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Abstract
One can fix the randomness used by a randomized algorithm, but there is no analogous notion of
fixing the quantumness used by a quantum algorithm. Underscoring this fundamental difference,
we show that, in the black-box setting, the behavior of quantum polynomial-time (BQP) can be
remarkably decoupled from that of classical complexity classes like NP. Specifically:

There exists an oracle relative to which NPBQP ̸⊂ BQPPH, resolving a 2005 problem of Fortnow.
As a corollary, there exists an oracle relative to which P = NP but BQP ̸= QCMA.
Conversely, there exists an oracle relative to which BQPNP ̸⊂ PHBQP.
Relative to a random oracle, PP is not contained in the “QMA hierarchy” QMAQMAQMA···

.
Relative to a random oracle, ΣP

k+1 ̸⊂ BQPΣP
k for every k.

There exists an oracle relative to which BQP = P#P and yet PH is infinite. (By contrast, relative
to all oracles, if NP ⊆ BPP, then PH collapses.)
There exists an oracle relative to which P = NP ̸= BQP = P#P.

To achieve these results, we build on the 2018 achievement by Raz and Tal of an oracle relative
to which BQP ̸⊂ PH, and associated results about the Forrelation problem. We also introduce
new tools that might be of independent interest. These include a “quantum-aware” version of the
random restriction method, a concentration theorem for the block sensitivity of AC0 circuits, and a
(provable) analogue of the Aaronson-Ambainis Conjecture for sparse oracles.
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1 Introduction

The complexity-theoretic study of quantum computation is often dated from 1993, when
Bernstein and Vazirani [15] defined BQP, or Bounded-Error Quantum Polynomial-Time: the
class of languages that admit efficient quantum algorithms. Then as now, a central concern
was how BQP relates to classical complexity classes, such as P, NP, and PH. Among the
countless questions that one could raise here, let us single out three as especially fundamental:
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20:2 The Acrobatics of BQP

(1) Can quantum computers efficiently solve any problems that classical computers cannot?
In other words, does BPP = BQP?

(2) Can quantum computers solve NP-complete problems in polynomial time? In other
words, is NP ⊆ BQP?

(3) What is the best classical upper bound on the power of quantum computation? Is
BQP ⊆ NP? Is BQP ⊆ PH?

Three decades later, all three of these still stand as defining questions of the field.
Nevertheless, from the early 2000s onwards, it became rare for work in quantum computing
theory to address any of these questions directly, perhaps simply because it became too hard
to say anything new about them. A major recent exception was the seminal work of Raz
and Tal [38], who gave an oracle relative to which BQP ̸⊂ PH, by completing a program
proposed by one of us [2]. In this paper, we take the Raz-Tal breakthrough as a starting
point. Using it, together with new tools that we develop, we manage to prove many new
theorems about the power of BQP – at least in the black-box setting where much of our
knowledge of quantum algorithms resides.

Before discussing the black-box setting or Raz-Tal, though, let’s start by reviewing what
is known in general about BQP. Bernstein and Vazirani [15] showed that BPP ⊆ BQP ⊆ P#P,
and Adleman, DeMarrais, and Huang [10] improved the upper bound to BQP ⊆ PP, giving
us the following chain of inclusions:

P ⊆ BPP ⊆ BQP ⊆ PP ⊆ P#P ⊆ PSPACE ⊆ EXP.

Fortnow and Rogers [21] slightly strengthened the inclusion BQP ⊆ PP, to show for
example that PPBQP = PP. This complemented the result of Bennett, Bernstein, Brassard,
and Vazirani [14] that BQPBQP = BQP: that is, BQP is “self-low,” or “the BQP hierarchy
collapses to BQP.”

1.1 The Contrast with BPP
Meanwhile, though, the relationships between BQP and complexity classes like NP, PH, and
P/poly have remained mysterious. Besides the fundamental questions mentioned above – is
NP ⊆ BQP? is BQP ⊆ NP? is BQP ⊆ PH? – one could ask other questions:

(i) In a 2005 blog post, Fortnow [20] raised the question of whether NPBQP ⊆ BQPNP. Do
we even have NPBQP ⊆ BQPPH? I.e., when quantum computation is combined with
classical nondeterminism, how does the order of combination matter?

(ii) What about the converse: is BQPNP ⊆ PHBQP?
(iii) Suppose NP ⊆ BQP. Does it follow that PH ⊆ BQP as well?
(iv) Suppose NP ⊆ BQP. Does it follow that PH collapses?
(v) Is BQP ⊂ P/poly?
(vi) Suppose P = NP. Does it follow that BQP is “small” (say, not equal to EXP)?
(vii) Suppose P = NP. Does it follow that BQP = QCMA, where QCMA (Quantum Classical

Merlin Arthur) is the analogue of NP with a BQP verifier?

What is particularly noteworthy about the questions above is that, if we replace BQP by
BPP, then positive answers are known to all of them:

(i) NPBPP ⊆ AM ⊆ BPPNP.
(ii) BPPNP ⊆ PH = PHBPP.
(iii) If NP ⊆ BPP, then PH = BPP – this is sometimes given as a homework exercise in

complexity theory courses, and also follows from (i).
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(iv) If NP ⊆ BPP, then PH = ΣP
2 – this follows from (iii) and the Sipser-Lautemann Theorem

[45, 34].
(v) BPP ⊂ P/poly is Adleman’s Theorem [9].
(vi) If P = NP, then P = BPP and hence BPP ̸= EXP, by the time hierarchy theorem.
(vii) If P = NP, then of course BPP = MA.

