ∈ Fq[X] denote the polynomial g(X) = Xq − X. For X = (X1, . . . , Xm)

and I = (i1, . . . , im) ∈ Nm we let g(X)I denote Πm
k=1(g(Xk))ik .

2.2 Reed Muller and Multiplicity codes
▶ Definition 10. Let d, m be non-negative integers, and q a prime power. The (m, d, q)
Reed-Muller code is defined as the set of evaluation vectors of m-variate polynomials of degree
⩽ d over Fm

q , namely,

RM(q, m, d) =
{

(f(α))α∈Fm
q

| f ∈ Fq[X]⩽d
}

.
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We will make use of the following lemma:

▶ Lemma 11 ([10], Lemma 3.2). Let δRM
q,m,d be the relative distance of the code RM(q, m, d).

Then δRM
q,m,d ≥ q−d/(q−1).

▶ Definition 12 (Hasse derivative). For a multivariate P (X) ∈ F[X] where X = (X1, . . . Xm)
for some m ∈ N, and a non-negative vector I ∈ Nm, the I-th Hasse derivative of P , denoted
P (I)(X), is the coefficient of ZI in the polynomial P (X, Z) = P (X + Z). Thus

P (X + Z) =
∑

I

P (I)(X) · Zi

Hasse derivatives are linear. I.e, for all P, Q ∈ F[X] and λ ∈ F, (λP )(I)(X) =
λP (I)(X) and P (I)(X) + Q(I)(X) = (P + Q)(I)(X). The product rule shows (PQ)(I)(X) =∑

I0+I1=I P (I0)(X) · QI1(X).

▶ Definition 13 (Weight). If I = (i1, . . . , im) ∈ Nm then w(I) =
∑m

j=1 ij.

▶ Definition 14 (Multiplicity). For P (X) ∈ F[X] and a ∈ Fm, the multiplicity of P at a,
denoted mult(P, a), is the largest integer s such that for every non-negative vector I with
w(I) < s we have P (I)(a) = 0. If s may be taken arbitrarily large, we set mult(P, a) = ∞ .

Note that by definition mult(P, a) ⩾ 0 for every a. One important property about
multiplicities is a generalization of the Schwartz-Zippel lemma for multivariate polynomials:

▶ Lemma 15 ([6]). Let P ∈ F[X] be a non-zero polynomial of total degree at most d. Then
for any finite A ⊆ F,∑

a∈Am

mult(P, a) ⩽ d · |A|m−1.

▶ Definition 16 (Multiplicity code). Let m, d ≥ s be non-negative integers, and let q be a
prime power. Let

Σm,s = Fq
{I:w(I)<s} ≃ Fq

(m+s−1
m ).

For P (X) ∈ Fq[X1, . . . Xm] we define the order s evaluation of P at a, denoted P (<s)(a),
to be the vector (P (I)(a))I:w(I)<s ∈ Σm,s. The multiplicity code MRM(q, m, d, s) is defined
as follows. The alphabet of the code is Σm,s and the length is qm. Every polynomial
P (X) ∈ Fq[X] of deg(P ) ⩽ d defines a codeword by

(
P (<s)(a)

)
a:a∈Fm

q
∈ (Σm,s)qm .

We also let MRS(q, d, s) := Mult(q, 1, d, s) stand for Reed-Solomon multiplicity code.
The following lemma states the relationship between the derivatives of a polynomial to

the derivatives of its restriction to a line.

▶ Lemma 17 ([15], Sec 4). Let P ∈ F[X] be a multivariate polynomial where X =
(X1, . . . , Xm). Let a, b ∈ Fm and define a univariate polynomial PLa,b(t) = P (at+b). Then

PL
(j)
a,b(t) =

∑
I:w(I)=j

P (I)(at + b) · aI.

We also derive a formula for the derivative of a restriction to a two dimensional plane.



D. Karliner, R. Salama, and A. Ta-Shma 14:15

▶ Lemma 18. Let P ∈ F[X] be a multivariate polynomial where X = (X1, . . . , Xm). Let
a, b ∈ Fm and define a bivariate polynomial by PPa,b,c(t, r) = P (at + br + c). Then for
(j1, j2) ∈ N2 :

PP
(j1,j2)
a,b,c (t, r) =

∑
I∈Nm

P (I)(at + br + c) ·
∑

I1+I2=I
w(I1)=j1,w(I2)=j2

(
I
I1

)
aI1bI2 .

Proof. Given R1, R2 ∈ F, we write the expression P (a(t + R1) + b(r + R2) + c) in two
different ways. On the one hand,

P (a(t + R1) + b(r + R2) + c) = PPa,b,c(t + R1, r + R2) = PPa,b,c((t, r) + (R1, R2))

=
∑

j1,j2∈N
PP

(j1,j2)
a,b,c (t, r)Rj1

1 Rj2
2 .

On the other hand,

P (a(t + R1) + b(r + R2) + c) = P (at + br + c + R1a + R2b)

=
∑

I∈Nm

P (I)(at + br + c) · (R1a + R2b)I

=
∑

I∈Nm

P (I)(at + br + c) ·
m∏

k=1
(akR1 + bkR2)ik

=
∑

I∈Nm

P (I)(at + br + c)
∑

I1+I2=I
w(I1)=j1
w(I2)=j2

(
I
I1

)
aI1bI2Rj1

1 Rj2
2 .

Comparing coefficients of Rj1
1 Rj2

2 for every J = (j1, j2) ∈ N2 we get the result. ◀

We will also be interested in the restrictions of polynomials to general k-dimensional
subspaces. Let PPh0,h1,...,hk

(Y) = P (h0 +
∑k

i=1 hiYi). Then, similarly to Lemma 18,

▶ Lemma 19.

PP J
h0,h1,...,hk

(Y) =
∑

I∈Nm

P (I)(h0 +
k∑

i=1
hiYi) ·

∑
I1+···+Ik=I

w(Ir)=jr

(
I

I1, . . . , Ik

) k∏
i=1

hIk

k .

The proof is identical to the proof of Lemma 18.

2.3 Grobner bases and Nullstellensatz
The theory of Grobner bases describes the structure of ideals in the ring R = F[X] and we
briefly explain some of the essential concepts of this theory. We refer to [5] for a thorough
treatment of this theory.

▶ Definition 20. A monomial order ≻ on R is a relation ≻ on Zn
⩾0, or equivalently a relation

on the set of monomials xα, α ∈ Zn
⩾0 satisfying:

1. ≻ is a total ordering.
2. If α ≻ β and γ ∈ Zn

⩾0 then α + γ ≻ β + γ .
3. ≻ is a well-ordering. I.e, every non-empty A ⊂ Zn

⩾0 has a minimal element.
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▶ Example 21 (Lexicographic order). Let α, β ∈ Zm
⩾0. We say α ≻lex β if the minimal i

which satisfies αi ̸= βi, also satisfies αi > βi .

