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—— Abstract

The satisfaction probability o(¢) := Pra.vars(e)—{0,11[8 = @] of a propositional formula ¢ is the
likelihood that a random assignment 8 makes the formula true. We study the complexity of the
problem KSAT-PROBxs = {¢ is a kCNF formula | o(¢) > 6} for fixed k and 6. While 3SAT-PROB>o =
3SAT is NP-complete and SAT-PROBs;,o is PP-complete, Akmal and Williams recently showed
3SAT-PROBs1/2 € P and 4SAT-PROB.;,, € NP-complete; but the methods used to prove these
striking results stay silent about, say, 4SAT-PROBs 3,4, leaving the computational complexity of
kSAT-PROB>;s open for most k& and §. In the present paper we give a complete characterization
in the form of a trichotomy: kSAT-PROBs; lies in AC?, is NL-complete, or is NP-complete; and
given k and é we can decide which of the three applies. The proof of the trichotomy hinges on a
new order-theoretic insight: Every set of kCNF formulas contains a formula of maximal satisfaction
probability. This deceptively simple result allows us to (1) kernelize kSAT-PROB>s, (2) show that the
variables of the kernel form a strong backdoor set when the trichotomy states membership in AC®
or NL, and (3) prove a locality property by which for every kCNF formula ¢ we have o(¢) > § iff
(1) > 0 for every fixed-size subset 1 of ¢’s clauses. The locality property will allow us to prove a
conjecture of Akmal and Williams: The majority-of-majority satisfaction problem for kKCNFs lies in P
for all k.
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1 Introduction

For a propositional formula ¢ like (x VyV 2) A (mz V —y) A (y V 2) it is, in general, a very
hard problem to obtain much information about the number #(¢) of satisfying assignments
or, equivalently, about the satisfaction probability o(¢) defined as

#(¢)

O-(QS) = Prﬂ:vars(¢)~>{0,1} [/8 ': ¢] = on

where n = |vars(¢)| is the number of variables in ¢. By Cook’s Theorem [7] it is already NP-
complete to determine whether o(¢) > 0 holds; and to determine whether o(¢) > 1/2 holds
is complete for PP. Indeed, the function #(-) itself is complete for #P, a counting class high
up in the complexity hierarchies. Writing SAT-PROB~s for {¢ | 0(¢) > 0}, we can rephrase
these results as “SAT-PROBsq is NP-complete” (Cook’s Theorem) and “SAT-PROBs1/y is
PP-complete” (and so is SAT-PROB> /2, see for instance [13, Theorem 4.1]).

Cook’s result on the complexity of SAT-PROB~ g = SAT is quite robust regarding the kinds
of formulas one considers: The problem stays NP-complete for formulas in CNFs, the set of
formulas in conjunctive normal form, so CNF-SAT-PROBs g = CNF-SAT € NP-complete, and
even for formulas ¢ € 3CNFs, that is, when all clauses of ¢ have at most three literals, so
3SAT-PROB>( = 3SAT € NP-complete. Similarly, CNF-SAT-PROB- /5 has the same complexity
as SAT-PROBs /2, see [13, lemma on page 80], and #(-) is still #P-hard for formulas in 3CNFS
and even in 2CNFS, see [15].
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Figure 1 Visualization of the complexity of kSAT-PROBss for k =1, k =2, k = 3, and k = 4.
Each green triangle represents a value of § for which the problem is NL-complete, while each red
triangle represents a value for which it is NP-complete (so there is actually no green triangle directly
above a red triangle, but this is not possible to visualize as these are highly intertwined). Each
gray cross is an element of kCNFS-0-SPECTRUM, for which kSAT-PROBss lies in AC? according to
Theorem 1.11. For “white” values of §, which lie outside the spectra, kSAT-PROBs; also lies in AC?.
Note that while the visualization may suggest that the spectra become dense close to 0, they are in
fact nowhere dense (being well-ordered by >). For a discussion of the marked specific values like
0 = 63/128, please see the conclusion.

In sharp contrast to these well-established hardness results, Akmal and Williams [2]
recently showed that 3SAT-PROBs;/; can be solved in polynomial time — in fact, they
show this time bound for 3SAT-PROBs; = {¢ € 3CNFs | o(¢) > §} for all rational § > 0
(intriguingly, their argument does not apply to non-rational ¢ and leaves open the complexity
of, say, 3SAT-PROB-i/.). Yet again in contrast, they also show that kSAT-PROBi/, is
NP-complete for every k > 4. To complicate things even further, the NP-completeness
result for 4SAT-PROB-, /5 can easily be extended to 4SAT-PROB- /4, to 4SAT-PROB /3, to
4SAT-PROBs1 /16 and so on, and with very little extra work to more exotic values of ¢ like
d = 15/32 — but apparently not to certain other values like § = 3/4 or § = 63/128. Indeed,
4SAT-PROB> 15,16 is a trivial problem (lies in ACY) as every nonempty formula in 4CNFS has
a satisfaction probability of at most 15/16 (a single nontrivial clause already rules out 1/16th
of all assignments). In other words, even for a fixed k the complexity of kSAT-PROBs s might
fluctuate wildly for changing § (does, in fact, as Figure 1 makes quite clear) and it is unclear
how the methods introduced in [2] could be used to show that, say, 4SAT-PROB>¢3/128 18
NL-complete while 3SAT-PROB 1/, lies in ACY.

1.1 Contributions of This Paper

In the present paper we continue the investigation of the complexity of the satisfaction
probability function for ACNF formulas initiated by Akmal and Williams. We will look at this
complexity from three different angles — order-theoretic, algorithmic, and complexity-theoretic
— and now sketch the main results we obtain for each of these aspects. (A small remark on
notation first, however: For convenience, in this paper we make no difference between a
CONF formula and its set of clauses. Each ¢ € CNFs is a finite set of clauses, which are sets
of literals — so the formula from the paper’s first line is actually ¢ = {{J:, y, 2}, {—x, -y},
{y,z}} € 3oNFs — and we forbid already syntactically that clauses contain both a variable
and its negation, so {{z, ~z}} ¢ cNFs, while {{z},{-z}} € 1onFs.)



T. Tantau

First, we address the order-theoretic properties of the number set kCNFS-0-SPECTRUM :=
{o(¢) | ¢ € kenFs} C [0, 1] for different k and show that for all k the following holds:

» Theorem 1.1 (Spectral Well-Ordering Theorem). kCNFS-o-SPECTRUM is well-ordered by >.

Here, a set X C [0,1] is called well-ordered by > if there is no infinite strictly increasing
sequence of elements of X or, equivalently, if every subset of X contains a maximal element.

An equivalent way of stating the Spectral Well-Ordering Theorem is as follows (and
observe that the corollary certainly does not hold when we replace “maximal” by “minimal”
as the set ® = {{{z1},...,{z,}} | n € N} shows):

» Corollary 1.2. Fvery ® C kCNFS contains a formula of mazimal satisfaction probability.

Yet another equivalent way of stating the Spectral Well-Ordering Theorem is terms of
the spectral gaps below § € [0,1]:

» Definition 1.3. Let spectral-gap,ones(9) := sup{e | (6 — €,d) N kCNFS-0-SPECTRUM = {}}.

In Figure 1, the spectral gaps can be “seen” directly: For any position § (not necessarily a
member of the spectrum), the spectral gap “stretches left till the next cross (member of the
spectrum).” The key observation is that there always is a stretch:

» Corollary 1.4. For all k and § € [0,1], we have spectral-gapsaes(9) > 0.

As we will see, this deceptively simple statement has far-reaching consequences.

Second, we use the existence of spectral gaps below all § € [0, 1] to develop three new
algorithmic methods for showing kSAT-PROB>s € AC? (note the “>5” rather than “.;”
subscript). They are simpler than the algorithm of Akmal and Williams and make the tools
of fixed-parameter tractability (FPT) theory accessible for the analysis. One of them, while
impractical and having by far the worst resource bounds of the three algorithms (but still
in P), has an underlying idea that is of independent interest (recall that we consider CNF
formulas to be sets of clauses):

» Lemma 1.5 (Threshold Locality Lemma). For each k and each 6 € [0, 1] there is a C € N
so that for all ¢ € kCNFS we have o(¢) > 0, iff o(¢) > 6 holds for all p C ¢ with || < C.

While the above lemma is foremost a mathematical statement about properties of kCNF
formulas, we can trivially derive a decision algorithm for kSAT-PROB>; from it (Algorithm 2
later on): Iterate over all ¥ C ¢ with |¢| < C and compute o(¢)) by brute force (|| is
constant) and accept if all computed values are at least 0.

The Threshold Locality Lemma also lies at the heart of a proof of MAJ-MAJ-kSAT € ACY
for all k. The problem is defined as follows: Given a formula ¢ € kCNFs with vars(¢) C
X UY, determine whether for a majority of the assignments §: X — {0,1} the majority of
extensions of 8 to f/: X UY — {0, 1} makes ¢ true. Akmal and Williams [2] conjectured
MAJ-MAJ-kSAT € P. Corollary 3.10 shows that this is, indeed, the case.

Third, we apply the developed theory to kSAT-PROB~s; a problem whose complexity is
somewhat more, well, complex than that of £SAT-PROB>s. It turns out that a complete
classification of the complexity for all values of k and ¢ is possible in the form of a trichotomy:

» Theorem 1.6 (Spectral Trichotomy Theorem). Let k > 1 and § € [0,1] be a real number.
Then kSAT-PROBs; is NP-complete or NL-complete or lies in ACO.

In the following, we explore each of the above “points of view” in a bit more detail and
have a brief look at the main ideas behind the proofs of the main results. Later, each angle
will be addressed in detail in a dedicated main section of this paper.
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Order-Theoretic Results. In a sense, the “reason” why the functions o(-) and #(-) are so
hard to compute in general, lies in the fact that the spectrum CNFS-o-SPECTRUM = {o(9) |
¢ € CNFS} = | J, kCNFS-0-SPECTRUM is just the set D of dyadic rationals (numbers of the
form m/2¢ for integers m and e) between 0 and 1 (see Lemma 2.1). In particular, it is a
dense subset of [0,1] and in order to conclusively decide whether, say, o(¢) > 1/3 holds for
an arbitrary ¢ € CNFs, we may need to determine all of the first n bits of o ().

A key insight of Akmal and Williams is that for fixed k, the spectra kCNFS-0-SPECTRUM
behave differently, at least near to 1: There are “holes” like 3CNFS-0-SPECTRUMN(7/8,1) = ()
since for a 3CNF formula ¢ we cannot have 7/8 < o(¢) < 1 (a single size-3 clause already
lowers the satisfaction probability to at most 7/8). This implies immediately that, say,
3SAT-PROB+g/19 is actually a quite trivial problem: The only formula in 3CNFS having
a satisfaction probability larger than 9/10 has probability 1 and is the trivial-to-detect
tautology ¢ = (). In general, for all k¥ we have kCNFS-0-SPECTRUM N (1 — 27 1) = ().

Of course, 3CNFS-0-SPECTRUM does not have “holes above every number §” as we
can get arbitrarily close to, say, 6 = 3/4: Just consider the sequence of 3CNF formulas
o1 = {{a,b,xl}}, P2 = {{a,b,xl},{a,b,xQ}}, o3 = {{a,b,xl},{a,b,xz},{a,b,xg}}, and so
on with o(¢;) = 3/4+ 2772 and lim;_,o, 0(¢;) = 3/4. Nevertheless, Akmal and Williams
point out that their algorithm is in some sense based on the intuition that there are “lots
of holes” in kCNFS-0-SPECTRUM. The new Spectral Well-Ordering Theorem, Theorem 1.1
above, turns this intuition into a formal statement.