So what is it that distinguishes BPP from BQP in these cases? In all of the above
examples, the answer turns out to be one of the fundamental properties of classical randomized
algorithms: namely, that one can always “pull the randomness out” from such algorithms,
viewing them as simply deterministic algorithms that take a uniform random string r as
an auxiliary input, in addition to their “main” input x. This, in turn, enables one to play
all sorts of tricks with such an algorithm M(x, r) – from using approximate counting to
estimate the fraction of r’s that cause M(x, r) to accept, to moving r from inside to outside
a quantifier, to hardwiring r as advice. By contrast, there is no analogous notion of “pulling
the randomness (or quantumness) out of a quantum algorithm.” In quantum computation,
randomness is just an intrinsic part of the model that rears its head at the end (rather than
the beginning) of a computation, when we take the squared absolute values of amplitudes to
get probabilities.

This difference between randomized and quantum algorithms is crucial to the analysis of
the so-called “sampling-based quantum supremacy experiments” – for example, those recently
carried out by Google [11] and USTC [49]. The theoretical foundations of these experiments
were laid a decade ago, in the work of Aaronson and Arkhipov [5] on BosonSampling,
and (independently) Bremner, Jozsa, and Shepherd [19] on the commuting Hamiltonians
or IQP model. Roughly speaking, the idea is that, by using a quantum computer, one can
efficiently sample a probability distribution D over n-bit strings such that even estimating
the probabilities of the outcomes is a #P-hard problem. Meanwhile, though, if there were a
polynomial-time classical randomized algorithm M(x, r) to sample from the same distribution
D, then one could use the “pulling out r” trick to estimate the probabilities of M ’s outcomes
in PH. But this would put P#P into PH, thereby collapsing PH by Toda’s Theorem [47].

More generally, with any of the apparent differences between quantum algorithms and
classical randomized algorithms, the question is: how can we prove that the difference is
genuine, that no trick will ever be discovered that makes BQP behave more like BPP? For
questions like whether NP ⊆ BQP or whether BQP ⊆ NP, the hard truth here is that not
only have we been unable to resolve these questions in the unrelativized world, we’ve been
able to say little more about them than certain “obvious” implications. For example, suppose
NP ⊆ BQP and BQP ⊆ AM. Then since BQP is closed under complement, we would also
have coNP ⊆ BQP, and hence coNP ⊆ AM, which is known to imply a collapse of PH [17].
And thus, if PH is infinite, then either NP ̸⊂ BQP or BQP ̸⊂ AM. How can we say anything
more interesting and nontrivial?

1.2 Relativization
Since the work of Baker, Gill, and Solovay [13], whenever complexity theorists were faced with
an impasse like the one above, a central tool has been relativized or black-box complexity: in
other words, studying what happens when all the complexity classes one cares about are fed
some specially-constructed oracle. Much like perturbation theory in physics, relativization
lets us make well-defined progress even when the original questions we wanted to answer are
out of reach. It is well-known that relativization is an imperfect tool – the IP = PSPACE [42],
MIP = NEXP [12], and more recently, MIP∗ = RE [30] theorems provide famous examples

CCC 2022
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where complexity classes turned out to be equal, even in the teeth of oracles relative to which
they were unequal. On the other hand, so far, almost all such examples have originated from
a single source: namely, the use of algebraic techniques in interactive proof systems. And if,
for example, we want to understand the consequences of NP ⊆ BQP, then arguably it makes
little sense to search for nonrelativizing consequences if we don’t even understand yet what
the relativizing consequences (that is, the consequences that hold relative to all oracles) are
or are not.

In quantum complexity theory, even more than in classical complexity theory, relativization
has been an inextricable part of progress from the very beginning. The likely explanation
is that, even when we just count queries to an oracle, in the quantum setting we need to
consider algorithms that query all oracle bits in superposition – so that even in the most
basic scenarios, it is already unintuitive what can and cannot be done, and so oracle results
must do much more than formalize the obvious.

More concretely, Bernstein and Vazirani [15] introduced some of the basic techniques of
quantum algorithms in order to prove, for the first time, that there exists an oracle A such
that BPPA ≠ BQPA. Shortly afterward, Simon [44] gave a quantitatively stronger oracle
separation between BPP and BQP, and then Shor [43] gave a still stronger separation, along
the way to his famous discovery that Factoring is in BQP.

On the negative side, Bennett, Bernstein, Brassard, and Vazirani [14] showed that there
exists an oracle relative to which NP ̸⊂ BQP: indeed, relative to which there are problems
that take n time for an NP machine but Ω

(
2n/2)

time for a BQP machine. Following
the discovery of Grover’s algorithm [25], which quantumly searches any list of N items
in O

(√
N

)
queries, the result of Bennett, Bernstein, Brassard, and Vazirani gained the

interpretation that Grover’s algorithm is optimal. In other words, any quantum algorithm for
NP-complete problems that gets more than the square-root speedup of Grover’s algorithm
must be “non-black-box.” It must exploit the structure of a particular NP-complete problem
much like a classical algorithm would have to, rather than treating the problem as just an
abstract space of 2n possible solutions.