▶ Example 22 (Total degree lexicographic order). The total degree lexicographic order is
defined as follows: A monomial m1 is greater than m2 if it has higher total degree, where
ties are broken lexicographically (i.e X1 > X2 > · · · > Xm ). More formally , let α, β ∈ Zm

⩾0.
Then α ≻tot β if w(α) =

∑
αi > w(β) =

∑
βi or, w(α) = w(β) and α ≻lex β.

▶ Definition 23. Let f(X) =
∑

I aIXI and ≻ a monomial order.

1. The multi-degree of f is multideg(f) = max {I | aI ̸= 0} where the maximum is taken
w.r.t ≻.

2. The leading coefficient of f is LC(f) = amultideg(f) ∈ F.
3. The leading monomial of f is LM(f) = Xmultideg(f).
4. The leading term of f is LT (f) = LC(f) · LM(f).

▶ Definition 24 (Multivariate polynomial division). Let ≻ be a monomial order on Zm
⩾0, and

let F = {f1, . . . , fk} be a set of k polynomials in F[X]. Then every f ∈ F[X] can be written as

f = q1f1 + · · · + qkfk + r,

where qi, r ∈ F[X], and either r = 0 or r is a linear combination, with coefficients in F, of
monomials, none of which is divisible by any of LT (f1), . . . , LT (fk). We call r a remainder of
the division by F . Moreover, multideg(qifi) ⩽ multideg(f) for every i ∈ [s]. The remainder
r is not necessarily unique, and might depend on the order of division.

▶ Definition 25. Let {0} ≠ I ⊆ F[X] be an ideal. Fix a monomial ordering on F[X]. Then

1. We denote by LT (I) the set of leading terms of non-zero elements in I.

LT (I) = {LT (f) | f ∈ I \ {0}}

2. We denote by ⟨LT (I)⟩ the ideal generated by the elements in LT (I).

▶ Definition 26. Let {0} ̸= I ⊆ F[X] be an ideal. Fix a monomial order on F[X]. A subset
G = {g1, . . . , gt} ⊂ I is said to be a Grobner basis for I, if

⟨LT (g1), . . . , LT (gt)⟩ = ⟨LT (I)⟩.

▶ Note 27. Every ideal I ⊂ F[X1, . . . , Xm] is finitely generated and has a Grobner basis.
The importance of a Grobner basis, is that it gives a natural way of choosing representatives

for the quotient space F[X1, . . . , Xm] /I .

▶ Theorem 28 ([5], Section 2, Proposition 1). Let I ⊂ F[X1, . . . , Xm] be an ideal and
G = {g1, . . . , gk} a Grobner basis. Then given f ∈ F[X] there is a unique r ∈ F[X] such that
there is a g ∈ I such that f = g+r and no term of r is divisible by any of LT (g1), . . . , LT (gk).
We call this r, the reduced form of f (relative to I).

Note that the reduced form of any polynomial is equivalent to this polynomial modulo I.
Thus, the theorem gives us a natural way of choosing representatives modulo I.

▶ Theorem 29. Let R = F[X] be the ring of polynomials, and I ⊂ R an ideal. Let G be a
Grobner basis for I. Then the set

B = {M(X) | M is a monomial not divisible by any LT (g) for g ∈ G } ,

is a basis for R /I .
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The following criterion determines whether G is a Grobner basis.

▶ Definition 30 (LCM and S polynomials). Let f, g ∈ F[X] be non-zero polynomials. Let
α = multideg(f) and β = multideg(g).

1. The least common multiple of LM(f) and LM(g), denoted LCM(LM(f), LM(g)), is
Xγ , where γ = (γ1, . . . , γm) and γi = max {αi, βi} for each i.

2. The S− polynomial of f and g is

S(f, g) = LCM(LM(f), LM(g))
LT (f) · f − LCM(LM(f), LM(g))

LT (g) · g.

▶ Theorem 31 (Buchberger’s Criterion, [5], Sec 6). Let I ⊂ F[X] be an ideal. Then a basis
G = {g1, . . . , gk} of I is a Grobner basis of I if and only if for all pairs i ̸= j, the remainder
on division of S(gi, gj) by G is zero .

Note that we always have S = S(gi, gj) ∈ I by the definition of S. When saying the
remainder of the division by G is zero, we mean that there are {fi}, such that S =

∑
figi

and multideg(figi) ⩽ multideg(S) for every i (as in Definition 24).

▶ Theorem 32 (Combinatorial Nullstellensatz, [1]). Let F be a field, and A1, . . . , Am ⊆ F. Let
gi(X) =

∏
α∈Ai

(X − α) for i = 1, . . . , m. Assume a polynomial f ∈ F[X] satisfies f(α) = 0
for all α ∈ A1 × · · · × Am. Then there are h1, . . . , ht such that

f =
∑

higi,

and deg(hi) + deg(gi) ⩽ deg(f) for all i.

When Ai = Fq denote

g(X) =
∏

α∈Fq

(X − α) = Xq − X.

Also, let Im denote the ideal Im =
{

f ∈ Fq[X] | ∀α ∈ Fm
q f(α) = 0

}
.

▶ Corollary 33. Im = ⟨g(X1), . . . , g(Xm)⟩.

Proof. Let f ∈ Im. By Theorem 32, taking Si = Fq for every i, we get that f =
∑

higi

for some {hi} and so f ∈ ⟨gk⟩k∈[m]. The other inclusion is trivial since g(Xi) = Xq
i − Xi

vanishes on Fm
q for every i. ◀

Using Theorem 31 it can be easily proved that:

▷ Claim 34. G = {g(Xk)}m
k=1 is a Grobner basis for Im relative to the total degree

lexicographic order.

Let s ∈ N and let Im,s denote the ideal

Im,s = {f ∈ Fq[X] | ∀α ∈ Fq
m Mult(f ; α) ≥ s} .

In this notation, Im,1 = Im defined before. For every I = (I1, . . . , Im) ∈ Nm define

g(X)I =
m∏

k=1
g(Xk)Ik .
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▶ Theorem 35 (Combinatorial Nullstellensatz with multiplicity, [3], Sec 3). Im,s =
⟨g(X)I⟩w(I)=s. Furthermore, the set Gm,s =

{
g(X)I}

w(I)=s
is a Grobner basis for Im,s.

Proof. To see that Im,s is indeed an ideal, fix f ∈ Im,s and h ∈ F[X]. Then for r < s:
(hf)(r) =

∑r
i=0 f (i) · h(r−i) = 0 and so hf ∈ Im,s. Also, clearly, g(X)I ∈ Im,s for every I

with w(I) = s. We need to show Gm,s is a Grobner basis for Im,s,
[3, Section 3] show Gm,s generates Im,s and, furthermore, f =

∑
b:w(I)=s g(X)IhI for

some hI with deg(hI) ⩽ deg(f) − s deg(g). In particular, this is true for the S polynomials
in Theorem 31. I.e, every such S polynomial can be expressed as S =

∑
g(X)IhI where

deg(g(X)IhI) ⩽ deg(S). By Buchberger’s criterion
{

g(X)I} is a Grobner basis. ◀

Finally, we look at equality modulo Im,1.

