
Extremely Efficient Constructions of Hash
Functions, with Applications to Hardness
Magnification and PRFs
Lijie Chen #Ñ

CSAIL, MIT, Cambridge, MA, USA

Jiatu Li # Ñ

IIIS, Tsinghua University, Beijing, China

Tianqi Yang # Ñ

IIIS, Tsinghua University, Beijing, China

Abstract
In a recent work, Fan, Li, and Yang (STOC 2022) constructed a family of almost-universal hash
functions such that each function in the family is computable by (2n + o(n))-gate circuits of fan-in 2
over the B2 basis. Applying this family, they established the existence of pseudorandom functions
computable by circuits of the same complexity, under the standard assumption that OWFs exist.
However, a major disadvantage of the hash family construction by Fan, Li, and Yang (STOC 2022)
is that it requires a seed length of poly(n), which limits its potential applications.

We address this issue by giving an improved construction of almost-universal hash functions with
seed length polylog(n), such that each function in the family is computable with POLYLOGTIME-
uniform (2n + o(n))-gate circuits. Our new construction has the following applications in both
complexity theory and cryptography.

(Hardness magnification). Let α : N → N be any function such that α(n) ≤ log n/ log log n.
We show that if there is an nα(n)-sparse NP language that does not have probabilistic circuits of
2n + O(n/ log log n) gates, then we have (1) NTIME[2n] ⊈ SIZE

[
2n1/5

]
and (2) NP ̸⊆ SIZE[nk]

for every constant k. Complementing this magnification phenomenon, we present an O(n)-sparse
language in P which requires probabilistic circuits of size at least 2n − 2. This is the first result
in hardness magnification showing that even a sub-linear additive improvement on known circuit
size lower bounds would imply NEXP ̸⊂ P/poly.
Following Chen, Jin, and Williams (STOC 2020), we also establish a sharp threshold for explicit
obstructions: we give an explict obstruction against (2n − 2)-size circuits, and prove that a
sub-linear additive improvement on the circuit size would imply (1) DTIME[2n] ⊈ SIZE

[
2n1/5

]
and (2) P ̸⊆ SIZE[nk] for every constant k.
(Extremely efficient construction of pseudorandom functions). Assuming that one of
integer factoring, decisional Diffie-Hellman, or ring learning-with-errors is sub-exponentially
hard, we show the existence of pseudorandom functions computable by POLYLOGTIME-uniform
AC0[2] circuits with 2n + o(n) wires, with key length polylog(n). We also show that PRFs
computable by POLYLOGTIME-uniform B2 circuits of 2n + o(n) gates follows from the existence
of sub-exponentially secure one-way functions.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Pseudorandomness and derandomization

Keywords and phrases Almost universal hash functions, hardness magnification, pseudorandom
functions

Digital Object Identifier 10.4230/LIPIcs.CCC.2022.23

Funding Lijie Chen is supported by NSF CCF-2127597 and an IBM Fellowship.

Acknowledgements We are grateful for Ryan Williams for insightful discussions during this project
and many helpful comments on a draft of this paper. We would also like to thank Ce Jin for discussions
during the early stage of this research project and anonymous reviewers for their comments.

© Lijie Chen, Jiatu Li, and Tianqi Yang;
licensed under Creative Commons License CC-BY 4.0

37th Computational Complexity Conference (CCC 2022).
Editor: Shachar Lovett; Article No. 23; pp. 23:1–23:37

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lijieche@mit.edu
https://www.mit.edu/~lijieche/index.html
https://orcid.org/0000-0002-6084-4729
mailto:lijt19@mails.tsinghua.edu.cn
https://ljt12138.github.io
https://orcid.org/0000-0003-2358-3141
mailto:yangtq19@mails.tsinghua.edu.cn
https://tianqiyang.org
https://orcid.org/0000-0001-9476-6880
https://doi.org/10.4230/LIPIcs.CCC.2022.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Extremely Efficient Constructions of Hash Functions with Applications

1 Introduction

Background and motivation. Universal hash families1, introduced by Carter and Weg-
man [6], are among the most useful and well-studied objects in computer science, with
applications to both real-world systems and the theory of computation (e.g., algorithm
design, complexity theory, and cryptography). Its wide applications motivate the problem
of constructing universal hash functions with the smallest computational overhead. After
decades of research, optimal constructions (up to a constant factor) have been obtained in
both the RAM model [36] and the Boolean circuit model [23].

In particular, the investigation of hash functions with small circuit complexity was
motivated by the program of constructing low-complexity cryptographic primitives. Ishai,
Kushilevitz, Ostrovsky, and Sahai [23] showed that universal hash functions can be constructed
with linear-size circuits, which, combined with Levin’s trick of domain extension (see,
e.g., [5]), led to linear-size constructions of pseudorandom functions (PRFs) and many other
cryptographic primitives, under the standard assumption that one-way functions (OWFs)
exist.

In a recent work, Fan, Li, and Yang [13] proved that almost universal hash functions2 are
sufficient for constructing extremely efficient PRFs. They then constructed almost universal
hash functions with 2n+ o(n) circuit complexity in both general and CC0[2] circuits3, and
proved the optimality of the constant factor 2 (i.e., there is no 2n−O(1)-size almost-universal
hash construction). As a consequence of their almost-universal hash construction, they
presented 2n + o(n)-size constructions of PRFs assuming OWFs exist. However, a major
disadvantage of the hash constructions in [13] is that they require a seed of length O(n logn)
to sample a circuit from the hash family, which greatly limits their applications.

Overview of our results. The main technical contribution of this paper is to improve the
hash constructions in [13] for both general and CC0[2] circuits by reducing the seed length
from O(n logn) to polylog(n). Moreover, we observe that the improvement of the seed length
makes the hash family explicit in a strong sense: the local topology of the circuit computing
the hash function can be obtained with a uniform algorithm (e.g., given a gate index, compute
its gate type and which gates’ outputs are fed into this gate) in poly-logarithmic time given
a seed of poly-logarithmic length. We call such hash family POLYLOGTIME-uniform; see
Theorem 1.1 for the details.

Despite being weaker than universal hash functions, our new randomness-efficient low-
complexity hash constructions allow us to obtain two important consequences in complexity
theory and cryptography.

(Hardness magnification) Following the kernelization method developed by Chen,
Jin, and Williams [9, 10], we present extremely sharp bootstrapping results for hardness
magnification and explicit obstruction. In particular, we show that a 2.01n lower bound

1 Recall that a universal hash family has the property that for a function drawn from the family, the
hash values of any distinct pair of inputs collide with probability 2−m, where m is the bit length of the
hash value.

2 In an almost universal hash family, the hash collision probability is a negligible function (e.g., 1/2log2 n)
instead of 1/2m for m-bit hash values. It is weaker than a universal hash family, but is still useful in
many applications.

3 For general circuits we mean B2 circuits, in which each gate is of fan-in 2 and can compute an arbitrary
Boolean function in B2 ≜ F2 ×F2 → F2. CC0[2] is a sub-class of AC0[2] representing the constant-depth
circuits consisting of only unbounded fan-in XOR gates. The complexity of CC0[2] circuits are measured
in the number of wires instead of gates.

L. Chen, J. Li, and T. Yang 23:3

for any sparse NP language against probabilistic B2 circuits would imply a major break-
through: NP does not have nk-size circuits for every fixed constant k. We also obtain
stronger consequences with the same lower bound for MCSP using the explicitness of our
hash family.4
(Extremely efficient PRFs) Following [23, 13], our new hash constructions imply
extremely efficient PRFs as well. Under the sub-exponential decisional Diffie-Hellman
assumption (see, e.g., [5]), we can construct a PRF computable by AC0[2] circuits of
wire complexity 2n + o(n) with polylog(n) seed length (instead of poly(n) in [13]).5
Furthermore, the AC0[2]-computable PRF is POLYLOGTIME-uniform, which implies a
parallel algorithm to print the AC0[2] circuit. Similar results also hold for general circuits
assuming sub-exponentially secure one-way function exists.

Both of the above consequences crucially rely on our improvement upon [13] on seed length
and explicitness; we believe that our new hash construction will find further applications in
other areas of computer science.

1.1 Randomness-efficient and strongly-explicit almost universal hash
functions

Before stating our main theorem, we first define the notion of an almost universal hash family
and its properties. A family of hash functions is defined as H = {Hn}n≥1, where each Hn

is a distribution of functions from {0, 1}n to {0, 1}m for output length m = m(n). For a
function ε : N→ R, we say H is ε-almost universal if for all sufficiently large n ∈ N, and for
every two distinct inputs x, y ∈ {0, 1}n, it holds that

Pr
h←Hn

[h(x) = h(y)] ≤ ε(n).

We say H is linear if every function in the family is linear over the field F2.
We are now ready to present our construction of almost universal hash functions. The

theorem is formally proved as Theorem 3.9.

▶ Theorem 1.1 (Unconditional construction of extremely efficient almost universal hash). Let
ℓ ≜ log2 n/ log logn. There is a family of linear Θ(ℓ)-output exp(−Ω(ℓ))-almost universal
hash functions H = {Hn}n≥1 satisfying the following properties.
(Low complexity) Each function h ∈ supp(Hn) is computable by a CC0[2] circuit with at

most 2n+ o(n) wires.
(Randomness efficient) Hn is samplable with seed length r = O(ℓ log2 n) in polynomial time.

More formally, there exists a polynomial-time algorithm G that takes 1n and a seed v of
length r and outputs (the description of) a function hv ∈ supp(Hn), such that Hn and
G(1n,Ur) are identical distributions (if we identify a function with its description), where
Ur is the uniform distribution over {0, 1}r. The function hv is said to be corresponding
to the seed v.

4 The Minimum Circuit Size Problem with size parameter s(n) (MCSP[s(n)]) is defined as follows: given
a string x of length N = 2n, determine whether there exists an n-input s(n) size circuit with x as its
truth table.

5 The existence of PRFs computable by AC0[2] circuits might sound surprising, given that there exists
a natural property against sub-exponential-size AC0[2] and natural properties can be used to break
PRFs [38]. However, a closer look at the arguments in [38] shows that the natural property against
AC0[2] only gives a large quasi-polynomial-time (i.e., 2logk n for some large constant k) adversary
breaking PRFs computable by AC0[2]. This does not contradict our PRF construction in AC0[2], as our
construction is only secure against exp(log2 n/ log log n)-time adversaries; see Theorem 1.8 for details.

CCC 2022

23:4 Extremely Efficient Constructions of Hash Functions with Applications

(POLYLOGTIME-uniform) There exists a polynomial-time algorithm A which takes a tuple
(n, v, i, j) as the input6, and outputs the source of the jth in-wire of the ith gate in the
CC0[2]-circuit (with 2n+o(n) wires) computing the function hv ∈ supp(Hn) corresponding
to the seed v.

(Strongly explicit) There exists a polynomial-time algorithm B(n, v, i, j) satisfying the fol-
lowing: Let v be a seed, hv ∈ supp(Hn) be the F2-linear function corresponding to v, and
M be the m× n F2-matrix such that hv(x)i =

∑n
j=1 Mi,jxj for any i ∈ [m]. It holds that

B(n, v, i, j) outputs Mi,j.

The POLYLOGTIME-uniformity and strongly explicitness characterize the explicitness of
our hash construction in two different senses. The former one captures the explicitness of
the 2n+ o(n)-size circuit computing the hash function, while the latter one focuses on the
linear transformation corresponding to the hash function.

Here we briefly discuss why the notion of POLYLOGTIME-uniformity is important for our
(and other potential) applications. POLYLOGTIME-uniformity is the most natural definition
of parallel uniformity. It says that our hash function is parallel-efficient not only in the
evaluation phase (since it is in sparse CC0[2]) but also in the pre-processing phase, i.e., to
construct the circuit according to the seed. With a POLYLOGTIME-uniform hash family,
we are able to construct POLYLOGTIME-uniform low-complexity PRFs under standard
assumptions, which is beneficial to the overall efficiency of other cryptographic systems
involving PRFs (see, e.g., [5]). The “strongly explicitness” of our construction will be useful
in proving hardness magnification theorems for MCSP, see Section 4.2.

Table 1 summarizes the differences between our new construction and known low-
complexity constructions in [23, 9, 13].

Table 1 Comparison of known constructions of almost universal hash functions. Note that the
collision probability of these hash function are exp(−Ω(m)) for output length m. The construction
in [23] is in addition a pairwise-independent hash function.

Output size m Seed Length Circuit Class Uniformity/Explicitness

Folklore7 m ≤ n log n + O(m) linear-size NC1 P-uniform8

[23] m ≤ n O(n) linear-size NC1 P-uniform
[13] m = O

(
log2 n

log log n

)
O(n log n) 2n + o(n) size CC0[2] P-uniform

Ours m = O
(

log2 n
log log n

)
polylog(n) 2n + o(n) size CC0[2] POLYLOGTIME-uniform

and strongly explicit

1.2 Implications on sharp bootstrapping results
Prior works in Hardness Magnification. Proving strong circuit lower bounds against
explicit functions is one of the most significant challenges in complexity theory. However,
despite decades of efforts, it remains unknown whether NP has linear-size circuits. The

6 The input lengths to A and the algorithm B in the next bullet are both O(log n) + r = polylog(n), so
their running times are actually polylogarithmic in n.

7 This is done by sampling over the output bits of Spielman’s ECC [40] with an random sampling based
on an expander walk (see Lemma 3.2 of [9]).

8 A hash construction is P-uniform if there is a polynomial time algorithm that prints the circuit computing
a hash function given its seed v.

L. Chen, J. Li, and T. Yang 23:5

strongest explicit circuit lower bounds against general fan-in 2 circuits (known as B2 circuits)
is 3.1n − o(n) [28], following [12, 14]. A 5n − o(n) lower bound is known against U2
circuits [26, 24]9.

A recently discovered phenomena in computational complexity called hardness magnific-
ation (see, e.g., [35, 34, 30, 9, 8]) provides new insights in bridging the gap between what
we can prove and what we want to prove regarding circuit lower bounds. It says that a
relatively weak circuit lower bound (e.g., n · polylog(n) size against B2 circuits) for some
special problems would imply major breakthroughs like NP ⊈ P/poly.

Most interestingly, the required lower bounds for hardness magnification are only slightly
stronger than provable lower bounds. For instance, Chen, Jin, and Williams [10] showed
that an n2+ε lower bound against probabilistic De Morgan formulas for MCSP would imply
NP ⊈ SIZE[nk] for all k, while an n2−o(1) lower bound for the same problem can be proved
using a variant of the random restriction method in [18, 41, 22, 21, 34]. For more related
works on hardness magnification, see [8] for a comprehensive summary.

Still, there are asymptotically significant gaps between what are provable and what suffice
to bootstrap in all known results. For example, [30] says that proving a slightly super-linear
circuit lower bound for a sparse version of MCSP would already imply NP ⊈ P/poly. However,
the best unconditional lower bound for any language in NP is only 3.1n− o(n) [28], which is
still far from the superlinear threshold for bootstrapping. This is formally discussed in [17],
which shows that the current technique for proving unconditional circuit lower bounds is not
capable of breaking the linear barrier. Hence, even proving a super-linear lower bound for
MCSP seems out of reach.

Overview of results in this section. By slightly generalizing the computation model to
probabilistic circuits, we observe that even a sub-linear improvement over the known lower
bounds would be enough to imply breakthroughs in complexity theory. For example, we
show that improving a known 2n − O(1) probabilistic circuit lower bound for particular
sparse languages to 2n + O(n/ log logn) would imply NP ̸⊆ SIZE[nk] for every constant
k. Regarding circuit lower bounds for deterministic time classes, we also obtain a similar
threshold phenomenon by studying explicit obstructions; see Section 1.2.2 for details.

1.2.1 Sharp magnification threshold for probabilistic circuits

Notation. Formally, a probabilistic circuit deciding a language L is a distribution D over
circuits that outputs the wrong answer with probability at most 1/poly(n) on any input x,
i.e., for all x ∈ {0, 1}n it holds that PrD←D [D(x) ̸= L(x)] < 1/poly(n).10 We say a language
L is s(n)-sparse if for all sufficiently large n, L ∩ {0, 1}n has size at most s(n).