Meanwhile, clearly there are oracles relative to which P = BQP – for example, a PSPACE-
complete oracle. But we can ask: would such oracles necessarily collapse the hierarchy of
classical complexity classes as well? In a prescient result that provided an early example
of the sort of thing we do in this paper, Fortnow and Rogers [21] showed that there exists
an oracle relative to which P = BQP and yet PH is infinite. In other words, if P = BQP
would imply a collapse of the polynomial hierarchy, then it cannot be for a relativizing
reason. Aaronson and Chen [6] extended this to show that there exists an oracle relative to
which sampling-based quantum supremacy is impossible – i.e., any probability distribution
approximately samplable in quantum polynomial time is also approximately samplable in
classical polynomial time – and yet PH is infinite. In other words, if it is possible to prove
the central theoretical conjecture of quantum supremacy – namely, that there are noisy
quantum sampling experiments that cannot be simulated in classical polynomial time unless
PH collapses – then nonrelativizing techniques will be needed there as well.

What about showing the power of BQP, by giving oracle obstructions to containments
like BQP ⊆ NP, or BQP ⊆ PH? There, until recently, the progress was much more limited.
Watrous [48] showed that there exists an oracle relative to which BQP ̸⊂ NP and even BQP ̸⊂
MA (these separations could also have been shown using the Recursive Fourier Sampling
problem, introduced by Bernstein and Vazirani [15]). But extending this further, to get an
oracle relative to which BQP ̸⊂ PH or even BQP ̸⊂ AM, remained an open problem for two
decades. Aaronson [2] proposed a program for proving an oracle separation between BQP
and PH, involving a new problem he introduced called Forrelation:
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▶ Problem 1 (Forrelation). Given black-box access to two Boolean functions f, g :
{0, 1}n → {1, −1}, and promised that either

(i) f and g are uniformly random and independent, or
(ii) f and g are uniformly random individually, but g has Ω(1) correlation with f̂ , the

Boolean Fourier transform of f (i.e., f and g are “Forrelated”),
decide which.

Aaronson [2] showed that Forrelation is solvable, with constant bias, using only a
single quantum query to f and g (and O(n) time). By contrast, he showed that any classical
randomized algorithm for the problem needs Ω

(
2n/4)

queries – improved by Aaronson and
Ambainis [4] to Ω

(
2n/2

n

)
queries, which is essentially tight. The central conjecture, which

Aaronson left open, said that Forrelation ̸∈ PH – or equivalently, by the connection
between PH machines and AC0 circuits [22], that there are no AC0 circuits for Forrelation
of constant depth and 2poly(n) size.

Finally, Raz and Tal [38] managed to prove Aaronson’s conjecture, and thereby obtain
the long-sought oracle separation between BQP and PH.1 Raz and Tal achieved this by
introducing new techniques for constant-depth circuit lower bounds, involving Brownian
motion and the L1-weight of the low-order Fourier coefficients of AC0 functions. Relevantly
for us, Raz and Tal actually proved the following stronger result:

▶ Theorem 2 ([38]). A PH machine can guess whether f and g are uniform or Forrelated
with bias at most 2−Ω(n).

Recall that before Raz and Tal, we did not even have an oracle relative to which
BQP ̸⊂ AM. Notice that, if BQP ⊆ AM, then many other conclusions would follow in a
relativizing way. For example, we would have:

P = NP implies P = BQP,
NPBQP ⊆ NPAM∩coAM ⊆ BPPNP ⊆ BQPNP,
If NP ⊆ BQP, then NPNP ⊆ NPBQP ⊆ BQPNP = BQPBQP = BQP, and
If NP ⊆ BQP, then NP ⊆ coAM, which implies that PH collapses.

Looking at it a different way, our inability even to separate BQP from AM by an oracle
served as an obstruction to numerous other oracle separations.

The starting point of this paper was the following question: in a “post-Raz-Tal world,”
can we at last completely “unshackle” BQP from P, NP, and PH, by showing that there are
no relativizing obstructions to any possible answers to questions like the ones we asked in
Section 1.1?

1.3 Our Results
We achieve new oracle separations that show an astonishing range of possible behaviors for
BQP and related complexity classes – in at least one case, resolving a longstanding open
problem in this topic. Our title, “The Acrobatics of BQP,” comes from a unifying theme of the
new results being “freedom.” We will show that, as far as relativizing techniques can detect,
collapses and separations of classical complexity classes place surprisingly few constraints on
the power of quantum computation. In most cases, this can be understood as ultimately

1 Strictly speaking, they did this for a variant of Forrelation where the correlation between g and f̂
is only ∼ 1

n , and thus a quantum algorithm needs ∼ n queries to solve the problem, but this will not
affect anything that follows.

CCC 2022



20:6 The Acrobatics of BQP

stemming from the fact that one cannot “fix the randomness” (or quantumness) used by
a quantum algorithm, similarly to how one fixes the randomness used by a randomized
algorithm in many complexity-theoretic arguments.

As we alluded to earlier, many of our new results would not have been possible without
Raz and Tal’s analysis of Forrelation [38], which we rely on extensively. We will treat
Forrelation no longer as just an isolated problem, but as a sort of cryptographic code,
by which an oracle can systematically make certain information available to BQP machines
while keeping the information hidden from classical machines.

Having said that, very few of our results will follow from Raz-Tal in any straightforward
way. Most often we need to develop other lower bound tools, in addition to or instead of
Raz-Tal. Our new tools, which seem likely to be of independent interest, include a random
restriction lemma for quantum query algorithms, a concentration theorem for the block
sensitivity of AC0 functions, and a provable analogue of the Aaronson-Ambainis conjecture [3]
for certain sparse oracles.

Perhaps our single most interesting result is the following.

▶ Theorem 3. There exists an oracle relative to which NPBQP ̸⊂ BQPNP, and indeed
NPBQP ̸⊂ BQPPH.