▶ Definition 36. For n1, n2 ∈ N we say n1 =Fq
n2 iff xn1 = xn2 mod I1,1. Equivalently,

n1 =Fq n2 iff
n1 = n2, or,
min(n1, n2) > 0 and n1 = n2 mod (q − 1).

▶ Definition 37. Let A, B ∈ Nm. We say A =Fq
B for iff Ak =Fq

Bk for every 1 ≤ k ≤ m.

We also record:

▷ Claim 38. Let a, b ∈ N. If a =Fq b and a < q then a ≤ b.

Proof. If b < q then a =Fq b implies a = b. Otherwise a < q ≤ b. ◁

3 Polynomials and tables

A table is an element of Σqm

m,s, i.e., a function mapping every evaluation point in Fm
q to an

element in Σm,s. EVAL takes a multi-variate polynomial and returns its table of evaluations.
More precisely,

▶ Definition 39. We define EVALm,s : Fq[X] × Fm
q → Σm,s by

EVALm,s(P ; a) =
(

P (I)(a)
)

w(I)<s
.

Similarly, we define EVALm,s : Fq[X] → (Σm,s)qm by

EVALm,s(P ) = (EVAL(P ; a))a∈Fm
q

.

We say T ∈ (Σm,s)qm is the table of P ∈ Fq[X] if EVAL(P ) = T .

An element in Σm,s contains information about all the derivatives of order up to s.
Sometimes we would like to focus on a certain directional derivative. If σ ∈ Σm,s and I ∈ Nm

with w(I) < s, then σ(I) ∈ Fq is the entry of σ that encodes the I’th derivative. Similarly, if
f ∈ Σqm

m,s is a table, i.e., f : Fm
q → Σm,s, then f(I) : Fm

q → Fq is defined by letting f(I)(x) be
the I’th entry of f(x) ∈ Σm,s.

Note that every polynomial determines its table EVAL(P ). However, two different
polynomials might have the same table if their difference is the zero table on Fm

q . From
Theorem 35,

Ker(EVALm,s) = Im,s = ⟨g(X)I⟩w(I)=s.

Since Im,s does not contain any non-zero polynomial of total degree less than sq, we
conclude that:
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▶ Corollary 40. EVALm,s is injective on polynomials of total degree less than sq.

▷ Claim 41. EVALm,s is onto Σqm

m,s.

Proof. We will show that

dim
(
Fq[X1, . . . , Xm]

/
Im,s

)
≥ dim

(
(Σm,s)qm

)
= qm ·

(
m + s − 1

m

)
,

where the dimension is over Fq. This implies that the image of EVALm,s is everything, and
the mapping is injective.

To see that consider the set

Bm,s =
{

g(X)I ·
m∏

k=1
Xjk

k | w(I) < s, 0 ⩽ jk < q

}
. (5)

The elements in Bm,s have different multi degree and therefore are independent. Also
elements in Bm,s are monomials of degree smaller than sq, and therefore are Im,s reduced.
Thus,

dim
(
Fq[X]

/
Im,s

)
≥ dim Span(Bm,s)

=| {(I, J) ∈ Nm × Nm | w(I) < s, 0 ⩽ jk < q} |

=
(

m + s − 1
m

)
· qm,

as desired. ◁

▶ Corollary 42. The set Bm,s is a basis for F[X]
/

Im,s
.

▶ Example 43. When m = 1 the set
{

g(x)ixj | i ∈ N, j < q
}

is a basis of F[X]. Thus, for
every ℓ ∈ N there are βℓ,i,j such that

xℓ =
∑

i1,i2:i1q+i2⩽ℓ,i2<q

βℓ,i1,i2g(x)i1xi2 .

By comparing coefficients of xℓ we see that βℓ,⌊ ℓ
q ⌋,ℓ mod q = 1.

▷ Claim 44. For every table T : Fq
m → Σm,s there exists a degree q(s − 1) + (q − 1)m

polynomial such that EVAL(P ) = T .

Proof. By Claim 41, T may be written as EVAL(P ), where P is an Fq-combination of basis
elements in Bm,s. By the definition of Bm,s, any basis element is of the form g(X)I ·

∏m
k=1 Xjk

k

where w(I) < s and 0 ⩽ jk < q. As such, deg(P ) ≤ deg(g(X)I) + deg(
∏m

k=1 Xjk

k ) ≤
q(s − 1) + (q − 1)m. ◁

We will later need:

▶ Lemma 45. Let A ∈ Fq[t] and B ∈ Fq[r]. Then,

degt(A(t)B(r) mod I2,s) ≤ degt(A).

Proof. Express A in the basis
{

g(t)itj
}

i∈N,j<q
,

A(t) =
∑

(i,j)∈A

αi,jg(t)itj ,
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and similarly for B,

B(r) =
∑

(k,ℓ)∈B

βk,ℓg(r)krℓ,

for some sets A, B, αi,j , βk,ℓ ∈ Fq. Then,

A(t)B(r) mod I2,s =
∑

(i,j)∈A,(k,ℓ)∈B:i+k<s

αi,jβk,ℓg(t)ig(r)ktjrℓ.

Suppose degt(A(t)B(r) mod I2,s) is achieved on the monomial of (i, j) ∈ A, (k, ℓ) ∈ B.
In particular, this degree in t is already achieved in A for the monomial (i, j). Thus,
degt(AB) ≤ degt(A). ◀

Next, we would like to give a purely algebraic criteria, which states when exactly a table
belongs to the code MRM(q, m, d, s).

▶ Definition 46. Let T ∈ Σqm

m,s be a table. By Corollary 40 and Claim 41 there is a
unique element PT ∈ F[X]

/
Im,s

such that EVALm,s(PT ) = T . We call PT the representing
polynomial of T .

▶ Lemma 47. Assume d < sq. Let T ∈ Σqm

m,s be a table, and PT its representing polynomial.
Then

T ∈ MRM(q, m, d, s) ⇐⇒ deg(PT ) ⩽ d.

