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Abstract
Average-case complexity has two standard formulations, i.e., errorless complexity and error-prone
complexity. In average-case complexity, a critical topic of research is to show the equivalence between
these formulations, especially on the average-case complexity of NP.

In this study, we present a relativization barrier for such an equivalence. Specifically, we
construct an oracle relative to which NP is easy on average in the error-prone setting (i.e., DistNP ⊆
HeurP) but hard on average in the errorless setting even by 2o(n/ log n)-size circuits (i.e., DistNP ⊈
AvgSIZE[2o(n/ log n)]), which provides an answer to the open question posed by Impagliazzo (CCC
2011). Additionally, we show the following in the same relativized world:
Lower bound of meta-complexity GapMINKTO /∈ pr-SIZEO[2o(n/ log n)] and GapMCSPO /∈

pr-SIZEO[2nϵ

] for some ϵ > 0.
Worst-case hardness of learning on uniform distributions P/poly is not weakly PAC learnable with

membership queries on the uniform distribution by nonuniform 2n/nω(1)-time algorithms.
Average-case hardness of distribution-free learning P/poly is not weakly PAC learnable on average

by nonuniform 2o(n/ log n)-time algorithms.
Weak cryptographic primitives There exist a hitting set generator, an auxiliary-input one-way

function, an auxiliary-input pseudorandom generator, and an auxiliary-input pseudorandom
function against SIZEO[2o(n/ log n)].

This provides considerable insights into Pessiland (i.e., the world in which no one-way function
exists, and NP is hard on average), such as the relativized separation of the error-prone average-case
hardness of NP and auxiliary-input cryptography. At the core of our oracle construction is a new
notion of random restriction with masks.
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1 Introduction

Average-case complexity has been studied extensively in computational complexity theory.
In the theory of average-case complexity, the computational cost of solving a distributional
problem (L, D) well on average is investigated, where L is a language, and D is a polynomial-
time samplable distribution on instances. Average-case complexity depends on the definition
of “average-case easiness,” and there are at least two natural ways to formulate this: errorless
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25:2 Finding Errorless Pessiland in Error-Prone Heuristica

and error-prone1 average-case easiness. In both formulations, an efficient algorithm needs to
output a correct answer with high probability over a choice of random instances sampled
from distribution D. The difference is in the requirement when the algorithm cannot solve
an instance. In the errorless setting, the algorithm is not allowed to output a wrong answer;
instead, it is allowed to output a special symbol ⊥, which represents the failure of the
algorithm. In the error-prone setting, an algorithm is allowed to output a wrong answer,
provided that the error probability of the algorithm is small.

The difference between the two notions originates from two different motivations of
studying average-case complexity. On one hand, Levin [29] laid the foundation of the theory
of average-case complexity of NP and introduced the notion of average-case polynomial-time,
which is equivalent to errorless heuristic schemes [24, 7]. The motivation of Levin is to
clarify which distributional NP problems are hard, as some NP-complete problems are indeed
easy on average with respect to natural distributions. Levin proved the distributional NP-
completeness of a problem called the tiling problem. Although Levin’s theory is applicable
to both of the average-case notions, it is more natural to consider the notion of errorless
average-case easiness in this context: Practical heuristic algorithms, such as SAT solvers,
can be considered as errorless heuristics. A SAT solver is usually guaranteed to output the
correct answer if it halts, but the solver may “fail” on some instances, i.e., may require a
long time to halt on some instances. Levin’s theory demonstrates that some distributional
NP problems are hard and are unlikely to be solved by such heuristic algorithms. On the
other hand, the errorless notion is not (necessarily) appropriate for discussing the security
of cryptographic primitives. The foundational work of Blum and Micali [6] and Yao [44]
demonstrated that error-prone average-case hardness of some distributional NP problems
is useful to build cryptographic primitives. Closing the gap between the errorless and
error-prone average-case notions would unify the two motivations of studying average-case
complexity. In his influential paper, Impagliazzo [24] explicitly raised this question as an
important research direction. The question can be formally stated as follows.

▶ Question 1. Is DistNP ⊆ HeurP equivalent to DistNP ⊆ AvgP?

Here, AvgP (resp. HeurP) denotes the class of distributional problems solvable on average
by a polynomial-time algorithm in the errorless (resp. error-prone) setting; see Section 3.1
for a formal definition. DistNP denotes the class of distributional NP problems, i.e., DistNP =
{(L, D) : L ∈ NP and D is a polynomial-time samplable distribution}.

Giving an affirmative answer to Question 1 is necessary for basing the security of
cryptography on the worst-case hardness of NP. An additional motivation was recently
provided by Hirahara and Santhanam [22]: they identified a deep connection between
the question of errorless versus error-prone average-case complexities and the question of
constructing an instance checker for NP, which is another long-standing and important open
question raised in the seminal work of Blum and Kannan [5].

Despite its importance, there does not seem to be an effective method for addressing this
question, so it is natural to ask whether there is a technical barrier. This meta-approach is
often considered in computational complexity theory and is useful for excluding hopeless proof
techniques from consideration. For example, proof techniques that are captured by standard
frameworks, such as relativization [4], natural proofs [38], and algebrization [1], are known to
be incapable of resolving the P versus NP question. However, to the best of our knowledge,

1 It is originally called the “heuristic” complexity, and the term “error-prone” is due to the follow-up
work [22].
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there is no barrier for the question of errorless versus error-prone average-case complexities.
In fact, Impagliazzo [24, 25] raised the open question of presenting a relativization barrier to
Question 1.

▶ Question 2. Is there an oracle O such that DistNPO ⊈ AvgPO and DistNPO ⊆ HeurPO?

The main contribution of this study is to resolve this decade-old open question affirmatively.
Before presenting the details of our results, we review the recent progress in complexity
theory that demonstrates the notable power of the errorless average-case easiness of NP
by relativizing proof techniques. Along the way, we provide additional questions related
to errorless versus error-prone average-case complexities. We refer to the possible world
in which DistNP ⊆ AvgP (resp. DistNP ⊆ HeurP) but P ̸= NP as errorless Heuristica (resp.
error-prone Heuristica). In any relativized errorless Heuristica, the following computational
tasks regarding worst-case complexity are proved to be feasible.

Errorless Heuristica I: Approximating Complexity (Meta-Complexity)

Meta-complexity is a field that studies the computational complexity of determining com-
putational complexity. One central meta-computational problem is MINKT; for an input
(x, t) ∈ {0, 1}n × N, MINKT is the problem of determining the minimum description length
of the program that prints x in t time, i.e., the t-time-bounded Kolmogorov complexity of
x. Another well-studied problem is MCSP; for an input x ∈ {0, 1}2n (regarded as the truth
table of a function), MCSP is the problem of determining the minimum size of the n-input
circuit whose truth table corresponds to x, i.e., the circuit complexity of x.

Hirahara [16] revealed that the approximation versions of the aforementioned problems
are efficiently solvable in the worst case based on the errorless average-case easiness. For every
σ : N × N → N, let GapσMINKT denote the problem of approximating the t-time-bounded
Kolmogorov complexity of x ∈ {0, 1}n within an additive error term σ(·, n). For every
ϵ ∈ [0, 1], let GapϵMCSP denote the problem of approximating the circuit complexity of
x ∈ {0, 1}2n within a multiplicative approximation factor 2(1−ϵ)n. The formal definitions of
these problems are presented in Section 3.2, where they are defined as promise problems.
Hirahara’s theorem is stated as follows.

▶ Theorem 1 ([16]). If DistNP ⊆ AvgP, then there exist a function σ(s, n) =
√

s · polylog(n)
and a constant ϵ > 0 such that GapσMINKT ∈ pr-ZPP and GapϵMCSP ∈ pr-BPP. Furthermore,
these results are relativized.2

Errorless Heuristica II: PAC Learning

PAC (Probably Approximately Correct) learning is one of the well studied subjects in
theoretical computer science, introduced by Valiant [40]. In the PAC learning model, a
learner is required to learn all target functions f in the target class on all unknown example
distributions D, i.e., the learner constructs a good approximator for f from passively collected
data of the form (x, f(x)), where each x (called an example) is selected according to D.
In other words, the performance of the learner is measured by the worst-case analysis on
target functions and example distributions, and this task is not directly captured as a

2 A subsequent result [18] improved the approximation errors using a potentially non-relativizing proof
technique of [9].
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distributional problem. Nevertheless, Hirahara and Nanashima [20] revealed that these
worst-case requirements in PAC learning are performed based on only the average-case
easiness of NP under a natural computational assumption on example distributions.