Well-orderings are a standard notion of order theory; we will just need the special case
that we are given a set X of non-negative reals and consider the total order > on it. Then X
is well-ordered (by >) if there is no infinite strictly increasing sequence g < 1 < xg < ---
of numbers z; € X or, equivalently, if X is bounded and for every x € RZ° there is an € > 0
such that (z —e,2) N X = () or, again equivalently, if every subset of X contains a maximal
element. In particular, Theorem 1.1 tells us that every & C kCNFS contains a formula ¢ € ®
of maximal satisfaction probability, that is, o(¢) > o(¢’) for all ¢’ € ®.

Observe that kCNFS-0-SPECTRUM is certainly not well-ordered by <, only by >. However,
with a small amount of additional work we will be able to show that it is at least topologically
closed, see Lemma 3.5. A succinct way of stating both this and Theorem 1.1 is that for every set
X C kCNFS-0-SPECTRUM of numbers we have sup X € X and inf X € kCNFS-0-SPECTRUM.
An interesting corollary of this is that non-rational, non-dyadic thresholds can always be
replaced by dyadic rationals (recall D = {m/2°¢ | m,e € Z}):

» Corollary 1.7 (of Lemma 3.5). For every non-dyadic § € [0,1]\ D, for §' = inf{c(¢) | ¢ €
kCNFS,0(¢) > 6} € D we have kSAT-PROBss = kSAT-PROB>s = kSAT-PROB>/.

The proof of Theorem 1.1 will need only basic properties of well-ordered sets of reals, like
their being closed under finite sums and unions, and the following simple relationship (which
also underlies the analysis of Akmal and Williams [2]) between the satisfaction probability of
a formula ¢ and the size of packings m C ¢, which are just sets of pairwise variable-disjoint
clauses:

» Lemma 1.8 (Packing Probability Lemma). Let ¢ € kCNFs and let m C ¢ be a packing. Then
o(¢) < (1 =278l and, equivalently, log, o—« (o (¢)) > |x].

Proof. We have o(¢) < o(m) = [[.c.(1 — 2-lely < (1 — 27F)I7l as all clauses of 7 are
variable-disjoint and, hence, their satisfaction probabilities are pairwise independent. |

A simple consequence of the Packing Probability Lemma will be that for every ¢ € kCNFS,
we can write o(¢) as a sum »_._, o(¢;) with ¢; € (k — 1)CNFS in such a way that s depends
only on o(¢), which will almost immediately yield Theorem 1.1.
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Algorithmic Results. The algorithm for deciding kSAT-PROB>s in [2] is complex (in the
words of the authors from the technical report version [1]: “[it] depends on quite a few
parameters, so the analysis becomes rather technical” and, indeed, the description of these
parameters and constants alone takes one and a half pages, followed by eleven pages of
analysis). Surprisingly, the purely order-theoretic Theorem 1.1 allows us to derive three
simple algorithms for kSAT-PROB >, Algorithms 1, 2 and 3, whose underlying ideas are briefly
described in the following.

¢ ((,0 \ hIlk@((i)) U{c} g
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Figure 2 On the left, a formula ¢ € 5CNFS is visualized by drawing, for each clause in ¢, a line

that “touches” exactly the clause’s literals; so the upper dashed line represents the clause { f,z,y, z}.

The “solid clauses” (meaning “clauses represented by a solid line”) form a sunflower ¢ C ¢ with core
¢ = {z,y, z}. All red clauses, including the dotted clauses, are part of the link of this core, but the
dotted clauses are not part of the sunflower: The upper dotted clause {z, -y, z,l, e} shares the
literal “I” with the petal {z, —y, z,l,m} of the sunflower, while the second dotted clause shares the
variable “I” (though not the literal) with this petal. The dashed clauses are not part of the link (let
alone the sunflower) as they do not contain all of the literals of the core (containing the variables is
not enough). A key property of a sunflower is that it is “unlikely that an assignment makes the
sunflower true, but not its core”: For ¢, this happens only when g, j, and —k are all set to true as
well as at least one of —h or ¢, and one of [ or m. The probability that all of this happens is just

5°5°3°'3°31= %, meaning that this is the maximal difference in the satisfaction probabilities of

¢ and the formula shown right, the result of “collapsing the link to the core ¢”.

The first algorithm is based on sunflowers, just like that of Akmal and Williams, but
uses them in (far) less complex ways. They can be thought of as generalizations of packings,
which are, indeed, the special case of a sunflower with an empty core.

» Definition 1.9. A sunflower with core ¢ is a formula 1) € CNFS such that ¢ C e holds for
all e € ¢ and such that for any two different e, ¢’ € ¢ we have vars(e) N vars(e’) = vars(c).

In other words, the clauses of a sunflower “agree on the literals in ¢, but are variable-disjoint
otherwise”, see the clauses represented by solid lines in Figure 2 for an example.

The importance of sunflowers lies in an easy observation: If ¥ is a sunflower with core c,
then o(vp) = o({c}) +o({e\c | e € ¢}). As{e\c | e € ¢} is clearly a packing, the
Packing Probability Lemma implies that the probability that an assignment [ satisfies
a sunflower 9, but not its core, is at most (1 — 27%)I¥l which is a value that decreases
exponentially as the size || of the sunflower increases. Now for fixed k and § € [0, 1] consider
Algorithm 1. Function KERNELIZE(¢) will be familiar to readers interested in FPT theory:
This is exactly the standard kernel algorithm for the hitting set problem with bounded
hyperedge size based on “collapsing sunflowers” or, more precisely, on “collapsing the links
links(c) = {e € ¢ | ¢ C e} for cores c of large sunflowers.” In particular, standard results from
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Algorithm 1 The SUNFLOWER-COLLAPSING algorithm decides whether o(¢) > ¢ holds for ¢ €
konrs and fixed § € [0,1]. The “spectral gap” in the algorithm is the size of the “hole” below §
in kCONFS-0-SPECTRUM, see Definition 1.3. The linky(c) is simply the set {e € ¢ | ¢ C e}. The test
o(k) > ¢ can be performed by “brute force” as the returned kernel x will have fixed size. The
algorithm’s correctness follows from the fact that in a collapsing step (the assignment in line 3), the
satisfaction probability cannot “tunnel through” the spectral gap below d, see Figure 3.

algorithm KERNELIZE(¢, h)
while ¢ contains a sunflower of size at least h + 1 with some core ¢ do

¢« (¢ \ linky(c)) U{c}

return ¢

algorithm SUNFLOWER-COLLAPSING(¢) // ¢ € kCNrFs must hold
K KERNELIZE(qb, logy_o—& (Spectral—gakaNFs((S))) // See Definition 1.3
if o(k) > 6 then return “‘o(¢p) > & else return “o(¢) < §”

FPT theory (in this case, Erdés’ Sunflower Lemma) tell us that x will have a size depending
only on h and k and, thus, k has constant size (that is, a size depending only on h) and we
can clearly compute o(k) in constant time when s has only a constant number of clauses
and hence also a constant number of variables.

The crucial question is, of course, why this algorithm works, that is, why should o (k) >
iff o(¢) > ¢ hold? The deeper reason is Corollary 1.4 to the Spectral Well-Ordering Theorem,
by which there is a gap of size € := spectral-gap,yps(d) > 0 below § in kCNFS-0-SPECTRUM
and we cannot tunnel through this gap by the following lemma (see also Figure 3):

(S — O_(¢//...) B 0_(¢lll)
o(¢”) a(¢) o(e)
0 o " 1
—— N~~~
spectral-gapyyps (6) [o(p)—o(¢')|<spectral-gappyps(5)

5 o(¢" )= =0(¢)=0()

0 x x l xxx X x x x ’“\M 1
7
o /
U(¢///) O’(¢ )U(¢) 6

0 ST Y e — " " 1

Figure 3 Three ways how o(¢) can change due to the assignment ¢’ < (¢ \ links(c)) U {c} in
Algorithm 1: In each row, the crosses in the red lines are elements of kCNFS-o-SPECTRUM smaller
than §, while the crosses on the green lines are at least d. In the first line, o(¢) > § holds and each
assignment yields a new ¢’ such that o(¢') is not larger — but |o(¢) — o(¢)| < spectral-gap s (d)
ensures that o(¢” ) gets “stuck” at § as it cannot “tunnel through” the spectral gap by Lemma 1.10
and the dashed arrow is an impossible change in the satisfaction probability. In the second line,
o(¢) is stuck at a much larger value than 0. In the third line, o(¢) is below § and can get smaller
and smaller (unless there is another gap of size spectral-gap; ... (0) further down).

» Lemma 1.10 (No Tunneling Lemma). For § € [0,1], let any two ¢, ¢’ € kCNFS be given
with |o(¢) — o(¢")| < spectral-gapywes(9). Then o(¢) > § iff o(¢') > 6.

Proof. W.lLo.g. o(¢) > o(¢'). Clearly o(¢') > ¢ implies o(¢) > §. If o(¢p) > §, then
o(@') > § — spectral-gap; s (9). As o(¢’) cannot lie in the spectral gap, o(¢') > 4. <
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The crucial assignment ¢’ = (¢ \ linkg(c)) U {c} in the kernelization removes the link
of ¢ in ¢, which is just the set of all superclauses of ¢ (which includes all clauses of the
sunflower), but adds the core. This can only reduce the satisfaction probability of ¢ by
at most o({e \ ¢ | e € ¥}). As this probability is at most (1 — 27%)I¥l by the Packing
Probability Lemma, if the sunflower is larger than h = log;_o« (spectral—gapkcws(é)), then
o(¢p) — o(¢’) < spectral-gap,aps(0). Thus, by the No Tunneling Lemma, o(¢) > § iff
o(¢') > § as it is impossible that the satisfaction probability of ¢ “tunnels through the
interval (0 — spectral-gapiaps(0),0)” in any step of the while loop.

Algorithm 2 A simple algorithm for deciding kSAT-PROB>s. Note that while the algorithm
runs in polynomial time (in fact, in AC®), on input ¢ the runtime is of the form (2|¢|)°**
(possibly huge) constant C'. Phrased in terms of FPT theory, unlike Algorithm 1, the algorithm has
an “XP-runtime” rather than an “FPT-runtime”.

for a

algorithm LOCALITY-BASED(¢) // ¢ € kCNES must hold
C + (2(1 + loglfsz(spectral—gapkc”sw))))k ko
foreach vy C ¢ of size at most C do // at most [¢|“ " subsets
if o(¢) < ¢ then // check by brute force
return “o(¢) < 0"
return “o(¢) > 67

Algorithm 2 is even simpler than the just-presented kernel algorithm. For its correctness,
first note that the output in line 5 is certainly correct as ¢ C ¢ implies o(¢) < o(). To
to see that the output in line 6 is correct (which is essentially the claim of Lemma 1.5,
the Threshold Locality Lemma), consider a ¢ for which o(¢) < § holds. Starting with
1 = ¢, as long as possible, pick a clause e € 9 such that o(y) \ {e}) < ¢ still holds and set
1 < 1\ {e}. For the 1 obtained in this way, o(¢) < d, ¥ C ¢, and for all clauses e € 1) we
have o(¢ \ {e}) > §. Now, ¢ cannot contain a large sunflower since, otherwise, we could
remove any petal e of the sunflower and this would raise the satisfaction probability by at
most the spectral gap. In particular, by the No Tunneling Lemma, o(¢ \ {e}) < § would
still hold, contradicting that we can no longer remove clauses from . By Erdés’ Sunflower
Lemma we conclude that |¢| < C for a constant C' depending only on k and 4.