Proof. First, assume deg(PT ) ⩽ d. Then, by definition, since EVALm,s(PT ) = T , we have
T ∈ MRM(q, m, d, s). For the other direction, assume T ∈ MRM(q, m, d, s). Then there is
some Q ∈ F[X] of total degree ⩽ d such that EVALm,s(Q) = T . As deg(Q) ≤ d < sq, Q is
Im,s reduced and by Corollary 40 Q is the representing polynomial of T . ◀

To understand the low-dimensional tests on tables, we need to define the restriction of
tables to subspaces. If T is a table T : Fm

q → Σm,s and we want to restrict to the plane
at + br + c the restriction Ta,b,c should be a table F2

q → Σ2,s. To this end we define the
alphabet reduction map ϕ(a,b) : Σm,s → Σ2,s by

▶ Definition 48.(
ϕ(a,b))(z)

)
J=(j1,j2) =

∑
I∈Nm

zI ·
∑

I1+I2=I
w(I1)=j1,w(I2)=j2

(
I
I1

)
aI1bI2

This map applies the “chain rule” to an element in Σm,s, in accordance with Lemma 18.
We may then define

Ta,b,c = ϕ(a,b) ◦ T ◦ ℓa,b,c

.
Similarly, for h = (h0, h1, . . . , hk) we define ϕh and Th by:

(ϕh(z))J =
∑

I∈Nm

zI ·
∑

I1+···+Ik=I
w(Ir)=jr

(
I

I1, . . . , Ik

) k∏
i=1

hIk

k , and,

Th(Y) = ϕ(h) ◦ T (h0 +
k∑

i=1
Yihi)
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4 The line test is not a characterization when d ≥ q

We now show that when the field size is smaller than the degree d, the line test fails.

▶ Theorem 49. Assume q is a prime power, q ⩽ d < sq − 1 and m ⩾ 2. There exists
a table T ∈ Σq

m,s which passes all the tests of the line test, but there is no polynomial
P ∈ Fq[X1, . . . , Xm]⩽d that satisfies EVALm,s(P ) = T .

Proof. Define

Q = Xd−q
1 · (g(X1)X2 − g(X2)X1)

= Xd−q
1 · (Xq

1 X2 − Xq
2 X1).

Note that Q is homogeneous of degree d+1. Fix a, b ∈ Fq
m and let QLa,b(t) = Q(at+b).

Since Q is homogeneous of degree d + 1, the coefficient of td+1 in QLa,b(t) is Q(a). However,
Q ∈ ⟨g(X1), g(X2)⟩ ⊆ Im,1 and therefore Q(α) = 0 for every α ∈ Fm

q . In particular Q(a) = 0.
Thus, deg(QLa,b) ≤ d and Q passes the degree d line test for the line ℓa,b. Thus, Q passes
the degree d line test for all lines.

Now take the table T = EVAL(Q). By Corollary 40, there cannot be a polynomial P

with deg(P ) ≤ d < deg(Q) = d + 1 < sq having the same table. However, we saw T passes
all line tests. Thus, T wrongly passes the line test. ◀

5 Local testing above the RM testing dimension

In this section we look at the local characterization and local testing of MRM(q, m, d, s) by
dimension k tests, when k is above the RM testing dimension tq,d = ⌈ d+1

q− q
p

⌉ of RM(q, m, d).
By Theorem 2 dimension k subspaces give a local test (and hence also a local characterization)
for RM(q, m, d). We show they also give a local test (and hence also a local characterization)
for MRM(q, m, d, s) for s < q. There is, however, some parameter loss in the reduction as we
next explain. To formally state the result we need some notation. For x ∈ Fm

q let

Hk =
{

h = (h0, h1, . . . , hk) | h0, . . . , hk ∈ Fm
q , dim(span{h1, . . . , hk}) = k

}
, and,

Hk,x = {h ∈ Hk | x ∈ h0 + Span {h1, . . . , hk}} .

By h ∼k H (resp. Hk,x) we mean a choosing h uniformly at random from Hk (resp. Hk,x).
We let Ah = h0 + Span {h1, . . . , hk} be the k-dimensional affine space defined by h. We also
recall the distance and rejection function from the introduction:

▶ Definition 50. Let T : Fm
q → Σm,s be a table. Then

δ(T, MRM(q, m, d, s)) is the distance between T and the closest evaluation table of a
degree d polynomial, i.e., δ(T, MRM(q, m, d, s)) = minG∈MRM(q,m,d,s){δ(T, G)}, and,
REJMRM

k,d (T ) is the probability a dimension-k test demonstrates that T is not a degree d

polynomial.

With this notation we prove:

▶ Theorem 51. Let Fq be a field of size q, and assume s ≤ min {d, q − 1}. Suppose for
RM(q, m, d) there exists α > 0 and c0 ≤ 1 such that for every f

REJRM
k,d (f) ≥ min {α · δ(f, RM(q, m, d)), c0} .
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Then, for every s < q, for every T we have

REJMRM
k,d (T ) ≥ min {α′ · δ(T, MRM(q, m, d, s)), c0} (6)

for

α′ =
(

1 − s − 1
q

)
1

1 + qd/(q−1) 1
α

. (7)

For example, assume q is prime. If d + 1 ≤ q − 1 the testing dimension is 1, meaning
that lines are a good local test for RM(q, m, d). Then, Theorem 51 says that lines are also a
good test for MRM(q, m, d, s), alas, with a larger coefficient. Similarly, if q < d ≤ 2(q − 1)
the RM testing dimension is 2 and therefore planes are a good local test for RM(q, m, d).
Then, Theorem 51 says that planes are also a good test for MRM(q, m, d, s), with a larger
coefficient. In the same vein 3-dimensional planes are a good local test for MRM(q, m, d, s)
when d ≤ 3(q − 1).

To explain the intuition behind the theorem we first consider the characterization aspect
of it. Suppose k is above the RM testing dimension, and that the table T passes all
MRM(q, m, d, s) k-dimensional tests h. Specifically, this means that for every h ∈ Hk,
the table T restricted to the k-dimensional affine space Ah is consistent with a degree d

polynomial Ph. Now, let T(0) be the table T where at each entry we keep only the evaluation
of the function itself and remove the evaluations that are associated with higher derivatives.
Then, in particular, for every h ∈ Hk, the table T(0) restricted to the k-dimensional space Ah
is still consistent with the degree d polynomial Ph. As k is above the RM testing dimension,
there must be a unique degree d polynomial P that is consistent with Ph (and the table T(0))
for every h ∈ Hk. This P is the only possible candidate for a low-degree explanation of the
table T . What we need to check, and is indeed correct, is that since T passes all dimension
k tests, P is indeed consistent with T .

The testing case requires more technical details but is similar in spirit. We first, again,
look at T(0) that contains only the function evaluations, and not the higher derivatives
evaluations. If T passes the test with high enough probability, then so does T(0), and this
ensures the existence of a global degree-d polynomial P that agrees with most values of T(0).
Again, what remains to be shown is that P agrees with most values of T , which we indeed
prove.

In short, one can informally say that Theorem 51 shows that the MRM testing dimension
is not larger than the RM testing dimension, and that above the RM testing dimension
one can get local testing for MRM codes. A natural question is whether the MRM testing
dimension is equal to the RM testing dimension, or not. In Section 4 we saw that when the
RM testing dimension is larger than 1, so is the MRM testing dimension, and lines do not
characterize the MRM code. One might be drawn to the conjecture that the RM and MRM
testing dimensions coincide. However, surprisingly, in Section 6 we show that no matter what
the RM testing dimension is, when d < sq the MRM testing dimension is at most two (for a
precise statement see Theorem 60). For example, for MRM(q, d, m, s) with 2q < d < 3(q − 1),
the RM testing dimension is (roughly) 3 while the MRM testing dimension is still 2.