As mentioned earlier, Theorem 3 resolves an open problem of Fortnow [20], and demon-
strates a clear difference between BPP and BQP that exemplifies the impossibility of pulling
the randomness out of a quantum algorithm. Indeed, Theorem 3 shows that there is no
general, black-box way to move quantumness past an NP quantifier, like we can do for
classical randomness.

As a straightforward byproduct of Theorem 3, we are also able to prove the following:

▶ Theorem 4. There exists an oracle relative to which P = NP but BQP ̸= QCMA.

Conversely, it will follow from one of our later results, Theorem 9, that there exists an
oracle relative to which P ̸= NP and yet BQP = QCMA = QMA. In other words, as far as
relativizing techniques are concerned, the classical and quantum versions of the P vs. NP
question are completely uncoupled from one another.

Theorem 3 also represents progress toward a proof of the following conjecture, which
might be the most alluring open problem that we leave.

▶ Conjecture 5. There exists an oracle relative to which NP ⊆ BQP but PH ̸⊂ BQP. Indeed,
for every k ∈ N, there exists an oracle relative to which ΣP

k ⊆ BQP but ΣP
k+1 ̸⊂ BQP.

Conjecture 5 would provide spectacularly fine control over the relationship between BQP
and PH, going far beyond Raz-Tal to show how BQP could, e.g., swallow the first 18 levels of
PH without swallowing the 19th. To see the connection between Theorem 3 and Conjecture 5,
suppose NPBQP ⊆ BQPNP, and suppose also that NP ⊆ BQP. Then, as observed by Fortnow
[20], this would imply

NPNP ⊆ NPBQP ⊆ BQPNP ⊆ BQPBQP = BQP,

(and so on, for all higher levels of PH), so that PH ⊆ BQP as well. Hence, any oracle that
witnesses Conjecture 5 also witnesses Theorem 3, so our proof of Theorem 3 is indeed a
prerequisite to Conjecture 5.

At a high level, we prove Theorem 3 by showing that no BQPPH machine can solve the
OR ◦ Forrelation problem, in which one is given a long list of Forrelation instances,
and is tasked with distinguishing whether (1) all of the instances are uniformly random, or (2)
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at least one of the instances is Forrelated. A first intuition is that PH machines should gain no
useful information from the input, just because Forrelation “looks random” (by Raz-Tal),
and hence a BQPPH machine should have roughly the same power as a BQP machine at
deciding OR ◦ Forrelation. If one could show this, then completing the theorem would
amount to showing that OR ◦ Forrelation is hard for BQP machines, which easily follows
from the BBBV Theorem [14].

Alas, initial attempts to formalize this intuition fail for a single, crucial reason: the possib-
ility of homomorphic encryption! The Raz-Tal Theorem merely proves that Forrelation is
a strong form of encryption against PH algorithms. But to rule out a BQPPH algorithm for
OR◦Forrelation, we also have to show that one cannot take a collection of Forrelation
instances and transform them, by means computable in PH, into a single Forrelation
instance whose solution is the OR of the solutions to the input instances. Put another way,
we must show that AC0 circuits of constant depth and 2poly(n) size cannot homomorphically
evaluate the OR function, when the encryption is done via the Forrelation problem.

More generally, we even have to show that AC0 circuits cannot transform the “ciphertext”
into any string that could later be decoded by an efficient quantum algorithm. Theorem 3
accomplishes this with the help of an additional structural property of AC0 circuits: our
concentration theorem for block sensitivity. Loosely speaking, the concentration theorem
implies that, with overwhelming probability, any small AC0 circuit is insensitive to toggling
between a yes-instance and a neighboring no-instance of the OR ◦ Forrelation problem.
This, together with the BBBV Theorem [14], then implies that such “homomorphic encryption”
is impossible.

We also achieve the following converse to Theorem 3:

▶ Theorem 6. There exists an oracle relative to which BQPNP ̸⊂ PHBQP, and even BQPNP ̸⊂
PHPromiseBQP.

Note that an oracle relative to which BQPNP ̸⊂ NPBQP is almost trivial to achieve, for
example by considering a problem in coNP. However, BQPNP ̸⊂ PHBQP is much harder. At a
high level, rather than considering the composed problem OR ◦ Forrelation, we now need
to consider the reverse composition: Forrelation ◦ OR, a problem that’s clearly in BQPNP,
but plausibly not in PHBQP. The key step is to show that, when solving Forrelation ◦ OR,
any PHBQP machine can be simulated by a PH machine: the BQP oracle is completely
superfluous! Once we’ve shown that, Forrelation ◦ OR ̸∈ PH then follows immediately
from Raz-Tal.

For our next result, recall that QMA, or Quantum Merlin-Arthur, is the class of problems
for which a yes-answer can be witnessed by a polynomial-size quantum state. Perhaps our
second most interesting result is this:

▶ Theorem 7. PP is not contained in the “QMA hierarchy”, consisting of constant-depth
towers of the form QMAQMAQMA···

, with probability 1 relative to a random oracle.2

Note that PP = PostBQP, where PostBQP denotes BQP augmented with the power of
postselection [1], and so Theorem 7 contrasts with the classical containment PostBPP ⊆
BPPNP ⊆ PH [26, 33]. Nevertheless, before this paper, to our knowledge, it was not even

2 Actually, our formal definition of the QMA hierarchy is more general than the version given here, in
order to accommodate recursive queries to QMA promise problems. This only makes our separation
stronger.
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20:8 The Acrobatics of BQP

known how to construct an oracle relative to which PP ̸⊂ BQPNP, let alone classes like
BQPNPBQPNP···

or QCMAQCMAQCMA···

, which are contained in the QMA hierarchy. The closest
result we are aware of is due to Kretschmer [32], who gave a quantum oracle relative to which
BQP = QMA ̸= PostBQP.