▶ Theorem 2 ([20]). If DistNP ⊆ AvgP, then P/poly is PAC learnable in polynomial time on
all unknown P/poly-samplable example distributions. Furthermore, this result is relativized.

Errorless Heuristica III: No Auxiliary-Input Cryptography

The aforementioned results are sufficient to break the security of any efficiently computable
auxiliary-input cryptographic primitive, as observed in [3, 21], which is yet another notable
consequence of DistNP ⊆ AvgP. An auxiliary-input primitive, introduced in [36, 37], is defined
as a family of primitives and has the weak security condition that at least one primitive in
the family is required to be secure depending on each adversary. In other words, an adversary
for an auxiliary-input primitive needs to succeed in breaking all primitives in the family,
and this task is not captured directly as a distributional NP problem. Nevertheless, we can
efficiently break any auxiliary-input cryptographic primitive in errorless Heuristica.

▶ Theorem 3. If DistNP ⊆ AvgP, then there is no auxiliary-input one-way function. Further-
more, this result is relativized.

The three theorems mentioned above demonstrate that several fascinating tasks concerning
worst-case requirements can be performed in errorless Heuristica. By contrast, there is no
result which shows the feasibility of a similar task in error-prone Heuristica. Thus, there are
two possibilities: the errorless condition is essential in the aforementioned results, or they
can be extended by similar (especially, relativizing) proof techniques. Determining which
is correct is important to understand the capability and limitation of the technique for the
worst-case to average-case reduction within NP developed by Hirahara [16]. Particularly,
a significant line of work [26, 30, 2, 23, 31, 32] shows the characterization of a one-way
function (OWF) based on the error-prone average-case hardness of several central problems
in meta-complexity, including GapMINKT and GapMCSP. Therefore, if Hirahara’s reduction
can be extended to error-prone average-case analogues of these problems, then OWFs is
characterized by the worst-case hardness of meta-computational problems. Despite many
efforts, however, extending Hirahara’s reduction is currently open. Proving Theorems 1, 2,
and 3 in error-prone Heuristica is one natural and necessary approach for this research
direction, where we consider the stronger assumption that DistNP ⊆ HeurP (instead of the
non-existence of OWFs) and attempt to solve easier problems such as breaking auxiliary-input
cryptography.

▶ Question 3. Do Theorems 1, 2, and 3 also hold in error-prone Heuristica, i.e., under the
assumption that DistNP ⊆ HeurP? Or, is there any barrier for such research directions?

In this study, we address these questions and study the difference between the errorless
average-case complexity and the error-prone average-case complexity from the perspective of
relativization.

1.1 Our results
Our main contribution is the oracle construction for separating the error-prone average-case
hardness and the errorless average-case hardness for distributional NP problems. Furthermore,
the proposed oracle also separates the error-prone average-case hardness and (i) the hardness
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of approximating complexity (i.e., the lower bound of meta-complexity), (ii) the hardness of
PAC learning, and (iii) the existence of auxiliary-input cryptographic primitives. Therefore,
the proposed oracle exhibits the relativization barrier for Question 3.

We remark several points before presenting the result. When we consider the adversary
defined as (a family of) circuits for some cryptographic primitives (e.g., auxiliary-input
primitives and hitting set generators), we regard a size function s(n) of an adversary as a
function in the length of a hidden seed instead of output of the primitive for simplicity. In
addition, we regard a time-bound function of a learning algorithm as a function in the length
of examples, i.e., the input size to the target function.

Now, we present the main theorem. The formal definition of each notion in the statement
is presented in Section 3.

▶ Theorem 4. For any constant a > 0, there exists an oracle O relative to which the following
hold:

(Error-prone average-case easiness of NP) DistNPO ⊆ HeurPO.
(Errorless average-case hardness of NP) DistNPO ⊈ AvgSIZEO[2an/ log n].
(Lower bound of meta-complexity) GapσMINKTO /∈ pr-SIZEO[2an/ log n] for any σ(s, n) =
o(s) · polylog(n). In addition, for each ϵ ∈ [0, 1], there exists δ ∈ (0, 1) such that
GapϵMCSPO /∈ pr-SIZEO[2nδ ].
(Worst-case hardness of learning on uniform distributions) SIZEO[n] is not weakly PAC
learnable with membership queries (MQ) on the uniform distribution by nonuniform
O(2an/ log n)-time algorithms. Furthermore, there exists a polynomial s(n) such that
SIZEO[s(n)] is not weakly PAC learnable with MQ on the uniform distribution by nonuni-
form 2n/nω(1)-time algorithms.
(Average-case hardness of distribution-free learning) There exists a polynomial s(n) such
that SIZEO[s(n)] is not weakly PAC learnable on average by nonuniform O(2an/ log n)-time
algorithms. Furthermore, SIZEO[n] is not weakly PAC learnable on average by nonuniform
O(2nϵ)-time algorithms for some constant ϵ > 0.
(Relaxed cryptographic primitives) There exist a hitting set generator (HSG), an auxiliary-
input one-way function (AIOWF), an auxiliary-input pseudorandom generator (AIPRG),
and an auxiliary-input pseudorandom function (AIPRF) against SIZEO[2an/ log n].

The lower bound in the oracle separation is considerably stronger than the polynomial
lower bound and holds for the nonuniform computation model.

Wee [42] constructed an oracle relative to which DistNP ⊈ HeurP, and no AIOWF exists
against P/poly, which is the opposite separation of one of our results. Combined with Wee’s
result, our results show that auxiliary-input cryptography and the error-prone average-case
hardness of NP are incomparable by any relativizing proof.

1.2 Related Work
The study of oracle separations is initiated by Baker, Gill, and, Solovay [4] to identify the
barrier for resolving the P versus NP problem. The study of the average-case complexity is
initiated by Levin [29], and later it was brushed up by Impagliazzo [24], where he introduced
the notion of five worlds. In the same paper, Impagliazzo first addressed the question on the
difference between the errorless complexity and the error-prone complexity. Each relativized
world in Impagliazzo’s five worlds is found in [4, 25, 42, 27, 8]. Specifically, Impagliazzo
found a relativized heuristica in which DistNP ⊆ AvgP but NP ⊈ SIZE[2nϵ ] for some ϵ > 0,
and Wee found a relativized pessiland in which DistNP ⊈ HeurP, but neither AIOWF nor
OWF exists. Watson [41] also constructed a relativized world in which there is no black-box

CCC 2022
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Figure 1 relativization barriers in heuristica and pessiland.

worst-case to average-case reduction for NP, but the reduction presented by Hirahara [16, 18]
is non-black-box and overcomes the barrier against black-box reductions. Hirahara and
Nanashima [20] improved the oracle construction proposed by Impagliazzo to the tight
worst-case hardness of NP and also presented the relativized world in which DistNP ⊆ AvgP,
but PAC learning P/poly with MQ is sub-exponentially hard. Ko [28] showed the relativized
world in which P ̸= NP, but a gap variant of the problem called MINLT is efficiently solvable,
which is sufficient for PAC learning P/poly. Xiao [43] found the relativized world in which
PAC learning P/poly with MQ is hard, but there is no AIOWF. Ren and Santhanam [39]
presented various relativization barriers on the problems in meta-complexity, including the
relativized world in which there is no efficient and robust reduction from distributional NP
problems to the GapMINKT oracle. They also found the relativized world in which no AIOWF
exists but GapMCSP and GapMINKT are hard (even in the error-prone average case). The
oracle separation between AIOWF and OWF was discussed in [34]. The relationships among
these oracle separation results is visualized in Figure 1.

Hirahara and Santhanam [22] also addressed the errorless complexity versus error-prone
complexity problem, and they showed that the equivalence between a non-adaptive errorless to
error-prone reduction for NP and an average-case instance checker for NP. They also discussed
Question 1 for other classes of distributional problems such as DistPH and Dist(UP ∩ coUP)
and showed that Dist(UP ∩ coUP) ⊆ AvgP if and only if Dist(UP ∩ coUP) ⊆ HeurP, i.e., they
resolved Question 1 for the subclass UP ∩ coUP of NP.