Combining the result with Theorem 2 we get:

▶ Corollary 52. Let d, q, s < q be positive integers and let t = tq,d = ⌈ d+1
q− q

p
⌉ be the RM testing

dimension. Then,

REJMRM
t,d (T ) ≥ min

{
1
3 · (1 − s − 1

q
) · δ(T, MRM(q, m, d, s)), 1

2(t + 1)qt+1

}
.
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Proof. Theorem 2 from [12] ensures that

REJt,d(f) ≥ min
{

qt

2 · δ(f, RM(q, m, d)), 1
2(t + 1)qt+1

}
.

Using Theorem 51 we see that

α′ ≥
(

1 − s − 1
q

)
1

1 + qd/(q−1) 1
α

≥ 1
3(1 − s − 1

q
).

using the fact that d
q−1 ≤ t and qd/(q−1)

α ≤ 2. ◀

In particular, for d < (q − q
p ) the line test is a local characterization, as tq,d = 1.

We note that the assumption s ≤ d is quite natural, as derivatives with order higher than
the degree must be identically zero. In contrast, it is not clear whether the assumption s < q

is indeed required, and we leave it for future study.

5.1 The proof
Proof. Let T : Fm

q → Σm,s be a table. Let

ρ =REJMRM
k,d (T )

be the k-dimensional MRM test rejection probability. If ρ ≥ c0 we are done. Therefore, we
assume ρ < c0. We first utilize what we know at the zero level.

▷ Claim 53. Let δRM = δRM
q,m,d be the distance of the RM(q, m, d) code. There exists a

degree d polynomial P such that

Pr
h∈Hk

[
(ϕh ◦ T )|Ah

̸= EVAL(P |Ah
)
] def= ε0 ≤ ρ(1 + 1

α · δRM ).

We call h good if (ϕh ◦ T )|Ah
= EVAL(P |Ah

) and bad otherwise. In this terminology,
ε0 = Prh∈Hk

[h is bad].

Proof. Let T(0) : Fm
q → Fq be as in Section 3, i.e., the table where we keep only the entries of

the function evaluations and ignore the evaluations of higher order derivatives. For a given
affine space A we have that (T |A)(0) = T(0)

∣∣
A

, and so if the former agrees with a degree d

polynomial, so does the latter. It follows that

REJRM
k,d (T(0)) ≤ρ.

By the hypothesis regarding RM(q, m, d) and using ρ < c0 there exists a unique degree d

polynomial P ∈ Fq[X] such that

δ(0)
def= δ(T(0), P ) ≤ ρ

α
.

We notice that

Eh∼Hk
δ(T(0)

∣∣
Ah

, P |Ah
) = Pr

x∼Fm
q

(T(0)(x) ̸= P (x)) = δ(T(0), P ) = δ(0),

because the subspaces in Ah for h ∈ Hk, cover every point an equal number of times.
Therefore, by Markov’s inequality,

Pr
h∼Hk

(
δ(T(0)

∣∣
Ah

, P |Ah
) ≥ δRM

)
≤

δ(0)

δRM . (8)
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Also, by assumption,

Pr
h∈Hk

(
(ϕh ◦ T )|Ah

̸∈ MRM(q, k, d, s)
)

≤ρ. (9)

This means that except for probability ρ over h, (ϕh ◦ T )|Ah
agrees with EVAL(Ph) for some

k-variate degree d polynomial Ph. When this happens it also holds that T(0) agrees with Ph
over Ah (because ϕh does not change the zero level).

Thus, Equations (8) and (9) together imply that except for probability ρ + δ0
δRM ≤ ρ(1 +

1
αδRM ) over h, we simultaneously have that T(0) = Ph over Ah and that δ(T(0)

∣∣
Ah

, P |Ah
) <

δRM. When both events happen we conclude that

δ(Ph, P |Ah
) < δRM.

As Ph and P |Ah
are degree d polynomials on Ah and are closer than δRM, it must be the

that in fact Ph = P |Ah
. Thus, (ϕh ◦ T )|Ah

is a valid MRM(q, k, d, s) table, and it is the
table of the polynomial P |Ah

, i.e., (ϕh ◦ T )|Ah
= EVAL(P |Ah

) as desired. ◁

Our goal is to bound δ(EVAL(P ), T ). This means that at most x ∈ Fm
q we should have

T (x) = EVAL(P ; x). T (x) and EVAL(P ; x) contains values for all the m-variate directional
derivatives of order up to s. Our handle on these values is Claim 53, that shows that most h
are good, meaning that the k-variate derivatives of P |Ah

and ϕh ◦ T |Ah
are the same. We

notice that every such k-variate derivative is a linear combination (dependent on h) of the
m-variate derivatives. If x is such that for many h ∈ Hk,x, h is good, then for that x we get
many linear equations on the m-variate derivatives. Our task is to prove that for many x

there are enough good h ∈ Hk,x to force the underlying m-variate derivatives of P and T to
agree.

▷ Claim 54. We say x ∈ Fm
q is bad if Prh∈Hk,x

[h is bad] ≥ 1 − s−1
q and good otherwise.

Then

Pr
x∈Fm

q

[x is bad] ≤ q

q − (s − 1) · Pr
h∈Hk

[h is bad] .

Proof. We have

Ex∈Fm
q

[
Pr

h∈Hk,x

( h is bad)
]

= Pr
h∈Hk

( h is bad) = ε0,

where ε0 is as in Claim 53. This is because choosing a uniform h ∈ Hk is the same as first
choosing a uniform x ∈ Fm

q and then choosing a uniform h ∈ Hk,x. Therefore, for every
c > 1, by Markov’s inequality,

Pr
x∈Fm

q

[
Pr

h∈Hk,x

(h is bad) ≥ c · ε0

]
≤1

c
.

Choosing c = q−(s−1)
q·ε0

gives the result. ◁

We note that if most k-dimensional subspaces are good, then most lines are:

▷ Claim 55. For every x ∈ Fm
q and k ≥ 1,

Pr
u∈H1,x

[u is bad] ≤ Pr
h∈Hk,x

[h is bad]
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Proof. Fix x. For every h ∈ Hk,x, If h is good, then (ϕh ◦ T )|Ah
= EVAL(P |Ah

). This
implies, in particular, that for every u ∈ H1,x such that Au ⊆ Ah, we also have that
(ϕu ◦ T )|Au

= EVAL(P |Au
). The result then follows because we can sample u ∈ H1,x by

first sampling h ∈ Ak,x and then choosing a random u ∈ H1,x such that Au ⊆ Ah. ◁

We now fix any good x. We will prove:

▷ Claim 56. Suppose x ∈ Fm
q is good. Then for any m-variate direction I with w(I) < s we

have

T(I)(x) = P (I)(x) (10)

Once we prove the claim we can conclude the proof of the theorem because:

δ(T, EVAL(P )) ≤ Pr
x∈Fm

q

(x is bad) ≤ q

q − (s − 1) · ε0

≤ q

q − (s − 1) · ρ · (1 + 1
α · δRM ) ≤ ρ

(
1 − q

s − 1

)−1 (
1 + qd/(q−1)

α

)
.