Perhaps shockingly, our proof of Theorem 7 can be extended even to show that PP
is not in, say, QMIPQMIPQMIP···

relative to a random oracle, where QMIP means Quantum
Multi-prover Interactive Proofs with entangled provers. This is despite the breakthrough
results of Reichardt, Unger, and Vazirani [39], and more recently Ji, Natarajan, Vidick,
Wright, and Yuen [30], which showed that in the unrelativized world, QMIP = MIP∗ = RE
(where MIP∗ means QMIP with classical communication only, and RE means Recursively
Enumerable), so in particular, QMIP contains the halting problem. This underscores the
dramatic extent to which results like QMIP = RE are nonrelativizing!

Theorem 7 can also be understood as showing that in the black-box setting, there is no
quantum analogue of Stockmeyer’s approximate counting algorithm [46]. For a probabilistic
algorithm M that runs in poly(n) time and an error bound ε ≥ 1

poly(n) , the approximate
counting problem is to estimate the acceptance probability of M up to a multiplicative factor
of 1 + ε. Stockmeyer’s algorithm [46] gives a relativizing poly(n)-time reduction from the
approximate counting problem to a problem in the third level of the polynomial hierarchy,
and crucially relies on pulling the randomness out of M . In structural complexity terms,
Stockmeyer’s algorithm can be reinterpreted as showing that SBP ⊆ PH relative to all oracles,
where SBP is the complexity class defined in [16] that captures approximate counting.

One might wonder: is there a version of Stockmeyer’s algorithm for the quantum approx-
imate counting problem, where we instead wish to approximate the acceptance probability of
a quantum algorithm? In particular, is SBQP, the complexity class that captures quantum
approximate counting [33], contained in the QMA hierarchy?3 Kuperberg [33] showed that
PP ⊆ PSBQP, so it follows that PP ⊆ QMAH if and only if SBQP ⊆ QMAH, where QMAH
denotes the QMA hierarchy. Thus, Theorem 7 implies that SBQP ̸⊂ QMAH relative to a
random oracle, implying that such a quantum analogue of Stockmeyer’s algorithm does
not exist in the black-box setting.4 This demonstrates yet another case where a classical
complexity result that relies on fixing randomness cannot be generalized to the quantum
setting.

Notably, our proof of Theorem 7 does not appeal to Raz-Tal at all, but instead relies on a
new random restriction lemma for the acceptance probabilities of quantum query algorithms.
Our random restriction lemma shows that if one randomly fixes most of the inputs to a
quantum query algorithm, then the algorithm’s behavior on the unrestricted inputs can be
approximated by a “simple” function (say, a small decision tree or small DNF formula). We
then use this random restriction lemma to generalize the usual random restriction proof that,
for example, Parity ̸∈ AC0 [27].

Here is another noteworthy result that we are able to obtain, by combining random
restriction arguments with lower bounds on quantum query complexity:

3 We thank Patrick Rall (personal communication) for bringing this question to our attention.
4 Note that this is just one of many possible ways that we could ask whether there exists a quantum

analogue of Stockmeyer’s algorithm. For example, one might consider alternative definitions of the
quantum approximate counting task, such as the problem defined in [18] of approximating the number
of witness states accepted by a QMA verifier. One might also consider other definitions of the “quantum
polynomial hierarchy,” some of which are explored in [23].
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▶ Theorem 8. For every k ∈ N, ΣP
k+1 ̸⊂ BQPΣP

k with probability 1 relative to a random
oracle.

Theorem 8 extends the breakthrough of Håstad, Rossman, Servedio, and Tan [28], who
(solving an open problem from the 1980s) showed that PH is infinite relative to a random
oracle with probability 1. Our result shows, not only that a random oracle creates a gap
between every two successive levels of PH, but that quantum computing fails to bridge
that gap.

Again, Theorem 8 represents a necessary step toward a proof of Conjecture 5, because if
we had ΣP

k+1 ⊆ BQPΣP
k , then clearly ΣP

k ⊆ BQP would imply ΣP
k+1 ⊆ BQPBQP = BQP.

Our last two theorems return to the theme of the autonomy of BQP.

▶ Theorem 9. There exists an oracle relative to which NP ⊆ BQP, and indeed BQP = P#P,
and yet PH is infinite.

Theorem 9 resolves an open problem of Aaronson [2]. As a simple corollary, we also obtain
an oracle relative to which BQP ̸⊂ NP/poly, resolving a question of Aaronson, Cojocaru,
Gheorghiu, and Kashefi [7].

For three decades, one of the great questions of quantum computation has been whether
it can solve NP-complete problems in polynomial time. Many experts guess that the answer
is no, for similar reasons as they guess that P ̸= NP – say, the BBBV Theorem [14], combined
with our failure to find any promising leads for evading that theorem’s assumptions in
the worst case. But the fact remains that we have no structural evidence connecting the
NP ̸⊂ BQP conjecture to any “pre-quantum” beliefs about complexity classes. No one has
any idea how to show, for example, that if NP ⊆ BQP then P = NP as well, or anything even
remotely in that direction.