We first present the most standard form of our result, which gives fixed polynomial
lower bounds for NP. This theorem is a special case of our general theorem of hardness
magnification, which is stated and proved as Theorem 4.1.

9 A U2 circuit consists of fan-in 2 gates computing all binary functions except for XOR and its complement.
10 Note that in contrast to robust classes like BPP, our result is actually sensitive to the error probability

in the definition of probabilistic circuits, since the complexity overhead of error reduction is costly in
the linear-size setting. For simplicity, we stick to the definition with error 1/poly(n).

CCC 2022

23:6 Extremely Efficient Constructions of Hash Functions with Applications

▶ Theorem 1.2 (Hardness magnification, high-end). Let α(n) ≜ logn/ log logn. If there
exists an nα(n)-sparse language in NP that does not have probabilistic circuits11 of size
2n+O(n/ log logn), then we have (1) NTIME[2n] ⊈ SIZE

[
2n1/5

]
and (2) NP ̸⊆ SIZE[nk] for

every constant k.12

Let us compare this theorem with Theorem 1.2 of [9]. They proved that NP ⊈ SIZE[nk]
follows from the non-existence of O(n)-time randomized algorithms with nε bits of advice
and O(logn) bits of randomness for 2no(1) -sparse NP languages. In our theorem, we trade the
sparsity for the exact constants in the running time of the randomized algorithm, showing
that even a 2n+ o(n) probabilistic circuit lower bound is enough.

Theorem 1.2 allows us to bootstrap a non-trivial lower bound for sparse languages in NP
to strong sub-exponential lower bounds. If we only want a super-polynomial circuit lower
bound for NEXP, then the assumption can be considerably weakened. The following theorem
is another extreme case of Theorem 4.1.

▶ Theorem 1.3 (Hardness magnification, low-end). Let α(n) ≜ logn/ log logn. If there is an
nα(n)-sparse language in NTIME

[
2no(1)

]
that is not computable by probabilistic circuits of

size 2n+O(n/ log logn), then NEXP ⊈ P/poly.

We show that a nearly-matching lower bound is provable, from the proof of the 2n−O(1)
lower bound for pseudorandom functions in [13]. This complements the bootstrapping above,
and shows that there is only a gap of an additive sub-linear term towards breakthrough
circuit lower bounds. The following theorem is formally proved as Corollary 4.11.

▶ Theorem 1.4. There is an explicit O(n)-sparse language L computable in P, such that
every probabilistic circuit deciding L must have size at least 2n− 2.

Comparison with known lower bounds. We remark that a better-than-2n circuit lower
bound against probabilistic B2 circuits can indeed be proved for certain non-sparse languages
in P from known average-case lower bounds. This is because given a probabilistic circuit
with small error probability, we can guarantee the existence of a particular circuit that
approximates the language well by an averaging argument. In particular, the following lower
bound of Chen and Kabanets [11] implies that no probabilistic circuits of size 2.49n can
decide an explicit language in P.

▶ Theorem 1.5 (Theorem 4.8, [11]). There is a language L in P such that for any B2 circuit
C of size 2.49n,

Pr
x←{0,1}n

[C(x) = L(x)] ≤ 1
2 + 1

2Ω(n) .

Note that every sparse language must be easy on average as a trivial circuit outputting 0
can approximate it well. As a result, it is impossible to obtain a breakthrough directly from
our hardness magnification result and an average-case lower bound. Nevertheless, linear-size

11 Although it is not explicitly stated for simplicity, we mention that the lower bound required to obtain a
breakthrough in Theorem 1.2, Theorem 1.3, and Theorem 1.6 can be weakened to the one-sided error
case. That is, we only need to show that for any sparse language L ∈ NP, no probabilistic circuit of
small size could output 1 with certainty for any x ∈ L and output 0 with high probability otherwise.

12 We remark that we can indeed obtain a conclusion that is stronger than both (1) and (2), albeit it is
more technical: for all c > 0 there exists some c′ > c such that NTIME

[
2c′n1/5

]
⊈ SIZE

[
2cn1/5

]
.

L. Chen, J. Li, and T. Yang 23:7

lower bounds against general circuits of size greater than 2n is a widely-studied problem for
decades, so this magnification phenomenon may give us more insights on the setting of small
linear size circuits. Following [8], our results achieve a “hardness magnification frontier”.

Better magnification results for meta-complexity problems. We also show that weak
circuit lower bounds for specific meta-complexity problems such as MCSP imply consequences
stronger than that of Theorem 1.2. Formally, we define MCSP[s(n)] as the language taking
a truth table of length N = 2n as input, and decides whether it admits a circuit of size at
most s(n). The following theorem is formally proved as Theorem 4.3.

▶ Theorem 1.6. Let N = 2n be the truth table length of n-input Boolean functions and
n ≤ s(n) ≤ n2/ logn be any size function. If MCSP[s(n)] does not have probabilistic circuits
of size 2N +O(N/ log logN), then there exists some c > 0 such that ⊕P ⊈ SIZE

[
2Nc].

Unfortunately, our lower bound technique in proving Theorem 1.4 cannot be used to
derive a lower bound for MCSP. We leave proving an unconditional 2n− o(n) circuit size
lower bound for MCSP, even against deterministic circuits, as an interesting open problem.

1.2.2 Sharp magnification thresholds for explicit obstruction
A drawback of Theorem 1.2 and Theorem 1.3 is that the conclusion only gives circuit lower
bounds for nondeterministic time classes such as NTIME[2n]. By studying a stronger notion
called explicit obstruction, we are able to obtain a bootstrapping theorem with tight threshold,
which gives circuit lower bounds for deterministic time classes such as TIME[2n].

Explicit obstruction. An explicit obstruction of size S(n) against C is an algorithm A
running in poly(n, S(n)) time, such that on input 1n, A outputs a set En = {(xi, yi)} of size
S(n) such that xi ∈ {0, 1}n and yi ∈ {0, 1} for every i, and xi ̸= xj for every i ̸= j. The set
has the property that, for all circuit C ∈ C, there exists some i ∈ [S(n)] such that C(xi) ̸= yi.
This can be viewed as an explicit proof of the hardness of C computing any n-bit function f
that is consistent with En, since one can always efficiently find a counter-example from the
explicit obstruction. Indeed, giving an explicit obstruction of polynomial size would directly
imply P ⊈ C. This concept is first suggested by Mulmuley [32] in the context of geometric
complexity theory, where he argued that explicit obstructions might be essential in proving
arithmetic circuit lower bounds. For more discussions on explicit obstruction, see [10].

Our results. Our theorem below shows that in the case of general Boolean circuits, even
presenting such an obstruction for very small linear-size circuits would imply breakthrough
circuit lower bounds. It is proved formally as Corollary 4.9 and Theorem 4.5.

▶ Theorem 1.7. Let α(n) = logn/ log logn. The following holds.
There is an explicit obstruction of poly(n)-size against (2n− 2)-size B2 circuits.
If for some β(n) ≥ ω(n/ log logn), there is an explicit obstruction of size nα(n) against
2n + β(n)-size B2 circuits, then we have (1) DTIME[2n] ⊈ SIZE

[
2n1/5

]
and (2) P ⊈

SIZE[nk] for every k.13

13 Similar to Theorem 1.2, we can indeed obtain a stronger conclusion that for all c > 0 there exists a
c′ > c such that DTIME

[
2c′n1/5

]
⊈ SIZE

[
2cn1/5

]
.

CCC 2022

23:8 Extremely Efficient Constructions of Hash Functions with Applications

1.3 Strongly uniform pseudorandom functions
Utilizing the POLYLOGTIME-uniformity and short seed length of our hash constructions, we
can apply them to the framework in [23, 13] to obtain extremely uniform low-complexity
pseudorandom functions (PRFs) with short key length. Recall that a PRF is a family of
distributions over functions that are indistinguishable from uniformly random functions by
efficient adversaries. We show, from standard cryptography assumptions, that each member
of a PRF can be constructed by circuits of size 2n+ o(n); moreover, the construction itself
can be POLYLOGTIME-uniform as well.

Formally, an m-output t-secure pseudorandom function is a family F = {Fn}n≥1 of
distributions Fn on n-input m-output Boolean functions that fools every probabilistic t(n)-
time adversary A, i.e.,∣∣∣∣ Pr

f←Fn

[
Af (1n) accepts

]
− Pr

g:{0,1}n→{0,1}m
[Ag(1n) accepts]

∣∣∣∣ < 1
t
.

We say that C has key length s(n) if Fn is samplable (by a poly(n)-time algorithm) with s(n)
random bits. Similar to the hash functions, we say that F is computable by POLYLOGTIME-
uniform C-circuits, if s(n) ≤ polylog(n) and there exists an algorithm A(n, v, i, j) running in
polylog(n) time (hence polynomial in its input length), that outputs the type of the ith gate
and the jth descendant of the ith gate in the C-circuit computing the function fv ∈ supp(Fn)
keyed by v.

Since our hash functions can be implemented in CC0[2], we can obtain uniform PRFs in
different circuit models based on different assumptions.

▶ Theorem 1.8 (Uniform low-complexity PRFs). There is a t = t(n) = exp
(

Ω
(

log2 n
log log n

))
and the following candidates of t-secure PRFs. Let ε be an arbitrarily small constant.
B2 circuits. Assuming OWFs against exp(nε)-time adversaries exist, there exists a family

of t-secure PRFs with key length polylog(n) computable by POLYLOGTIME-uniform B2
circuits of size 2n+ o(n) and depth polylog(n) simultaneously.

NC1 circuits. Assuming exp(nε)-secure PRFs in NC1 exist, there exists a family of t-secure
PRFs with key length polylog(n) computable by POLYLOGTIME-uniform B2 circuits of
size 2n+ o(n) and depth logn+O(log logn) simultaneously.

AC0[2] circuits. Assuming exp(nε)-secure PRFs in NC1 exist, there exists a family of t-
secure PRFs with key length polylog(n) computable by POLYLOGTIME-uniform AC0[2]
circuits of wire complexity 2n+ o(n).

Note that the assumption for our NC1 and AC0[2] constructions can be derived from
standard assumptions such as sub-exponentially hard decisional Diffie-Hellman [33] or Ring
Learning-with-Error [4], as well as other constructions like [31, 2]. We also mention that
quasi-polynomial security is known to be optimal for AC0[2] PRFs by [38] (see, e.g., [5]).

Our PRF constructions are the first to achieve extremely low-complexity (efficient evalu-
ation), short key length, and POLYLOGTIME-uniformity (parallel pre-processing) simultan-
eously from standard assumptions. Prior to our result, only PRF candidates with O(n logn)
key length computable by P-uniform circuits of the same sizes were known [13] in these three
circuit classes, improved on the linear-size NC1 PRFs by Ishai, Kushilevitz, Ostrovsky, and
Sahai [23] and the AC0[2] PRF due to Viola [43] with n · polylog(n) wire complexity and key
length. Our improvement could also improve the efficiency of other cryptographic primitives
involving PRFs such as message authentication code (MAC) and CCA-secure encryption
(see, e.g., [23, 5]). See Section 1.3 [13] for more discussions on low-complexity PRFs.

L. Chen, J. Li, and T. Yang 23:9

▶ Remark 1.9. As pointed out by an anonymous reviewer, assuming a PRF against exp(nε)-
time adversaries (as we did in Theorem 1.8), we can reduce the key length to polylog(n)
generically by directly applying such a PRF to the keys (here we are actually using the PRF
as a PRG of sub-exponential stretch). Particularly, let F = {Fn}n≥1 be the low-complexity
PRF in [13], m = m(n) ≤ poly(n) be the key length of Fn, and G = {Gn}n≥1 be a PRF
against exp(nε)-time adversaries. Let fn,k be the function in Fn with key k, and ttm(f) be
the first m bits in the truth table of the function f . We can define H = {Hn}n≥1 as

Hn =
{
fn,ttm(g) | g ∈ G⌈log2/ε m⌉

}
.

Then H is a PRF with the same circuit complexity as F , while the key length is only
poly(⌈log2/ε m⌉) = polylog(n). However, it is not clear how to directly reduce the uniformity
to POLYLOGTIME-uniform in this way.

1.4 Intuition
We now briefly discuss the ideas behind our new results. Since our hash construction is based
on the previous construction by Fan, Li, and Yang [13], we will first recall their original
construction and then discuss how to reduce the key length and make the construction
POLYLOGTIME-uniform and strongly explicit. After that, we will explain how to derive
sharp bootstrapping results and construct POLYLOGTIME-uniform PRFs from the new hash
construction.

1.4.1 Construction of randomness efficient almost-universal hash
functions

The 2n + o(n) almost universal hash in [13]. Our starting point is the low-complexity
hash function H in [13] from high-girth graphs14. The constructed H is linear over F2. Hence,
in order to make it almost universal, we only need to guarantee that for every non-zero input
x ∈ {0, 1}n \ 0n, H(x) ̸= 0 with high probability.

Their hash function H is the concatenation of two “hash functions” Hlight and Hheavy.
The former one ensures that Hlight(x) ̸= 0 with high probability for any non-zero x with
small Hamming weights (0 < |x| ≤ n/2), and the latter one ensures that Hheavy(x) ̸= 0 for
any x with large Hamming weights (|x| > n/2). The construction of Hheavy is quite simple:
for any non-zero input with Hamming weight larger than n/2, a random sampling of n/ logn
positions over all input bits includes a 1 with high probability; the hash Hlight that deals with
non-zero inputs with Hamming weights smaller than n/2 is in fact a combinatorial primitive
called 1-detector : a distribution L over n-bit functions such that for any non-zero x with
Hamming weight at most r (which is called the range of the 1-detector), L(x) ̸= 0 with high
probability.

Fan, Li, and Yang [13] presented a construction of low-complexity 1-detectors using
high-girth graphs. Consider an undirected graph with m vertices and n edges, the girth of G
is the length of the shortest cycle in it. Let G be a graph with n = Θ(m logm) and girth
g = Ω

(
log n

log log n

)
(see, e.g., [27, 7]), then the required 1-detector (with range r = n/2) is a

depth-1 CC0[2] circuit whose topology is the vertex-edge incident graph of G, with input
bits being randomly permuted. More formally, the edges of G are randomly permuted and

14 The girth of an undirected graph is the length of the shortest cycles in it. A high-girth graph usually
means a graph G = (V, E) with girth Ω(logk n), where k = 2|E|/|V | is the average degree of vertices.

CCC 2022

23:10 Extremely Efficient Constructions of Hash Functions with Applications

assigned to the n input bits of the circuit, and each of the m nodes in G is assigned to an
output gate computing the XOR of the input bits corresponding to the adjacent edges of the
node.

The crucial observation leading to the analysis of their construction is that every input x
with an all-zero output would imply a subset S of edges in G of size |x| such that every
vertex is adjacent to even number of edges in S, which further leads to a cycle in G of size at
most |x| that does not likely to exist in a high-girth graph.

Now we present the analysis more formally. We call a subset S of edges good if at least one
of the vertices is adjacent to an odd number of edges in S. It is easy to see that an input x
with non-zero output corresponds to a good subset of size |x|. Therefore, the 1-detector
above has range r if and only if for all 0 < ℓ ≤ r, a randomly chosen subset of size ℓ is good
with high probability. Consider the cases for ℓ < g and g ≤ ℓ ≤ n/2 separately.
1. Note that the graph has girth at least g = Ω

(
log n

log log n

)
. Every subset S of size ℓ < g

is good, since the induced subgraph of a bad subset S would contain a cycle of size at
most |S|.

2. Otherwise let ℓ ∈ [g, n/2]. We claim that if we have chosen all but the first ⌈g/3⌉ edges,
there will be at most one bad subset containing the ℓ− ⌈g/3⌉ chosen edges: if both S1
and S2 are two distinct bad subsets containing them, their symmetric difference S1 ⊕ S2
would also be a bad subset of size at most 2⌈g/3⌉ < g, which is impossible as discussed
above. This means that if a subset of edges of size ℓ is randomly chosen, it will not hit a
bad subset with high probability.

Derandomizing the construction. The original hash in [13] requires O(n logn) bits of seed
in Hlight to permute the input bits and another O(n) bits of seed in Hheavy to randomly sample
n/ logn input bits. To reduce the overall seed length to polylog(n), we need to derandomize
both of these two parts.