2 Proof Techniques

We present ideas behind our oracle separation. The oracle construction is based on the one
presented by Impagliazzo [25], in which the worst-case hardness and the errorless average-case
easiness are separated for NP. First, we briefly review the idea and subsequently present its
adjustment for the separation between the errorless average-case hardness and the error-prone
average-case hardness for NP. For simplicity, we only consider the uniform distribution as
the distribution over instances (instead of all sampleable distributions) and a lower bound
for P/poly (instead of SIZE[2an/ log n]) in this section.
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Oracle Separation between NP ⊈ P/poly and DistNP ⊆ AvgP

The oracle construction by Impagliazzo [25] is based on the following observation: For a
hidden random function f : {0, 1}n → {0, 1}m(n), the answers to most NP computations
involving in f are determined by a random restriction of the truth-table of f . Therefore,
by providing access to a restrictive NP oracle A that answers correctly only if the random
restriction determines the answer (otherwise, A answers ⊥), NP problems become easy on
average. By contrast, we require all the information of f to perform all NP computations
involving in f . Thus, NP problems remain hard in the worst-case sense in the presence of A.
We review how this idea can be implemented.

The oracle in [25] consists of two oracles V and A and a hidden internal random function3

f : {0, 1}n → {0, 1}m(n), where V represents a verification oracle for the NP relation R(x, f(x))
which makes NP worst-case hard, and A represents a restrictive NP oracle which makes
NP average-case easy while retaining the worst-case hardness. The NP oracle A is given a
description of a nondeterministic oracle machine M , an input x, and a time bound T (of
the form 1T 4 to prevent the circular call for A), simulates MV,A(x) in T time, and returns
the answer, where we allow A to use only partial values of f on randomly selected positions.
If the execution is determined only by the partial information, then A returns the result;
otherwise, A returns ⊥.

The average-case easiness of NP follows from the switching lemma for DNFs, where we
regard each f(y)i as a binary variable for each input y and position i (assigned in the random
selection of f) and MV,A(x) (executed in T time) as a m(n) ·T -DNF formula4. If there is no
query access to A by M , then the switching lemma implies that MV(x) is determined only
by the partial information of f for a large fraction of inputs x. In general cases, however, we
need to take the recursive query access to A into account. To address this issue, we introduce
a structure in f by multiple applications of random restrictions in the selection of f . Then,
for a given time bound 1T 4 , we only apply from the first to iT := 2−1 log log T -th random
restrictions. If M queries (M ′, x′, 1T ′4) to A in T time, then (T ′)4 ≤ T holds. Because
iT ′ = 2−1 log log T ′ ≤ iT − 1, the answer to the query to A is determined only by up to the
iT − 1-th random restriction. Thus, under an arbitrary condition on up to the (iT − 1)-th
random restriction, all the answers from A (for executing MV,A(x) in T time) are determined
by the condition, and a certain DNF formula is determined regardless of query access to
A. Then, the average-case easiness follows from the switching lemma for the iT -th random
restriction (conditioned on up to the (iT − 1)-th random restriction). To apply the switching
lemma for the average-case easiness, the parameter for the random restriction (i.e., the unset
probability) is set to at most n−ω(1) (we require a subexponentially small parameter for the
subexponential lower bound for NP, as discussed in [20]).

By contrast, the worst-case hardness is shown by considering the NPV,A problem L =
{⟨x, i⟩ : ∃y s.t. V(x, y) = 1 and yi = 1} (in fact, L ∈ UPV,A ∩ coUPV,A). Any polynomial-size
circuit C can only access up to the 2−1 log log poly(n) = O(log log n)-th random restriction.
Intuitively, if there still remain many unassigned values in the O(log log n)-th random
restriction, then C should guess such values at random to find the witness f(x) for L, which
implies the worst-case hardness.

3 This is a slightly modified analog of the original construction discussed in [20] for applying the standard
switching lemma for DNFs in the proof instead of the switching lemma on matching variables.

4 Specifically, the top-most ∨ is taken over a nondeterministic configuration path π for M and a choice of
f , and each term corresponds to one choice of (π, f) such that MV(x) accepts, where ∧ in the term is
applied to verify the consistency of the values of f at the (at most m(n) · T ) points MV(x) queries.

CCC 2022
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The aforementioned oracle yields the errorless average-case easiness because A returns ⊥
in the case in which the simulation of the given nondeterministic machine is not determined
by the random restrictions. Therefore, a natural idea to separate the errorless and error-prone
complexities is that we make A return a wrong answer in such cases. To implement this
idea, the following concerns should be addressed. First, how should the answer from A
be determined in such cases? Note that A cannot use the values of f assigned at higher
levels in the structure to identify the wrong answer because it causes a circular problem,
i.e., the DNF representing MV,A(x) is not determined only by up to the (iT − 1)-th random
restriction anymore. Second, how should a distributional problem be determined for the
errorless average-case hardness? Particularly, Hirahara and Santhanam [22] showed the
equivalence between the errorless average-case easiness and the error-prone average-case
easiness of UP ∩ coUP by relativizing proof techniques. Thus, we cannot hope to prove the
errorless average-case hardness for the same UP ∩ coUP problem L under the error-prone
average-case easiness of NP.

First Attempt for DistNP ⊈ AvgP/poly and DistNP ⊆ HeurP
The answer to the first question is relatively simple: we make A always answer 0. The
intuition behind this is that an oracle machine given 1 as an answer from A (for some
NP-type statement) can also obtain the witness for this assertion by the self-reducibility
of NP; otherwise, the oracle machine can detect the error of A and output ⊥. Thus, any
error-prone algorithm can be translated into an errorless algorithm when A answers 1 as a
wrong answer at some stage. By contrast, if A answers 0, i.e., declares “no witness,” then
there seems no efficient way to detect this error. Thus, we let A always answer 0, and this
choice is indeed crucial in the proof.

By contrast, the answer to the second question is less obvious. Our approach is to construct
a hitting set generator (HSG) instead of determining a distributional problem directly. A
HSG (against P/poly) is a (family of) efficiently computable function G : {0, 1}n → {0, 1}m(n)

which stretches the seed (i.e., m(n) > n) and hits any language recognized by a polynomial-
size circuit. Specifically, if a polynomial-size circuit C accepts more than half of the strings
in {0, 1}m(n), then C also accepts G(x) for some x ∈ {0, 1}n (for infinitely many n ∈ N).
Constructing a HSG for the errorless average-case hardness is a natural approach because
it immediately yields a natural distributional NP problem (ImG, Uniform) that is hard on
average in the errorless setting, and Hirahara [17] demonstrated the equivalence between the
errorless average-case hardness of PH and the existence of PH-computable HSGs.

A first attempt to construct a HSG is that we regard the random function f : {0, 1}n →
{0, 1}m(n) as a generator, where we let m(n) > n. Now, we replace the verification oracle
V with F defined as F(x, i) = f(x)i because the generator requires direct access to f for
computing its values. Then, we define the candidate GF,A : {0, 1}n → {0, 1}m(n) for a HSG
as GF,A(x) = F(x, 1) ◦ · · · ◦ F(x, m(n)) (= f(x)). However, this generator G is not a HSG,
and G can be broken efficiently by using the partial information of f efficiently obtained from
A, informally as follows: For each random restriction, an expected fraction of unassigned
values in f is n−ω(1). Thus, for a given string y ∈ {0, 1}m(n), we can easily detect the case
of y = G(x) for a large fraction of x ∈ {0, 1}n by asking an NP-type query to A such as “Is
there x ∈ {0, 1}n such that G(x) is partially consistent with y?” because the answer tends
to be fixed to 1 only by the random restriction in A if such an x exists. After applying the
random restrictions ω(1) times, the aforementioned strategy is sufficient for detecting all the
cases of y ∈ ImG. Thus, some different approach is required.
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We remark that we can now regard executing a nondeterministic MF,A(x) in T time as
a T -DNF formula (instead of an m(n) · t-DNF) because F accesses only one entry in f for
each query.

Our Construction: Random Restriction with Masks
To construct a HSG, we introduce a new type of random restrictions, random restriction with
masks, which is crucial to solve Question 2. A random restriction with masks to f : {0, 1}n →
{0, 1}m(n) with parameter p ∈ [0, 1] (i.e., the unset probability) is performed as follows: First,
we select a random subset S1 ⊆ {0, 1}n of size p · 2n and then apply a standard random
restriction with unset probability p to a variable set {f(x)i : x ∈ {0, 1}n \S1 and i ∈ [m(n)]},
i.e., the random set S1 performs as a “mask” that prevents restriction. This variant of
random restriction is extended to multiple applications inductively as follows: Let Si be
the random subset (i.e., the mask) selected in the i-th random restriction with masks to f .
Next, the (i + 1)-th restriction (with parameter p) is performed by selecting a random subset
Si+1 ⊆ Si of size p · |Si| and applying random restriction to variables except for Si+1.