Proof of Claim 56. Fix a good x ∈ Fm
q and let w0 < s. We will show Equation (10) simultan-

eously for all m-variate directions I with w(I) = w0. We know that

Pr
u∈H1,x

(u is bad) ≤ Pr
h∈Hk,x

(h is bad) < 1 − s − 1
q

, (11)

where the first inequality is by Claim 55 and the second because x is good.
Suppose u = (b, a) is good (where b, a ∈ Fm

q ). Then, by definition, (ϕu ◦ T )|Au
=

EVAL(P |Au
). In particular ϕu(T (x)) = EVAL(P |Au

; x), because x ∈ Aℓ. Now:

By Definition 48 (and plugging k = 1)

(ϕu(T (x)))w0 =
∑

I,w(I)=w0

T (x)(I) · aI,

Also, by Lemma 17 (plugging t = 0),

(EVAL(P |Au
; x))w0 =

∑
I,w(I)=w0

P I(x) · aI.

Thus, a good u = (b, a) gives the liner equation∑
I,w(I)=w0

(P I(x) − T (x)(I)) · aI =0,

where the variables are vI = P I(x) − T (x)(I) for every m-variate direction I of total weight
exactly w0. Thus, Equation (11) implies that

Pr
a∈Fm

q \{0}

 ∑
I,w(I)=w0

(T (x)(I) − P (I)(x)) · aI = 0

 >
(s − 1)

q
.

Now, look at the polynomial fx ∈ Fq[X1, . . . , Xm] defined by

fx(a) =
∑

I,w(I)=w0

(T (x)(I) − P (I)(x)) · aI.
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fx is an m-variate, degree w0 homogeneous polynomial, and it is 0 with probability larger
than (s−1)

q ≥ w0
q = deg(fx)

q . By the Schwartz-Zippel lemma, it must be the 0 polynomial.
Therefore, T (x)(I) − P (I)(x) for all I with w(I) = w0 as desired. ◁

◀

▶ Remark 57. Another way to view the argument, is that each a ∈ Fm
q is an evaluation

point of a homogeneous RM(q, m, w0) codeword, and therefore each good u = (b, a) gives
a zero coordinate of the codeword. If the number of good u is too large, we get too many
zeroes, and therefore the codeword must be the zero codeword, meaning that the values of
the variables are zero as we wish.
▶ Remark 58. The argument we use has the information that many k-dimensional restrictions
are good, but then chooses to reduce this knowledge to the weaker statement that for many
x, for many lines passing through x, the linear restrictions are good. It seems that using the
stronger statement might give a better code and improve the parameters, but we have not
succeeded yet in analyzing this.

6 The plane test is a characterization

In this section we show that the multiplicity code MRM(q, m, d, s) can be characterized
by restrictions to planes. Let Fq be a field and let m, s ≤ d be positive integers. For
a, b, c ∈ Fq

m4 define:
ℓa,b,c : F2

q → Fm
q by:

ℓa,b,c(t, r) = at + br + c.

From Lemma 18 and Definition 48 we see that:

▶ Theorem 59 (Completeness). Suppose d < sq − 1. If a table T ∈ Σqm

m,s satisfies T ∈
MRM(q, m, d, s) then for all a, b, c ∈ Fm

q ,

ϕ(a,b) ◦ T ◦ ℓa,b,c ∈ MRM(q, 2, d, s).

The main challenge is proving the converse:

▶ Theorem 60 (Soundness). Suppose q is a power of the prime p, q ≥ s and d < q(s − 1
p ). If

a table T ∈ Σqm

m,2 satisfies that for all a, b, c ∈ Fm
q , ϕ(a,b) ◦ T ◦ ℓa,b,c ∈ MRM(q, 2, d, s) then

T ∈ MRM(q, m, d, s).

We define the vector space of tables which pass the test:

Vm,d,s =
{

T ∈ Σqm

m,s | ∀a, b, c ∈ Fm
q ϕ(a,b) ◦ T ◦ ℓa,b,c ∈ MRM(q, 2, d, s)

}
(12)

We denote by Cm,d,s = Vm,d,s \ MRMm,d,s, the set of tables which cheat the test. We would
like to show that Cm,d,s = ∅. Assume towards a contradiction that there is a table T ∈ Cm,d,s.
By Claim 41, T can be realized (uniquely) as an element P of the quotient space Fq[X]

/
Im,s

.
We use the basis Bm,s from Equation (5) to write P in the form

P (X) =
∑

(I,J)∈Ms,q

αI,J · g(X)IXJ,

4 In this section, we omit the requirement that a, b be independent. If some degenerate plane shows that
a table is not a low degree polynomial, then some actual plane will too.
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where αI,J ∈ Fq and (I, J) ∈ Ms,q iff w(I) < s and Jk < q for every 1 ≤ k ≤ m. Since
T ̸∈ MRMm,d,s we have deg(P ) > d. This means there must be some I and J such that
αI,J ̸= 0 and

w(I)q + w(J) > d. (13)

We may assume that every I, J for which αI,J ̸= 0 satisfy Equation (13). This is since the
test is linear, and any degree ⩽ d terms have no effect on whether P passes the test or not.

We use the following monomial order ≻w on Bm,s:
1. First order monomials according to w(I) + w(J),
2. Then order monomials according to w(I),
3. Finally, order monomials according to the lexicographic order on I, J.
We emphasize that ≻w is not a monomial order in the sense of Grobner bases, and we make
no use of it in that sense.

Let (Imax, Jmax) be s.t. g(X)Imax · XJmax is a maximal monomial of P according to ≻w.
For a, b, c ∈ Fm the restriction of P to the plane defined by a, b, c is PPa,b,c(t, r) =

P (at + br + c). Expressing PPa,b,c(t, r) in the basis B2,∞:

PPa,b,c(t, r) =
∑

i∈N,j∈N,k,ℓ<q

Ai,j,k,ℓ(a, b, c) · g(t)ig(r)jtkrℓ

PPa,b,c(t, r) mod I2,s =
∑

i+j<s,k,ℓ<q

Ai,j,k,ℓ(a, b, c) · g(t)ig(r)jtkrℓ

We view Ai,j,k,ℓ(a, b, c) as a polynomial in the variables a, b, c.

▶ Lemma 61. For every partition Jmax = Jb
max + Jc

max such that:
q · w(Imax) + w(Jb

max) ≤ qs − 1, and,(Jmax
Jb

max

)
̸= 0 mod p,

the monomial aImaxbJb
maxcJc

max appears with a non-zero coefficient at

A
w(Imax),⌊ w(Jb

max)
q ⌋,0,w(Jb

max) mod q
(a, b, c) mod I3m,1.