To derandomize Hlight (i.e., the 1-detector L based on high-girth graphs), we need to look
into the correctness proof of it. Let x be an input with Hamming weight smaller than the
range r of the 1-detector. It can be verified that the analysis of the 1-detector is correct as
long as the 1-indices of x are randomly permuted (i.e., the 1-indices are randomly assigned
to distinct edges in G). So if we restrict ourselves to the cases r = log3 n (instead of n/2 in
[13]), then a log3 n-wise (almost) independent permutation15 would already be sufficient. In
particular, we use the k-wise ε-dependent permutation by Kaplan, Naor, and Reingold [25]
with seed length O(k logn+ log(1/ε)) = O(log4 n), where k = log3 n and ε = exp(− log2 n)
in our setting.

Apart from the 1-detector, we also need to derandomize the random sampling part in
Hheavy. We need to carefully choose the parameters so that we can handle all x with Hamming
weights greater than log3 n (since our 1-detector can only handle those below this threshold).
In order to achieve negligible collision probability, we can sample n/ logn number of bits.
This is done with a folklore sampling trick via k-wise independent hash functions, which
requires O(log4 n) bits of randomness using [1].

Note that the collision probability of our derandomized hash function is exp(−Ω(log2 n
log log n)),

which is the same as the original construction in [13] up to the constant hidden in Ω(·).

15 A k-wise almost independent permutation is a distribution F of permutations over [n] such that for
all 0 ≤ i0 < i1 < · · · < ik−1 < n, the distribution (F(i0), F(i1), . . . , F(ik−1)) is statistically close to
(R(i0), R(i1), . . . , R(ik−1)), where R is a truly random permutation.

L. Chen, J. Li, and T. Yang 23:11

Reducing the output length. The hash function above has Θ(n/ logn) output bits, whereas
an ordinary universal hash with the same collision probability has output length only
polylog(n). Fortunately, the output length can be reduced to polylog(n) with little overhead
in seed length and circuit complexity. Since the composition of two almost universal hash
functions is still almost universal, we compose the hash above with itself to reduce the output
length to Θ(n/ log2 n). We can then compose the resulting hash function with an almost
universal hash with output length polylog(n) and (CC0[2]) circuit complexity o(n log2 n) in
[9] based on ε-biased sets [1] and expander walks, the overall circuit complexity can still be
bounded by 2n+ o(n).

In fact, there is a trade-off between circuit depth and seed length in our hash construction
by setting up the parameters more carefully. The approach described above can be computed
by depth-3 CC0[2] circuits and requires a seed length O(log4 n). If we allow the depth to be
300, the seed length can be reduced to log3.01 n.

Making the construction explicit and uniform. There are several main components in our
hash construction that are not obviously strongly explicit and POLYLOGTIME-uniform. The
first one is the high-girth graph construction of 1-detectors in Hlight. We observe that the
local topology around an edge or vertex in the high-girth graphs constructed by [27] can be
obtained within poly-logarithmic time; see Appendix A for a formal argument. The k-wise
almost-independent random permutation used in our 1-detectors for Hlight is also strongly
explicit according to [25]. Therefore Hlight is strongly explicit. It is also easy to verify that
Hheavy is strongly explicit given the k-wise ε-dependent distribution in [1]. Finally, the hash
function in [9] for shrinkage reduction is strongly explicit, since both of its two components
(i.e., ε-biased sets and expander graphs) are strongly explicit (see [25, 3]).

1.4.2 Applications to hardness magnification and construction of PRFs
Sharp hardness magnification. We first show how to apply our new hash construction to
obtain an extremely sharp hardness magnification result for all sparse NP languages (i.e.,
Theorem 1.2 and Theorem 1.3), following [9, 10]. Recall that [9, Theorem 1.2] proved that
if there is a 2no(1)-sparse NP language L that cannot be computed by cn-size probabilistic
circuits for some big constant c≫ 1, then NP ⊈ SIZE[nk] for all constant k.

[9, Theorem 1.2] is proved by taking the contrapositive: assuming that NP ⊆ SIZE[nk] for
some k, we first sample h from a proper hash function family to kernelize any sparse language
L in NP (i.e., a randomized reduction from the sparse language L to another (non-sparse)
NP problem L′ with much smaller input size m≪ n1/k), then use the SIZE[nk] circuit D for
L′ (which has size mk ≪ n) to solve L. Now, composing the hash function h together with
D gives a linear-size probabilistic circuit computing L. This proves the contrapositive of our
desired theorem. Due to technical reasons, in the proof above one also has to combine the
hash function h with an error-correcting code. While there is an efficient construction of
linear-size error-correcting codes [40], it has size cn for some constant c≫ 2. Hence, the size
of encoding circuits for error-correcting codes become the bottleneck which prevents further
improvement.

We are able to avoid using error-correcting codes by utilizing properties of the new
almost-universal hash construction (the construction of [9] works for all k-perfect hash).
In more details, let H(v, x) : {0, 1}O(ℓ log2 n) × {0, 1}n → {0, 1}m(n) be the hash function
given by Theorem 1.1 with ℓ = log2 n/ log logn. For any sparse language L, we define
an intermediate problem as follows: L′ = {(v, h) | ∃x ∈ {0, 1}n ∩ L s.t. H(v, x) = h}.
By the definition, for any no-instance x ∈ {0, 1}n \ L, the probability that there exists

CCC 2022

23:12 Extremely Efficient Constructions of Hash Functions with Applications

an yes-instance x′ ∈ L ∩ {0, 1}n having the same hash value with x can be bounded by
exp(−Ω(ℓ)) · |L ∩ {0, 1}n| = n−ω(1). Hence by checking whether (v,H(v, x)) ∈ L′ for a
random seed v, we can determine with high probability whether x ∈ L. This gives us a
simple probabilistic circuit to decide L that only needs one evaluation of the hash function H
(which is of circuit complexity 2n+ o(n)) and one oracle query to L′. Given the assumption
that NP ⊆ SIZE[nk], we can show that L′ can be decided by circuits of size o(n), hence the
overall circuit complexity would be 2n+ o(n).

Uniform pseudorandom functions. We now briefly describe how our hash function can be
used to obtain POLYLOGTIME-uniform pseudorandom functions with polylog(n) key length.
Following the framework established in [23, 13], we use Levin’s trick, which says that the
composition of a PRF and an almost universal hash function is also pseudorandom. More
formally, let F = {Fn}n≥1 be a family of PRF secure against any exp(nε)-time adversary,
and H = {Hn}n≥1 be an almost universal hash function with output length logc n, then
the composition F ◦ H is also a PRF against any polynomial-time adversary as long as
c > ε−1. Let c = 2ε−1 and C be any circuit class. By assuming a PRF (secure against any
exp(nε)-time adversary) with polynomial key length computable by P-uniform C-circuits of
size o(exp(nε)), we can then obtain a PRF (secure against any polynomial-time adversary)
computable by POLYLOGTIME-uniform 2n+ o(n) size C-circuits with polylog(n) key length,
using our POLYLOGTIME-uniform efficient hash with polylog(n) seed length. Note that for
C ∈ {B2,NC1,AC0[2]}, we can implement such PRF candidates by plugging in standard
constructions based on the existence of OWFs against any sub-exponential adversary for
B2 circuits, and decisional Diffie-Hellman [33] or Ring Learning-with-Errors [4] for NC1 and
AC0[2] circuits.

2 Preliminaries

Notation. We define [n] ≜ {0, 1, . . . , n− 1}, Bn,m as the set of all functions from Fn
2 to Fm

2
and Bn ≜ Bn,1. The Hamming weight of x ∈ Fn

2 , denoted by |x|, is defined as the number
of 1’s in x; the Hamming distance ∆(x, y) of x and y from Fn

2 is defined as the Hamming
weight of the bitwise XOR of them. The concatenation of two strings x and y is denoted by
x∥y, and the ith bit of x (0-indexed) is denoted by xi. Graphs are undirected by default. We
assume that all functions used as parameters of our constructions are poly-logarithmic time
constructible, i.e., for any function ℓ(n) that is used as a parameter in our results, there is a
polynomial-time algorithm A such that A(n) outputs the binary representation of ℓ(n).

We use x ← D to denote a random element x sampled from a distribution D, and
D(x0) ≜ Prx←D[x = x0]. Natural numbers are represented in binary when being fed into
Turing machines or circuits; and 1n represents the unary representation of n. We assume
basic familiarity with cryptographic primitives like one-way functions and pseudorandom
functions, and typical complexity classes like P, NP, and ⊕P (see, e.g., [3]).

2.1 Probability Theory
Let U(S) be the uniform distribution supported on a set S, and Uℓ ≜ U({0, 1}ℓ). A family
D = {Dn}n≥1 of distributions is said to be samplable with seed length ℓ(n) (or ℓ(n)-samplable)
if there is a polynomial-time algorithm A such that A(1n,Uℓ(n)) samples Dn. For every
s ∈ {0, 1}ℓ, we say A(1n, s) is the element corresponding to the seed s.

L. Chen, J. Li, and T. Yang 23:13

The statistical distance between two distributions D1 and D2 over a set S, denoted by
SD(D1,D2), is defined as

SD(D1,D2) ≜ 1
2
∑
u∈S

|D1(u)−D2(u)| .

A distribution D2 is said to be δ-close to D1 if their statistical distance is at most δ.
Statistical distance characterizes the intractability of distinguishing two distributions by

any test (even computationally unbounded): if D1 and D2 have statistical distance at most
δ, then for any stochastic process T , |Pru←D1,T [T (u) = 1]− Pru←D2,T [T (u) = 1]| ≤ δ.

2.2 Circuit Classes
In this paper we will work with various circuit classes. In general, a circuit is an acyclic graph
where each of its nodes can be an input variable, a constant c ∈ {0, 1}, or a gate. One or
more nodes are marked as output nodes (together with an index i denoting the corresponding
output bit). The depth of a circuit is the number of edges on the longest path from any input
variable to an output node. An n-input m-output circuit computes a function in Bn,m.
B2 circuits. A B2 circuit (or general circuit) contains fan-in-2 gates that can compute any

binary function f ∈ B2. The size of a B2 circuit refers to the number of gates involved.
NC1 circuits. An NC1 circuit is a B2 circuit with O(logn) depth. Note that a single-output

NC1 circuit of depth d can be converted into a formula of size O(2d).
CC0[2] circuits. A CC0[2] circuit is a constant-depth circuit with only XOR gates of unboun-

ded fan-in. It is easy to see that CC0[2] circuits can only compute linear functions over
F2. The complexity of a CC0[2] circuit is usually measured by the number of wires.

AC0[m] circuits. An AC0[m] circuit is a constant-depth circuit with fan-in-1 NOT gates and
unbounded fan-in gates over {AND,OR,MODm}, where MODm(x1, . . . , xk) = 1 if and
only if x1 + x2 + · · ·+ xk ≡ 0 (mod m). Similar to CC0[2] circuits, the complexity of an
AC0[m] circuit is measured by the number of wires.

A probabilistic B2 circuit (or simply a probabilistic circuit) with input size n and output
size m is a distribution Cn over n-input m-output B2 circuits. The circuit complexity of a
probabilistic circuit is defined as the maximum complexity of functions in its support. A family
C = {Cn}n≥1 of n-input 1-output probabilistic circuit is said to decide a language L with error
probability ε = ε(n) if for sufficiently large n and all x ∈ Fn

2 , PrC←Cn
[C(x) ̸= L(x)] ≤ ε.

2.3 Hash and 1-detector
▶ Definition 2.1 (Almost universal hash function). Let m = m(n) and ε = ε(n) be two
parameters. An m-output ε-almost universal hash function is a family of distributions
H = {Hn}n≥1, where Hn is supported on Bn,m, such that Prh←Hn [h(x) = h(y)] ≤ ε(n) for
all x ̸= y and sufficiently large n. The parameter ε is called its collision probability. It is
linear if every function in the support of Hn is linear. It is said to be s(n)-samplable if the
family H of distributions is samplable with seed length s(n).

We will make heavy use of the notion of 1-detectors in [13], as parts of our almost universal
hash construction.

▶ Definition 2.2 (1-detector). An m-output (randomized) 1-detector with range r and error
ε is a family of distributions D = {Dn}n≥1, where Dn is supported on linear functions in
Bn,m, such that for sufficiently large n, PrL←Dn [L(x) ̸= 0] ≤ ε(n) for all x ∈ Fn

2 satisfying
0 < |x| ≤ r. It is said to be s(n)-samplable if the family D of distributions is samplable with
seed length s(n).

CCC 2022

23:14 Extremely Efficient Constructions of Hash Functions with Applications

We emphasize that the definition requires the functions in the family of distributions to be
linear. This ensure that, for any randomized 1-detector Dn with range r and error ε, and any
x1 ̸= x2 with Hamming distance at most r, it holds that PrL←Dn

[L(x1) ̸= L(x2)] ≤ ε(n).
The shrinkage of a hash function (or 1-detector) is defined as the input length n divided

by the output length m (e.g., poly-logarithmic shrinkage means m = n/polylog(n)).

2.4 ε-biased set and k-wise independence
To derandomize the low-complexity hash function in [13], we need several standard deran-
domization tools including strongly explicit ε-biased sets, k-wise independent distributions,
and k-wise independent permutations.

▶ Definition 2.3 (ε-biased set). For any n ≥ 1 and ε ∈ (0, 1/2), a set S ⊆ Fn
2 is said to be

ε-biased if for all non-zero v ∈ Fn
2 , Prw←S [⟨w, v⟩ = 0] ∈ [1/2− ε, 1/2 + ε].

▶ Theorem 2.4 (Alon, Goldreich, Håstad, and Peralta [1]). For any constant ε ∈ (0, 1/2),
there is a family {Sn ⊆ Fn

2}n≥1 of ε-biased sets such that |Sn| = Õ(n2). Moreover, there is
an algorithm A(n, i, j) running in time poly(logn) that computes the jth bit of the ith vector
in Sn.

▶ Definition 2.5. A k-wise ε-dependent distribution with length n and alphabet size p is a
distribution D over [p]n such that for all 0 ≤ i1 < i2 < · · · < ik < n, the distribution over
[p]k obtained by restricting D to the ith

1 , i
th
2 , . . . , i

th
k coordinates is ε-close to the uniformly

distribution over [p]k. It is said to be a k-wise independent distribution if ε = 0.

▶ Theorem 2.6 (Alon, Goldreich, Håstad, and Peralta [1]). Let ε = ε(n) > 0 be a parameter.
There is an algorithm A such that A(1n, k,Ur) runs in time poly(n, log(1/ε)) and samples a
k-wise ε-dependent distribution with length n and alphabet size 2 for every 1 ≤ k ≤ n, where
r = O(k+ log logn+ log(1/ε)). Moreover, there is an algorithm B such that B(n, k, v, i) runs
in poly(logn, k, log(1/ε)) time and computes the ith coordinate of the string corresponding to
the seed v.

▶ Definition 2.7. Let n ≥ 1 be the number of elements, and Pn be the set of all permutations
over [n]. A k-wise ε-dependent permutation is a distribution D over Pn such that for all
0 ≤ i1 < i2 < · · · < ik < n, the distribution of (f(i1), f(i2), . . . , f(ik)) with f ← D is ε-close
to the uniform distribution over {(j1, j2, . . . , jk) | j1, . . . , jk ∈ [n] are pairwisely distinct}.

▶ Theorem 2.8 (Kaplan, Naor, and Reingold [25], Theorem 5.9). Let n be a power of 2,
2 ≤ k ≤ n, and ε > 2−n. There is an n-element k-wise ε-dependent permutation that is
samplable with seed length O(k logn+log(1/ε)). Moreover, there is an algorithm A(n, v, i) that
runs in poly(logn, k, log(1/ε)) time and outputs ρv(i) for the permutation ρv corresponding
to the seed v.

2.5 Expander Graphs
We will need strongly explicit expander graphs in our proofs. We first recall the definition of
expander graphs.

▶ Definition 2.9. An n-vertex d-regular graph G is called an (n, d, λ) expander graph (or
(n, d, λ)-graph) if λ2(G) ≤ λ, where λ2(G) denotes the second largest eigenvalue of normalized
adjacency matrix (i.e., adjacency matrix divided by d) of G. A family of graphs {Gn}n≥1 is
an expander graph family if there exists constants d and λ < 1 such that for all sufficiently
large n, Gn is an (n, d, λ)-graph.