The Threshold Locality Lemma will also play a key role in the proof of Corollary 3.10,
which states that MAJ-MAJ-kSAT € AC? holds for all k. In the proof, we use the lemma to
turn certain satisfaction probability threshold problems (questions of the form “o(p) > §7”)
into model checking problems (questions of the form “g | w?”). This will allow us to present
a reduction of MAJ-MAJ-KSAT to ISAT-PROB>1 /o for some (large) I and we know already that
the latter problem lies in ACP.

The third algorithm addresses the well-established observation from FPT theory that
while a kernel algorithm for a parameterized problem is in some sense the best one can hope
for from a theoretical point of view, from a practical point of view it is also of high interest
how we can actually decide whether o(x) > ¢ holds for a kernel: Of course, as the kernel
size is fixed, this can be decided in constant time by brute-forcing all assignments — but

a practical algorithm will need to use different ideas, such as those used in Algorithm 3.

This algorithm uses the fact that if on input ¢ we can compute an interval I C [0, 1] with
o(¢) € I and |I| < € = spectral-gapynes(9), then we will have o(¢) < 6 iff maxI < 6. The
key insight is that we can compute such an interval recursively: If the interval returned by
INTERVAL(¢) is not yet small enough, by the Packing Probability Lemma, ¢ must contain a
small maximal packing, which we call PACK(¢) and which can be obtained greedily. We can
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Algorithm 3 A recursive algorithm for deciding o(¢) > §. The recursion computes an interval I
with o(¢) € I and |I| < ¢, by first obtaining a candidate interval using INTERVAL(¢). If this is too
large, by the Packing Probability Lemma PACK(¢) (a maximal packing obtained greedily) is small
and we can write o(¢) as the sum 25 o(p|g), where ¢|g has as its models (= satisfying assignments)
exactly all models 8" of ¢ that extend (or “agree with”) 3. Crucially, ¢|g will be a (k — 1)CNF
formula, if ¢ was a kCNF formula, meaning that the recursion stops after at most k steps. The
addition I + J of two intervals is defined as {i +j |i € I,j € J}.

algorithm PACK(¢) // computes a maximal packing 7 C ¢
7+ 0; foreach c € ¢ do if vars(c) Nvars(w) = 0 then m + 7 U {c}
return m

algorithm INTERVAL(¢) // computes a possibly large interval I with o(¢) € I
if PACK(¢) = ¢ then
return [Hc€¢(l - 27|C‘),HC€¢(1 — 27l // = [0(¢), o(9)]
else
return [0, (1 — 27F)IPack(@)]]

algorithm BOUNDED-INTERVAL(¢, €) // computes an interval [ with o(¢) € I and |I| < ¢
if INTERVAL(¢)| < € then
return INTERVAL(¢)
else // |vars(PACK(¢))| < k- |[PACK(9)| < klog;_o—x €
TEUTTL )5 () s (0.1} BOUNDED-INTERVAL(¢)5, ¢/ 2vers(eack(9))ly

algorithm INTERVAL-BOUNDING(¢) // ¢ € kCNEFs must hold
I < BOUNDED-INTERVAL(®, spectral-gap;, .z (0))
if max I < ¢ then return “o(¢p) < §” else return “o(¢) > 67

then expand ¢ using this packing (also yet another key insight of Akmal and Williams [2]):
For a formula ¢ and an assignment 3: V' — {0,1}, where V' # vars(¢) is permissible, we
write ¢|g for the formula where we remove all clauses from ¢ that contain literals set to true
by 8, remove all literals from the remaining clauses that are set to false by 3, and add one
singleton clause for each literal set to true by 3. For instance, for ¢ = {{a, b}, {=b,c, ~f},
{d,e,g}} and B: {b,d} — {0,1} with 3(b) = 1 and B(d) = 0 we have ¢|z = {{astT,
{=t,c,~f} {d,e, g} } U {{b}, {~d}} = {{c,~f},{e, g}, {b},{~d}}. For a maximal packing
T C ¢ we then have 0(¢) = 3 5. ars(r) (0,13 7(¢[g) and, importantly, all ¢|s have a smaller
mazimum clause size. This will imply that Algorithm 3 correctly solves kSAT-PROB>;.

Complexity-Theoretic Results. Our proof of Theorem 1.6, which states that kSAT-PROB~s
is always NP-complete, NL-complete, or lies in AC?, will be constructive as we can explicitly
state for which values of k and 6 which case applies. For this statement, let us call 6 € [0, 1]
a k-target for ICNFS if there is a formula w € kCNFS with

o(w) =0 and Wk F w<p—1,
meaning that there is an assignment (: vars(w) — {0,1} that is a model (= satisfying
assignment) of wsg_; :={c € w | || > k — 1}, but not of w<p—; :={c€w||c] <k —1} (“the
large clauses do not imply the small clauses”). For instance, 6 = 7/32 is a 3-target for 2CNFS
as demonstrated by w = {{a}, {b}, {c1,c2,c3}} € 3ONFS since

o(w) = % . % . g = 312 and {{61702703}} = {{a}, {b}}

In contrast, no § > 1/2 can be a 3-target for 2CNFS as ws1 & w<y implies that w<; is not
empty and, thus, w D w<; contains at least one singleton clause, which implies o(w) < 1/2.
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» Theorem 1.11 (Spectral Trichotomy Theorem, Constructive Version). For each k and 0:
1. If § is a k-target for 3CNFS, then kSAT-PROBsg is NP-complete.

2. If § is a k-target for 2CNFS, but not for 3CNFS, then kSAT-PROBsg is NL-complete.

3. In all other cases, kSAT-PROBs lies in (DLOGTIME-uniform) AC?.

The hardness results implicit in the claim of the theorem turn out to be easy to prove,
mainly due to the fact that the definition of “§ is a k-target for 2CNFS (or 30NFS)” is tailored
exactly towards making these results easy-to-prove: Take the above example 6 = 7/32 via the
above w = {{a}, {b}, {c1,c2,c3}}. To reduce 2SAT to 3SAT-PROBs, on input of ¢ € 20NFS
(with fresh variables, that is, vars(t)) N vars(w) = @) output

p={{a}ud|dey}u{{btud|dev}U{{c, ez, c3}},

that is, “add the clauses of 1 to each ‘small’ clause, that is, to each clause in w<j—;.” The
important observation is that all satisfying assignments of w are also satisfying assignments
of p (so o(p) > o(w)), but there will be additional satisfying assignments of p when 1) is
satisfiable via some a: vars(¢)) — {0,1}: This additional satisfying assignment is obtained
by merging o with any assignment § that witnesses {{c1,c2,c3}} = {{a},{b}}. The same
works for the NP-hardness, now for “J is a k-target for 3CNFS.

The tricky part are the upper bounds for the last two items. For the last item (the other
one is very similar), we wish to show kSAT-PROB~s € ACY when § is not a k-target for 2CNFs.
The initial idea is easy: On input ¢, compute the kernel x using Algorithm 1. If o(k) > ¢ or
o(k) < 6, the same inequality will hold for o(¢); but in case o(x) = J, we need to answer the
question whether there is a satisfying assignment of ¢ that does not also satisfy the kernel.
(An NP-machine could easily answer this and this already proves the upper bound of the
first statement — but we seek an AC® upper bound.)

At this point, we use another tool from classical FPT theory: backdoor sets. A (strong)
backdoor set for a formula w is a set V of variables such that if w € SAT, then for all
assignments 8: V' — {0, 1} the formula w|g is (highly) tractable, meaning for instance that
it is a Horn formula or lies in 2CNFS or lies even in 1CNFS.

The central intuition for the ACY upper bound is that the variables in the kernel r should
always form a backdoor set into 1CNFS for ¢ when ¢ is not a k-target for 2CNFS: Suppose
there is a 3: vars(k) — {0, 1} for which ¢|g contains a clause d with |d| > 2, meaning that
vars(k) is not a backdoor into 1CNFs. Then x must contain a clause c* of size at most k — 2:
Each clause d € ¢|s results from some clause e € ¢ € kCNFs from which we remove all
variables in the kernel, so |¢*| = |e*| — |d| < k — 2. This shows that r<y_2 is not empty —
meaning that we are in the situation from the above lower bound for w = x: There is at least
one “target clause ¢*” to which we could add the clauses of 2CNF formulas during a reduction
— exactly what we ruled out by assuming that ¢ is not a k-target for 2CNFs. Figure 4 on
page 21 visualizes this intuition (for 2CNFs rather than 10NFs, though).

There is a catch, however: To serve as target for a reduction, it does not suffice that a
clause of size k — 2 or less exists in w. We also need that wsp_o B~ w<i_2, that is, that the
small clause that we wish to use as target for the reduction is not already implied by the
large clauses (and, thus, adding literals to the small clause does not actually give new models
and does not raise the satisfaction probability). Fixing this problem is the last step in the
algorithm: Instead of just setting w = k, we let w be the small clauses of k plus the links of
the large clauses of k. Two simple lemmas will show that this w has the desired properties:
The variables in k form a backdoor into 1CNFs for w; and o(¢) > § (which is what we wish
to decide) iff §(w) > §(k) = § (which we can decide in AC? by checking whether w|z € SAT
for some S: vars(k) — {0, 1} with 8 }£ k; and vars(k) is a strong backdoor into 1CNFS).
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1.2 Related Work

The history of determining the complexity of the many different variants of the satisfiability
problem for propositional formulas dates back all the way to Cook’s original NP-completeness
proof [7]. Since then, it has become textbook knowledge that kSAT is in AC® for k = 1, is
NL-complete for k = 2, and is NP-complete for k > 3.

Determining whether the number of satisfying assignments of a formula is not just positive,
but whether “a lot” of assignments are satisfying, is a quite different problem. Determining
whether a majority of assignments are satisfying is a canonical PP-complete problem [10, 13];
and it does not matter whether one considers “strictly more than 1/2” (SAT-PROB1/3) or
“more than or equal to 1/2” or (SAT-PROB> /7). Indeed, any fixed value different from 1,2
can also be used and it does not matter whether “>” or “>” is used [13, Theorem 4.1].
Because of the indifference of the complexity to the exact problem definition, it is often a bit
vague how the problem “MAJORITY-SAT” is defined, exactly, in a paper (indeed, the common
meaning of “majority” in voting suggests that “strictly more than one half” is perhaps the
natural interpretation).