We consider a modified oracle in which the oracle construction is the same as previously
mentioned except that we apply random restrictions with masks instead of the standard
random restrictions. For now, we select the unset probability p(n) = n− log n. This choice is
sufficient for a HSG against P/poly and the statement that DistNP ⊈ AvgP/poly. Note that
p(n) should be selected more carefully according to the size complexity of the adversary in
the formal argument (for the detail, see Section 4).

Specifically, we randomly select the aforementioned oracles F and A by selecting the
internal random function f : {0, 1}n → {0, 1}m(n) with log n applications of random restric-
tions with masks for each n ∈ N (after applying random restrictions, we also select the
remaining values of f at random). For each n ∈ N, let Sn,log n ⊆ {0, 1}n be the random
mask selected in the log n-th restriction. Then, we have |Sn,log n| = p(n)log n ·2n = 2n−(log n)3 .
Thus, there exist exponentially many z ∈ Sn,log n ⊆ {0, 1}n (we call these hard indices) such
that no value in f(z) is assigned by the log n-th restriction. Remember that for a query
(M, x, 1T 4), the oracle A applies only up to the iT := 2−1 log log T -th random restriction.
Since any polynomial-size adversary C can make a query only with T = poly(n), C can
only access up to the O(log log n)-th restrictions. Therefore, any polynomial-size adversary
cannot obtain any information about f(z) from A for each hard index z, and oracle access
to F(z, i) = f(z)i is indistinguishable from access to a random function for such adversaries.

The aforementioned argument is sufficient for constructing a HSG. In fact, by defining the
generator G as GF,A(x) = F(x, 1) ◦ · · · ◦ F(x, m(n)), we can show that G is a HSG against
P/poly by a similar argument as in [20]. Furthermore, the random restriction method with
masks has another advantage: even if we select exponentially large m(n), it still provides hard
indices z such that A does not reveal any information of f(z) to polynomial-size adversaries.
Specifically, by letting m(n) = 2n · n (i.e., the length of the truth table of a mapping from
n-bit to n-bit), we can prepare an auxiliary-input oracle F : {0, 1}n × {0, 1}n → {0, 1}n such
that F(z, ·) is (computationally) indistinguishable from a random oracle for subexponentially
many hard z’s. Therefore, F (·, ·) is an AIOWF because it is known that a random oracle is
also a OWF with probability 1 over the choice of the random oracle (cf. [27, 11]). Furthermore,
by the technique presented in [45], we can construct an AIPRG based on the auxiliary-input
analog of a random oracle with less security loss than the general methods to convert OWFs
into PRGs (e.g., [15]). In the formal proof of Theorem 4, we first construct such an AIPRG
and subsequently show the related hardness notion (e.g., HSGs and the hardness of learning)
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25:10 Finding Errorless Pessiland in Error-Prone Heuristica

to prevent security loss. Note that the aforementioned argument does not yield standard
cryptographic primitives such as OWFs because the set of hard indices are selected at random,
and there is no efficient sampling algorithm that selects a hard index with high probability.

A random restriction with masks assigns fewer variables than a standard random restric-
tion. Therefore, the remaining problem is whether the error-prone average-case easiness is
preserved in the modified oracle construction. This issue can be addressed by the choice of
the answer (i.e., 0) from A when the simulation is not determined by random restrictions.
The proof is outlined as follows (for the formal proof, see Section 5).

For convenience, we regard that a random restriction with masks is performed as follows:
(i) a standard random restriction is applied to remaining variables at the stage, (ii) the
random subset Si+1 ⊆ Si is selected in the same manner, and (iii) the values in f(z) are
returned to unassigned for each z ∈ Si+1. Let us call the first step (resp. the second and
third steps) a restriction (resp. reverse) step. The random restriction in the restriction step
is merely a standard one. Thus, by the standard switching lemma, we can show that the
value of a T -DNF ϕ (representing the execution of a nondeterministic machine in T time) is
determined with high probability at this stage. Therefore, it is sufficient to show that the
answer from A rarely changes in the reverse step.

For simplicity, we use the notation ∗ to refer to the cases in which the DNF ϕ is not fixed
by the random restriction. Then, there are 3× 3 = 9 possibilities about the change in the
state on the restricted ϕ, i.e., from {0, 1, ∗} (in the restriction step) to {0, 1, ∗} (in the reverse
step). Obviously, we do not need to consider the following 3 cases: {0} → {0}, {1} → {1},
and {∗} → {∗}. Since we cancel some assignments in the reverse step, the following 4 cases
do not occur: {∗} → {0, 1}, {0} → {1}, and {1} → {0}. Furthermore, because A answers 0
in the case of ∗, we do not need to consider the case of {0} → {∗}. Therefore, the remaining
case is only {1} → {∗}.

We show that the case of {1} → {∗} rarely occurs as follows. Since the T -DNF formula ϕ

is satisfied in the restriction step, there must exist a satisfied term τ of size T . If ϕ becomes
unfixed in the reverse step, then τ is also unfixed. This event occurs only if there exists
z ∈ {0, 1}n such that some variable f(z)i is contained in τ (for some i), and z is selected
on the choice of the random subset in the reverse step. Since τ covers at most T indices z

in literals, this probability is at most T · p(n) = T · n− log n. Particularly, for solving a NP
problem by A, we only need to simulate a nondeterministic machine in poly(n) times, so we
can let T = poly(n). Therefore, the error probability that the answer from A is changed in
the reverse step is negligible.

Limitations of Our Technique and Future Direction
We remark that the aforementioned argument above heavily relies on the characteristics
of DNFs (i.e., nondeterministic machines). Currently, it is unclear whether the proposed
argument can be extended to a general case of constant-depth circuits, even for depth-3
∧-∨-∧-circuits (which corresponds to Πp

2). By contrast, the oracle separation between the
worst-case hardness and the errorless average-case easiness for NP in [25] is naturally extended
for PH, as explicitly discussed in [20] by considering the switching lemma for constant-depth
circuits. Therefore, we pose the following open question for the further research on the
difference between the errorless and error-prone average-case complexity.

▶ Question 4. Is there any oracle O relative to which DistNPO ⊈ AvgPO/poly and DistPHO ⊆
HeurPO? Or, is there a relativizing proof which shows that DistPH ⊆ HeurP =⇒ DistNP ⊆
AvgP/poly?
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The fact that we failed to extend our results to PH might suggest the feasibility of proving
DistPH ⊆ HeurP =⇒ DistNP ⊆ AvgP/poly. Furthermore, we failed to improve our lower
bound 2o(n/ log n) on the time complexity of errorless average-case algorithms to 2o(n). In this
light, we conjecture that the worst-case-to-average-case connection of Hirahara [19], which
shows that DistNP ⊆ AvgP =⇒ UP ⊆ DTIME(2O(n/ log n)), can be extended to the error-prone
average-case complexity by using a relativizing proof.

▶ Conjecture 5. For every oracle O, if DistNPO ⊆ HeurPO, then UPO ⊆
BPTIMEO[2O(n/ log n)].

3 Preliminaries

For each n ∈ N, let [n] = {1, . . . , n}. For each x ∈ {0, 1}n and i ∈ [n], we let xi denote the
i-th bit of x and x≤i denote x1 ◦ · · · ◦ xi. For a distribution D, we write x← D to refer to
a random sampling x according to D. For a finite set S, we also use the notation x←u S

to denote the uniform sampling from S. For each n ∈ N, we let Un denote the uniform
distribution over {0, 1}n or a random variable selected uniformly at random from {0, 1}n

in context. We use the notation negl to represent a certain negligible function, i.e., for any
polynomial p(n), negl(n) < 1/p(n) for sufficiently large n ∈ N. For a randomized algorithm
A using r(n) random bits on an n-bit input, we use A(x; s) to refer to the execution of A(x)
with a random tape s for x ∈ {0, 1}n and s ∈ {0, 1}r(n).