L. Chen, J. Li, and T. Yang 23:15

We will make use of the following construction of strongly explicit expander graphs.

▶ Theorem 2.10 (Strongly explicit expander; see [3, Theorem 21.19]). There exists an
expander graph family {Gn}n≥1 and an algorithm A(n, v, i) that runs in polylog(n) time (i.e.,
polynomial in input length) and outputs the ith neighbor of the node v in Gn, where v ∈ [n]
and i ∈ [d].

Performing random walk on expanders is a standard derandomization technique. Consider
the task to find a good element from n elements in which there is a constant fraction of them
being good. A trivial approach is to sample ℓ independently random elements, which has
exp(−Ω(ℓ)) error probability but requires ℓ logn random bits. By applying the following
lemma, we can reduce the randomness complexity to O(logn+ ℓ) while keeping the error
probability to be exponentially small.

▶ Lemma 2.11 (Expander walk; see [3, Theorem 21.12]). Let G be an (n, d, λ)-graph and S
be a subset of vertices of size at most βn for some β ∈ (0, 1). Let X1, X2, . . . , Xk be random
variables denoting a random walk in G (where X1 is uniformly chosen), then

Pr[∀1 ≤ i ≤ k,Xi ∈ S] ≤
(

(1− λ)
√
β + λ

)k−1
.

2.6 Graph with large girth
The girth of an undirected graph is the length of the minimum cycle in it. We need the
following construction of strongly explicit graphs with large girth.

▶ Theorem 2.12 (Adapted from [27]; see Appendix A). Let r = r(n) = no(1) be a parameter.
For every sufficiently large n, there exists an m = Θ(n

r) and a regular graph Gm,n with
m vertices, n edges, and girth Ω(log n

log r). Moreover, there exists a polylog(n)-time algorithm
A(n, i) for i ∈ [n] that outputs the indices of the two endpoints of the ith edge in Gm,n, and
a polylog(n)-time algorithm B(n, i, j) for i ∈ [m] that outputs the jth edge attaching to the
ith vertex.

3 Randomness-efficient low-complexity hash functions

In this section, we present constructions of randomness-efficient low-complexity hash functions
with various parameters and properties.

In Section 3.1, we show almost universal hash functions can be constructed from 1-
detectors (Lemma 3.2). In Section 3.2 we give a derandomized version of construction of
1-detectors from [13] based on high-girth graphs (Lemma 3.3), and use that to construct
a low-complexity hash function with poly-logarithmic seed-length and n/polylog(n) output
length (Theorem 3.4).

In Section 3.3, we show how to reduce the output length from n/polylog(n) to polylog(n),
by composing almost universal hash families. Finally, in Section 3.4 and 3.5, we establish
the uniformity and explicitness of our constructions, which are essential for our applications
to hardness magnification and PRF constructions.

Notation. In this section, for a construction H with parameters a, b, c, we will use Hâ,b̂,ĉ to
denote the specific construction H with the parameters specified to â, b̂ and ĉ. When the
parameters are obvious from the context, we often omit the subscripts and simply write it
as H.

CCC 2022

23:16 Extremely Efficient Constructions of Hash Functions with Applications

3.1 General construction from 1-detectors
We first give a general construction of almost universal hash functions from 1-detectors, using
the following sampling procedure.

▶ Lemma 3.1. For all integers n, b and r such that b ≤ n and max{10n/b, 10 log logn} ≤
r ≤ n, there is a distribution Dsamp

n,b,r supported on [n]b samplable by O(r log(n/b)) bits, such
that the following conditions hold:

1. (Hitting Condition). For all x ∈ Fn
2 with |x| ≥ r, it holds that

Pr
(w0,...,wb−1)←Dsamp

n,b,r

 ∧
j∈[b]

[xwj = 0]

 ≤ 2 exp
(
− br2n

)
. (1)

2. (Ordering) For every (w0, . . . , wb−1) ∈ supp(Dsamp
n,b,r), it holds that w0 < w1 < · · · < wb−1.

3. (Explicitness) There are algorithms Asamp
n,b,r(v, i) and Bsamp

n,b,r(v, j) running in poly(logn, r)
time such that

Asamp
n,b,r(v, i) outputs

{
j if wj = i for some j ∈ [b],
⊥ otherwise;

Bsamp
n,b,r(v, j) outputs wj .

where (w0, . . . , wb−1) ∈ supp(Dsamp
n,b,r) is the vector corresponding to the seed v.

Proof. We firstly describe a sampling procedure that satisfies Equation (1) but has a long
seed length and then reduce the seed length to O(r log(n/b)) bits using the explicit k-wise
ε-dependent distribution from Theorem 2.6. The sampling procedure is simple: we first
partition [n] into b consecutive groups g0, g1, . . . , gb−1 of size either ⌊n/b⌋ or ⌈n/b⌉; we then
uniformly choose an ij ∈ gj for each j ∈ [b]; finally we output the tuple (i0, i1, . . . , ib−1).

For any x ∈ Fn
2 with Hamming weight at least r, for some ℓ ≤ r, there are ℓ groups such

that there are at least r 1-indices (i.e., the corresponding bits of x are 1) in these groups.
Assume that there are aj 1-indices in the jth among these ℓ groups. The probability that
none of the 1-indices is sampled is at most

ℓ∏
j=1

(
1− ajb

2n

)
≤ exp

 ℓ∑
j=1

log
(

1− ajb

2n

) ≤ exp

− ℓ∑
j=1

ajb

2n

 ≤ exp
(
− br2n

)
. (2)

A trivial implementation of the sampling procedure above needs seed length O(b log(n/b)):
for each group, we sample a random binary string of length t ≜ ⌈log(n/b)⌉ indicating the
index we want to choose. Therefore, we would need to sample bt bits in total. The observation
here is that the argument in (2) only involves ℓ ≤ r groups. Hence, the analysis still works if
we sample those required bt bits from an rt-wise exp(−br/(2n))-dependent distribution with
alphabet 2. Note that this incurs an additional error of exp(−br/(2n)).

By Theorem 2.6, the distribution is samplable with seed length

O(rt+ log log(bt) + br/(2n)) = O(r log(n/b)),

and the algorithms Asamp
n,b,r and Bsamp

n,b,r can be constructed straightforwardly from the algorithm
B in Theorem 2.6.16 ◀

16 To compute Asamp
n,b,r(v, i) for some i belonging to the group ga, we only need to check if i is the selected

element of the group ga, and then output a if the answer is yes, and output ⊥ otherwise.

L. Chen, J. Li, and T. Yang 23:17

Now we are ready to give the construction of our hash function from 1-detectors. Recall
that their definitions are given in Section 2.3.

▶ Construction 1 (Hash function HL from 1-detectors L). Let n be the input length and
b(n) = o(n) be a parameter. Given a randomized 1-detector L = {Ln}n≥1 with range r̂, we
construct a hash function HLb = {Hn}n≥1 as follows.

Let Dsamp be the distribution in Lemma 3.1 with parameters n, b and r = r̂. For each
L in the support of L and each D = (j0, . . . , jb−1) in the support of Dsamp, we define a
function hL,D as

hL,D(x) ≜ L(x)∥xj0∥xj1∥ . . . ∥xjb−1 .

Hn is then defined to be the distribution generated as follows: sample L ← Ln and
D ← Dsamp, and then output hL,D.

We show that Construction 1 indeed gives almost universal hash functions.

▶ Lemma 3.2 (HL is a linear almost universal hash). Let L = {Ln}n≥1 be an m̂-output
ŝ-samplable randomized 1-detector with error ε̂ and range r̂, such that m̂ = o(n) and
r̂ = ω(logn). Let b = b(n) = o(n) be a parameter and r = r(n) = r̂(n). The followings hold
for HLb :
1. HLb has output length m = m̂+ b.
2. HLb is (ŝ+ r̂ log(n/b))-samplable.
3. HLb is a linear ε-almost universal hash function, where ε ≜ ε̂+ exp(−Ω(br/n)).

Proof. The first two items follow directly from the definition of HL from Construction 1. So
we will only establish the last item. We need to show that for any two inputs x1 ̸= x2 from
{0, 1}n, their hash values collide with probability at most ε.

Consider the following two cases depending on whether the Hamming distance between
x1 and x2 is small or large:

If 0 < ∆(x1, x2) ≤ r, then by the definition of randomized 1-detector (Definition 2.2),
L(x1) equals to L(x2) with probability at most ε̂ for L ← Ln (note that L is a linear
function over F2). Since the hash values contain the output of the 1-detector as the first
m̂ bits, the hash values collide with probability at most ε̂.
If ∆(x1, x2) > r, then y ≜ x1 ⊕ x2 has Hamming weight at least r. By Lemma 3.1, a ran-
dom D ← Dsamp

n,b,r fails to contain all 1-indices of y with probability at most exp(−Ω(br/n)),
which means that the last b bits of the hash values of x1 and x2 collide with probability
at most exp(−Ω(br/n)).

It follows immediately that the collision probability is at most ε = ε̂+ exp(−Ω(br/n)). ◀

3.2 Randomness-efficient low-complexity 1-detectors
Now we will present the construction of randomness-efficient low-complexity 1-detectors.
Applying Lemma 3.2, this construction yields a hash function with inverse-super-polynomial
collision probability, short seed length, and moderately large shrinkage.

Intuition. Our construction is essentially a derandomized version of the randomized 1-
detector based on high-girth graphs in [13]. The randomized 1-detector supports on depth-1
CC0[2] circuits with o(n) gates and wire-complexity 2n. The topology of any depth-1
CC0[2] circuit can be considered as the edge-vertex incident graph of an undirected graph
Gm,n = (V,E), that is, we identify the m gates with the vertices, and the n variables with

CCC 2022

23:18 Extremely Efficient Constructions of Hash Functions with Applications

the edges in the graph. One can check that if Gm,n has girth g, the corresponding circuit
would directly make a (deterministic) m-output 1-detector with range g − 1: assume that
it is not the case, the bad input x with Hamming weight w < g specifies a subset of edges
T ⊆ E which forms a Eulerian cycle of size w < g. By a similar argument, [13] boosts the
range to n/2 by randomly permuting the input bits.

The construction of [13] does not suffice for our application because we need Θ(n logn)
bits to sample a random permutation. Fortunately, it can be derandomized. By looking into
its correctness proof, we can see that if we replace the random permutation by an r-wise
almost independent permutation (see Theorem 2.8), it can still achieve 1-detection for range
r and roughly quasi-polynomial error probability.

Now we specify the construction of our 1-detector Lhg (hg stands for high-girth graphs).

▶ Construction 2 (Construction of the 1-detector Lhg from high-girth graphs). Let k =
k(n) = no(1) be the shrinkage parameter, logn ≤ r(n) ≤ n/2 be the range. Let γ = γ(n) ≜
log2 n/ log k. Lhg

k,r = {Ln}n≥1 is constructed as follows.

Let n′ be the smallest power of two that is larger than n. Let Gm,n′ be the regular graph
with m = Θ(n′/k) vertices, n′ edges, and girth g = Θ(logn/ log k) from Theorem 2.12.
Let D = {Dn′} be the explicit family of r-wise 2−γ-dependent permutation in Theorem 2.8.
Let Γ(i) be the set of indices of edges incident to the ith vertex in Gm,n′ . For each
permutation σ ∈ supp(Dn′), we define a function Lσ : {0, 1}n → {0, 1}m as

Lσ(x)i ≜
⊕

j∈[n] s.t. σ(j)∈Γ(i)

xj ∀i ∈ [m].

Ln is then defined to be the distribution generated as follows: sample σ ← Dn′ and then
output Lσ.

▶ Lemma 3.3 (Lhg is a 1-detector). Let k = k(n) = no(1) be the shrinkage parameter,
logn ≤ r(n) ≤ n/2 be the range. The followings hold for Lhg

k,r = {Ln}n≥1:

1. Lhg
k,r has output size Θ(n/k) and seed length O(r logn).

2. Every L ∈ Ln can be computed by depth-1 CC0[2] circuits of wire complexity at most 2n,
or B2 circuits of size 2n and depth log k +O(1).

3. Lhg
k,r is a randomized 1-detector with range r and error exp(−Ω(log2 n/ log k)).

Proof. Recall that γ = log2 n/ log k from Construction 2. For the first item, the output size
follows directly from the definition of Lhg

k,r. The seed length of Lhg
k,r equals the seed length of

the required r-wise 2−γ-dependent permutation, which is O(r logn+ γ) = O(r logn) from
Theorem 2.8 (note that r ≥ logn). The second item follows directly from the definition of
Lσ in Construction 2 together with the fact that Gm,n′ has maximum degree O(k) (since it
is regular).

In the rest of the proof we establish the third item. We need to show that for any non-zero
x ∈ Fn

2 , the probability that L(x) = 0 with L← Ln is at most exp(−Ω(γ)). For any input x
with Hamming weight 0 < |x| < g (where g is the girth of Gm,n), we must have Lσ(x) ̸= 0
for all σ ∈ Dn′ , since otherwise we can extract from the edges {σ(i) | xi = 1∧ i ∈ [n]} a cycle
of size length less than g. Now we consider the case when g ≤ |x| ≤ r. Let i1, i2, . . . , i|x| be
the indices corresponding to the 1’s in x (i.e., xij

= 1 for all j). Since our construction is
linear, only these bits can influence the output. Also, by the r-wise 2−γ-dependence of Dn′ ,
we have

L. Chen, J. Li, and T. Yang 23:19

Pr
σ←Dn′

[Lσ(x) = 0] = Pr
σ←Dn′

 ∧
i′∈[m]

[|{ij | σ(ij) ∈ Γ(i′)}| is even]


≤ Pr

S⊆[n′],|S|=|x|

 ∧
i′∈[m]

[|S ∩ Γ(i′)| is even]

+ 2−γ

= E
S⊆[n′]
|S|=|x|−α

 Pr
S′⊆[n′]\S
|S′|=α

 ∧
i′∈[m]

[|(S ∪ S′) ∩ Γ(i′)| is even]


+ 2−γ .

(
α ≜

⌈
g
3
⌉)

The final observation is that for any fixed S, there should be at most one S′ satisfying the
condition in the summation. Indeed, if two sets S′1 and S′2 satisfy the condition at the same
time, then the symmetric difference of them contains a cycle in Gm,n′ of length 2α < g for
sufficiently large n, contracting the fact that Gm,n′ has girth g. In particular, it means for
every fixed S, we have

Pr
S′⊆[n′]\S
|S′|=α

 ∧
i′∈[m]

[|(S ∪ S′) ∩ Γ(i′)| is even]

 ≤ 1(
n′ − |x|+ α

α

) .
Since α = ⌈g/3⌉ = Θ(logn/ log k), putting everything together, for sufficiently large n we
have

Pr
σ←Dn

[Lσ(x) = 0] ≤ 1(
n′−|x|+α

α

) + 2−γ = exp(−Ω(γ)). ◀

Plugging Lhg into Construction 1 with appropriately chosen parameters, we immediately
obtain a linear hash Hmd with poly-logarithmic seed length and shrinkage as follows. (Here
md stands for moderate, meaning that the hash has moderate (poly-logarithmic) shrinkage.)

▶ Construction 3 (Construction of hash Hmd with poly-logarithmic shrinkage). Let β ∈ (0, 2]
be a constant and ω(logn) ≤ δ(n) ≤ O(log2 n

log log n) be the error parameter. Hmd
β,δ = {Hn}n≥1 is

constructed as follows.
Setting k = logβ n and r = δ logβ n, Lhg = Lhg

k,r (from Construction 2) is an O(δ logβ+1 n)-
samplable Θ(n/ logβ n)-output randomized 1-detector with range r and error exp(−Ω(δ)).
Setting b = n/ logβ n, Hmd is now defined to be HLhg

b (from Construction 1).

The following theorem follows directly from the Construction 3, Lemma 3.2, and
Lemma 3.3.