Given that the tipping point between “easy” and “hard” satisfaction problems is exactly
from k =2 to k = 3, it seemed natural to assume that kSAT-PROB>1/3 and kSAT-PROBs | /o
are also both PP-complete for k > 3. Indeed, given that computing #(¢) for ¢ € 2CNFs
is known to be #P-complete [15], even 2SAT-PROB>1 /2 being PP-complete seemed possible
and even natural. It was thus surprising that Akmal and Williams [2] were recently able to
show that KSAT-PROB>s € LINTIME holds for all k and 6 € Q. As pointed out by Akmal
and Williams, not only has the opposite generally been believed to hold, this has also been
claimed repeatedly (page 1 of [1] lists no less than 15 different papers from the last 20
years that conjecture or even claim hardness of 3SAT-PROB>; /7). Just as surprising was
the result of Akmal and Williams that while 4SAT-PROB> /5 lies in P, the seemingly almost
identical problem 4SAT-PROB. 1/, is NP-complete. This has lead Akmal and Williams to
insist on a precise notation in [2]: They differentiate clearly between MAJORITY-SAT and
GT-MAJORITY-SAT and consider these to be special cases of the threshold problems THRs-SAT
and GT-THR4s-SAT — and all of these problems can arise in a “-kSAT” version. The notations
kSAT-PROBss and kSAT-PROB>; from the present paper are a proposal to further simplify,
unify, and clarify the notation, no new problems are introduced.

We will use tools from FPT theory, namely kernels in Algorithm 1 and backdoor sets
in Section 4. As computing (especially hitting set) kernels is very well-understood from a
complexity-theoretic point of view (see [16] for the algorithmic state of the art and [5] for
the upper bounds on the parallel parameterized complexity), we can base proofs on this
for kSAT-PROB>s € ACY for all k and §. Of course, different parameterized versions of SAT
are studied a lot in FPT theory, see [9] for a starting point, but considering the satisfaction
probability as a parameter (as we do in the present paper) is presumably new.

The algorithm of Akmal and Williams in [2] was the main inspiration for the results
of the present paper and it shares a number of characteristics with Algorithm 1 (less with
Algorithm 3 and none with Algorithm 2, though): Both algorithms search for and then
collapse sunflowers. However, without the Spectral Well-Ordering Theorem, one faces the
problem that collapsing large sunflowers repeatedly could conceivably lower o(¢) past §. To
show that this does not happen (without using the Spectral Well-Ordering Theorem) means
that one has to redo all the arguments used in the proof of the Spectral Well-Ordering
Theorem, but now with explicit parameters and constants and one has to intertwine the
algorithmic and the underlying order-theoretic arguments in rather complex ways (just the
analysis of the algorithm in [1] takes eleven pages in the main text plus two pages in the
appendix).
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The majority-of-majority problem for arbitrary CNF formulas, called MAJ-MAJ-SAT in [2],
is known to be complete for PPTP
estimations [6, 12]. The arguments from both the present paper and [2] on ASAT-PROB>1 /2
do not generalize in any obvious way to MAJ-MAJ-kSAT: The difficulty lies in the “mixed”
clauses that contain both X- and non-X-variables. In a clever argument, Akmal and Williams
were able to show that for £ = 2 one can “separate” the necessary satisfaction probability
estimations for the X- and non-X-variables in polynomial time; a feat facilitated by the
fact that a mixed size-2 clause must contain exactly one X-literal and one non-X-literal.
They conjectured that MAJ-MAJ-kSAT € P holds for all k£ (which is indeed the case by
Corollary 3.10), but point out that it is unclear how (or whether) their algorithm can be
extended to larger k. The approach taken in the present paper (via locality arguments)

and of importance in “robust” satisfaction probability

seems quite different and not directly comparable.

2 Order-Theoretic Results

There is a sharp contrast between the structural properties of the “full” spectrum of satis-
faction probabilities of arbitrary propositional formulas and the spectrum of values kCNF
formulas can have. The full spectrum CNFS-0-SPECTRUM = {o(¢) | ¢ € CNFS} is, well, “full”
as it is the set of all dyadic rationals between 0 and 1 (recall D = {m/2¢ | m,e € Z}):

» Lemma 2.1. CNFS-0-SPECTRUM = DN [0, 1].

Proof. For any propositional formula ¢ we have, by definition, o(¢) = m/2¢ for m = #(¢)
and e = |vars(¢)|. For the other direction, let e € N and m € {0,...,2°}. Consider the truth

table over the variables X = {x1,...,2.} in which the first m lines are set to 1 (“models”)
and the rest are set to 0 (“not models”). Then each CNF formula ¢ with vars(¢) = X having
this truth table has exactly m models and, hence, o(¢) = m/2°. <

By the lemma, CNFS-0-SPECTRUM is a dense subset of the real interval [0, 1], it is not closed
topologically, and it is order-isomorphic to QU {—o0, 0o} with respect to both < and >. We
will soon see that the properties of each KCNFS-0-SPECTRUM could hardly be more different:
They are nowhere-dense, they are closed, and they are well-ordered. Of these properties, the
well-orderedness is the most important one both for algorithms in later sections and because
the other properties follow from the well-orderedness rather easily.

To get a better intuition about the spectra, let us have a closer look at the first two,
1CNFS-0-SPECTRUM and 2CNFS-0-SPECTRUM. The first is simple:

1CNFS-0-SPECTRUM = {1, 1, 1, %, 7,... U {0} (1)
as a 1CNF formula (a conjunction of literals) has a satisfaction probability of the form 27¢ or
is 0. Readers familiar with order theory will notice immediately that 1CNFS-o-SPECTRUM is
order-isomorphic to the ordinal w + 1 with respect to >. The spectrum 2CNFS-0-SPECTRUM
is already much more complex:

2CNFS-0-SPECTRUM = {1,3 5 5 17 38 3y {], 21u{...} (2)

where {...} contains only numbers less than 15/32. To see that this is, indeed, the case,
observe that the formulas {{a,z1}}, {{a,21},{a, 22} }, {{a, 21}, {a, z2},{a, z3}}, ... show
that every number of the form 1/2 + 27¢ is in the spectrum. Furthermore, there are no
other numbers larger than 1/2 in the spectrum as the first formula with two variable-
disjoint clauses has a satisfaction probability of o({{a,b}, {c,d}}) = 9/16 which we happen
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to have already had; and adding any additional clause makes the probability drop to at
most o ({{a,b},{c,d},{c,e}}) = 3/4-5/8 = 15/32. Below this, the exact structure of
2CNFS-0-SPECTRUM becomes ever more complex as we get nearer to 0 and it is unclear what
the order-type of 20NFs-0-SPECTRUM with respect to > actually is (an educated guess is
w* +1).

Our aim in the rest of this section is to prove the Spectral Well-Ordering Theorem,
Theorem 1.1, by which all kCNFS-0-SPECTRUM are well-ordered by >. The surprisingly short
proof, presented in Section 2.2, will combine results from the following Section 2.1 on some
simple properties of well-orderings with some simple properties of o(¢) for kCNF formulas ¢.
The theorem implies the existence of spectral gaps below each J in the spectra, but the
proof does not provide us with any quantitative information about the sizes of these gaps.
It is possible, but challenging to obtain bounds on the sizes of spectral gaps; please see the
technical report version [14] of this paper for the (very) technical details.

2.1 Well-Orderings and Their Properties

Well-orderings are a basic tool of set theory, but for our purposes only a very specific type
of orderings will be of interest (namely only sets of non-negative reals with the strictly-
greater-than relation as the only ordering relation). For this reason, we reserve the term
“well-ordering” only for the following kind of orderings:

» Definition 2.2. A set X C R=? is well-ordered (by >) if there is no sequence (z;);en with
xz; € X for alli and zg < x1 < ---. Let WO denote the set of all (such) well-ordered sets.

There is extensive literature on the properties of well-orderings in the context of classical
set theory, see for instance [11] as a starting point. We will need only those stated in the
following lemma, where the first items are standard, while the last are specific to the present
paper. For X, Y CRZ%let X + Y denote {x +y |r € X,y Y}andn- X =X +---+ X
(of course, n times). Note that “sequence” always means “infinite sequence” in the following
and that “strictly increasing” means x; < x; for ¢ < j while just “decreasing” (without the
“strictly”) means x; > x; for i < j.

» Lemma 2.3.

1. Let X € WO. Then X contains a largest element.

2. LetY C X € WO. Then'Y € WO.

3. Let X, Y € WO. Then X UY € WO. Thus, WO is closed under finite unions.

4. Let (Xp)pen with X}, € WO for all p and lim,_,oc max X;, = 0. Then |J,cny Xp € WO.

5. Let X € WO and let (x;);en be an arbitrary sequence of x; € X. Then there is an infinite
I C N such that (z;)ier s decreasing (that is, ©; > x; fori < j andi,j € I).

6. Let X, Y € WO. Then X +Y € WO. Thus, WO is closed under finite sums.
7. Let X e WO and n € N. Thenn-X € WO.

Proof.

1. There would otherwise be an (infinite) strictly increasing sequence in X.

2. Any strictly increasing sequence in Y would be a strictly increasing sequence in X.

3. Any strictly increasing sequence in X UY would contain a strictly subsequence in X or Y.

4. Assume there is a sequence 0 < zg < 11 < 3 < -+ where z; € UpeN X, holds for all 4.
As the maxima of the X, tend towards 0, there is some ¢ such that z¢ > max X, holds
for all p > ¢. In particular, the whole sequence (x;);en contains only elements of Up <q Xp-
By the previous item, this is well-ordered, contradicting that it contains an infinite strictly
increasing sequence.
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5. The set {x; | ¢ > 0} is a subset of X and must hence contain a maximal element z;, by
the first item. Then {z; | ¢ > i} € X must contain a maximal element z;, for some
i1 > ip. Next, consider {z; | i > i1} € X and let x;, for some iz > i; be a maximal
element. In this way, for I = {ig,41,...} we get an infinite subsequence (;);cr that is
clearly (not necessarily strictly) decreasing as each chosen element was the maximum of
all following elements.

6. Suppose there is a sequence zg < 21 < 2z < ... of numbers z; € X + Y. Then
for each i there must exist x; € X and y; € Y with z; = x; + y;. By the previous
item there is a decreasing subsequence (z;);c; for some infinite I. Then (y;)iecs is
an infinite strictly increasing sequence in Y as for any ¢,5 € I with ¢ < j we have
Vi =2 — Ty < z; —xj < z; —x; = y;. This contradicts Y € WO.

7. This follows immediately from the previous item. |

2.2 Proof of the Spectral Well-Ordering Theorem

For the proof of the Spectral Well-Ordering Theorem, besides the Packing Probability Lemma
(Lemma 1.8 from the introduction) we will need the notion of expansions, which allow us
to express the satisfaction probability of a formula as a sum of satisfaction probabilities
of restricted formulas. The definition is based on the well-known unit rule: For a formula
¢ € CNFS, let unitrule(¢) be obtained by removing, for each clause {l} € ¢ containing a
single literal [, all other clauses from ¢ containing ! (so, perhaps a bit non-standard, we leave
the singleton clause {l}, which “triggered” the unit rule, in the formula) and removing all
occurrences of the negated literal from all remaining clauses.

» Definition 2.4. For a set V of variables, 5: V — {0,1} and ¢ € CNFS, the restriction ¢|g
of ¢ to B is unitrule(¢ U {{v} |v € V,B(v) =1} U {{-w} |v e V,B(v) =0}).

As an example, for ¢ = {{a, b}, {-b,c,~f},{d,e, f,g}} and B: {b,c,h} — {0,1} with 8(b) =1
and f(c) = B(h) = 0 we have ¢|s = {{acb, {66, }, {d. e, f.9}} U {{b}. {~c}, {-h}} =
{{-f}.{d,e, f.g},{b},{~c},{=h}}. Note that we apply the unit rule only once to the initial
singleton clauses, we do not do unit propagation, which is P-hard and thus computationally
too expensive in later contexts. The importance of restrictions for our purposes lies in two
simple lemmas:

» Lemma 2.5. Let ¢ € ONFS and V' be some variables. Then the set of models of ¢ over the
variables V U vars(¢) is exactly the disjoint union of the models of ¢|g for B: V — {0,1}.