Given the experience of classical complexity theory, it would be reasonable to hope
for a theorem showing that, if NP ⊆ BQP, then PH collapses – analogous to the Karp-
Lipton Theorem [31], that if NP ⊂ P/poly then PH collapses, or the Boppana-Håstad-Zachos
Theorem [17], that if NP ⊆ coAM then PH collapses. No such result is known for NP ⊆ BQP,
once again because of the difficulty that there is no known way to pull the randomness out
of a BQP algorithm. Theorem 9 helps to explain this situation, by showing that any proof of
such a conditional collapse would have to be nonrelativizing. The proof of Theorem 9 builds,
again, on the Raz-Tal Theorem. And this is easily seen to be necessary, since as we pointed
out earlier, if BQP ⊆ AM, then NP ⊆ BQP really would imply a collapse of PH.

▶ Theorem 10. There exists an oracle relative to which P = NP ̸= BQP = P#P.

Theorem 10 says, in effect, that there is no relativizing obstruction to BQP being
inordinately powerful even while NP is inordinately weak. It substantially extends the
Raz-Tal Theorem, that there is an oracle relative to which BQP ̸⊂ PH, to show that in some
oracle worlds, BQP doesn’t go just slightly beyond the power of PH (which, if P = NP, is
simply the power of P), but vastly beyond it. Once again, this illustrates the difference
between randomness and quantumness, because if P = NP, then P = BPP for relativizing
reasons.

We conjecture that Theorem 10 could be extended yet further, to give an oracle relative
to which P = NP and yet BQP = EXP, but we leave that problem to future work.
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1.4 Proof Techniques
We now give rough sketches of the important ideas needed to prove our results. Here, in
contrast to Section 1.3, we present the results in the order that they appear in the main text,
which is roughly in order of increasing technical difficulty.

Our proofs of Theorem 9 and Theorem 10 serve as useful warm-ups, giving a flavor for
how we use the Raz-Tal Theorem and oracle construction techniques in later proofs. In
Theorem 9, to construct an oracle where BQP = P#P but PH is infinite, we start by taking a
random oracle, which by the work of Håstad, Rossman, Servedio, and Tan [28, 41] is known
to make PH infinite. Then, for each P#P machine M , we add to the oracle an instance
of the Forrelation problem that encodes the behavior of M : if M accepts, we choose a
Forrelated instance, while if M rejects, we choose a uniformly random instance. This gives a
BQP machine the power to decide any P#P language.5

It remains to argue that adding these Forrelation instances does not collapse PH. We
want to show that relative to our oracle, for every k, there exists a language in ΣP

k+1 that
is not in ΣP

k . This is where we leverage the Raz-Tal Theorem: because the Forrelation
instances look random to PH, we can show, by a hybrid argument, that a ΣP

k algorithm’s
probability of correctly deciding a target function in ΣP

k+1 is roughly unchanged if we replace
the Forrelation instances with uncorrelated, uniformly random bits. But auxiliary random
bits cannot possibly improve the success probability, and so a simple appeal to [28] implies
that the ΣP

k+1 language remains hard for ΣP
k .

The proof of Theorem 10, giving an oracle where P = NP ̸= BQP = P#P, follows a similar
recipe to the proof of Theorem 9. We start with a random oracle, which separates PH from
P#P, and then we add a second region of the oracle that puts P#P into BQP by encoding all
P#P queries in instances of the Forrelation problem. Next, we add a third region of the
oracle that answers all NP queries, which has the effect of collapsing PH to P. Finally, we
again leverage the Raz-Tal Theorem to argue that the Forrelation instances have no effect
on the separation between PH and P#P, because the Forrelation instances look random
to PH algorithms.

We next prove Theorem 8, that ΣP
k+1 ̸⊂ BQPΣP

k relative to a random oracle. Our proof
builds heavily on the proof by [28] that ΣP

k+1 ̸⊂ ΣP
k relative to a random oracle. Indeed, our

proof is virtually identical, except for a single additional step.
[28]’s proof involves showing that there exists a function Sipserd that is computable by

a small AC0 circuit of depth d (which corresponds to a ΣP
d−1 algorithm), but such that any

small AC0 circuit of depth d − 1 (which corresponds to a ΣP
d−2 algorithm) computes Sipserd

on at most a 1
2 + o(1) fraction of random inputs. This proof uses random restrictions, or

more accurately, a generalization of random restrictions called random projections by [28].
Roughly speaking, the proof constructs a distribution R over random projections with the
following properties:

5 The careful reader might wonder: if we can encode the answers to P#P machines, then what is to stop us
from encoding the answers to some arbitrarily powerful class, such as EXP or RE, into the Forrelation
instances? For a P#P machine M , we exploit the fact that we can always choose Forrelation instances
on oracle strings that cannot be queried by M . For example, if M runs in time t, then we can encode
M ’s output into strings of length tc for some c > 1, which remain accessible to a BQP machine with a
larger polynomial running time. By contrast, if we tried to do the same for an EXP machine (say), we
run into the problem that the machine whose behavior we are trying to encode could query the very
encoding we are making of its output, and thus our oracle would be circularly defined.
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(i) Any small AC0 circuit C of depth d − 1 “simplifies” with high probability under a
random projection drawn from R, say, by collapsing to a low-depth decision tree.

(ii) The target Sipserd function “retains structure” with high probability under a random
projection drawn from R.

(iii) The structure retained in (ii) implies that the original unrestricted circuit C fails to
compute the Sipserd function on a large fraction of inputs.