▶ Theorem 3.4 (Properties of the intermediate hash construction Hmd). Let β ∈ (0, 2] be
the shrinkage parameter and ω(logn) ≤ δ(n) ≤ O(log2 n

log log n) be the error parameter. The
followings hold for Hmd

β,δ = {Hn}n≥1:
1. Hmd

β,δ is a linear O(δ logβ+1 n)-samplable Θ(n/ logβ n)-output exp(−Ω(δ))-almost universal
hash function.

2. Every H ∈ Hn can be computed either by a depth-1 CC0[2] circuit of wire complexity 2n,
or by a B2 circuit of size 2n and depth β log logn+O(1).

CCC 2022

23:20 Extremely Efficient Constructions of Hash Functions with Applications

3.3 Shrinkage reduction of hash function
Now we reduce the output length of the hash functionHmd in Construction 3 from n/polylog(n)
to polylog(n) with little overhead in its circuit complexity and seed length, which is crucial
for our applications. The idea is simple: we composite it with a hash with large shrinkage,
short seed length, and relatively larger circuit complexity. In particular, we can use the
following hash construction Hexpw of Chen, Jin, and Williams [9]. (Here expw stands for
expander walk.)

▶ Construction 4 (Hash function Hexpw from expander walk [9]). Let ℓ = ℓ(n) be the output
length. Hexpw

ℓ = {Hn}≥n is constructed as follows.

Let {Sn}n≥1 be a family of 0.1-biased set from Theorem 2.4 and {Gn}n≥1 be the family
of strongly explicit expanders from Theorem 2.10. Assume that Sn = {w0, w1, . . . , wt−1}
for t = Õ(n2).
For each walk v = (v0, v1, . . . , vℓ−1) ∈ [t]ℓ of length ℓ on Gt, we define a hash function
hv : {0, 1}n → {0, 1}ℓ as

hv(x) ≜ ⟨wv0 , x⟩ ∥ ⟨wv1 , x⟩ ∥ . . . ∥
〈
wvℓ−1 , x

〉
,

where ⟨a, b⟩ denotes the inner product over F2.
Hn is then defined to be the distribution generated as follows: samples a random walk v
of length ℓ on Gt uniformly at random, then outputs hv.

▶ Lemma 3.5 (Properties of the hash construction Hexpw from [9]). Let ℓ = ℓ(n) be the output
length. The followings hold for Hexpw

ℓ = {Hn}n≥1:
1. Every H ∈ supp(Hn) can implemented by a depth-1 CC0[2] circuit of wire complexity nℓ

or a B2 circuit of size nℓ and depth logn+O(1).
2. Hexpw

ℓ is a linear O(logn + ℓ)-samplable ℓ-output exp(−Ω(ℓ))-almost universal hash
function.

Proof. The first item follows directly from the definition of hv from Construction 4. In the
following we establish the second item.

The linearity, seed length, and output length are straightforward to verify, thus we only
analyze the collision probability. Since the hash function is linear, we only need to show that
for any non-zero x ∈ Fn

2 , Prh←Hn
[h(x) = 0] ≤ exp(−Ω(ℓ)). By Theorem 2.4, we know that for

any non-zero x, at least 0.4 fraction of vectors w ∈ Sn satisfies ⟨w, x⟩ = 1. Then by Theorem
2.11, a random walk of length ℓ will find one of such w with probability 1− exp(−Ω(ℓ)). This
immediately implies that h(x) ̸= 0 with probability at most exp(−Ω(ℓ)) for h← Hn. ◀

Next we formally define the composition of two hash function families.

▶ Definition 3.6 (Composition of hash families). Let F = {Fn}n≥1 and G = {Gn}n≥1 be two
families of hash functions. The composition of F and G is defined as F ◦ G = {(F ◦ G)n}n≥1,
where (F ◦ G)n is the following distribution: let m = m(n) be the output length of G, we
sample f ← Fm and g ← Gn, and then output f ◦ g.

The following proposition is crucial for the analysis of our final hash construction.

▶ Proposition 3.7. The composition H′ ◦ H of an ε1-almost universal hash function H′
and an ε2-almost universal hash function H is an (ε2(n) + ε1(m(n)))-almost universal hash
function, where m(n) is the output length of H. Moreover, H′ ◦ H is linear if both of H′ and
H are linear.

L. Chen, J. Li, and T. Yang 23:21

The following is a simple corollary of Proposition 3.7.

▶ Corollary 3.8. For any t ≥ 2, non-increasing ε = ε(n), and output length parameter
ℓ(n) ≤ n, the tth order composition of an ℓ-output ε-almost universal hash H with itself,
denoted by H◦t, is also a hash function with collision probability t·ε(ℓ̂), where ℓ̂ = ℓ◦ℓ◦· · ·◦ℓ(n)
(t− 1 times) is the input of the outer-most hash. Moreover, H◦t is linear if H is linear.

We are now ready to specify our final hash construction Hfinal with polylog(n) output length.

▶ Construction 5 (Construction of Hfinal with polylog(n) output length). Let β ∈ (0, 2] be a
parameter and ω(logn) ≤ ℓ(n) ≤ O(log2 n

log log n) be a non-decreasing function. We define

Hfinal
β,ℓ ≜ Hexpw

ℓ ◦
(
Hmd

β,ℓ

)◦⌈ 2
β ⌉ .

We analyze the properties of Hfinal constructed above by combining the composition
proposition (Proposition 3.7 and Corollary 3.8) together with properties of Hexpw (Lemma 3.5)
and Hmd (Theorem 3.4).

▶ Theorem 3.9 (Properties of the final hash construction Hfinal). Let β ∈ (0, 2] be a constant
and ω(logn) ≤ ℓ(n) ≤ O(log2 n

log log n) be a non-decreasing function. The followings hold for
Hfinal

β,ℓ = {Hn}n≥1:

1. Hfinal
β,ℓ is a linear O(ℓ logβ+1 n)-samplable Θ(ℓ̂)-output exp(−Ω(ℓ̂))-almost universal hash

function, where ℓ̂ = ℓ(Θ(n/ logβ·⌈ 2
β ⌉ n)).

2. Every H ∈ Hn can be computed by depth-(1 + ⌈ 2
β ⌉) CC0[2] circuits of wire complexity

2n+O
(

nℓ̂
log2 n

)
, or by B2 circuits of size 2n+O

(
nℓ̂

log2 n

)
and depth logn+O(1).

Proof. Let Hmd = Hmd
β,ℓ and Hexpw = Hexpw

ℓ be the hash functions described in Construction
5. We also use Hmd

n and Hexpw
n to denote the distributions over n-input hash functions in

Hmd and Hexpw, respectively.

Hfinal is almost universal with polylog(n) output length. Let m̂ be the output length of
(Hmd)◦⌈

2
β ⌉, and ℓ̂ ≜ ℓ(m̂) = ℓ(Θ(n/ logβ·⌈ 2

β ⌉)). By a simple induction and Theorem 3.4 we
know that for any 1 ≤ d ≤ ⌈ 2

β ⌉, (Hmd)◦d is a linear O(ℓ logβ+1 n)-samplable Θ(n/ logβd n)-
output exp(−Ω(ℓ̂))-almost universal hash function. In particular, when d = ⌈ 2

β ⌉, we know that
(Hmd)◦⌈

2
β ⌉ is a linear O(ℓ logβ+1 n)-samplable Θ(n/ logβ·⌈ 2

β ⌉ n)-output exp(−Ω(ℓ̂))-almost
universal hash function.

Now apply Proposition 3.7 and Lemma 3.5, we know that Hfinal = Hexpw ◦ (Hmd)◦⌈
2
β ⌉ is a

linear O(ℓ logβ+1 n)-samplable Θ(ℓ̂)-output exp(−Ω(ℓ̂))-almost universal hash function.

Complexity with CC0[2] circuits. By Theorem 3.4, every H ∈ supp(Hmd
n) can be computed

by a depth-1 CC0[2] circuit with wire complexity 2n. Also, by Lemma 3.5, every H ∈
supp(Hexpw

n) can be computed by a depth-1 CC0[2] circuit with wire complexity nℓ. Since
the output length of (Hmd)◦d is Θ(n/ logβd), the total wire complexity of a hash function
from the support of Hexpw ◦ (Hmd)◦⌈

2
β ⌉ can be bounded by

2n+O

⌈ 2
β ⌉−1∑
d=1

n

logβd n

+ n

logβ·⌈ 2
β ⌉ n

· ℓ̂ = 2n+O

(
nℓ̂

log2 n

)
.

The depth complexity can be verified straightforwardly.

CCC 2022

23:22 Extremely Efficient Constructions of Hash Functions with Applications

Complexity with B2 circuits. We only analyze the depth since the analysis of the size
complexity is similar to the analysis above. By Theorem 3.4 and Lemma 3.5, every H ∈
supp(Hmd

n) can be computed by a B2 circuit with depth β log logn + O(1), and every
H ∈ supp(Hexpw

n) can be computed by a B2 circuit with depth logn+O(1). Therefore the
total depth of a hash function from the support of Hexpw ◦ (Hmd)◦⌈

2
β ⌉ is at most

⌈ 2
β ⌉−1∑
d=0

[
β log log

(
Θ
(

n

logβd n

))
+O(1)

]
+ log

(
Θ
(

n

logβ·⌈ 2
β ⌉ n

))
= logn+O(1). ◀

3.4 Explicitness of our construction
Apart from the seed length, shrinkage and collision probability, the explicitness of the a hash
function is also critical for many applications. That is, given a seed v (which is usually much
shorter than the input, say |v| = polylog(n)), whether we can obtain information about the
hash function corresponding to the seed v efficiently. In this section we show that our hash
constructions are indeed explicit in a strong sense, which is crucial for our application to
hardness magnification.

▶ Definition 3.10 (Locally explicit hash function). A family of polylog(n)-samplable distribu-
tions over m-output linear functions (e.g., linear hash functions or 1-detectors) H = {Hn}n≥1
is said to be locally explicit if each input bit only influences polylog(n) output bits, and there
exists an algorithm A(n, v, i) running in polylog(n) time that returns the list of output bits
influenced by the ith input bit in the hash function corresponding to the seed v.

Note that any linear function can be realized as x 7→Mx for some transformation matrix
M over F2. Clearly, a locally explicit linear hash has a sparse transformation matrix, and
we can efficiently list all 1-entries in any column of it. By performing a sparse matrix
multiplication, we can immediately obtain the following proposition.

▶ Proposition 3.11. The composition of two locally explicit hash families is locally explicit.

Now we verify that our constructions of the randomness-efficient low-complexity hash
functions are indeed locally explicit.

▶ Theorem 3.12. Let k = k(n) = no(1) be the shrinkage parameter and logn ≤ r(n) ≤ n/2
be the range. The 1-detector Lhg

k,r in Construction 2 is locally explicit.

Proof. Recall that the 1-detector in Construction 2 consists of two components: a depth-1
CC0[2] circuit whose topology is determined by the high-girth graph from Theorem 2.12,
and a random permutation of the input bits according to the k-wise almost independent
permutation from Theorem 2.8. Given the seed v of the 1-detector (i.e., the seed for the
permutation) and an index i. According to Theorem 2.8, we can obtain σv(i) in poly(logn, |v|)
time, where σv is the permutation corresponding to the seed v. To find all the output bits
influenced by the ith input bit, we only need to find the two endpoints of the σv(i)-th edge
in the high-girth graph, which can be done in polylog(n) time by Theorem 2.12. ◀

▶ Theorem 3.13. Let β > 0 be the shrinkage parameter and δ = δ(n) ≤ O(log2 n
log log n) be the

error parameter. The hash family Hmd
β,δ in Construction 3 is locally explicit.

Proof. Recall that the hash function H in Construction 3 is obtained by the 1-detector Lhg

in Construction 2 and the reduction in Construction 1. The output of the hash Hmd
β,δ consists

of two parts: the output of the 1-detector Lhg, and several randomly sampled bits from the

L. Chen, J. Li, and T. Yang 23:23

input. Since Lhg is locally explicit by Theorem 3.12, it is sufficient to show that the sampling
procedure is locally explicit. More precisely, given a seed v of the sampling procedure and
an index i, we need to compute efficiently all the indices j such that wj = i for the vector
(w0, . . . , wb−1) corresponding to the seed v. This can be done using the algorithm Asamp

from Lemma 3.1. ◀

▶ Theorem 3.14. Let ℓ = ℓ(n) = polylog(n). The hash family Hexpw
ℓ in Construction 4 is

locally explicit.

Proof. Let Sn = {w0, . . . , wt−1} with t = Õ(n2) is a 0.1-biased set from Theorem 2.4 and
Gt is the expander in Theorem 2.10. The hash function in Construction 4 is defined as

hv(x) ≜ ⟨wv0 , x⟩ ∥ ⟨wv1 , x⟩ ∥ . . . ∥
〈
wvℓ−1 , x

〉
,

where v = (v0, . . . , vℓ−1) ∈ [t]ℓ is a random walk on Gt. Given the seed v (i.e., the seed of a
random walk), we can produce v0, v1, . . . , vℓ−1 in polylog(n, ℓ) = polylog(n) time by Theorem
2.10. Then using the algorithm A in Theorem 2.4 we can check for each j whether the ith

bit of wvj
is 1, which indicates whether the jth output bit is influenced by the ith input bit.

Enumerating all j ∈ [ℓ] gives a required polylog(n) time algorithm listing all the outputs
influenced by a particular input bit. ◀

Using Theorem 3.13, Theorem 3.14, and Proposition 3.11, we immediately obtain the
explicitness of Construction 5.

▶ Corollary 3.15. Let β ∈ (0, 2] be a parameter and ℓ = ℓ(n) ≤ O(log2 n
log log n) be a non-decreasing

function. The hash family Hfinal
β,ℓ in Construction 5 is locally explicit.

3.5 Uniformity of our construction
We have shown in Theorem 3.9 that our hash function can be computed by extremely sparse
CC0[2] circuit or B2 circuits with small size and depth simultaneously. It remains to clarify
the uniformity of our hash construction, i.e., the complexity we need to construct the circuit
given the input length and the seed.

The definitions of uniformity vary with respect to the complexity measures, which can
be chosen according to the applications. Typical choices include space complexity (e.g.,
LOGSPACE-uniform, see Section 6.2.1 of [3]), time complexity (e.g., polynomial-time uniform),
parallel time (see, e.g., Section 3 of [29]), and descriptive complexity (see, e.g., [20]). If we
choose the time complexity, for instance, we can define P-uniformity as the existence of the
polynomial-time algorithm that prints the circuit given 1n and the seed v. Indeed, it is easy
to check that the 2n+ o(n) size B2 and CC0[2] circuits for Construction 5 in Theorem 3.9 is
P-uniform.

Since our hash function can be evaluated in low-depth circuit models such as NC1 and
CC0[2], the parallel time to generate the circuit also seems to be crucial for its further
applications. Therefore in this section we will discuss the POLYLOGTIME-uniformity of our
hash functions, defined as follows.

▶ Definition 3.16. Let C be a circuit class. A family of polylog(n)-samplable distributions
over m-output functions (e.g., hash functions or 1-detectors) H = {Hn}n≥1 is said to be
computable with POLYLOGTIME-uniform S(n)-size (measured in size, depth, wire complexity,
etc) C-circuits if each of the functions hv ∈ supp(Hn) corresponding to the seed v is computable
by an S(n)-size C-circuit, supplemented with the following polylog(S(n))-time algorithms:

CCC 2022

23:24 Extremely Efficient Constructions of Hash Functions with Applications

SIZE(n, v) returns the size of the C-circuit Cv computing hv;
TYPE(n, v, i) returns the type of the ith node in the circuit Cv, which indicates (1) whether

it is a gate, an input variable or a constant; (2) whether it is an output node; and (3) the
type (if it is a gate or a constant) or index (if it is an input variable and/or output node)
of it;

EDGE(n, v, i, j) returns the jth input of the ith node if the ith node is a gate in Cv.
OUT(n, v, i) returns the number of the ith output node.
It is guaranteed that the nodes are numbered in topological orders, and in particular, the input
variables are numbered from 1 to n.

We claim that all our results of circuit complexity for the constructions in the previous
parts of this section are in fact POLYLOGTIME-uniform. It is straightforward to check the
claim, so we only sketch the proof and left the details to the readers.