Proof. Each satisfying assignment a:: VUvars(¢) — {0, 1} of ¢ satisfies ¢|s for the assignment
3 that agrees with « on the variables in V', but « satisfies no ¢|g for 8’ # 3. <

»> Corollary 2.6. Let ¢ € CNFS and V' be some variables. Then o(¢) =3 54,1013 7(9[s)-

» Lemma 2.7. Let ¢ € KCONFS for k > 2 and let 1 C ¢ be a maximal packing. Then
élg € (k— 1)CNFS for all B: vars(m) — {0, 1}.

Proof. In ¢|g, we either remove a clause or remove at least one literal from it as vars(m)
intersects vars(c) for all ¢ € ¢ (as m would not be maximal, otherwise). <

Proof of the Spectral Well-Ordering Theorem, Theorem 1.1. By induction on k. The
base case is k = 1 where 1CNFS-0-SPECTRUM = {1, 3,1, %,... }U{0} = {277 | i € NU{oo}},
which is clearly well-ordered (with order type w + 1). For the inductive step from k — 1 to k,
we show that

kCNFS-0-SPECTRUM C U (2" - (k — 1)eNFS-0-SPECTRUM) N [0, (1 — 27%)P].
peN
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This will prove kCNFS-0-SPECTRUM € WO as (k — 1)CNFS-0-SPECTRUM € WO by the
induction hypothesis, and thus 2*? . (k — 1)CNFS-0-SPECTRUM € WO as a finite sum of
well-orderings. By intersecting this with the ever-smaller intervals [0, (1- 2_’“)?]7 we still get
elements of WO by item 2 of Lemma 2.3 and can then apply item 4 to get that the infinite
union lies in WO.

It remains to prove the inclusion. Let x € kKCNFS-0-SPECTRUM be witnessed by ¢ €
konNFs, that is, © = o(¢). Let m be a maximal packing @ C ¢ and let p = |n|. By
the Packing Probability Lemma, o(¢) < (1 — 27%)?. By Corollary 2.6, we have o(¢) =
> Bevars(r)—{0,1} ©(¢]g) and by Lemma 2.7, each ¢|s is a (k — 1)CNF formula. Thus, o(¢)
is the sum of at most 2*P values from (k — 1)CNFS-0-SPECTRUM, proving that we have
z € (2" - (k — 1)CNFs-0-SPECTRUM) N [0, (1 — 27%)P]. <

3 Algorithmic Results

Having established that the spectra kCNFS-o-SPECTRUM are well-ordered by > in the previous
section, we now turn our attention to the algorithmic aspects of deciding whether o(¢) > ¢
holds (the question of whether o(¢) > ¢ holds will be discussed in the next section). The focus
will be less on the exact complexity of these algorithm (they can all be implemented by ACY
circuits, sometimes trivially, sometimes with a bit of effort), but more on how the algorithms
work. We will touch on “practical” considerations only very briefly in the following, as they
do not lie at the heart of this paper; some ideas towards optimizations, implementations,
and practical heuristics can be found in the technical report version [14].

This section includes two “excursions” beyond the three main algorithms. First, an
interesting corollary of the algorithmic analysis of the first algorithm will be another structural
result concerning the spectra KCNFS-o-SPECTRUM, though not an order-theoretic one, but
a topological one: The spectra are closed, meaning that for every converging sequence
o(¢1),0(d2), ... with ¢; € kCNF there is some ¢ € kCNF with lim;_, o 0(¢;) = 0(¢). Another
way of saying this is that for every number § ¢ kCNFS-0-SPECTRUM there is an € > 0 with
(6 — €,0 + €) N kCNFS-0-SPECTRUM = (). Second, we will show that the Threshold Locality
Lemma, which underlies the second algorithm, can also be used to reduce certain satisfaction
probability threshold problems to model checking problems. This will allow us to “chip away”
one “majority-of-” in any majority-of-majority-of-. ..-majority problem. In particular, we
will get a proof of the Akmal-Williams conjecture MAJ-MAJ-KSAT € P.

3.1 The Sunflower-Collapsing Algorithm

Our first new algorithm for deciding whether o(¢) > § holds for a given ¢ € kCNFS and
fixed ¢ is based on computing “sunflower kernels.” The name “sunflower” comes from classical
combinatorics, the name “kernel” comes from fixed-parameter tractability (FPT) theory. Note
that we just use kernels as a “tool” without making formal statements in the sense of FPT
theory, but see the technical report version [14] for some first formal statements.

Recall from Definition 1.9 that a sunflower with core ¢ is a formula 1 € CNFS such
that ¢ C e holds for all clauses e € 1) and such that any two different e, e’ € 1) we
have vars(e) N vars(e’) = vars(c), that is, the clauses “agree on the literals in ¢, but are
variable-disjoint otherwise”. An example of a size-3 sunflower with core {a, -} is {{a, —b, ¢},
{a,—b,—~d, —e}, {a, b, f}}

Sunflowers play a key role in FPT theory, especially in the computation of kernels for the
hitting set problem [9] and related problems: Suppose that for a given formula ¢ we want
to find a size-k set V of variables such that for each clause e € ¢ we have vars(e) NV # ()
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(each clause is “hit” by V). Then if there is a sunflower ¢ C ¢ of size h + 1 in ¢ with some
core ¢, any size-h hitting set V' must hit ¢ since, otherwise, we would need h + 1 variables
to hit the “petals” of the sunflower (we would need to have V N (vars(e) \ vars(c)) # @ for
h + 1 pairwise disjoint sets vars(e) \ vars(c)). This means that ¢ has a size-h hitting set iff
(¢ \ ¥) U{c} has (indeed, iff (¢ \ link,(c)) U {c} has, where links(c) = {e € ¢ | ¢ C e}). Most
importantly, applying this reduction rule “as often as possible” leads to a formula whose size
is bounded by a constant depending only on h, not on the original formula (this is known as
a “kernelization” in fixed-parameter theory). The reason for this size bound is the following
Sunflower Lemma (rephrased in terms of positive formulas rather than hypergraphs, as would
be standard, where a positive formula is a formula without negations):

» Fact 3.1 (Sunflower Lemma, [8]). Every positive ¢ € kCNFS with more than h* - k! clauses
contains a sunflower of size h + 1.

The “positive” in the statement is due to the fact that in combinatorics sunflowers usually
do not care about the “sign” of the variables (whether or not it is negated). In particular, for
a formula ¢ let ¢’ be the formula where all negations are simply removed. Then the Sunflower

Lemma tells us that if ¢’ is sufficiently large, then it has a large sunflower ¥ C ¢’ with core c.

This large sunflower does not necessarily become a large sunflower of the original ¢ if we just
reinsert the negations: While this makes no difference for the petals outside the core, there
may now suddenly be up to 2/¢ different versions of the core. However, for the version of
this core that is present in the maximum number of petals, the number of these petals is
at least a fraction of 1/2/¢1 > 1/2F of the size of the “unsigned” sunflower. This yields the
following corollary:

» Corollary 3.2. Every ¢ € kCNFS with more than (2h)F - k! clauses contains a sunflower of
size h + 1.

The just-described kernel algorithm for the hitting set problem (“as long as there is a
sufficiently large sunflower, remove it and add the core instead”) also turns out to allow us
to decide whether o(¢) > ¢ holds. The detailed algorithm is Algorithm 1 from page 6. Its
important properties are summarized in the following lemma:

» Lemma 3.3. For each fized k and 6, in Algorithm 1 from page 6

1. the while loop will terminate after a number of iterations that is linear in the size of ¢,

2. the size || will be bounded by a fixed number that depends only on k and §, and

3. 0(¢) > 0 iff o(k) > 6 will hold (the “kernel property”) and, thus, the output of the
algorithm SUNFLOWER-COLLAPSING(¢) will be correct.

Proof. For item 1, each iteration of the while loop reduces the size of ¢, so after a linear
number of iterations the loop must stop. (Note that finding large sunflowers is a bit of an
art and there is extensive literature on how to do this efficiently, see [5, 9, 16] for starting
points. But as the size h is fixed in our case, we could even brute-force the search here.)

For item 2, we use Corollary 3.2, which states that as long as there are more than (2h)*k!
clauses in ¢, there is still a sunflower and, hence, the while loop will not have ended. Thus,
|| < (2h)*k! and this is clearly a constant as h is a constant depending only on 4.

For item 3, we need to show that for ¢’ = (¢ \ linkg(c)) U {c}, where ¢ is the core
of a size-(h + 1) sunflower ¢ in ¢, we have o(¢) > § iff o(¢') > §. As already pointed
out in the introduction, the probability o(¢) — o(¢’) that an assignment § satisfies ¢, but
not ¢’, is at most o({e \ ¢ | e € linkg(c)}). As the link contains a size-(h + 1) sunflower,
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{e\c| e € linkg(c)} contains a size-(h+1) packing and by the Packing Probability Lemma we
get o (@) — o (¢') < (1 —27F)h L < (1 — 27%)h = spectral-gapyes (). By the No Tunneling
Lemma, Lemma 1.10, we get the claim. >

Excursion 1: The Spectra Are Topologically Closed. While the sunflower collapsing
algorithm provides a surprisingly simple method of deciding whether o(¢) > ¢ holds, it can
also be seen as a purely combinatorial statement:

» Lemma 3.4. For every 6 € [0,1] and k there is a size s such that for every formula
¢ € kCNFS with o(p) > 0 there is a formula k € kONFS of size |k| < s with o(¢) > o(k) > 4.

Proof. For fixed § and k, let s be the maximum size of the output x of KERNELIZE(¢) in
Algorithm 1. The kernel always has the property o(¢) > o(x). As shown in the proof of the
second item of Lemma 3.3, s < (2log; _,-« (spectral-gap,ys(6))) ¥k Finally, by the third
item, o(¢) > ¢ implies o (k) > 0. <

This lemma provides us with an easy way of showing that kCNFS-c-SPECTRUM is topolo-
gically closed, which means that its complement is an open set. Note that this does not follow
from the fact that the spectra are well-ordered as the set {1, %, %, é, ...} is well-ordered, but
not closed (it misses 0).

» Lemma 3.5. Let ® C kcNFS. Then inf{o(¢) | ¢ € &} € kCNFS-0-SPECTRUM.

Proof. Let § = inf{o(¢) | ¢ € ®}. Then there must be a sequence (¢g, P1, da,...) with
¢; € ® with lim; o, 0(¢;) = . Consider the sequence (kg, k1, ko, ... ) where each k; is the
formula from Lemma 3.4 for ¢;. Then, clearly, lim; ,~, o(x;) = J. If necessary, rename the
variables in each x; to that they are {vi,...,v,} for ¢ =k - s, where s is the constant form
Lemma 3.4, and note that this is always possible. Then K := {k; | i € N} is a finite set
as there are only finitely many different CNF formulas over the variables {vy,...,vg}. This
means that there is some £* € K with o(x*) = min{o(x) | kK € K}. Then o(x*) = § must
hold and x* € kCNFs witnesses § € kCNFS-0-SPECTRUM. <

» Corollary 3.6. KCNFS-0-SPECTRUM is topologically closed for each k.