For any oracles O0 and O1, we let O0 +O1 denote the combination, i.e., for any b ∈ {0, 1}
and any x ∈ {0, 1}∗, (O0 +O1)(b ◦ x) = Ob(x).

In this paper, we assume the basic knowledge of probability theory, including the union
bound, Markov’s inequality, Hoeffding’s inequality, and the Borel–Cantelli lemma.

For each p ∈ [0, 1] and set S of variables taking binary values, we define a p-random
restriction ρ to S as a partial assignment ρ : S → {0, 1, ∗} (where ∗ represents “unassigned”)
randomly selected as follows: for each x ∈ S,

ρ(x) =


∗ with probability p

0 with probability (1− p)/2
1 with probability (1− p)/2.

For every restriction ρ to S and function f defined on S, we let f |ρ denote the restricted
function obtained by applying a partial assignment to f according to ρ.

3.1 Average-Case Complexity
We present the notions in average-case complexity theory. Further backgrounds can be found
in a survey [7].

We say that a family D = {Dn}n∈N of distributions, where each Dn is a distribution
on {0, 1}n, is (polynomial-time) samplable if there exists a randomized sampling algorithm
S such that the distribution of S(1n) is identical to Dn for each n ∈ N. We consider a
family of distributions as a single distribution on instances. We define a distributional
problem as a pair of a language L ⊆ {0, 1}∗ and a distribution D = {Dn}n∈N on instances.
For a standard complexity class C (e.g., NP), we define its average-case extension DistC as
DistC = {(L, D) : L ∈ C, D is samplable}.

We present the errorless average-case easiness. We say that a distributional problem
(L, D) has an errorless heuristic algorithm A with failure probability ϵ : N→ (0, 1) if (1) A

outputs L(x) (:= 1l{x ∈ L}) or ⊥ (which represents “failure”) for every x ∈ supp(D), and (2)
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the failure probability that A(x) outputs ⊥ over the choice of x← D is bounded above by
ϵ(n) for each n ∈ N. Note that an errorless heuristic algorithm never outputs an incorrect
value ¬L(x) for any x ∈ supp(D). Then, for every ϵ : N→ (0, 1), we define a class AvgϵP as
a class of distributional problems that have a polynomial-time errorless heuristic algorithm
with failure probability ϵ(n). Furthermore, we say that a distributional problem (L, D) has
an errorless heuristic scheme A if A is given an instance x ∈ supp(D) and ϵ ∈ (0, 1) as input
and satisfies the condition of an errorless heuristic algorithm with failure probability ϵ. We
define a class AvgP as a class of distributional problems that have a polynomial-time errorless
heuristic scheme. It is not hard to verify that AvgP ⊆ Avg1/p(n)P for any polynomial p(n).

Next, we present the error-prone average-case easiness. We say that a distributional
problem (L, D) has an error-prone heuristic algorithm A with failure probability ϵ : N→ (0, 1)
if the failure probability that A(x) ̸= L(x) over the choice of x← D is bounded above by ϵ(n)
for each n ∈ N. Note that an error-prone heuristic algorithm may output an incorrect value
¬L(x), but the error probability is bounded above by ϵ(n). Then, for every ϵ : N→ (0, 1),
we define a class HeurϵP as a class of distributional problems that have a polynomial-time
error-prone heuristic algorithm with failure probability ϵ(n). We also define an error-prone
heuristic scheme and the class HeurP in the same manner as the errorless case.

We also define classes AvgP/poly, HeurP/poly, AvgSIZE[s(n)], and HeurSIZE[s(n)] for each
size parameter s(n) in the same manner as above.

3.2 Meta-Complexity
Next, we define problems GapMINKT and GapMCSP formally. In this study, we fix a universal
Turing machine U arbitrarily to specify the Kolmogorov complexity.

▶ Definition 6 (Kolmogorov complexity, GapMINKT). For each t ∈ N and x ∈ {0, 1}∗, we
define the t-time-bounded Kolmogorov complexity Kt(x) of x as

Kt(x) = min
p∈{0,1}∗

{|p| : U(p) outputs x in t time} .

We also define K(x) by K(x) = limt→∞ Kt(x).
For a function σ : N × N → N, GapσMINKT is a promise problem (ΠY , ΠN ) defined as

ΠY =
{

(x, 1s, 1t) : Kt(x) ≤ s
}

and ΠN = {(x, 1s, 1t) : K(x) > s + σ(s, |x|)}5.

▶ Definition 7 (Circuit complexity, GapMCSP). For each n ∈ N and x ∈ {0, 1}2n , we define
the circuit complexity cc(x) of x as the minimum size of an n-input circuit whose truth table
corresponds to x.

For a constant ϵ ∈ [0, 1], GapϵMCSP is a promise problem (ΠY , ΠN ) defined as ΠY =
{(x, 1s) : n ∈ N, x ∈ {0, 1}2n

, cc(x) ≤ s} and ΠN = {(x, 1s) : n ∈ N, x ∈ {0, 1}2n

, cc(x) >

2(1−ϵ)n · s}.

3.3 Learning
We define a concept class as a subset of {f : {0, 1}n → {0, 1} : n ∈ N}. For any concept
class C and n ∈ N, we let Cn represent C ∩ {f : {0, 1}n → {0, 1}}. Then, the (weak) PAC
learning model with membership queries (MQ) is defined as follows. We refer to a family
D = {Dn}n∈N, where each Dn is a distribution on {0, 1}n, as an example distribution in the
learning context.

5 Note that this formulation of GapMINKT has a relaxed (i.e., easier) requirement than one discussed
in [16, 18], in the sense that we do not consider the time-bound in “no” cases. In other words, we only
need to distinguish efficiently generated strings from strings no short program can generate even in
time-unbounded settings.
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▶ Definition 8 (PAC learning [40]). Let C be a concept class, D be an example distribution,
and t : N→ N be a time-bound function. We say that a (possibly nonuniform) randomized
oracle machine L, referred to as a weak learner, (weakly) learns C with MQ on D in time
t(n) if L satisfies the following conditions for some polynomial p(n):
1. L is given n ∈ N as the input and oracle access to EXf,D (called an example oracle)

and MQf (called a membership query oracle), which are determined by a target function
f ∈ Cn and the example distribution D.

2. For each access (with no input), EXf,D() returns an example of the form (x, f(x)), where
x is selected identically and independently according to Dn. Furthermore, for each access
with input x ∈ {0, 1}n, MQf (x) returns f(x).

3. For each n ∈ N and target function f : {0, 1}n → {0, 1}, L outputs a circuit h : {0, 1}n →
{0, 1} that is ( 1

2 −
1

p(n) )-close to f under D with probability at least 2/3, i.e., L satisfies
the following condition:

Pr
L,EX

[
LEXf,D,MQf (n) outputs h such that Pr

x←D
[h(x) ̸= f(x)] ≤ 1

2 −
1

p(n)

]
≥ 2

3 .

4. LEXf,D,MQf (n) halts in time t(n) for each n ∈ N.

We say that a concept class C is weakly PAC learnable with MQ on D in t(n) time if
there exists a t(n)-time weak learner for C.

When the example distribution is uniform, a randomized learner can simulate EX based
on MQ and its randomness with no loss of time complexity. Thus, we ignore EX in learning
on the uniform distribution without loss of generality.

We also define an average-case analog of PAC learning, in which a target function is
randomly selected according to some fixed distribution F (called a target distribution). By
contrast, we consider the distribution-free setting on example distributions, formally, as
follows:

▶ Definition 9 (learning on average). Let C be a concept class, t : N → N be a time-bound
function, and F = {Fn}n∈N be a target distribution, where each Fn is a distribution on Cn.
We say that a (possibly nonuniform) randomized oracle machine L, referred to as a weak
learner, (weakly) learns C on average with respect to F in time t(n) if L satisfies the following
condition for some polynomial p(n): For any n ∈ N and example distribution Dn on {0, 1}n,
LEXf,Dn (n) halts in time t(n) (for each f ∈ supp(Fn)) and

Pr
f←Fn

[
Pr

L,EXf,D

[
LEXf,D (n) outputs a circuit h such that Pr

x←D
[h(x) ̸= f(x)] ≤ 1

2 − 1
p(n)

]
≥ 2

3

]
≥ 1

p(n) .

We say that a concept class C is not weakly PAC learnable on average in t(n) time if
there exists a polynomial-time samplable target distribution F such that there is no t(n)-time
weak learner that satisfies the condition above with respect to F .