To prove Theorem 8, we generalize step (i) above from ΣP
d−2 algorithms to BQPΣP

d−2

algorithms. That is, if we have a quantum algorithm that queries arbitrary depth-(d − 1)
AC0 functions of the input, then we show that this algorithm’s acceptance probability also
“simplifies” under a random projection from R. We prove this by combining the BBBV
Theorem [14] with [28]’s proof of step (i).

We next move on to the proof of Theorem 3, where we construct an oracle relative to
which NPBQP ̸⊂ BQPPH. Recall that we prove Theorem 3 by showing that no BQPPH machine
can solve the OR ◦ Forrelation problem. To establish this, imagine that we fix a “no”
instance x of the OR ◦ Forrelation problem, meaning that x consists of a list of ∼ 2n

Forrelation instances that are all uniformly random (i.e. non-Forrelated). We can turn x

into an adjacent “yes” instance y by randomly choosing one of the Forrelation instances
of x and changing it to be Forrelated.

Our proof amounts to showing that with high probability over x, an AC0 circuit of size
2poly(n) is unlikely (over y) to distinguish x from y. Then, applying the BBBV Theorem [14],
we can show that for most choices of x, a BQPPH algorithm is unlikely to distinguish x from
y, implying that it could not have solved the OR ◦ Forrelation problem.

Next, we notice that it suffices to consider what happens when, instead of choos-
ing y by randomly flipping one of the Forrelation instances of x from uniformly ran-
dom to Forrelated, we instead choose a string z by randomly resampling one if the in-
stances of x from the uniform distribution. This is because, as a straightforward con-
sequence of the Raz-Tal Theorem (Theorem 2), if f is an AC0 circuit of size 2poly(n), then
|Pry[f(x) ̸= f(y)] − Prz[f(x) ̸= f(z)]| ≤ 2−Ω(n).

Our key observation is that the quantity Prz[f(x) ̸= f(z)] is proportional to a sort of
“block sensitivity” of f on x. More precisely, it is proportional to an appropriate averaged
notion of block sensitivity, where the average is taken over collections of blocks that respect
the partition into separate Forrelation instances. This is where our block sensitivity
concentration theorem comes into play:

▶ Theorem 11. Let f : {0, 1}N → {0, 1} be an AC0 circuit of size quasipoly(N) and depth
O(1), and let B = {B1, B2, . . . , Bk} be a collection of disjoint subsets of [N ]. Then for any t,

Pr
x∼{0,1}N

[bsx
B(f) ≥ t] ≤ 4N · 2−Ω

(
t

polylog(N)

)
,

where bsx
B(f) denotes the block sensitivity of f on x with respect to B.

Informally, Theorem 11 says that the probability that an AC0 circuit has B-block sensitivity
t ≫ polylog(N) on a random input x decays exponentially in t. This generalizes the result
of Linial, Mansour, and Nisan [35] that the average sensitivity of AC0 circuits is at most
polylog(N). It also generalizes a concentration theorem for the sensitivity of AC0 circuits
that appeared implicitly in the work of Gopalan, Servedio, Tal, and Wigderson [24], by
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taking B to be the partition into singletons.6 In fact, we derive Theorem 11 as a simple
corollary of such a sensitivity tail bound for AC0. For completeness, we will also prove our
own sensitivity tail bound, rather than appealing to [24]. Our sensitivity tail bound follows
from an AC0 random restriction lemma due to Rossman [40].

To prove Theorem 4, which gives an oracle relative to which P = NP but BQP ≠ QCMA,
we use a similar technique to the proof of Theorem 10. We first take the oracle constructed
in Theorem 3 that contains instances of the OR ◦ Forrelation problem. Next, we add a
second region of the oracle that answers all NP queries. This collapses PH to P. Finally, we
use Theorem 3 to argue that these NP queries do not enable a BQP machine to solve the
OR ◦ Forrelation problem, which is in QCMA.

We now move on to the proof of Theorem 6, that there exists an oracle relative to which
BQPNP ̸⊂ PHBQP. Recall that our strategy is to show that no PHBQP machine can solve
the Forrelation ◦ OR problem. We prove this by showing that with high probability, a
PHBQP machine on a random instance of the Forrelation ◦ OR problem can be simulated
by a PH machine, from which a lower bound easily follows from the Raz-Tal Theorem. This
simulation hinges on the following theorem, which seems very likely to be of independent
interest:

▶ Theorem 12. Consider a quantum algorithm Q that makes T queries to an M ×N array of
bits x, where each length-N row of x contains a single uniformly random 1 and 0s everywhere
else. Then for any ε ≫ T√

N
and δ > 0, there exists a deterministic classical algorithm that

makes O
(

T 5

ε4 log T
δ

)
queries to x, and approximates Q’s acceptance probability to within

additive error ε on a 1 − δ fraction of such randomly chosen x’s.

Informally, Theorem 12 says that any fast enough quantum algorithm can be simulated
by a deterministic classical algorithm, with at most a polynomial blowup in query complexity,
on almost all sufficiently sparse oracles. The crucial point here is that the classical simulation
still needs to work, even in most cases where the quantum algorithm is lucky enough to find
many “1” bits. We prove Theorem 12 via a combination of tail bounds and the BBBV hybrid
argument [14].

In the statement of Theorem 12, we do not know whether the exponent of 5 on T is tight,
and suspect that it isn’t. We only know that the exponent needs to be at least 2, because of
Grover’s algorithm [25].