Where the ideal I3m,1 above is in the variables a1, . . . , am, b1, . . . , bm, c1, . . . , cm.

Proof. We expand PPa,b,c(t, r). First, P (X) =
∑

(I,J)∈Ms,q
αI,J · g(X)IXJ. Thus

PPa,b,c(t, r) =
∑

(I,J)∈Ms,q

αI,J · g(at + br + c)I(at + br + c)J

=
∑

(I,J)∈Ms,q

αI,J

m∏
k=1

(g(akt + bkr + ck))Ik · Πm
i=k(akt + bkr + ck)Jk

=
∑

(I,J)∈Ms,q

αI,J

m∏
k=1

(g(t)ak + g(r)bk)Ik · Πm
i=k(akt + bkr + ck)Jk

=
∑

(I,J)∈Ms,q

αI,J
∑

Ia+Ib=I
Ja+Jb+Jc=J(

I
Ia

)(
J

Ja, Jb, Jc

)
aIa+JabIb+JbcJc · g(t)w(Ia)g(r)w(Ib)tw(Ja)rw(Jb). (14)
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We expand tw(Ja) and rw(Jb) in the basis B1,s as in Example 43 to get:

PPa,b,c(t, r) =
∑

(I,J)∈Ms,q

αI,J ·
∑

Ia+Ib=I
Ja+Jb+Jc=J

(
I
Ia

)(
J

JaJbJc

)
∑
i1,i2

i1q+i2⩽w(Ja)
i2<q

∑
j1,j2

j1q+j2⩽w(Jb)
j2<q

βw(Ja),i1,i2βw(Jb),j1,j2

aIa+JabIb+JbcJc · g(t)w(Ia)+i1ti2 · g(r)w(Ib)+j1rj2 . (15)

We now have a representation in the basis B2,∞.
Set:

∆rq =
⌊

w(Jb
max)
q

⌋
∆t = 0 (16)
∆r = w(Jb

max) mod q.

We wish to see for which choice of values I, J, Ia, Ib, Ja, Jb, Jc, i1, i2, j1, j2 in Equation (14),
aImaxbJb

maxcJc
max appears as a coefficient of A(w(Imax),∆rq,∆t,∆r)mod I3m,1. We must have

Imax =Fq Ia + Ja By comparing the powers of a, remembering mod I3m,1 ,

Jb
max =Fq

Ib + Jb By comparing the powers of b, remembering mod I3m,1 ,

Jc
max =Fq

Jc By comparing the powers of c, remembering mod I3m,1 ,

where =Fq
was defined in Definition 36.

By Claim 38 together with s < q we have

w(Imax) ≤ w(Ia) + w(Ja) (17)
w(Jb

max) ≤ w(Ib) + w(Jb) (18)
Jc

max = Jc. (19)

It follows that

w(Imax) + w(Jmax) = w(Imax) + w(Jb
max) + w(Jc

max)
≤ w(Ia) + w(Ja) + w(Ib) + w(Jb) + w(Jc)
= w(I) + w(J).

As (Imax, Jmax) is maximal it follows that

w(Imax) + w(Jmax) = w(I) + w(J). (20)

This, in turn, implies that both inequalities in Equations (17) and (18) are in fact equalities,
i.e.,

w(Imax) = w(Ia) + w(Ja) (21)
w(Jb

max) = w(Ib) + w(Jb). (22)

We now look at

degt
def= degt(g(ta)Ia · (ta)Ja · g(rb)Ib · (rb)Jb · cJc mod I2,s)
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On the one hand, we look for the monomial

aImaxbJb
maxcJc

max

in Aw(Imax),∆rq,∆t,∆r
mod I3m,1, and so we should have degt = q · w(Imax) + ∆t. On the

other hand, by Lemma 45,

degt = degt(g(ta)Ia(ta)Jag(rb)Ib(rb)JbcJcmod I2,s)
≤ degt(g(ta)Ia(ta)Ja)
= q · w(Ia) + w(Ja).

Thus,

q · w(Imax) + ∆t ≤ q · w(Ia) + w(Ja).

Together with Equation (21) we see that q · w(Ia) + q · w(Ja) + ∆t ≤ q · w(Ia) + w(Ja), and
therefore q · w(Ja) + ∆t ⩽ w(Ja) which is possible iff w(Ja) = 0 (and ∆t = 0, which is indeed
true, see Equation (16)). Now, w(Ja) = 0 implies:

w(Ia) = w(Imax), and,
Ja = ∅.

We saw in Equation (20) that w(I) + w(J) = w(Imax) + w(Jmax). If Ib ̸= ∅ then

w(I) = w(Ia) + w(Ib)
> w(Ia) = w(Ia) + w(Ja) = w(Imax).

Thus, (I, J) ≻w (Imax, Jmax) in contradiction to the maximality of (Imax, Jmax). We conclude
that

Ib = ∅.

As (Imax, Jmax) ∈ Ms,q we have (Jmax)k ≤ q − 1 for every k ∈ [m]. Thus, Jb
max =Fq

Jb,
w(Jb

max) = w(Jb) and Jb
max is already reduced. Together this implies that

Jb
max = Jb.

Finally, we use the hypothesis that q ≥ s. We have, (Imax)k < s ≤ q for all k ∈ [m]. Thus,
Imax =Fq Ia, w(Imax) = w(Ia) and Imax is already reduced. Together this implies that that

Imax = Ia.

Thus,

Imax = Ia = Ia + Ib = I,

Jb
max = Ib + Jb = Jb.

Altogether,the only term that may possibly contribute aImaxbJb
maxcJc

max to

Aw(Imax),∆rq,∆t,∆r
mod I3m,1

is

(Ia, Ib, Ja, Jb, Jc) = (Imax, ∅, ∅, Jb
max, Jc

max).
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Also, the tuple (Ia, Ib, Ja, Jb, Jc) = (Imax, ∅, ∅, Jb
max, Jc

max) contributes

αImax,Jmax ·
(

Jmax

Jb
max

) ∑
j1,j2

j1q+j2⩽w(Jb
max)

j2<q

βw(Jb
max),j1,j2aImaxbJb

maxcJc
max · g(t)w(Imax) · g(r)j1rj2 .

to the term in Equation (14).
Notice that w(Imax) + j1 < s, for otherwise q · w(Imax) + w(Jb

max) ≥ q(w(Imax) + j1) ≥ qs

in contradiction to the hypothesis. Thus the term is already I2,s reduced. The contribution
to Aw(Imax),∆rq,0,∆r

mod I3m,1 occurs for (j1, j2) such that j1 = ∆rq and j2 = ∆r. Thus, in
the sum in Equation (14) there is exactly one possible way to contribute aImaxbJb

maxcJc
max to

Aw(Imax),∆rq,0,∆r
mod I3m,1, and this is when

(Ia, Ib, Ja, Jb, Jc) = (Imax, ∅, ∅, Jb
max, Jc

max), and
(i1, i2, j1, j2) = (0, 0, ∆rq, ∆r).