3.2 The Threshold Locality Lemma and Algorithm

A second algorithm for showing kSAT-PROB>s € AC? is based on Lemma 1.5 from the
introduction, which states: For each k and each § € [0,1] there is a C € N so that for all
¢ € kCNFS we have o(¢) > 8, iff o(v) > § holds for all v C ¢ with || < C. The proof,
which was already sketched in the introduction, is surprisingly easy:

Proof of the Threshold Locality Lemma (Lemma 1.5). First note that ¢ C ¢ clearly im-
plies o(¢) > o(¢) (as ¢ has “just more clauses” it is “harder to satisfy”). Thus, o(¢) > ¢
immediately implies o(¢)) > ¢ for all ¥ C ¢, regardless of their size.

For the other direction, suppose o(¢) < ¢ holds. We must show that there is some ¢ C ¢
with o(¢) < 6 and || < C for a constant C. We claim that we can always find such a ¢
when we set

k
C = (2(1 + log,_,« (spectral-gap,oes(0)))) " - k!

=g
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To find such a v, starting with ¢¥; = ¢, as long as possible, pick a clause e € 1; such that
o(y;\{e}) < d still holds and set ;11 = ¥; \ {e}. As we have o(¢p1) < d and as o(0) =1 > 4,
the process must end after s < || steps with some formula 1 := ¢s. Then o(¢) < §, ¥ C &,
and for all clauses e € ¥ we have o (¢ \ {e}) > 0.

Suppose we had |¢| > C. By Corollary 3.2 to the Sunflower Lemma, ¢ must then contain

a sunflower p C 9 of size |p| > g+ 2. Let ¢ be the core of p and let a € p be arbitrary.

Then ¢ \ {a} still contains a sunflower (namely p \ {a}) of size at least g + 1. Now consider
an assignment § with g = ¢ \ {a}, but 8 = ¢. Then § [ ¢ C a as, otherwise, 8 = ¢
would hold. Thus, 8 must be a model of the packing {e\ c|e € p\ {a}} and hence, by the
Packing Probability Lemma, Prg[f =¥\ {a}, 8 FE ¢¥] < (1 — 2-F)lPMatl < (1 —27F)9t! <
(1 — 27%)9 = spectral-gap,,yps(9). This implies that o (3 \ {a}) — o(¢) is smaller than the
spectral gap of ¢ and by the No Tunneling Lemma we get o (¢ \ {a}) < J; contradicting that
we could no longer remove clauses from v without raising the satisfaction probability to at
least 9. <

As pointed out in the introduction, Lemma 1.5 clearly implies that Algorithm 2 is correct;
we just state this once more for reference:

» Lemma 3.7. For each fized k and , on every input ¢ € kCNFS the output of Algorithm 2
from page 7 is correct.

Excursion 2: Solving the Majority-of-Majority Problem. Besides the simple just-sketched
algorithm for solving kSAT-PROB>; efficiently, the Threshold Locality Lemma has another
surprising and highly nontrivial consequence: The lemmas lies at the heart of an algorithm for
solving the majority-of-majority problem efficiently for kCNFs. Recall that for this problem
we are given a formula ¢ € kCNFs with vars(¢) C X UY for two disjoint, infinite sets
(“sorts”) X and Y of variables. The question is whether for at least half of all possible
assignments 5: X — {0,1} at least half of all possible extensions 5': X UY — {0,1}
(meaning 8'(z) = B(x) for all x € X) make ¢ true, that is, 8’ |= ¢.

While it is tempting to try to solve this problem by focusing on the statement “at least
half of all possible assignments 8: X — {0,1}” initially, it turns out that it is the statement
“at least half of all possible extensions ': X UY — {0,1}” that we must address first. Our
objective will be to replace any formula ¢ € kCNFS with vars(¢) € X UY by a formula
w € [CNFs with vars(w) C X such that w “encodes the validity of the second statement for
every 3 The following definition and lemma make these ideas precise (and generalize them
to values of ¢ other than 1/2):

» Definition 3.8. Let ¢ € CNFS with vars(¢) € X UY for disjoint sets X and Y. Let
B: X — {0,1}. We write ¢/8 for the formula resulting from ¢ when we remove all clauses
that contain an X-literal | (sol = x orl = —x for some x € X ) with 5(1) =1 and where we
remove all remaining X -literals from all remaining clauses.

Note that vars(¢/8) C Y and that we “almost” have ¢|s = ¢/8, but the difference is that in
¢|s we have an additional singleton clause for each z € X, whereas ¢/ contains none. As
an example, for ¢ = {{xlv —z2, Y1}, {721, Y2, 7y}, { w2}, {y4}} and f: {z1,z2} — {0,1}
with B(z1) = B(x2) = 1, we have ¢/8 = {{zr=a5, 01}, {547, y2, ~ys}, { =42 }, {va}} =
{{~w3},0,{ya}} while ¢|g = {{-ys},0,{ya}, {z1}, {z2}}. The notation makes handling the
satisfaction probabilities of extensions easier due to the following simple connection:

O—(QS/B) = Pr,B/:XUY—>{O,1},6’ extends ﬂ[ﬂ/ ': ¢]
Note that MAJ-MAJ-kSAT = {¢ € kCNFS | Prg.x_, 0,13 [0(¢/8) = 1/2] > 1/2}.
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» Lemma 3.9 (Threshold Encoding Lemma). For each k and § € [0, 1] there are a number
and an AC® circuit family that maps every formula ¢ € kCNFS with vars(¢) C X UY to a
formula w € ICNFS with vars(w) C X such that for all §: X — {0,1} we have

o(¢/B) >0 —= BEw.

Proof. Consider the formula p that results from ¢ if we simply remove all X-variables from
all clauses (so vars(p) C Y'). This formula is, in a sense, the “worst case” of what ¢/8 could
look like regarding the satisfaction probability: p is the formula where no clause is already
satisfied by the assignment [, leaving a maximal number of clauses that need to be satisfied.
Note that ¢/8 C p and, thus, if o(p) > § happens to hold, we have o(¢/3) > § for all 5 and
could set w to an arbitrary tautology. The interesting question is, thus, what happens when
o(p) < 0: Which 8 will remove enough clauses from p to raise the probability above 67

To answer this question (and to turn it into a formula w), we use the Threshold Locality
Lemma. By this lemma, there is a constant C' such that we have o(¢/8) > ¢ iff for every
Y C ¢/p with || < C we have o(¢) > §. In particular, for a given ¢ C p with o(¢)) < ¢
we must have ¥ Z ¢/ to have a chance that o(¢/8) > d holds. Now, ¢ Z ¢/ means that
there must be at least one clause ¢ € 1 that is not contained in ¢/3. By Definition 3.8 this
is the case iff there is a clause ¢ € 9 such that for all d € ¢ from which ¢ resulted (recall that
each clause in p is obtained from some clause of ¢ by removing all X-variables) at least one
X-literal in d is set to 1 by 8 (because, then, ¢ is not added to ¢/f3).

To summarize, we have two conditions to check:
1. For every ¢ C p with |[¢| < C and o(v)) < § we must have ¢ Z ¢/, which is the case iff
2. there is a clause ¢ € 9 such that for all d € ¢ from which c resulted, at least one X-literal

in d is set to 1 by £.
It turns out, we can express these conditions using a single formula w € [CNFs. Let us start
with the second condition for a fixed ) C p and let us try to find a single formula w,, € [CNFS
for some [ expressing it. The condition is clearly a disjunction (“there is a clause”) over all
¢ € ¢ of the following kCNF formulas wy . (“such that for all” is expressed by the union):

Wy,e = U {d\ c}.

dep,cCd,vars(d)\ X =vars(c)

We can turn the disjunction of the at most C' many wy . € KCNFS into a single conjunction
wy € ICNF using the distributive law if we set [ := k- C. To sum up: For the resulting

formula wy, we have ¥ Z ¢/ iff B = wy.
It is now easy to express the first condition:

W = U Wa)

YCp,|P|<Co () <o

and note that w € ICNFS holds. Note furthermore that an ACP circuit can construct this w
as C is a constant and, hence, we can consider all size-C' subsets of p in parallel and can
hardwire the tests o(1) < 4.

For the correctness of the construction, let us briefly reiterate: First, if 5 = w, consider
any subset ¢ C ¢/ of size at most C. Then o(¢) < ¢ is impossible as wy, would now
require that some clause ¢ € 1 is missing from ¢/3. Thus, o(¢) > § always holds and, by
the Threshold Locality Lemma, we have o(¢/5) > §. Second, suppose a(¢/3) > §. Then
o() > ¢ trivially holds for every subset ¢ C ¢/3. Thus, for every wy, considered in w, we

have ¢ € ¢/5. But then, 8 = wy. Thus, 8 = w. <
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» Corollary 3.10. MAJ-MAJ-kSAT € ACP for all k.

Proof. Consider the number [ from the Threshold Encoding Lemma for k£ and § = 1/2.

We can reduce MAJ-MAJ-kSAT to [SAT-PROB3 /2 by simply mapping an input formula ¢ to
the formula w from the lemma. Since [SAT-PROB>;/2 € AC? (this is implicit in the main
algorithmic results of the present section, but see Theorem 4.1 for a detailed discussion), we
get the claim. |

Writing MAJ*-kSAT for MAJ-MAJ- - - - MAJ-kSAT with of course exactly i repetitions (so
MAJL-ESAT = kSAT-PROB3; /2 and MAJ2-kSAT = MAJ-MAJ-kSAT) and with the obvious
semantics for i > 2, we get:

» Corollary 3.11. MAJ*-kSAT € AC? for all k and i.
Proof. Just repeat the reduction from the previous corollary i — 1 times. <

As a final remark, note that the Threshold Encoding Lemma actually provides us with
yet another direct method for showing kSAT-PROB>5 € ACY: Just set X = (). This means
that in the proof of the above corollary, we can actually apply the reduction ¢ times, not
i — 1 times, and get a “perfectly uniform” argument.

3.3 The Recursive Interval-Bounding Algorithm

While the sunflower-collapsing algorithm for deciding o(¢) > § gives insight into the structure
of the problem and lies at the heart of the complexity-theoretic results in the next section, the
starting point for a presumably more practical algorithm can be derived from the expansion
operation (which we already used in the proof the Spectral Well-Ordering Theorem). The
idea behind Algorithm 3 is simple: Starting with a formula ¢, we wish to compute an interval
I C0,1] with o(¢) € I and |I| := max ] —minI < e. If we achieve this and if € is at most
the spectral gap of §, then max I < § will hold iff o(¢) < §. Depending on the structure
of ¢, we may be able to easily obtain an interval with the desired properties (using the
method INTERVAL(¢)). If, however, the initially obtained interval is too large, by the Packing
Probability Lemma it will contain a (relatively) small packing, allowing us to expand the
formula and to recurse to (k — 1)CNF formulas. The following lemma makes these claims
precise.

» Lemma 3.12. For each fized k and 6, in Algorithm 8 from page 8
1. for every ¢ the algorithm INTERVAL(Q) returns an interval I with o(¢) € I and with
|I| = 0 when ¢ € 1CNFs,
2. for every ¢ and € > 0 the algorithm BOUNDED-INTERVAL(¢, ¢) will
a. call itself recursively only for formulas with a strictly smaller clause size,
b. call itself at most 2F1°81-2-* € times,
c. return an interval I with o(p) € I and |I]| < €, and
3. the output of INTERVAL-BOUNDING (¢p) will be correct.