▶ Theorem 3.17 (Uniformity of Theorem 3.9). Let β ∈ (0, 2] be a parameter and ℓ = ℓ(n) ≤
O(log2 n

log log n) be a non-decreasing function. The hash function Hfinal
β,ℓ in Construction 5 can be

computed either by POLYLOGTIME-uniform depth-(1+⌈ 2
β ⌉) CC0[2] circuits of wire complexity

2n+O(n/ log logn), or by POLYLOGTIME-uniform B2 circuits of size 2n+O(n/ log logn)
and depth logn+O(β−1) simultaneously.

Sketch. Since the POLYLOGTIME-uniformity is close under composition, we only need to
verify that Construction 3 and Construction 4 are POLYLOGTIME-uniform. The uniformity
of Construction 3 directly follows from the algorithm B in Theorem 2.12, the algorithm A in
Theorem 2.8, and the algorithm A in Lemma 3.1. The uniformity of Construction 4 follows
from the algorithm A in Theorem 2.4 and the algorithm A in Theorem 2.10. Note that the
circuit for Construction 4 should be slightly modified to make EDGE(n, ·, ·) polylog(n)-time
computable. Take the CC0[2] case for example: each of the output gates has fan-in exactly n
(instead of |wvi

| for the ith output bit, see Construction 4 for the notation); the jth input
wire of the ith output gate is connected to the jth input or a constant 0 according to the jth

bit of wvi
. ◀

4 Sharp bootstrapping results from hash functions

We now show the extremely sharp bootstrapping results for small linear size circuits based on
the almost universal hash function constructed above, using a refined kernelization method
of Chen, Jin, and Williams [9, 10].

We will first prove the general hardness magnification theorem for all sparse NP languages
in Section 4.1. In Section 4.2, we will present stronger hardness magnification results for
MCSP, which will utilize the explicitness of our hash construction. Then we will show in
Section 4.3 that similar techniques can be applied to obtain a bootstrapping result for explicit
obstructions (see, e.g., [10]), which formalizes the explicit proofs of circuit lower bounds. In
Section 4.4, we construct explicit obstructions and prove circuit lower bounds that tightly
match these bootstrapping results.

4.1 Hardness magnification for all sparse NP languages
We first prove the most general version of the hardness magnification result. More discussions
are presented after the proof.

L. Chen, J. Li, and T. Yang 23:25

▶ Theorem 4.1. Let s = s(n) and T = T (n) be two functions such that
ω(logn) ≤ s(n) ≤ O(log2 n/ log logn), s(Θ(n/ log2 n)) = Θ(s(n)), s is non-decreasing;
nγ ≤ T (n) ≤ 2O(n), where γ > 1 is an absolute large constant.

Then, if there is a 2s(n)-sparse language L in NTIME[T (n)], such that L cannot be computed
by probabilistic circuits of size 2n+O(ns/ log2 n) within error exp(−Ω(s)), it then follows
that NTIME

[
T
(

2O(n1/5)
)]

⊈ SIZE
[
2cn1/5

]
for all c > 1.

Proof. Towards a contradiction we assume that NTIME
[
T
(

2O(n1/5)
)]
⊆ SIZE

[
2cn1/5

]
for

some c > 1. Let L be a 2s(n)-sparse language in NTIME [T (n)]. We now show that L can be
computed by probabilistic circuits of size 2n+O(ns/ log2 n) within error exp(−Ω(s)).

Let H = Hfinal
β,ℓ = {Hn}n≥1 be the linear O(ℓ log1+β n)-samplable Θ(ℓ)-output exp(−Ω(ℓ))-

almost universal hash function in Theorem 3.9 with ℓ(n) = O(s) and β = 2, such that the
collision probability is at most 2−2s17. The circuit complexity of each h ∈ supp(Hn) is
bounded by 2n + O(ns/ log2 n). Since H is efficiently samplable, there is a polynomial
time algorithm M(1n, v, ·) computing the hash function corresponding to the seed v, where
|v| = O(ℓ log3 n) = O(s log3 n).18

We now define an intermediate language L′ = {(n, v, h) | ∃x ∈ {0, 1}n ∩ L,M(1n, v, x) =
h}. For any sufficiently large n, we pad the language to make the corresponding length of
the tuple in L′ has length exactly m = m(n) = ⌊(log(n)/(2c))5⌋ to obtain L′′. That is, for
sufficiently large n and v, h of appropriate length, we define

zn,v,h ≜ (n, v, h)∥1∥0m(n)−|(n,v,h)|−1

and we have

zn,v,h ∈ L′′ ⇔ (n, v, h) ∈ L′.

Using the straightforward non-deterministic algorithm for L′ (guessing x ∈ {0, 1}n and
determine whether M(1n, v, x) = h), we can show that L′′ ∈ NTIME

[
T
(

2O(m1/5)
)]
⊆

SIZE
[
2cm1/5

]
, the second containment follows from our assumption.

The key in our argument is an algorithm for the sparse language L with an oracle access
to this intermediate problem L′′, and then replace the oracle with the small size circuit by
assumption. This is formalized in the following lemma.

▶ Lemma 4.2. There is a uniform family D = {Dn}n≥1 of probabilistic oracle circuits of
size 2n+O(ns/ log2 n), such that for every input length n, the followings hold:
1. Every D ∈ supp(Dn) contains at most one L′′ oracle gate of fan-in ⌊log5(n)/(32c5)⌋.
2. D decides the language L with error at most 2−s.

Proof. Consider the following probabilistic circuit family D = {Dn}n≥1. Given input x
of length n, Dn is constructed as follows: we randomly choose a seed v to sample a hash
function hv from Hn; and then query whether zn,v,hv(x) is in L′′ via the oracle gate, where
hv is the hash function corresponding to the seed v. The circuit complexity of Dn equals
the circuit complexity of the hash function hv, which is at most 2n + O(ns/ log2 n) by

17 In particular, assume that α is a constant such that H is exp(−αℓ)-almost universal hash function, then
we take ℓ(n) = ⌈2s/α⌉.

18 That is, for every x ∈ {0, 1}n and every seed v, we have M(1n, v, x) = hv(x), where hv is the hash
function corresponding to the seed v.

CCC 2022

23:26 Extremely Efficient Constructions of Hash Functions with Applications

Theorem 3.9, and every D ∈ supp(Dn) only needs to call the L′′ oracle once with input
length m = ⌊log5(n)/(32c5)⌋. Clearly, by the definition of L′′, for any x ∈ L, Dn accepts x
with probability 1. For any x /∈ L, we have

Pr
v

[Dn accepts x]

= Pr
h←Hn

[∃x′ ∈ L ∩ {0, 1}n s.t. h(x) = h(x′)]

≤
∑

x′∈L∩{0,1}n

Pr
h←Hn

[h(x) = h(x′)]

=2s · 2−2s

≤2−s. ◀

Now applying Lemma 4.2 and replacing the oracle query by circuits using the fact that
L′′ ∈ SIZE

[
2cn1/5

]
, we finish the proof of Theorem 4.1. ◀

We now discuss some typical choices of parameters in the above theorem. Let the sparsity
parameter s(n) = log2 n

log log n .19

A standard form of hardness magnification result similar to the one in [9] but quantitatively
stronger can be obtained by choosing T (n) = poly(n). Then the theorem says that, if
there exists an nlog n/ log log n-sparse language in NP that does not have probabilistic
circuits of size 2n+O(n/ log logn), then NTIME

[
2O(n1/5)

]
⊈ SIZE

[
2cn1/5

]
for all c > 0.

By a padding argument, this implies that NP ⊈ SIZE[nc] for all c > 0. This establishes
Theorem 1.2.
Being less ambitious, we can let T (n) = 2no(1) and show that, even the existence of
an nlog n/ log log n-sparse language in NTIME

[
2no(1)

]
that does not have probabilistic

circuits of size 2n+O(n/ log logn), would be enough to imply that NTIME
[
22o(n1/5)

]
⊈

SIZE
[
2cn1/5

]
, and hence NTIME

[
2no(1)

]
⊈ SIZE[nc] for all c > 0 and NEXP ⊈ P/poly,

which would already be a major breakthrough in circuit complexity. This establishes
Theorem 1.3.

4.2 Hardness magnification for MCSP
We now utilized the strongly explicit hash function constructed above to obtain a stronger
hardness magnification theorem for MCSP. Intuitively, this is possible since the yes-instances
of MCSP can be efficiently encoded in a much shorter string. Indeed, for MCSP[s(n)], one
only need O(s(n) log s(n)) bits to encode a small circuit, instead of 2n bits for a whole truth
table.

We assume a paddable encoding of circuits, i.e., any string x and x∥0 encode the same
circuit. This can be done with only a constant overhead. For a circuit C, we use the notation
⟨C⟩ to denote its encoding.

▶ Theorem 4.3. Let n ≤ s(n) ≤ O(n2/ log2 n) be a non-decreasing size parameter that
satisfies s(log(Θ(n/ log2 n))) = Θ(s(logn)). Let N = 2n be the truth table length. Let
g = g(n) = s(n) log s(n). If MCSP[s(n)] cannot be computed by probabilistic circuits of
size 2N +O(Ng/ log2 N) within error exp(−Ω(g)), then there is some c ∈ (0, 1) such that
⊕P ⊈ SIZE

[
2Nc].

19 For a typical 2s(n)-sparse language in NP, consider MCSP[n1.9] on input length N = 2n.

L. Chen, J. Li, and T. Yang 23:27

Intuition. The proof is similar to the one for Theorem 4.1, but we need to make the oracle
from Lemma 3.1 computable in ⊕P instead of in super-polynomial non-deterministic time.
Concretely, we need to slightly modify the intermediate problem so that we can make use of
the strongly explicitness of our hash construction Hfinal.

Proof. Towards a contradiction, suppose that ⊕P ⊆ SIZE
[
2Nc] for all c ∈ (0, 1), we now

prove that MCSP[s(n)] can be computed by probabilistic circuits of size 2N +O(Ng/ log2 N)
within error 2−Ω(g(n)).

Let N = 2n be the truth table length of n-input functions. Take H = Hfinal
β,ℓ = {HN}N≥1

to be the linear O(ℓ log1+β N)-samplable Θ(ℓ)-output exp(−Ω(ℓ))-almost universal hash
function in Theorem 3.9 with ℓ(N) = O(g(n)) = O(g(logN)) and β = 2, such that the
collision probability is at most 2−2g.20

We denote the hash function of input length N corresponding to the seed v as HN,v(·).
By the strongly explicitness (Corollary 3.15), there exists a algorithm M(N, v, i, j) running
in polylog(N) = poly(n) time that decides whether the ith output bit depends on the jth

input bit in HN,v. Note that for a circuit C of input length n,21

HN,v(tt(C))i =
N−1∑
j=0

M(N, v, i, j) · C(j) (mod 2),

and M(N, v, i, j) · C(j) can be computed in poly(n, |⟨C⟩|) time, so the language Lh =
{(N, i, v, ⟨C⟩) | HN,v(tt(C))i = 1} is decidable in ⊕P. Hence if we define an intermediate
language L′ = {(N, v, h) | ∃C ∈ SIZE[s(n)], HN,v(tt(C)) = h} similar to the proof of Theorem
4.1, it is now decidable in NP given oracle access to ⊕P.

Let m = O(ℓ log3 n) be the input length of L′. Note that L′ ∈ NP⊕P ⊆ BPP⊕P ⊆ P⊕P
/poly ⊆

⊕P/poly, where NP⊕P ⊆ BPP⊕P follows from [42] (see also [15]) and P⊕P
/poly ⊆ ⊕P/poly follows

from ⊕P⊕P ⊆ ⊕P [37]22 Since ⊕P ⊆
[
2Nc] for all c ∈ (0, 1) by the assumption, we know that

the evaluation of ⊕P/poly circuits can be computable in SIZE
[
2Nc] for all c ∈ (0, 1), which

implies that L′ ∈ SIZE
[√

N
]
. The rest of the proof follows similar to Theorem 4.1 and the

fact that the m = O(ℓ log3 N) = o(log5 N). ◀

4.3 Explicit obstruction
We now formally state and prove our results regarding explicit obstructions. We begin by
formally defining the notion of explicit obstructions.

▶ Definition 4.4 (Explicit obstruction). An explicit obstruction of size S(n) computable in C
against D is a family of lists of input-output pairs O = {On}n≥1 satisfying the following.
|On| ≤ S(n) for all sufficiently large n.
There is a machine in C that prints the set On given input 1n.
For every n, On = {(xi, yi)} satisfies that xi ̸= xj for all i ̸= j.
For all sufficiently large n, and for every n-input D circuit f , there is a pair (xi, yi) ∈ On

such that f(xi) ̸= yi.

20 Note that since s(n) ≤ O(n2/ log2 n), we have ℓ(N) = O(log2 N/ log log N) and ℓ is non-decreasing.
Hence, ℓ satisfies the requirements in Theorem 3.9.

21 Here we use the notation tt(C) to represent the truth table of C. Particularly, if C is a single-output
circuit of n inputs, then tt(C) is a string of length 2n such that tt(C)i = C(i).

22 Since ⊕P⊕P ⊆ ⊕P implies that P⊕P ⊆ ⊕P, it follows that the evaluation of polynomial-size circuits
with ⊕P oracles can be computable in ⊕P, which further implies that P⊕P

/poly ⊆ ⊕P/poly.

CCC 2022

23:28 Extremely Efficient Constructions of Hash Functions with Applications

▶ Theorem 4.5. There is an absolute constant γ > 0 such that the following holds.
Let nγ ≤ T (n) ≤ 2n and logn ≤ s(n) ≤ min{O(log2 n/ log logn), log T (n)} being non-
decreasing and satisfying s(Θ(n/ log2 n)) = Θ(s(n)). If there is an explicit obstruction
of size 2s(n) computable in DTIME[T (n)] against 2n + O(n/ log logn)-size circuits, then
DTIME

[
T
(

2O(n1/5)
)]

⊈ SIZE
[
2cn1/5

]
for all c > 1.

Proof. Let t(n) = 2s(n). Towards a contradiction we assume that there is some constant
c > 1, such that DTIME

[
T
(

2O(n1/5)
)]
⊆ SIZE

[
2cn1/5

]
. Suppose that O = {On}n≥1 is an

explicit obstruction against 2n+O(n/ log logn) size circuits. For any sufficiently large input
length n, we suppose that On = {(xn,1, yn,1), (xn,2, yn,2), . . . , (xn,t(n), yn,t(n))}. Our goal is
to design a circuit with extremely small size, but agree with On on all its input-output pairs.
Following the similar proof outline as for Theorem 4.1, we begin by using an almost universal
hash function to kernalize the inputs from On.

Let H = Hfinal
ℓ,β = {Hn}n≥1 be the linear O(ℓ log1+β n)-samplable Θ(ℓ)-output exp(−Ω(ℓ))-

almost universal hash function in Theorem 3.9 with ℓ(n) = O(s) and β = 2 such that the
collision probability is at most 2−3s. Let n be a sufficiently large input length. We call a
hash function h good if it is perfect on the inputs in On, i.e., any two distinct inputs in
On have different hash values assigned by h. For a randomly chosen function h← Hn, the
probability of it not being good is bounded by

Pr
h←Hn

[∃1 ≤ i < j ≤ t(n) s.t. h(xn,i) = h(xn,j)]

≤
∑

1≤i<j≤t(n)

Pr
h←Hn

[h(xn,i) = h(xn,j)]

≤
(

2s

2

)
2−3s ≤ 2−s.

So a good hash function always exists in the support of Hn for all sufficiently large n. For
any large input length n, we arbitrarily fix such a good hash and denote its seed by vgood

n .
Let hv be the hash function corresponding to the seed v. We define an intermediate

language L′ = {(n, v, h) | ∃1 ≤ i ≤ t(n), yn,i = 1 ∧ hv(xn,i) = h}. We again pad its
input to have length exactly m = ⌊(log(n)/(2c))5⌋, and form a padded language L′′. Then
L′′ ∈ DTIME

[
T
(

2O(m1/5)
)]
⊆ SIZE

[
2cm1/5

]
. We also note that 2cm1/5 ≤

√
n.