3.4 Cryptography

We introduce cryptographic primitives. Let C be a complexity class of adversaries (e.g.,
P/poly). We regard the complexity parameter (e.g., time and size) on C as a function in the
size of a hidden seed for primitives.
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▶ Definition 10 (auxiliary-input one-way function). Let n, m : N → N be polynomials. We
say that f = {fz : {0, 1}n(|z|) → {0, 1}m(|z|)}z∈{0,1}∗ is an auxiliary-input one-way function
(AIOWF) against C if each fz(x) is polynomial-time computable from (z, x), and for any
adversary A in C, there exists an infinite subset ZA ⊆ {0, 1}∗ such that for every z ∈ ZA,

Pr
[
fz(A(z, fz(Un(|z|)))) = fz(Un(|z|))

]
< negl(|z|).

▶ Definition 11 (auxiliary-input pseudorandom generator). Let n, m : N→ N be polynomials.
We say that G = {Gz : {0, 1}n(|z|) → {0, 1}m(|z|)}z∈{0,1}∗ is an auxiliary-input pseudorandom
generator (AIPRG) against C if each Gz(x) is polynomial-time computable from (z, x),
n(ℓ) < m(ℓ) holds for any ℓ ∈ N, and for any adversary A in C, there exists an infinite subset
ZA ⊆ {0, 1}∗ such that for every z ∈ ZA,∣∣Pr

[
A(z, Gz(Un(|z|))) = 1

]
− Pr

[
A(z, Um(|z|)) = 1

]∣∣ < negl(|z|).

▶ Definition 12 (auxiliary-input pseudorandom function). We say that F = {Fz : {0, 1}|z| ×
{0, 1}|z| → {0, 1}}z∈{0,1}∗ is an auxiliary-input pseudorandom function (AIPRF) against C
if each Fz is polynomial-time computable from z and its input, and for any adversary A? in
(an oracle machine analog of) C, there exists an infinite subset ZA ⊆ {0, 1}∗ such that for
every z ∈ ZA,∣∣∣∣ Pr

A,u∼{0,1}|z|

[
AFz(u,·)(z) = 1

]
− Pr

A,ϕ|z|

[
Aϕ|z|(·)(z) = 1

]∣∣∣∣ < negl(|z|),

where ϕ|z| : {0, 1}|z| → {0, 1} denotes a truly random function.

When the auxiliary-input z is obvious in context, we write n(|z|) and m(|z|) as n and m,
respectively.

▶ Definition 13 (hitting set generator). Let ℓ, m : N → N be polynomials. We say that
G = {Gn}n∈N, where Gn : {0, 1}ℓ(n) → {0, 1}m(n) is a hitting set generator (HSG) against
C if each Gn is polynomial-time computable, ℓ(n) < m(n) holds for each n ∈ N, and G hits
any language recognized by adversaries in C in the following sense: For any adversary A in
C, let LA = {LA,n}n∈N be a language recognized by A, where LA,n ⊆ {0, 1}n for each n ∈ N.
Then, for infinitely many n ∈ N, the following holds:

|LA,m(n)| > 2m(n)−1 =⇒ LA,m(n) ∩ ImGn ̸= ∅.

4 Oracle Construction

In this section, we formally present the proposed oracle construction. Let a > 0 be a
parameter.

▶ Construction. Oa = F + A, where each oracle is randomly selected according to the
following process:
1. Let t(n) = 2an/ log n be the upper bound on the time of nonuniform adversaries and c = 7a.
2. Define functions p and imax as p(n) = t(n)−6 and imax(n) = 1

c log log t(n). Here, p is
a parameter of random restriction, and imax is the number of applications of random
restrictions.

3. For each n ∈ N, define a set Vn,0 of variables taking binary values as follows:

Vn,0 = {Fz,x,ℓ : z, x ∈ {0, 1}n, ℓ ∈ [n]}.
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4. For each n ∈ N, let Sn,0 = {0, 1}n.
5. For each n ∈ N and i ∈ [imax(n)−1], we inductively (on i) select a p(n)-random restriction

ρ∗n,i to Vn,i−1 and a random subset Sn,i ⊆ Sn,i−1 of size p(n) · |Sn,i−1|. Then, we define
a restriction ρn,i to Vn,i−1 and a subset Vn,i ⊆ Vn,i−1 as follows:

ρn,i(z, x, ℓ) =
{
∗ if z ∈ Sn,i

ρ∗n,i(z, x, ℓ) otherwise

Vn,i = ρ−1
n,i(∗)

(
= ρ∗n,i

−1(∗) ∪ {Fz,x,ℓ : z ∈ Sn,i}
)

.

We also define ρn,imax(n) as a full assignment to Vn,imax(n)−1 selected uniformly at random.
Let ρn,i ≡ ρn,imax(n) for each i ≥ imax(n) + 1. We use the notation ρn,≤i to represent the
composite restriction ρn,1 · · · ρn,i to Vn,0 for each n and i.

6. Define F = {Fn}n∈N, where Fn : {0, 1}n × {0, 1}n × [n] → {0, 1}, as Fn(z, x, ℓ) =
ρn,≤imax(n)(z, x, ℓ).

7. Define A as follows: On input (M, x, 1T 2c

), where M is a nondeterministic oracle machine,
x ∈ {0, 1}∗, and T ∈ N, the oracle A(M, x, 1T 2c

) returns 0 or 1 according to the following
procedure:
1: Let iT := 1

c log log T .
2: Construct a T -DNF ϕ on variables in Vn,0 representing the execution of MF+A(x)

in T steps, where the top-most OR corresponds to the nondeterminism on a possible
choice of F (say, F ′) and an accepting path of MF ′+A(x), and each term performs
verification whether M ’s at most T queries (say, (z1, x1, ℓ1), . . . , (zq, xq, ℓq) for some
q ≤ T ) are consistent with the actual choices of F , i.e., for each i ∈ [q], the term
contains Fzi,xi,ℓi if F ′(zi, xi, ℓi) = 1; otherwise, ¬Fzi,xi,ℓi as a literal.

3: If ϕ|ρ1,≤iT
,...,ρT,≤iT

≡ b for some b ∈ {0, 1}, then return b, otherwise, return 0.

We can verify that A is well-defined (i.e., not circular on recursive calls for A) as follows.

▶ Proposition 14. For each input, the value of A(M, x, 1T 2c

) is determined only by ρn,j

(equivalently, ρ∗n,j and Sn,j) for n ≤ T and j ≤ iT (remember that iT = 1
c log log T ).

Proof. We show the proposition by induction on T . Remember that, on input (M, x, 1T 2c

),
the oracle A first makes a T -DNF ϕ based on M independently of the values of F .

Suppose that M makes some query (M ′, x′, 1T ′2c

) to A for constructing ϕ. Since the
length of such a query is at most T , we have T ′2

c ≤ T and

iT ′ = 1
c

log log T ′ ≤ 1
c

log log T
1

2c = 1
c

log log T − 1 = iT − 1.

By the induction hypothesis, the answer of A(M ′, x′, 1T ′2c

) is determined by only ρn,j for
n ≤ T ′ and j ≤ iT − 1, and so is ϕ. Then, A determines the answer by restricting ϕ by ρn,j

for n ≤ T and j ≤ iT . Therefore, A(M, x, 1T 2c

) is determined only by ρn,j for n ≤ T and
j ≤ iT . ◀

When the parameter a is clear from the context, we omit the subscript a from Oa.

5 Error-Prone Average-Case Easiness of NP

In this section, we show the error-prone average-case easiness of NP.

▶ Theorem 15. With probability 1 over the choice of Oa, DistNPOa ⊆ HeurPOa holds.
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First, we introduce several notations. For each choice of O, we define the oracle A∗
in the same manner as A except we apply ρ1,≤iT−1ρ∗1,iT

, . . . , ρT,≤iT−1ρ∗T,iT
to ϕ instead of

ρ1,≤iT
, . . . , ρT,≤iT

. Note that A∗ executes a given nondeterministic machine M with access
to A (rather than A∗) to construct the corresponding DNF ϕ. We can verify that A∗ is
well-defined (i.e., not circular) in the same manner as Proposition 14.

Now, we show that A and A∗ do not differ considerably.

▶ Lemma 16. For each input (M, x, 1T 2c

) to A, we have that

Pr
O

[
A(M, x, 1T 2c

) ̸= A∗(M, x, 1T 2c

)
]

= O(T−4).