Proof. For item 1, we clearly have o(¢) € I as the interval we output is either exactly
[0(¢),0(¢)] (namely, when ¢ is a packing and o(¢) is exactly equal to [ (1 — 2-1¢)) or
is [0, (1 — 27F)IPAcx(@)I] and the Packing Probability Lemma tells us that o(¢) lies in this
interval. When ¢ € 1CNFs, then ¢ is always a packing (unless it is contradictory as it contains
both {v} and {—w}, but this can be filtered easily) and, thus, |I| = 0.
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For item 2a, observe that PACK(¢$) has the property that vars(PACK(¢)) intersects the
variables in each clause of ¢ (otherwise, PACK(¢) would not be maximal). Thus, in all calls
¢|p has a strictly smaller maximal clause size (unless ¢ € 1cNFs did already hold, but then
there will be no recursive calls at all).

Ttem 2b follows as a recursive call is only made when |I| > €, which implies that
we have I = [0, (1 — 27%)IPAK()] and thus (1 — 27F)IPAK(@)] > ¢ This clearly shows
|[PACK ()| < logy_o- € and thus |vars(PACK(¢))| < klogy_o-« € which in turn shows that
the number of different 5 used for the recursive calls is the claimed number.

Ttem 2c follows by induction on k: By the first item, if ¢ € 1ONFs, then |I| = 0 < e.
For the inductive step, for any ¢ € kCNFS we have o(¢) = 2/3 o(¢|g). By the induction
hypothesis, our algorithm will compute for each ¢|g an interval Iz containing o(¢|s). Then
the sum of these intervals will contain o(¢). Furthermore, the size of the sum of these
intervals will be the sum of the sizes of the intervals. As the size of each Ig at most € divided
by the number of calls made, the total interval size it at most e.

The last item now follows as an interval I with |I| < spectral-gap; . ps(0) and o(¢) € I
has the following property: If o(¢) < 4, then o(¢) < § — spectral-gap, s(0) and thus
o(¢) < 6 —|I| or, equivalently, o(¢) + |I| < ¢. In particular, max I < §, which is exactly
what we test. In contrast, if o(¢) > ¢ we immediately get max I > 6. Thus, the output is
always correct. |

4  Complexity-Theoretic Results

We prove Theorem 1.11, which tells us precisely for each § € [0,1] whether kSAT-PROB~
is NP-complete, NL-complete, or in AC?, in three steps: First, we show that kSAT-PROB>4
lies in ACO for all k and §. This means that from a complexity-theoretic point of view it
will always be “trivial” to check whether o(¢) > ¢ holds — the tricky part is showing that
o(¢) # ¢ then holds. Second, we introduce a technical definition of being a k-target for
ICNFS, which is set up in such a way that if a number § has this property, it will be possible
to reduce [SAT to kSAT-PROB~s. This will prove the NL- and NP-hardness results for those §
where Theorem 1.11 claims that kSAT-PROB~ s is NL- or NP-compete. Third, we address the
upper bounds, meaning that we present NP-, NL-, and ACY-algorithms that match the lower
bounds. Here, we show that the variables in the kernel form backdoor sets for the “error
the kernelization makes” into 2CNFS or 1CNFS, when § is not a k-target for 3CNFS or 2CNFS,
respectively. Figure 4 is an attempt to visualize the underlying ideas in a simplified way.

4.1 Upper Complexity Bounds for the Greater-or-Equal Problem

Although our ultimate objective in this section is the complexity of the problem of telling
whether o(¢) > 4 holds, we begin with the following:

» Theorem 4.1. For all k and & the problem kSAT-PROB>; lies in DLOGTIME-uniform ACY.

Proof. We claim that Algorithm 1 can be implemented by ACP circuits. It is well-established
that kernels for hitting sets can be computed by (DLOGTIME-uniform) AC?-circuits paramet-
erized by the size of the hitting set and the size of the hyperedges, see [3, 4]. Translated to
our setting, these algorithms compute the core x from Algorithm 1 for positive ¢ in ACY
when parameterized by the maximum clause size k& and the size h of the to-be-collapsed
sunflowers. As the algorithm can easily be adapted to cope with the fact that sunflowers for
formulas must take the “signs” of the literals in the cores into account, see the discussion
prior to Corollary 3.2, we get the claim as both k and h are fixed. <
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The input formula ¢ € 5CNFS The kernel K € 5CNFS
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for f: vars(k) — {0, 1}, —
bAut with t%l() —h i y ol [ ps
singleton literals
from vars(k) omitted J fole )yl 2
—k

k !

Figure 4 Continuing the example from Figure 2 from page 5: At the top, a formula ¢ € 5CNFs
is shown together with a kernel x obtained by collapsing the red link to the dashed green clause
¢ = {z, 7y, z}. The size 3 of ¢ is important: First, it is the minimum size of clauses in the kernel, which
implies that if we remove all variables in the kernel from the clauses of ¢, we get the lower left figure
in which the blue clauses all have size at most 2 = 5 — 3. In particular, ¢|g for 3: vars(k) — {0,1}
lies in 2CNFs and vars(k) is a backdoor into 2CNFS. Second, the clause ¢ with |¢| < 3 has “room
left for two literals,” meaning that for ¢ € 20NFS we have {cUd | d € ¥} € 5CNFS. The lower
right figure shows what happens when we add the clauses of ¢ (assuming vars(¢)) = {p1,...,Pn},
these new variables are colored red) to the kernel by “adding them to ¢” (the dashed clauses). The
resulting orange formula will have a satisfaction probability strictly larger than that of « iff ¢ is
satisfiable. Note, however, that instead of x we may need to use a related formula w instead, see
equation (3) on page 24 for details, namely when the clauses in k other than c already imply c
(which they do not in the example).
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This theorem can be thought of as a strengthened version of the result by Akmal and
Williams [2] that kSAT-PROB>s € LINTIME holds for all k& and d, but two remarks are in
order: First, the algorithm of Akmal and Williams can actually also be turned into an
AC? algorithm [17], meaning that the result is already implicit in their work. Second, the
existence of an AC®-circuit family for a problem does not necessarily imply that the problem
can be solved in linear time — one needs an AC? circuit family of linear size for this. It is,
however, not clear whether such a family exists as the natural way of searching for packings
or sunflowers involves color coding, which seems to need a quadratic size for derandomization.
While these considerations will not be important for the complexity-theoretic statements of
the main theorem, further research on the complexity of kSAT-PROB>;s could address these
questions.

4.2 Lower Complexity Bounds for the Strictly-Greater-Than Problem

We now show that kSAT-PROBss is NL- or NP-hard for certain values of k and §. For this, we
need the already mentioned notion of “k-targets for ICNFS” whose definition was as follows
(recall wss ={c€w]||c| > s} and w<s = {c e w|]|c] < s}):

» Definition 4.2. For numbers k and [, we say that a number § € [0,1] is a k-target for
ICNFS if 0 = o(w) for some w € kCNFS with wsj_; & w<p_i.

An example was § = 7/32, which is a 3-target for 2CNFS as demonstrated by w = {{a}, {b},
{61,02,03}} since ws3_g = {{cl,cQ,c;),}} = {{a},{b}} = w<3_a. The term “target” is
motivated by the following lemma: The formulas w can serve as “targets for a reduction
from [SAT”, which proves the lower complexity bounds for kSAT-PROB~ s from Theorem 1.11.

» Lemma 4.3. If§ is a k-target for 3CNFS, then kSAT-PROB~s is NP-hard.

Proof. We reduce 3SAT to kSAT-PROBs4: Let w witness that ¢ is a k-target for 3CNFs and
let 8: vars(w) — {0,1} witness wsp_3 = w<k—3 (that is, S is a model of ws,_3 but not
of w<g—_3). Let ¢ € 3CNFS be an input for the reduction, that is, we wish to reduce the
question of whether o(¢) > 0 holds to the question of whether o(p) > § holds for some
p € kCNFS. If necessary, rename the variables in ¢ to ensure vars(¢)) Nvars(w) = @), and map
Y top=wsk_zU{cUd|c€wcp_3,de P}

We claim o(p) > § iff ¢» € 3saT. For the first direction, assume o(p) > 6 = o(w).
As w | p (every clause of p is a superclause of some clause of w), there must exist an
assignment v with v = p D wsp—3 and v = w O w<g—3. This means that there must be a
clause ¢* € w<p—3 with v = {¢*}. However, v = p D {c¢* Ud | d € ¢}, which implies v = ¢
and 1 € 3SAT.

Second, assume ¢ € 3SAT and let «: vars(¢v) — {0,1} witness ¢ € 3saT. Consider
the assignment v: vars(y) U vars(¢) — {0,1} defined by v(v) = a(v) for v € vars(¢) and
v(v) = B(v) for v € vars(¢). Trivially, v = w as f = w<k—3 C w. However, v = p: Each
clause ¢ € wsy_3 is satisfied as § = wsk—3. Each clause cUd € p with d € ¥ is satisfied as
o =1 and d € 9. In total, v is a model of all clauses of p and thus o(p) > o(w) = §. <

» Lemma 4.4. If§ is a k-target for 2CNFS, then kSAT-PROBsg is NL-hard.
Proof. The proof is identical to that of the previous lemma, only we reduce from 2SAT. <«

In Figure 4 in the lower right subfigure the effect of adding the clauses of a formula
1) € 2CNFS to the small clauses of an example formula k = w is shown (although there is
only a single small clause ¢ in the example).



T. Tantau

4.3 Upper Complexity Bounds for the Strictly-Greater-Than Problem

To complete the proof of Theorem 1.11, we need to prove the upper bounds. To get some
intuition, let us start with the easiest case, the upper bound of NP, that is, the claim that
kSAT-PROBs; € NP always holds. Recall that in Theorem 4.1 we showed kSAT-PROB>;5 € AC?
by kernelizing input formulas ¢: We replaced the question of whether o(¢) > § holds by the
question of whether o(x) > ¢ holds — and o (k) can be computed by brute force. However,
this is not directly helpful for deciding whether o(¢) > ¢ holds: If o(k) > §, we also know
that o(¢) > § holds; if o(k) < §, we also know that o(¢) < 0 holds (because of the spectral
gap); but if (k) = J, both o(¢) = 0 and o(¢) > § are still possible. The “critical” case
o(k) = 0 forces us to investigate further: We must find out whether the sunflower collapsing
process “destroyed solutions,” that is, whether there is an assignment 8: var(¢) — {0, 1}
with § = ¢, but 8 [~ k. Fortunately, this is easy to do using an NP-machine: We can just
guess such an assignment. Let us state this observation as a lemma for future reference:

» Lemma 4.5. For all k and §, we have kSAT-PROBss € NP.

For the NL upper bound, we can basically proceed the same way — we just need a way
to determine whether there exists a 8 with 8 |= ¢, but 8 [~ k using an NL-machine. An
idea towards achieving this is to simply iterate over all possible 8: vars(x) — {0,1} with
B B~ k and then test whether ¢|s is satisfiable. Of course, we still have to answer (many)
questions of the form “¢|s € SAT?” — but we may now hope that ¢|s € 2CNFS might hold:
After all, clauses in ¢|s result from removing all variables in the core from the clauses of ¢
and a large core thus means small clauses in ¢|g, see the lower left part of Figure 4 for a
concrete example. If we always had ¢|3 € 2CNFs, then vars(x) would be called a backdoor
set into 2CNFS and this would suffice to show kSAT-PROBss € NL.