We remark that Theorem 12 bears similarity to a well-known conjecture that involves
simulation of quantum query algorithms by classical algorithms. A decade ago, motivated by
the question of whether P = BQP relative to a random oracle with probability 1, Aaronson
and Ambainis [3] proposed the following conjecture:

▶ Conjecture 13 ([3, Conjecture 1.5]; attributed to folklore). Consider a quantum algorithm
Q that makes T queries to x ∈ {0, 1}N . Then for any ε, δ > 0, there exists a deterministic
classical algorithm that makes poly

(
T, 1

ε , 1
δ

)
queries to x, and approximates Q’s acceptance

probability to within additive error ε on a 1 − δ fraction of uniformly randomly inputs x.

6 Interestingly, [24]’s goal, in proving their concentration theorem for the sensitivity of AC0, was to make
progress toward a proof of the famous Sensitivity Conjecture – a goal that Huang [29] achieved shortly
afterward using completely different methods. One happy corollary of this work is that, nevertheless,
[24]’s attempt on the problem was not entirely in vain.



S. Aaronson, D. Ingram, and W. Kretschmer 20:13

While Conjecture 13 has become influential in Fourier analysis of Boolean functions,7 it
remains open to this day. Theorem 12 could be seen as the analogue of Conjecture 13 for
sparse oracles – an analogue that, because of the sparseness, turns out to be much easier to
prove.

We conclude with the proof of Theorem 7, showing that PP is not contained in the QMA
hierarchy relative to a random oracle. This is arguably the most technically involved part of
this work. Recall that our key contribution, and the most important step of our proof, is a
random restriction lemma for quantum query algorithms. In fact, we even prove a random
restriction lemma for functions with low quantum Merlin-Arthur (QMA) query complexity:
that is, functions f where a verifier, given an arbitrarily long “witness state,” can become
convinced that f(x) = 1 by making few queries to x. Notably, our definition of QMA query
complexity does not care about the length of the witness, but only on the number of queries
made by the verifier. This property allows us to extend our results to complexity classes
beyond QMA, such as QMIP.

An informal statement of our random restriction lemma is given below:

▶ Theorem 14. Consider a partial function f : {0, 1}N → {0, 1, ⊥} with QMA query
complexity at most polylog(N). For some p = 1√

Npolylog(N) , let ρ be a random restriction
that leaves each variable unrestricted with probability p. Then fρ is 1

quasipoly(N) -close, in
expectation over ρ, to a polylog(N)-width DNF formula.8

An unusual feature of Theorem 14 is that we can only show that fρ is close to a simple
function in expectation. By contrast, Håstad’s switching lemma for DNF formulas [27] shows
that the restricted function reduces to a simple function with high probability, so in some sense
our result is weaker. Additionally, unlike the switching lemma, our result has a quantitative
dependence on the number of inputs N . Whether this dependence can be removed (so that
the bound depends only on the number of queries) remains an interesting problem for future
work.

With Theorem 14 in hand, proving that PP ̸⊂ QMAQMAQMA···

relative to a random oracle
is conceptually analogous to the proof that PP ̸⊂ PH relative to a random oracle [27]. We
first view a QMAQMAQMA···

machine as a small constant-depth circuit in which the gates are
functions of low QMA query complexity. Then we want to argue that the probability that
such a circuit agrees with the Parity function on a random input is small. We accomplish
this via repeated application of Theorem 14, interleaved with Håstad’s switching lemma for
DNF formulas [27].

To elaborate further, we first take a random restriction that, by Theorem 14, turns all of
the bottom-layer QMA gates into DNF formulas. Next, we apply another random restriction
and appeal to the switching lemma to argue that these DNFs reduce to functions of low
decision tree complexity, which can be absorbed into the next layer of QMA gates. Finally, we
repeat as many times as needed until the entire circuit collapses to a low-depth decision tree.
Since the Parity function reduces to another Parity function under any random restriction,

7 In the context of Fourier analysis, the Aaronson-Ambainis Conjecture usually refers to a closely-related
conjecture about influences of bounded low-degree polynomials; see e.g. [36, 37]. Aaronson and
Ambainis [3] showed that this related conjecture implies Conjecture 13.

8 By saying that fρ is “close” to a DNF formula, we mean that there exists a DNF g depending on ρ such
that the fraction of inputs on which fρ and g agree is 1 − 1

quasipoly(N) , in expectation over ρ. In the full
version [8], we introduce some additional notation and terminology that makes it easier to manipulate
such expressions, but we will not use them in this exposition.
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we conclude that this decision tree will disagree with the reduced Parity function on a
large fraction of inputs, and hence the original circuit must have disagreed with the Parity
function on a large fraction of inputs as well.

Of course, the actual proof of Theorem 7 is more complicated because of the accounting
needed to bound the error introduced from Theorem 14, but all of the important concepts
are captured above.

We end with a few remarks on the proof ideas needed for Theorem 14. Essentially, the first
step involves proving that if we take a function f computed by a quantum query algorithm
Q, a random restriction ρ, and a uniformly random input x to fρ, then x likely contains a
small set K of “influential” variables. These influential variables have the property that for
any string y that agrees with x on K, |Pr[Q(x) = 1] − Pr[Q(y) = 1]| is bounded by a small
constant. Hence, K serves as a certificate for fρ’s behavior on x.

Proving that such a K usually exists amounts to a careful application of the BBBV
Theorem [14]. Finally, we generalize from quantum query algorithms to arbitrary QMA query
algorithms by observing that we only need to keep track of the certificates for inputs x such
that fρ(x) = 1. The DNF we obtain in Theorem 14 is then simply the OR of all of these
small 1-certificates.

Due to space constraints, we defer to the full version of our paper [8] for complete proofs
and additional discussion.
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