The coefficient of this term is:

αImax,Jmax ·
(

Jmax

Jb
max

)
· βw(Jb

max),∆rq,∆r
.

αImax,Jmax ̸= 0. By assumption
(Jmax

Jb
max

)
is non-zero. βℓ,⌊ ℓ

q ⌋,ℓ mod q = 1 (see Example 43)
and taking ℓ = w(Jb

max) shows the coefficient is non-zero. As there is a unique term
contributing the monomial with a non-zero coefficient, the monomial cannot cancel in
Aw(Imax),∆rq,∆t,∆r

mod I3m,1 and Aw(Imax),∆rq,∆t,∆r
mod I3m,1 is non-zero. ◀

▶ Lemma 62. There is a partition Jmax = Jb
max + Jc

max, such that

d < q · w(Imax) + w(Jb
max) ≤qs − 1, and,(

Jmax

Jb
max

)
mod p ̸=0.

Proof. Suppose q = pw where p is prime (if q is prime then p = q and w = 1). We choose
Jb

max as follows. We go over k = 1, . . . , m and find the first k0 ≥ 0 such that q · w(Imax) +∑k0
k=0(Jmax)k > d. There must be some k0 ≤ m like that since qw(Imax) + w(Jmax) > d. We

set:
(Jb

max)k = (Jmax)k, for k = 1, . . . , k0 − 1, and,
(Jb

max)k = 0, for k = k0 + 1, . . . , m.

Set v = (Jmax)k0 . There is a first value 0 < v′ ≤ v such that

qw(Imax) +
k0−1∑
k=1

(Jmax)k + v′ > d.

We express v = (Jmax)k0 in base p: v =
∑w−1

ℓ=0 vℓ · pℓ. We let v′′ be the first integer such
that:

v′′ ≥ v′, and,
If we express v′′ in base p as v′′ =

∑w−1
ℓ=0 v′′

ℓ · pℓ then v′′
ℓ ≤ vℓ for every ℓ.

▷ Claim 63. v′ ≤ v′′ ≤ min
{

v, v′ + pw−1 − 1
}

.
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Proof. Notice that v respects the conditions that we need, and so if v ≤ v′ + pw−1 − 1 the
claim holds. Otherwise, v ≥ v′ + pw−1 − 1. Then, v′′ ≤ v′ + pw−1 − 1 because we can
increase v′ by setting all the lower bits in the p-representation to 0, while increasing the most
significant bit (that is multiplied by pw−1) by 1. ◁

Thus, by Lucas theorem (see Equation (4))(
v

v′′

)
mod p = Πw−1

ℓ=0

(
vℓ

v′′
ℓ

)
̸= 0.

Having that, we let (Jb
max)k0 = v′′. We have, Jb

max ≤ Jmax, qw(Imax) + w(Jb
max) > d and(Jmax

Jb
max

)
mod p ̸= 0. Also,

qw(Imax) + w(Jb
max) ≤ d + pw−1 ≤ qs − 1,

because d ≤ qs − pw−1 − 1 = q(s − 1
p ) − 1, completing the proof of the lemma. ◀

We are now ready to prove Theorem 60.

Proof. Fix a partition Jmax = Jb
max + Jc

max as in Lemma 62. Let

degr = degr(g(t)w(Imax)rw(Jb
max) mod I2,s)

= degr(g(t)w(Imax)rw(Jb
max)) = w(Jb

max).

Define ∆rq = ⌊ w(Jb
max)
q ⌋,∆t = 0 and ∆r = w(Jb

max) mod q. By Lemma 61 we know that

Aw(Imax),∆rq,∆t,∆r
(a, b, c) mod I3m,1 ̸= 0

Thus, there exist a0, b0, c0 such that

Aw(Imax),∆rq,∆t,∆r
(a0, b0, c0) ̸= 0

We look at the test a0, b0, c0. We have

PPa,b,c(r, t) mod I2,s =
∑

i+j<s,k,ℓ<q

Ai,j,k,ℓ(a, b, c)g(t)ig(r)jtkrℓ.

As Aw(Imax),∆rq,∆t,∆r
(a0, b0, c0) ̸= 0 we see that

deg(PPa0,b0,c0 mod I2,s) ≥ q · w(Imax) + q · ∆rq + ∆t + ∆r

= q · w(Imax) + w(Jb
max) > d.

Thus, by Lemma 47, the test (a0, b0, c0) rejects. ◀

7 Planes give a local MRM tester

We restate Theorem 9:

▶ Theorem 64. Suppose q is a prime power, s ≤ q and d < q(s − 1
p ). Let T : Fm

q → Σm,s be
a table and let δ = δ(T, MRM(q, m, d, s)). Then

REJMRM
2,d (T ) ≥ min {αδ, c}

with α = Ω(q−6s+5) and c = Ω(q−8s+4).
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Proof. We remind the reader that

Hk =
{

h = (h0, h1, . . . , hk) | h0, . . . , hk ∈ Fm
q , dim(span{h1, . . . , hk}) = k

}
Let us say that v ∈ Hk is bad, if the k-dimensional test with v rejects, i.e., (ϕv ◦ T )|Av

̸∈
MRM(q, k, d, s). We let t = ⌈ d+1

q− q
p

⌉ be the RM(q, m, d, s) testing dimension. Selecting a
uniform u ∈ H2 is the same as selecting h ∼ Ht and then a uniform u ∈ H2 such that
Au ⊂ Ah. Thus,

REJMRM
2,d (T ) = Pr

u∼H2
(u is bad)

≥ Pr
h∈Ht

(h is bad) · Pr
u∈H2:Au⊂Ah

(u is bad | h is bad).

By Corollary 52, the probability of picking a bad h ∈ Ht is:

REJMRM
t,d (T ) ≥ min

{
δ

3q
,

1
2(t + 1)qt+1

}
.

By Theorem 60 we know that for any bad h ∈ Ht there is at least one u ∈ H2 such
that Au is contained Ah and u is bad. Furthermore, if Au = Au′ then u is bad iff u′ is
bad. We look at Au. There are (q2 − 1)(q2 − q)q2 different u′ ∈ H2 such that Au′ = Au
(because there are q2 − 1 choices for the first basis element, q2 − q choices for the second
basis element and |Au| = q2 choices for the offset).

Altogether,

REJMRM
2,d (T ) ≥ Ω(q6)

q3t
· min

{
δ

3q
,

1
2(t + 1)qt+1

}
= Ω(min

{
q−3t+5δ,

q−4t+5

t

}
).

We notice that t ≤ ⌈ q(s− 1
p )

q− q
p

⌉ ≤ ⌈ s
1− 1

p

⌉ ≤ 2s. Thus α = Ω(q−6s+5) and c = Ω(q−8s+4) as
promised. ◀
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