Proof. Let i := iT = (1/c) log log T . For all n ≤ T and j ≤ i− 1, we fix ρ∗n,j , Sn,j , and ρ∗n,i

arbitrarily; let CT denote this condition. Notice that the DNF formula ϕCT
constructed

by A and A∗ is determined only by CT because all answers to recursive calls for A are
determined by CT as in Proposition 14. Let ϕ′CT

= ϕCT
|ρ1,≤i−1,...,ρT,≤i−1 . Then, the value of

A(M, x, 1T 2c

) (resp. A∗(M, x, 1T 2c

)) is determined by ϕ′CT
|ρ1,i,...,ρT,i

(resp. ϕ′CT
|ρ∗

1,i
,...,ρ∗

T,i
).

For any DNF formula ϕ and a restriction ρ, there are the following three cases: (i) ϕ|ρ ≡ 0,
(ii) ϕ|ρ ≡ 1, or (iii) ϕ|ρ does not become a constant (we write this case as ϕ|ρ ≡ ∗). Following
this case analysis, there exist 32 = 9 cases on (ϕ′CT

|ρ∗
1,i

,...,ρ∗
T,i

, ϕ′CT
|ρ1,i,...,ρT,i

). However, since
each ρn,i is a subrestriction of ρ∗n,i (i.e., ρn,i assigns values only to variables that are also
assigned by ρ∗n,i), the following 4 cases do not occur: (0, 1), (1, 0), (∗, 0), and (∗, 1). Further,
in the cases of (0, 0), (1, 1), (∗, ∗), and (∗, 0), the answers by A∗ and A do not differ because
A∗ and A return 0 in the case of ∗. Thus, we only need to consider the case of (1, ∗).

By the aforementioned argument, the probability in the lemma is expressed as follows:

Pr
O

[
A(M, x, 1T 2c

) ̸= A∗(M, x, 1T 2c

)
]

= ExpCT

[
Pr

S1,i,...,ST,i

[
ϕ′CT

|ρ1,i,...,ρT,i ≡ ∗
∣∣CT , ϕ′CT

|ρ∗
1,i

,...,ρ∗
T,i

≡ 1
]]

.

To bound the probability in the right-hand side for each condition, we consider the case in
which ϕ′CT

|ρ∗
1,i

,...,ρ∗
T,i
≡ 1. Then, we can select a term τ in ϕ′CT

such that τ |ρ∗
1,i

,...,ρ∗
T,i
≡ 1.

For each n ≤ T , define Zn ⊆ {0, 1}n as

Zn = {z ∈ {0, 1}n : ∃(x, ℓ) ∈ {0, 1}n × [n] s.t. a variable Fz,x,ℓ is contained in τ}.

Since ϕ′CT
is a T -DNF, |Zn| ≤ T for each n ≤ T . Furthermore, for any n ∈ N such that

imax(n) ≤ i − 1, we have that Zn = ∅ because all such variables must be assigned by
ρn,≤i−1. If ϕ′CT

|ρ1,i,...,ρT,i
≡ ∗, then τ |ρ1,i,...,ρT,i

≡ ∗ must hold. This event occurs only if⋃
n≤T (Sn,i ∩ Zn) ̸= ∅ holds. Since each Sn,i is selected from Sn,i−1 uniformly at random,

this probability is bounded above by

Pr

 ⋃
n≤T

(Sn,i ∩ Zn) ̸= ∅

 ≤ ∑
n≤T

Pr [Sn,i ∩ Zn ̸= ∅]

≤
∑

n≤T :imax(n)≥i

|Zn| · |Sn,i|/|Sn,i−1|

≤ O(T ) ·
∑

n:t−1(T )≤n≤T

p(n)

≤ O(T 2 · t(t−1(T ))−6)
= O(T−4).
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Thus, we conclude that

Pr
O

[
A(M, x, 1T 2c

) ̸= A∗(M, x, 1T 2c

)
]

= ExpCT

[
Pr

S1,i,...,ST,i

[
ϕ′CT

|ρ1,i,...,ρT,i ≡ ∗
∣∣CT , ϕ′CT

|ρ∗
1,i

,...,ρ∗
T,i

≡ 1
]]

≤ O(T−4). ◀

Furthermore, we can show the average-case easiness of NP under the oracle access to A∗
(instead of A). This part is similar to in [25, 20]. Thus, we defer the proof to Appendix A.

▶ Lemma 17 ([25, 20]). Let M be a tM (n)-time nondeterministic oracle machine and S

be a randomized polynomial-time oracle sampling machine. We assume that S(1n) takes at
most tS(n) time to generate an instance of length n. Then, the following event occurs with
probability 1 over the choice of O: for any n ∈ N,

Pr
x←SO(1n)

[
MO(x) ̸= A∗(M, x, 1T 2c

)
]
≤ O(n−4),

where T = max{n2c

, tM (n)2c

, tS(n)2c}.

Now, we derive the average-case easiness of NP from Lemmas 16 and 17 .

Proof of Theorem 15. We consider an arbitrary distributional NP problem (L, D) and
assume that L is specified by a tM (n)-time nondeterministic oracle machine M , and
D is specified by a randomized tS(n)-time oracle sampling machine S. Let T =
max{n2c

, tM (n)2c

, tS(n)2c} as in Lemma 17.
We construct an error-prone heuristic algorithm B for (L, D) as follows: On input

x ∈ {0, 1}n, B queries (M, x, 1T 2c

) to A and returns the same answer. In the following, we
will verify that the error probability of B (over the choice of O and SO(1n)) is bounded
above by O(n−4) for each input size n. Then, by applying Markov’s inequality and the
Borel–Cantelli lemma, the error probability of B is bounded above by n−2 for all sufficiently
large n with probability 1 over the choice of O. Since the number of tuples (M, S) is countable,
we can conclude that all distributional NP problems have an error-prone heuristic algorithm
with error probability at most n−2 with probability 1 over the choice of O. Based on the
argument in [24, Proposition 3], this is sufficient for the statement that DistNPO ⊆ HeurPO.

Therefore, it is sufficient to show that, for any n ∈ N,

Pr
O,x←SO(1n)

[
MO(x) ̸= A(M, x, 1T 2c

)
]
≤ O(n−4).

Obviously, this event occurs only if (i)A(M, x, 1T 2c

) ̸= A∗(M, x, 1T 2c

) or (ii) MO(x) ̸=
A∗(M, x, 1T 2c

) occur. By Lemmas 16 and 17 and the union bound, we have
Pr

O,x←SO(1n)

[
MO(x) ̸= A(M, x, 1T 2c

)
]

≤ Pr
O,x←SO(1n)

[
A(M, x, 1T 2c

) ̸= A∗(M, x, 1T 2c

)
]

+ Pr
O,x←SO(1n)

[
MO(x) ̸= A∗(M, x, 1T 2c

)
]

= O(T−4) + O(n−4) = O(n−4) + O(n−4) = O(n−4). ◀

6 Errorless Average-Case Hardness of NP

In this section, we show the hardness part of our oracle separation. First, we show the
existence of AIPRG relative to Oa. Then we show the other hardness results, including the
errorless average-case hardness for NP, as corollaries.

We use the following theorem, which shows the existence of PRGs based on a random
oracle.
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▶ Theorem 18 ([45]). For each n ∈ N, let Rn : {0, 1}n → {0, 1}n be a random function
oracle, i.e., Rn is selected uniformly at random from {f : {0, 1}n → {0, 1}n}.

There exist a polynomial-time deterministic oracle machine G? and constants c ≥ 1 and
b, ϵ > 0 satisfying the following: For any n ∈ N and x ∈ {0, 1}cn, GRn(x) generates a binary
string of length 4cn, and all oracle circuits C? of size 2bn satisfy that∣∣∣∣ Pr

Ucn

[
CRn(GRn(Ucn)) = 1

]
− Pr

U4cn

[
CRn(U4cn) = 1

]∣∣∣∣ ≤ 2−ϵn,

with probability at least 1− 2n over the choice of Rn.
Furthermore, the result above is relativized, i.e., the above holds in the presence of an

arbitrary oracle O independent of the choice of Rn.

Now, we show the existence of AIPRG relative to Oa.