Then we consider the function fn(x) ≜ L′(n, vgood
n , Hn(vgood

n , x)), where Hn(v, ·) is the
hash function in Hn corresponding to the seed v. By an argument similar to that of
Theorem 4.1, we can show that fn can be decided by a circuit of size 2n+O(n/ log logn) +√
n = 2n+O(n/ log logn), but totally agrees with On, contradicting to the assumption that
O is an explicit obstruction against circuits of such size. ◀

4.4 Unconditional lower bounds for sparse languages

Now we complement the results mentioned in previous subsections by constructing an explicit
obstruction against B2 circuits of size 2n−O(1) and a corresponding sparse language in P
with a 2n−O(1) probabilistic circuit lower bound. They form sharp bootstrapping thresholds
together with Theorem 4.1 and Theorem 4.5.

The main idea behind our explicit obstruction is the investigation of a combinatorial
structure in Boolean circuits called critical path introduced in [13], which was used to prove
2n−O(1) circuit lower bounds for PRFs and hash functions.

L. Chen, J. Li, and T. Yang 23:29

For the simplicity of presentation, we assume without loss of generality that our circuits
are normalized, in the sense that there is no non-output gates with out-degree 0. This is
without loss of generality since redundant gates with out-degree 0 can be removed.

▶ Definition 4.6 (Critical path). Let C be a circuit, and u be an input variable of it. The
critical path of u in C is a sequence of vertices v0, v1, . . . , vk satisfying the following conditions:
1. v0 = u, and vi is a descendent of vi−1 for all i ≥ 1, and
2. out-degree(vi) = 1 for all 0 ≤ i < k, and out-degree(vk) ̸= 1.

Fix a circuit with n input bits, we can obtain a total of n critical paths. The crucial
observation in [13] is that, if all critical paths do not intersect with one another, then the
circuit must contain at least 2n−O(1) gates. This is formalized below.

▶ Lemma 4.7 ([13], Lemma 6.4). For any normalized n-input single-output circuit C with
no intersecting critical paths and no input variables with out-degree 0, the number of gates in
the circuit is at least 2n− 2.

Let O = {On ⊆ {0, 1}n × {0, 1}}n≥1, where

On = {(x, 0) | |x| ∈ {0, 2, n− 2, n− 1}} ∪ {(x, 1) | |x| ∈ {1, n}}.

In the remaining part of the section, we will first prove that O is an explicit obstruction
against 2n−2 size circuits, and then present a general connection between explicit obstruction
and probabilistic circuit lower bounds.

Explicit obstruction. According to Lemma 4.7, we only need to prove that any circuit with
intersecting critical paths or input variables with out-degree 0 does not fully agree with O.
For circuits with input variables of out-degree 0, this can be verified straightforwardly. Now
we prove the case for circuits with intersecting critical paths.

▶ Lemma 4.8. For any circuit Cn : {0, 1}n → {0, 1} with intersecting critical paths, there
must exist a pair (x, b) ∈ On such that Cn(x) ̸= b.

Proof. Suppose that the critical paths of u and v in Cn intersect. Let G be the first gate on
the intersection. Let fG be the function computed by G. Assume that we take a restriction ρ
to all variables except u and v, and consider the restricted function Cn↾ρ. The key observation
is that, for any ρ, there are functions ϕρ, ψρ, χρ : {0, 1} → {0, 1} such that

Cn↾ρ(u, v) = χρ(fG(ϕρ(u), ψρ(v))).

Based on the characterization of different functions in B2, we call a function f quadratic
if it has the form f(u, v) = ((u⊕ c1) ∧ (v ⊕ c2))⊕ c3. We call a function linear if it has the
form f(u, v) = u⊕ v ⊕ c. The pivotal point in [13] is that for a fixed pair of u and v, Cn↾ρ

cannot be quadratic under some restriction ρ1, then become linear under another restriction
ρ2. However, by checking the truth table it can be verified that our construction of On

forces Cn↾ρ to be the linear function (u, v) 7→ u⊕ v for all-zero restriction, and the quadratic
function (u, v) 7→ u ∧ v for all-one restriction, which leads to contradiction. ◀

▶ Corollary 4.9. O is an explicit obstruction against 2n− 2 size B2 circuits.

CCC 2022

23:30 Extremely Efficient Constructions of Hash Functions with Applications

Probabilistic circuit lower bound. We now present a general reduction from explicit
obstruction to probabilistic circuit lower bounds for sparse languages in P.

▶ Lemma 4.10. For any circuit class C, if there exists an explicit obstruction O of size S(n)
against C, then every language agreeing with O cannot be computed by probabilistic C-circuits
with error probability less than 1

S(n) , even infinitely often.

Proof. Towards contradiction, let L be a language agreeing with O, and assume that there
exists a probabilistic C-circuit C computing L with error probability smaller than 1

S(n) , for
infinitely many n. Then for those n, we have

E
C

[|{(x, b) ∈ On | C(x) ̸= b|}] < 1.

By the averaging argument, there exists a deterministic circuit that agrees with all pairs in
On. This guarantees the existence of a family of circuit in C that agrees with O on those n,
which leads to a contradiction. ◀

In particular, let L = {Ln}n≥1 be a language such that Ln ≜ {x ∈ {0, 1}n | (x, 1) ∈ On},
then it is a sparse language in P that agrees with O. Together with Corollary 4.9, we obtain
the following lower bound.

▶ Corollary 4.11. There exists a O(n)-sparse language in P that cannot be computed (even
infinitely often) by probabilistic B2 circuits of size 2n− 2 with error probability smaller than

1
2n2 .

▶ Remark 4.12. We note that the error probability in the lower bound cannot be trivially
boosted to 1/3, since the complexity overhead of error reduction is not affordable when we
are dealing with small linear-size circuits. Therefore it might be significantly more difficult
to prove a similar circuit lower bound with constant error probability.

5 Low-complexity PRFs from hash functions

In this section, we will present the consequences of our hash constructions for low-complexity
constructions of pseudorandom functions. We will discuss the Levin’s trick for PRF con-
struction in Section 5.1, and then present our constructions of PRFs for B2 and low-depth
circuits in Section 5.2 and 5.3, respectively.

5.1 PRF and Levin’s trick
▶ Definition 5.1 (Pseudorandom functions). Let s = s(n), m = m(n), and ε = ε(n). An (s, ε)-
secure m-output pseudorandom function (PRF) is a family F = {Fn}n≥1 of distributions
Fn over Bn,m such that no probabilistic s(n)-time adversary could distinguish f ← Fn

from a truly random function g ← U(Bn,m) with advantage ε(n) given oracle access to the
functions, i.e.,∣∣∣∣ Pr

f←Fn

[
Af (1n) accepts

]
− Pr

g←U(Bn,m)
[Ag(1n) accepts]

∣∣∣∣ < ε.

for all probabilistic s(n)-time algorithm A and sufficiently large n.

L. Chen, J. Li, and T. Yang 23:31

A PRF is said to be s-secure if it is (s, 1/s)-secure. In particular, a PRF is said to
be polynomially secure if it is nk-secure for all constants k ≥ 1, and it is said to be sub-
exponentially secure if it is exp(nε)-secure for some constant ε ∈ (0, 1). Similar to the hash
functions, we define the key (seed) length, circuit complexity, composition, P-uniformity, and
POLYLOGTIME-uniformity of PRFs.

Following [23, 13], the key to construct low-complexity PRFs is Levin’s trick: the
composition of a PRF and an almost universal hash function is still a PRF.

▶ Lemma 5.2 (Levin’s trick, see, e.g., [5, 13]). Let s = s(n), m = m(n), ε = ε(n), and
δ = δ(n). The composition F◦H of an (s, ε)-secure PRF F and a polynomial-time computable
m-output δ-almost universal hash H is an (ŝ, ε̂)-secure PRF if ŝ(n) ≤ s(m(n))− poly(n) and
ε̂(n) ≥ ε(m(n)) + ŝ(n)2 · δ(n) for sufficiently large n.

Note that the circuit complexity of the resulting PRF mostly depends on the complexity
of the hash function, since we can reduce the complexity of the “pseudorandom kernel” by
reducing the length of the hash value. Indeed, we need to balance the complexity and security
by tuning the output length of the hash function: it should be sufficiently small to reduce
the complexity of the original PRF, while it has to be moderately large to guarantee the
security of the constructed PRF.

5.2 Low-complexity PRFs in B2 circuit
Now we discuss the low-complexity PRF construction in B2 circuits. We first introduce the
assumption for the security of our PRF construction.

▶ Assumption 5.3. There exists a sub-exponentially secure polynomial-time computable
pseudorandom function with polynomial key length.

Note that by the celebrated works of Goldreich, Goldwasser, and Micali [16], the existence
of sub-exponentially secure PRF is equivalent to the existence of sub-exponentially secure
pseudorandom generator, which is further equivalent to the existence of sub-exponentially
secure one-way function [19].

▶ Theorem 5.4. Assuming Assumption 5.3, there exists an exp
(

Ω
(

log2 n
log log n

))
-secure PRF

with key length polylog(n) computable by POLYLOGTIME-uniform B2 circuits of size 2n+
O(n/ log logn) and depth polylog(n) simultaneously

Proof. Since any polynomial-time computable function can be computed by a P-uniform
polynomial-size B2 circuit, the existence of polynomial-time PRF implies the existence of PRF
computable by P-uniform polynomial-size B2 circuits. Under Assumption 5.3 we can obtain
an (exp(nε), exp(nε))-secure PRF F computable by P-uniform polynomial-size B2 circuits
for an ε ∈ (0, 1). From Construction 5, Theorem 3.9, and Theorem 3.17 with ℓ = log2 n

log log n and
β = 1, we can construct a polylog(n)-samplable Θ(ℓ)-output exp(−Ω(ℓ))-almost universal
hash function H computable by POLYLOGTIME-uniform 2n+O(n/ log logn) size B2 circuits.
We increase the output length of H to m = ⌈log2/ε(n)⌉ to obtain H′ by padding constant
outputs. We now prove that F ◦ H′ is the desired exp(−Ω(ℓ))-secure PRF.

Recall that H′ is an m-output exp(−cℓ)-almost universal hash function for some constant
c ∈ (0, 1). According to Lemma 5.2, we know that for ŝ(n) ≜ exp(cℓ/4), F ◦H′ is an ŝ-secure
PRF, since for sufficiently large n,

exp(mε)− poly(n) ≥ exp(log2 n)− poly(n) ≥ ŝ,

exp(−mε) + ŝ2 · exp(−cℓ) ≤ exp(− log2 n) + exp(−cℓ/2) ≤ 1
ŝ
.

CCC 2022

23:32 Extremely Efficient Constructions of Hash Functions with Applications

Because the key of F ◦ H′ consists of the seed of H′ (with input length n) and the key of F
(with input length m), the key length would be polylog(n) + poly(m) = polylog(n).

It is straightforward to verify that F ◦ H′ can be computed by B2 circuits of size
2n+O(n/ log logn) and depth polylog(n) + poly(m) = polylog(n), so it remains to show that
the circuit computing it is POLYLOGTIME-uniform. We only demonstrate the evaluation of
function EDGE(n, v, i, j) (i.e., the jth input node of the ith node in the circuit computing
function keyed by v) and remark that the evaluations of other functions (SIZE,TYPE, and
OUT) can be done in a similar way.

Given a key v = v1∥v2 where v1 is the seed for H′ and v2 is the key for F , we firstly decide
whether the ith node is inside the hash H′ or the PRF F (which can be done since we can
compute the number of nodes in H in polylog(n) time given v1). In the former case, we can
use the EDGE(n, v1, ·, ·) function for the hash function H′, since it is POLYLOGTIME-uniform.
In the latter case, we can draw the circuit computing F given key v2 in polylog(n) time (since
F is P-uniform, and the input length is m = polylog(n)), and then find out the jth input
node of the ith node. ◀

▶ Remark 5.5. It can be easily verified that if we do not require the PRF to be computable
within polylog(n) depth, we can in fact rely on the following (possibly) weaker assumption:
the existence of exp(nε/4)-time computable exp(nε)-secure PRFs with polynomial key length
for an ε > 023. By [16, 19] (implicitly), this assumption follows from the existence of
exp(nε/8)-time computable OWFs against any exp(nε)-time adversary for an ε > 0. We stick
to Assumption 5.3 since it has been a quite standard assumption.

5.3 Low-complexity PRFs in low-depth circuits
To construct efficient PRFs in low-depth circuit classes such as NC1 and AC0[2] using our
low-complexity hash functions, we need to rely on the existence of low-depth PRFs. In
particular, we will need the existence of (sub-exponentially secure) NC1 PRFs to construct
efficient NC1 and AC0[2] PRFs.

▶ Assumption 5.6 (NC1 PRF). There exists a sub-exponentially secure PRF with polynomial
key length computable by P-uniform polynomial-size NC1 circuits.

Note that it is unknown whether such assumption can be reduced to more elementary
ones such as the existence of certain kinds of one-way functions. Nevertheless, it follows from
standard cryptographic assumptions such as sub-exponential decisional Diffie-Hellman [33]
or sub-exponential Ring Learning-with-Error [4].

▶ Theorem 5.7. There exists a exp
(

Ω
(

log2 n
log log n

))
-secure PRF with polylog(n) key length

computable by POLYLOGTIME-uniform B2 circuits of size 2n + O(n/ log logn) and depth
logn+O(log logn) simultaneously under Assumption 5.6.

Proof. We will use the construction in the proof of Theorem 5.4 by replacing the PRF
F with a PRF computable by P-uniform NC1 circuits. We only check the circuit depth
of the construction since other properties can be established similarly as in the proof of
Theorem 5.4. By Theorem 3.17, the B2 circuit computing the hash function H (and H′) in

23 The POLYLOGTIME-uniformity follows from the folklore simulation of P algorithms by POLYLOGTIME-
uniform circuits (see, e.g., [29]).

L. Chen, J. Li, and T. Yang 23:33

the proof of Theorem 5.4 has depth logn+ O(1). Since the output length of H′ (i.e., the
input length of the original PRF) is polylog(n), the depth of the original PRF would be
log(polylog(n)) = O(log logn). Therefore the total depth would be logn+O(log logn). ◀

To construct AC0[2] PRFs from Assumption 5.6, we need a folklore reduction from
logarithmic depth circuits to AC0 circuits. In particular, we show how to transform a
polynomial-size NC1 circuit to an AC0 circuit of size 2O(nε) and depth O(1/ε).

▶ Lemma 5.8. Let f be a function computable by P-uniform NC1 circuits. For any constant
ε > 0, f is computable by POLYLOGTIME-uniform AC0 circuits of 2O(nε) size and O(1/ε)
depth.

Proof. Suppose that f is computable by an NC1 circuit C of depth d logn. Let k = d/ε.
We partition C into k layers of chunks, each of depth ε logn. In such case, each chunk only
depends on O(2ε log n) = O(nε) number of gates, so we can expand it into a CNF of size
2O(nε). After expanding all the chunks, we get an AC0 circuit C ′ of size 2O(nε) and depth
2k = O(1/ε).

Let N = 2O(nε) be the size of C ′. To show the uniformity, we observe that to compute
the local structure of a gate, we only need to evaluate one of the chunks on a given input,
which can be done in poly(n) = polylog(N) time. ◀

▶ Theorem 5.9. There exists a exp
(

Ω
(

log2 n
log log n

))
-secure PRF with polylog(n) key length

computable by POLYLOGTIME-uniform AC0[2] circuits with 2n+O(n/ log logn) wires under
Assumption 5.6.

Proof. We will use the construction in the proof of Theorem 5.4 by replacing the PRF F with
a PRF computable by P-uniform NC1 circuits. Suppose that the parameter m in the proof
of Theorem 5.4 is at most logc n. Initiating Lemma 5.8 with ε = 1/(2c), we can compute
the PRF F with an POLYLOGTIME-uniform AC0 circuit with 2O(

√
log n) = no(1) wires. It

immediately follows that our PRF construction is computable by POLYLOGTIME-uniform
AC0[2] circuits with 2n+O(n/ log logn) wires. The other parts are the same as the proof of
Theorem 5.4. ◀

References
1 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost

k-wise independent random variables. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 544–553. IEEE
Computer Society, 1990. doi:10.1109/FSCS.1990.89575.