Now, the variables in the kernel do not always form a backdoor set into 2CNFs, but we
will be able to construct a formula w for which they do and this formula will serve as a
“replacement” for ¢: If it is not equivalent to ¢, then either o(¢) > o(w) > 0 will follow
immediately or ¢ is a k-target for 3CNFS. As the latter is ruled out by the assumption of the
theorem, we will have o(¢) > ¢ iff o(w) > ¢. Thus, having a backdoor set in 2CNFs for w
will suffice to show kSAT-PROB~ s € NL. The details follow.

Backdoor Sets. Backdoor sets are a powerful tool from FPT theory [18] with a rich theory
around them; but for our purposes only the following kind will be important:

» Definition 4.6. Let A C CNFS and let ) € CNFS. A (strong) backdoor set for ¢ into A is
a set V' of variables such that for all B: V. — {0,1} we have ¥|g € A.

The importance of backdoor sets in FPT theory lies, of course, in the fact that in order
to determine whether ¢ is satisfiable, it suffices to find a §: V' — {0, 1} such that |z is
satisfiable. If A is a tractable set (like A = 2CNFS), this allows us to efficiently decide
1) € SAT as long as the backdoor set is not too large. In our context, the variables in the
kernel will form a backdoor set into 2CNFS or 1CNFS, not for the original formula ¢, but only
for an “intermediate” formula w, defined as follows.

The Replacement Formula. Fix k and [ and fix a formula ¢ € kCNFS. Let xk denote the
kernel computed in Algorithm 1 on input ¢ (that is, the result of collapsing the links of cores
of sunflowers large enough to ensure that the collapse step reduces the satisfaction probability
by less than the spectral gap of §, which ensures by the No Tunneling Lemma that o(¢)
“stays above 0, if it was above ¢”) and assume that we are in the critical case 6 = o(x) where
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“there is still work to be done.” Define w € kCNFs as follows (with ks = {c € K | |¢| < s}
and k>s = {c € k| |c| > s}; and note that kes = K<s—1 and K>5 = Kk>s_1, S0 the subscripts
of k are “shifted by —1” relative to the subscripts of w in Definition 4.2):

W= Kep— U U link,(c). (3)

CER>K—1
The importance of w lies in the following two lemmas:
» Lemma 4.7 (Backdoor Lemma). The set vars(x) is a backdoor set for w into [CNFS.

Proof. For any §: vars(k) — {0, 1}, consider any clause e € w|g. We wish to show |e| <.
By definition of w|g, e resulted from taking some clause in d € w and stripping away all
occurrences of variables in vars(k). If d € k<—; C K, we would have e = () and |e| = 0. If
d € linky(c) for some ¢ € K>p_y, then |e| = |d\c|=|d| —|c| <k—(k—-1) =1L <

The Backdoor Lemma tells us that we can “handle” w well for [ = 2 and [ = 1. The
question is, of course, how, exactly, w is related to ¢ and x. The next lemma tells the story:

Lemma 4.8. One of the following always holds:
- 6=0(k) =0o(w) =0(¢)
.0=o0(k) <o(w)=o(¢) or
.0=0(k) <o(w) <o(p)

. 0 is a k-target for (I +1

B W N=Y

Proof. As we clearly have k = w |= ¢ (that is, every model of & is also a model of w, and
w’s models are models of ¢), we have § = o(k) < o(w) < o(¢). This means that the only
possibility not covered by the first three items is § = o(k) = o(w) < o(¢) and we must show
that this implies that d is a k-target for (I + 1)CNFs. For this we must show that there is an
assignment 8 with 8 = w<g—j—1 and § = wsk—j—1.

If o(w) < o(¢), there must be a model 8 = ¢ with 8 £ w and we claim that this model is
a witness for ¢ being a k-target. To see this, first note that 8 = ¢ and 8 £ w implies 5 £ w\ ¢
and w\ ¢ C wep—; by (3). Thus, 8 £ w<p—1—1 = wep—i. Second, f = wsp_j—1 = W>k_; is
implied by 8 = ¢ together with ¢ O w>k_; as every clause of size k — I or larger in w comes
from a link and links are subsets of ¢. <

The Algorithm and Its Correctness. We are now ready to assemble the ideas into an
algorithm, Algorithm 4, and prove its correctness.

» Lemma 4.9. Let 6 not be a k-target for (I + 1)CNFs. Then for each ¢ € kCNFS the oulput
of REDUCE-TO-SAT(¢) from Algorithm 4 will be correct.

Proof. The output of the then-clause of the first if-statement in line 3 is correct as we
trivially have o(k) < o(¢) (replacing a sunflower by its core can only reduce the satisfaction
probability). The output of the then-clause of the second if in line 4 is also correct as
o(k) > 4§ iff o(¢) > 4 holds by Lemma 3.3.

By Lemma 4.8, for w computed in line 6 one of the following holds (the fourth possibility
is ruled out by the assumption):
1. § =0(k) =0(w) =0(¢) or
2. 0 =0(k) < o(w) =0(¢) or
3. d=0(k) < g(w) < a(e).
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Algorithm 4 An algorithm for deciding kSAT-PROBss that is correct if § is not a k-target for
(14 1)cnFs: In this case, Lemma 4.8 states that w is a suitable replacement for ¢ and Lemma 4.7
states that the variables in the kernel form a backdoor set into [CNFS for w, allowing us to perform
the tests in line 8 by an NL machine for I = 2, and even by AC-circuits for I = 1.

algorithm REDUCE-TO-SAT(¢) // ¢ € kCNrFs must hold, [ is a number
K 4 KERNELIZE(¢, log, _, (spectral-gap;y.(6)))
if o(k) > & then return “o(¢) > §”’
if o(k) < 6 then return “o(¢) <
// Critical case: o(k) = §
W4 Kek—1 U UCEHZk—z link¢(c)
foreach (: vars(k) — {0,1} with 8 [~ k do
if w|g € ISAT then
// we now know o(w) > o(k) =0
return “o(¢) > §”
// we now know o(w) = o(k) =0
return “o(¢) =07

In particular, if § = o(k) = o(w), we know that § = o(¢) must also hold; and if o(k) < o(w)
we trivially have § < o(¢). In other words:

o(w)>0d < o) > 4. (4)

In the main for-loop of the algorithm, we check whether there is a model of w that is not a
model of k. Clearly, this is the case iff there is some 3: vars(k) — {0,1} with 8 [~ x and
w|g € SsAT. However, since by Lemma 4.7 we know that vars(x) is a backdoor for w into
ICNFs, it is correct to test only w|g € ISAT inside the loop.

All told, when the comment lines 9 or 11 are reached, the comments’ statements are
correct. By (4) this means that the two outputs in the subsequent lines are correct. <

The Upper Bounds. We can now prove the three upper bounds from Theorem 1.11 and
thus prove the Spectral Trichotomy Theorem, Theorem 1.6 from the introduction. The NP
upper bound has already been stated in Lemma 4.5. The argument for NL is as follows:

» Lemma 4.10. If 6 is not a k-target for 3CNFS, then kSAT-PROBss € NL.

Proof. By Lemma 4.9, Algorithm 4 will correctly decide kSAT-PROB~ s in this case. To see
that the algorithm can be implemented by an NL-machine, observe that the for-loop iterates
only over a constant number of § (the kernel size is fixed) and can thus be hardwired into
the machine. The central test w|g € 2SAT clearly only requires an NL machine. <

» Lemma 4.11. If§ is not a k-target for 2CNFS, then kSAT-PROBs; € ACY.

Proof. Just as in the previous corollary, we invoke Lemma 4.9 and the for-loop still iterates
only over a constant number of 5. The central test is now ¢|g € 1SAT, which is possible to
perform using ACP circuits. <

5 Conclusion

The results of the present paper settle the complexity of kSAT-PROB~s from a complexity-
theoretic point of view: The problem is either NP-complete or NL-complete or lies in ACY
— and which of these is the case depends on whether or not 6 = o(w) holds for some
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formula w with certain syntactic properties. The proof is based on the insight that the
spectra kCNFS-o-SPECTRUM are well-ordered with respect to >, as this implies (1) that the
standard sunflower-based kernel algorithm for hitting sets allows us to compute kernels for
kSAT-PROB>; and (2) that the variables in the kernel form strong backdoor sets into 2CNFs
or 1CNFs for formulas whose satisfaction probabilities “behave the same way” as those of the
input formula.

An attempt to visualize the “landscape” of the complexity of kSAT-PROB~s for & < 4 can

be found in Figure 1 on page 2. For k = 4, two values of special interest are §; = 15/32 = %—é
and J = 63/128 = % — ﬁls. There is a “red triangle” in the figure at ¢;, meaning that

4SAT-PROB- 15,32 is NP-complete by Theorem 1.11 as 15/32 = o ({{a}, {z,y, z,w}}). Thereis
a “green triangle” at d5 (as well as at many, many other positions in (15/32,1/2), but still only
at a nowhere dense subset despite the “solid line” in the visualization) as 4SAT-PROB 3,128
is NL-complete since 63/128 = o({{a, b}, {c,d},{e, f,g}}), but no 40NF formula ¢ containing
a singleton clause has o(¢) = 63/128.

For larger values of k, observe that, on the one hand, kSAT-PROB. | _5—(x—2) is NL-complete
for all k (since o ({{a1,...,ax_2}}) = 1—2"* =2 but o(w) # 1 —27* =2 for all w € kCNFS
containing a clause of size k — 3 as this clause already lowers the satisfaction probability to at
most 1 —2-(F=3) <1 — 2’(’“*2)); while on the other hand, kSAT-PROB~5-: is NP-complete
forall k > 4 and ¢ > 1.

In addition to the “strictly greater than” problem kSAT-PROB~gs and the “boring” prob-
lem kSAT-PROB>; (which is always in AC?), one can also consider the “equal to” version.
Combining the results from this paper immediately yields: For the same k and § as in
Theorem 1.11, the problem kSAT-PROB_; is coNP-complete, NL-complete, or lies in ACC.
Spelled out, we get results like the following: “it is NL-complete to decide on input of a 3CNF
formula whether exactly half of the assignments are satisfying” and “it is coNP-complete to
decide on input of a 4CNF formula whether exactly half of the assignments are satisfying,’
but also stranger ones like “it is NL-complete to decide on input of a 4CNF formula whether

1 1 »

the fraction of satisfying assignments is exactly 5 — 155" while “it is coNP-complete to decide
1 1 »

on input of a 4CNF formula whether the fraction of satisfying assignments is exactly 5 — 55"

)

Since the algorithms presented in this paper depend so heavily on the size of spectral gaps,
it is of interest to determine these sizes precisely. While explicit bounds can be shown [14],
it is very much unclear whether these hyperexponentiation bounds are even remotely tight.
It would also be of interest to determine explicit values: A close look at Figure 1 reveals
spectral-gapy s (1/2) = 1/32, but what is the value of spectral-gaps.s(1/2)7

On the one hand, the results of the present paper “settle” the complexity of many versions
of satisfaction probability threshold problems for £CNFs, including the majority-of-majority
version; on the other hand, many new problems arise. These include questions concerning
satisfaction probability problems for constraint satisfaction problems, questions concerning
the fixed-parameter tractability of satisfaction probability problems, questions surrounding
the complexity of algebraic representations of formulas, a whole bunch of questions arising
from logical and descriptive reformulations, and finally — of course — questions concerning
practical implementation. In the technical report version [14] some first ideas and partial
answers to these questions are presented, but there is certainly still much to do.
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