2 Benny Applebaum and Pavel Raykov. Fast pseudorandom functions based on expander graphs.
In Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 31 - November 3, 2016, Proceedings, Part I, volume 9985 of Lecture Notes in Computer
Science, pages 27–56, 2016. doi:10.1007/978-3-662-53641-4_2.

3 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

4 Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices.
In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings, volume 7237 of Lecture Notes in Computer Science, pages 719–737. Springer,
2012. doi:10.1007/978-3-642-29011-4_42.

CCC 2022

https://doi.org/10.1109/FSCS.1990.89575
https://doi.org/10.1007/978-3-662-53641-4_2
https://doi.org/10.1007/978-3-642-29011-4_42

23:34 Extremely Efficient Constructions of Hash Functions with Applications

5 Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later. In Tutorials
on the Foundations of Cryptography, pages 79–158. Springer International Publishing, 2017.
doi:10.1007/978-3-319-57048-8_3.

6 Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst.
Sci., 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

7 L. Sunil Chandran. A high girth graph construction. SIAM J. Discret. Math., 16(3):366–370,
2003. doi:10.1137/S0895480101387893.

8 Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and Rahul
Santhanam. Beyond natural proofs: Hardness magnification and locality. In 11th Innovations
in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle,
Washington, USA, volume 151 of LIPIcs, pages 70:1–70:48. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.70.

9 Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for all sparse NP languages.
In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 1240–1255. IEEE Computer Society, 2019.
doi:10.1109/FOCS.2019.00077.

10 Lijie Chen, Ce Jin, and R. Ryan Williams. Sharp threshold results for computational
complexity. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1335–1348. ACM, 2020.
doi:10.1145/3357713.3384283.

11 Ruiwen Chen and Valentine Kabanets. Correlation bounds and #SAT algorithms for small
linear-size circuits. Theor. Comput. Sci., 654:2–10, 2016. doi:10.1016/j.tcs.2016.05.005.

12 Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n - o(n) lower bound
on the circuit complexity of affine dispersers. In Mathematical Foundations of Computer
Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-26,
2011. Proceedings, volume 6907 of Lecture Notes in Computer Science, pages 256–265. Springer,
2011. doi:10.1007/978-3-642-22993-0_25.

13 Zhiyuan Fan, Jiatu Li, and Tianqi Yang. The exact complexity of pseudorandom functions
and the black-box natural proof barrier for bootstrapping results in computational complexity.
Electron. Colloquium Comput. Complex., page 125, 2021. To appear in STOC 2022. URL:
https://eccc.weizmann.ac.il/report/2021/125.

14 Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. A
better-than-3n lower bound for the circuit complexity of an explicit function. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 89–98. IEEE Computer Society,
2016. doi:10.1109/FOCS.2016.19.

15 Lance Fortnow. A simple proof of Toda’s theorem. Theory Comput., 5(1):135–140, 2009.
doi:10.4086/toc.2009.v005a007.

16 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986. doi:10.1145/6490.6503.

17 Alexander Golovnev, Edward A. Hirsch, Alexander Knop, and Alexander S. Kulikov. On
the limits of gate elimination. J. Comput. Syst. Sci., 96:107–119, 2018. doi:10.1016/j.jcss.
2018.04.005.

18 Johan Håstad. The shrinkage exponent of de Morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998. doi:10.1137/S0097539794261556.

19 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999. doi:
10.1137/S0097539793244708.

20 William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. J. Comput. Syst. Sci., 65(4):695–716, 2002.
doi:10.1016/S0022-0000(02)00025-9.

https://doi.org/10.1007/978-3-319-57048-8_3
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1137/S0895480101387893
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.1109/FOCS.2019.00077
https://doi.org/10.1145/3357713.3384283
https://doi.org/10.1016/j.tcs.2016.05.005
https://doi.org/10.1007/978-3-642-22993-0_25
https://eccc.weizmann.ac.il/report/2021/125
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.4086/toc.2009.v005a007
https://doi.org/10.1145/6490.6503
https://doi.org/10.1016/j.jcss.2018.04.005
https://doi.org/10.1016/j.jcss.2018.04.005
https://doi.org/10.1137/S0097539794261556
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1016/S0022-0000(02)00025-9

L. Chen, J. Li, and T. Yang 23:35

21 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and its
variants. In 32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga,
Latvia, volume 79 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.CCC.2017.7.

22 Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from shrinkage.
J. ACM, 66(2):11:1–11:16, 2019. doi:10.1145/3230630.

23 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant
computational overhead. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 433–442. ACM, 2008.
doi:10.1145/1374376.1374438.

24 Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n - o(n) for boolean circuits. In
Mathematical Foundations of Computer Science 2002, 27th International Symposium, MFCS
2002, Warsaw, Poland, August 26-30, 2002, Proceedings, volume 2420 of Lecture Notes in
Computer Science, pages 353–364. Springer, 2002. doi:10.1007/3-540-45687-2_29.

25 Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of k-wise
(almost) independent permutations. Algorithmica, 55(1):113–133, 2009. doi:10.1007/
s00453-008-9267-y.

26 Oded Lachish and Ran Raz. Explicit lower bound of 4.5n - o(n) for boolena circuits. In
Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 399–408. ACM, 2001. doi:10.1145/380752.380832.

27 Felix Lazebnik and Vasiliy A. Ustimenko. Explicit construction of graphs with an arbitrary
large girth and of large size. Discret. Appl. Math., 60(1-3):275–284, 1995. doi:10.1016/
0166-218X(94)00058-L.

28 Jiatu Li and Tianqi Yang. 3.1n - o(n) circuit lower bounds for explicit functions. Electron.
Colloqu ium Comput. Complex., page 23, 2021. To appear in STOC 2022. URL: https:
//eccc.weizmann.ac.il/report/2021/023.

29 Richard J. Lipton and Ryan Williams. Amplifying circuit lower bounds against polynomial time,
with applications. Comput. Complex., 22(2):311–343, 2013. doi:10.1007/s00037-013-0069-5.

30 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019, pages 1215–1225. ACM, 2019. doi:10.1145/3313276.3316396.

31 Eric Miles and Emanuele Viola. Substitution-permutation networks, pseudorandom functions,
and natural proofs. J. ACM, 62(6):46:1–46:29, 2015. doi:10.1145/2792978.

32 Ketan Mulmuley. On P vs. NP and geometric complexity theory: Dedicated to sri ramakrishna.
J. ACM, 58(2):5:1–5:26, 2011. doi:10.1145/1944345.1944346.

33 Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. J. ACM, 51(2):231–262, 2004. doi:10.1145/972639.972643.

34 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-
the-art lower bounds. Theory Comput., 17:1–38, 2021.

35 Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems.
In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, pages
65–76, 2018. doi:10.1109/FOCS.2018.00016.

36 Anna Pagh and Rasmus Pagh. Uniform hashing in constant time and optimal space. SIAM J.
Comput., 38(1):85–96, 2008. doi:10.1137/060658400.

37 Christos H. Papadimitriou and Stathis Zachos. Two remarks on the power of counting. In
Theoretical Computer Science, 6th GI-Conference, Dortmund, Germany, January 5-7, 1983,
Proceedings, volume 145 of Lecture Notes in Computer Science, pages 269–276. Springer, 1983.
doi:10.1007/BFb0009651.

38 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997. doi:10.1006/jcss.1997.1494.

CCC 2022

https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.1145/3230630
https://doi.org/10.1145/1374376.1374438
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/s00453-008-9267-y
https://doi.org/10.1007/s00453-008-9267-y
https://doi.org/10.1145/380752.380832
https://doi.org/10.1016/0166-218X(94)00058-L
https://doi.org/10.1016/0166-218X(94)00058-L
https://eccc.weizmann.ac.il/report/2021/023
https://eccc.weizmann.ac.il/report/2021/023
https://doi.org/10.1007/s00037-013-0069-5
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/2792978
https://doi.org/10.1145/1944345.1944346
https://doi.org/10.1145/972639.972643
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1137/060658400
https://doi.org/10.1007/BFb0009651
https://doi.org/10.1006/jcss.1997.1494

23:36 Extremely Efficient Constructions of Hash Functions with Applications

39 Victor Shoup. New algorithms for finding irreducible polynomials over finite fields. In 29th
Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24-26
October 1988, pages 283–290. IEEE Computer Society, 1988. doi:10.1109/SFCS.1988.21944.

40 Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Trans.
Inf. Theory, 42(6):1723–1731, 1996. doi:10.1109/18.556668.

41 Avishay Tal. Shrinkage of de Morgan formulae by spectral techniques. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 551–560. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.65.

42 Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor.
Comput. Sci., 47(3):85–93, 1986. doi:10.1016/0304-3975(86)90135-0.

43 Emanuele Viola. The communication complexity of addition. Comb., 35(6):703–747, 2015.
doi:10.1007/s00493-014-3078-3.

A Strongly explicit high-girth graphs

In this section, we will examine the construction of bipartite high-girth graphs of Lazebnik and
Ustimenko [27], and verify that it is indeed strongly explicit, thereby proving Theorem 2.12.

Let q be an odd prime power. Let P and L be two infinite sequences of elements from Fq

indexed as follows:

P =
〈
p1, p1,1, p1,2, p2,1, p2,2, p

′
2,2, p3,2, . . . , pi,i+1, pi+1,i, pi+1,i+1, p

′
i+1,i+1, pi+1,i+2, . . .

〉
L =

〈
l1, l1,1, l1,2, l2,1, l2,2, l

′
2,2, l3,2, . . . , li,i+1, li+1,i, li+1,i+1, l

′
i+1,i+1, li+1,i+2, . . .

〉
.

The names P and L mean points and lines, respectively, due to certain geometric intuition of
the construction. We say P is incident with L if they satisfy the following set of equations

E1 =


l1,1 − p1,1 = l1p1

l1,2 − p1,2 = l1,1p1

l2,1 − p2,1 = l1p1,1

, Ei =


li,i − pi,i = l1pi−1,i

l′i,i − p′i,i = li,i−1p1

li,i+1 − pi,i+1 = li,ip1

li+1,i − pi+1,i = l1p
′
i,i

(∀i ≥ 2) (3)

One can verify that for every point P , a line L incident with it is uniquely determined by
l1, since all other coordinates of L can be computed from the equations above iteratively.
Similarly for every line L, a point P incident with it is uniquely determined by p1.

Let Pk ∈ Fk
q be the length-k prefix of P , and Lk ∈ Fk

q be the length-k prefix of L. We
define D(k, q) = (V1, V2, E ⊆ V1 × V2) to be the following bipartite graph:

V1 = V2 = Fk
q ;

(u, v) ∈ E ⇐⇒ ∃(P,L), P is incident with L, u = Pk, and v = Lk.

Equivalently, u and v are connected if and only if they satisfy the first k equations of ∪iEi

in (3). Note that |V1| = |V2| = qk, |E| = qk+1, and the graph is q-regular.

▶ Theorem A.1 (Lazebnik and Ustimenko [27]). Let k ≥ 3 be an odd integer and q be an odd
prime power. Then the girth of D(k, q) is at least k + 5.

For our purpose, it is sufficient to consider q = pr for prime p = O(1). To construct
the graph explicitly, we need to evaluation field operations over Fq for a prime power q in
polylog(q) time, for which we need a representation of Fq. Recall that Fq is isomorphic to
Fp[x]/(Q(x)) for any irreducible degree-r polynomial Q ∈ Fp[x]. So the explicit representation
of Fq follows from the construction of irreducible polynomials by Shoup [39].

https://doi.org/10.1109/SFCS.1988.21944
https://doi.org/10.1109/18.556668
https://doi.org/10.1109/FOCS.2014.65
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1007/s00493-014-3078-3

L. Chen, J. Li, and T. Yang 23:37

▶ Theorem A.2 (Shoup [39]). There is a deterministic algorithm that constructs a degree-n
irreducible polynomial over Fp given an integer n and a prime power p in poly(n, p) time.

Now we check that D(k, q) is strongly explicit, in the sense that given the index i of
an edge, we can obtain the indices j1 and j2 in poly(k, log q) time such that the ith edge
connects the jth

1 vertex in V1 and the jth
2 vertex in V2. Let q = pr for a prime p = O(1). We

number the vertices and edges as follows.
1. We identify the elements in the finite field Fq as length-r vectors from [p]r, and number

all the elements in the lexicographic order.
2. We identify the vertices in both V1 and V2 (that are length k sequences of elements in

Fq) as length-kr vectors from [p]kr, and number them in the lexicographic order.
3. For any i ∈ [qk] and j ∈ [q], the (iq + j)th edge connects the ith vertex P in V1 and the

unique vertex L = (l1, . . .) in V2 connected to P such that l1 is the jth element in Fq.
Under such a numbering scheme, given the index iq + j of an edge with i ∈ [qk] and j ∈ [q],
we can easily determine its two endpoints in poly(k, log q) time.

Now we are ready to prove Theorem 2.12.

▶ Remainder of Theorem 2.12. Let r = r(n) = no(1) be a parameter. For every sufficiently
large n, there exists an m = Θ(n

r) and a regular graph Gm,n with m vertices, n edges, and
girth Ω(log n

log r). Moreover, there exists a polylog(n)-time algorithm A(n, i) for i ∈ [n] that
outputs the indices of the two endpoints of the ith edge in Gm,n, and a polylog(n)-time
algorithm B(n, i, j) for i ∈ [m] that outputs the jth edge attaching to the ith vertex.

Proof. Let q be the power of 3 in the interval [r, 3r). Applying Theorem A.2, we construct
a fixed representation of Fq in polylog(q) time so that the field operations over Fq can be
evaluated in polylog(q) time. Let k ≜ ⌊logq n⌋ − 1 (i.e., k is the largest integer such that
qk+1 ≤ n), ℓ ≜ ⌈n/qk+1⌉, and m ≜ 2qkℓ. Note that

m ≤ 2qk

(
n

qk+1 + 1
)

= 2n
q

+ 2qk+1

q
≤ O

(n
r

)
,

m ≥ 2qk · n

qk+1 ≥ Ω
(n
r

)
,

and therefore m = Θ(n/r). Now we construct a graph Gm,n with ℓ connected components as
follows. Each of the first ℓ− 1 connected components is a copy of D(q, k) with 2qk vertices
and qk+1 edges. The last connected component is a subgraph of D(q, k) with 2qk vertices
but only the first n− qk+1(ℓ− 1) edges.

By Theorem A.1, it is easy to see that the girth of Gm,n is at least k = Ω(logn/ log q) =
Ω(log n

log r). According to our numbering scheme and related discussions, it is also easy to verify
that given an edge index i, we can compute the two endpoints of the ith edge in Gm,n in
polylog(n) time. Furthermore, the jth edge attaching to the ith vertex can be easily computed
since each of the q edges attaching to the ith vertex is uniquely determined by l1 ∈ Fq or
p1 ∈ Fq (see Equation 3). ◀

CCC 2022

	1 Introduction
	1.1 Randomness-efficient and strongly-explicit almost universal hash functions
	1.2 Implications on sharp bootstrapping results
	1.2.1 Sharp magnification threshold for probabilistic circuits
	1.2.2 Sharp magnification thresholds for explicit obstruction

	1.3 Strongly uniform pseudorandom functions
	1.4 Intuition
	1.4.1 Construction of randomness efficient almost-universal hash functions
	1.4.2 Applications to hardness magnification and construction of PRFs

	2 Preliminaries
	2.1 Probability Theory
	2.2 Circuit Classes
	2.3 Hash and 1-detector
	2.4 epsilon-biased set and k-wise independence
	2.5 Expander Graphs
	2.6 Graph with large girth

	3 Randomness-efficient low-complexity hash functions
	3.1 General construction from 1-detectors
	3.2 Randomness-efficient low-complexity 1-detectors
	3.3 Shrinkage reduction of hash function
	3.4 Explicitness of our construction
	3.5 Uniformity of our construction

	4 Sharp bootstrapping results from hash functions
	4.1 Hardness magnification for all sparse NP languages
	4.2 Hardness magnification for MCSP
	4.3 Explicit obstruction
	4.4 Unconditional lower bounds for sparse languages

	5 Low-complexity PRFs from hash functions
	5.1 PRF and Levin's trick
	5.2 Low-complexity PRFs in B_2 circuit
	5.3 Low-complexity PRFs in low-depth circuits

	A Strongly explicit high-girth graphs