▶ Theorem 19. Let a > 0 be an arbitrary constant. With probability 1 over the choice of Oa,
there exists an AIPRG GOa = {GOa

z }z∈{0,1}∗ against SIZEOa [2ϵan/ log n] for some absolute
constant ϵ > 0, where GOa

z : {0, 1}|z| → {0, 1}3|z| for each z ∈ {0, 1}∗.

Proof. Let G? and c be the oracle machine and the constant in Theorem 18, respectively.
Then, we define an AIPRG G′ = {G′z}z∈{0,1}∗ as G′Oz (x) = GFz′ (x′)≤3|z|, where x ∈ {0, 1}|z|,
z′ = z≤⌊|z|/c⌋, x′ = x≤c|z′|, and Fz′ : {0, 1}|z′| → {0, 1}|z′| is defined as Fz′(y) = F(z′, y, 1) ◦
· · · ◦ F(z′, y, |z′|). The validity of the truncation is verified as that |x′| = c|z′| ≤ c · |z|/c =
|z| = |x| and |GFz′ (x′)| = 4|x′| = 4c|z′| ≥ 4c(|z|/c − 1) ≥ 4|z| − 4c ≥ 3|z| for any z with
|z| ≥ 4c.

Let ϵ = 1/2c and s(n) = 2ϵan/ log n. We show that G′ above is an AIPRG against
SIZEO[s(n)]. Suppose there exists a family C = {Cn}n∈N of oracle circuits of size s(n) that
breaks G′, i.e., for any sufficiently large n ∈ N and any z ∈ {0, 1}n,∣∣∣∣Pr

Un

[
COn (z, G′Oz (Un)) = 1

]
− Pr

U3n

[
COn (z, U3n) = 1

]∣∣∣∣ >
1

poly(n) .

Fix n ∈ N arbitrarily, and let n′ = ⌊n/c⌋. We consider an arbitrary choice of O except
for the values of ρn′,imax(n′) (we write this condition as R for convenience). Fix z ∈ {0, 1}n

such that z′ = z≤n′ ∈ Sn′,imax(n′)−1 arbitrary (where S·,· is the random set in the oracle
construction). We refer to such z as a hard index.

Since the size of Cn is at most s(n) = 2
an

2c log n ≤ 2
a(⌊n/c⌋)

log(⌊n/c⌋) = t(n′) for sufficiently
large n (where t is the time-bound function in the oracle construction), the answers to
queries by Cn of the form A(M, y, 1T 2c

) do not depend on the values of Fz′ and are
determined by condition R because they are determined only by the restrictions ρ·,j for
j ≤ c−1 log log T ≤ c−1 log log s(n)1/2c ≤ c log log t(n′)− 1 < imax(n′). Now, we consider an
arbitrary choice of ρn′,imax(n′) except for the values of Fz′ and denote this condition by R′.
It is not hard to verify that Fz′ is selected uniformly at random even under the conditions R

and R′. Therefore, under the conditions R and R′, we can identify the query access to O by
C with the query access to another oracle O′ (determined only by R and R′) and a random
function oracle Fz′ that are selected independently of O′.

For any n ∈ N, let En be an event (over the choice of Fz′) that there exists a circuit C ′

of size 2bn′ , where b represents the constant in Theorem 18, such that∣∣∣∣Pr
Un

[
C ′O(G′Fz′

z (Un)) = 1
]
− Pr

U3n

[
C ′O(U3n) = 1

]∣∣∣∣
=

∣∣∣∣Pr
Un

[
C ′O

′,Fz′ (GFz′ (Un)) = 1
]
− Pr

U3n

[
C ′O

′,Fz′ (U3n) = 1
]∣∣∣∣ >

1
poly(n) .



S. Hirahara and M. Nanashima 25:19

Then, by Theorem 18 (relative to O′), we have PrO[En|R, R′] ≤ 2−Ω(n). By the Borel–
Cantelli lemma, En occurs only for finitely many n’s with probability 1 over the choice of O
conditioned on R, R′ (i.e., the choice of Fz′). By taking the expectation over R, R′, we can
show that, with probability 1 over the choice of O, there is no family C ′ of 2bn′ -size circuits
satisfying that for any sufficiently large n ∈ N, there exists a hard index z ∈ {0, 1}n such that∣∣∣∣Pr

Un

[
C ′O(G′Fz′

z (Un)) = 1
]
− Pr

U3n

[
C ′O(U3n) = 1

]∣∣∣∣ >
1

poly(n) .

However, the circuit C in the assumption violates this statement by embedding a hard
index z as auxiliary-input because the size is at most n + s(n) = O(2(a/2c)·n/ log n) = o(2bn′).
Therefore, we conclude that, with probability 1 over the choice of O, there is no such a
circuit C of size s(n), and G′ is an AIPRG against SIZE[s(n)]. ◀

Now, we present the consequences of the existence of AIPRG. First, it is the well-
established that any PRG is also OWF (cf. [12, Proposition 3.3.8]). This result is trivially
extended to the case of auxiliary-input primitives, and the following holds.

▶ Corollary 20. Let a > 0 be an arbitrary constant. With probability 1 over the choice of Oa,
there exists an AIOWF against SIZEOa [2ϵan/ log n] relative to Oa for some absolute constant
ϵ > 0.

Next, AIPRG implies HSG by regarding the auxiliary-input as a part of the hidden input
to HSG. It is not hard to verify the security (refer to [34, Lemma 18] for the formal proof).

▶ Corollary 21. Let a > 0 be an arbitrary constant. With probability 1 over the choice of Oa,
there exists an HSG GOa = {GOa

n }n∈N against SIZEOa [2ϵan/ log n] for some absolute constant
ϵ > 0, where GOa

n : {0, 1}2n → {0, 1}3n for each n ∈ N.

Furthermore, the existence of HSGs implies the errorless average-case hardness of NP,
as observed in [21] in the context of natural proofs and the average-case complexity of the
minimum circuit size problem.

▶ Corollary 22. Let a > 0 be an arbitrary constant. With probability 1 over the choice of
Oa, DistNPOa ⊈ AvgSIZEOa [2

ϵan
log n ] for some absolute constant ϵ > 0.

Proof. Let GO and ϵ be the HSG and the constant in Corollary 21, respectively. Then,
we define the language LO as LO := ImGO. Obviously, LO ∈ NPO and (LO, {Un}n∈N) ∈
DistNPO. Thus, it is sufficient to show that (LO, {Un}n∈N) /∈ Avg1/4SIZEO[2

ϵan
4 log n ].

For contradiction, we assume that (LO, {Un}n∈N) ∈ Avg1/4SIZEO[2
ϵan

4 log n ]. Then, there
exists a family C = {Cn}n∈N of O(2

ϵan
4 log n )-size oracle circuits for (LO, {Un}n∈N), i.e., for any

sufficiently large n ∈ N,

Pr
y←u{0,1}3n

[
CO3n(y) = ⊥

]
≤ 1/4

and for each y ∈ {0, 1}3n,

CO3n(y) ∈ {1l(y ∈ LO),⊥}.

Note that the size of C3n is at most O(2
ϵa·3n

4 log 3n ).
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Next, we define an adversary C ′ for GO as follows: for a given y ∈ {0, 1}3n (i.e., the
length of seed is 2n), C ′O2n simulates CO3n(y), and if C3n returns 1 or ⊥, then C ′2n outputs
0; otherwise (i.e., if C3n returns 0), C ′2n outputs 1. Then, based on the aforementioned
inequalities, it is not hard to verify that for any sufficiently large n ∈ N,

Pr
y←u{0,1}3n

[
C ′O2n(y) = 0

]
≤ 1

4 + |{G
O(x) : x ∈ {0, 1}2n}|
|{0, 1}3n|

≤ 1
4 + 22n

23n
<

1
2 ,

and for any x ∈ {0, 1}2n, we have CO3n(GO(x)) ∈ {1,⊥} and C ′O2n(GO(x)) = 0.
Therefore, C ′ succeeds in avoiding ImGO, and the size is bounded above by O(2

ϵan
log n ) =

O(2
ϵa(2n)
log(2n) ). This contradicts Corollary 21. Thus, we conclude that (LO, {Un}n∈N) /∈

Avg1/4SIZEO[2
ϵan

4 log n ]. ◀

Furthermore, based on the GGM construction in [13], we can translate AIPRGs into
AIPRFs. In the security proof, the seed length is preserved, and an adversary of size s(n) for
the PRF is translated into an adversary of size s(n) · poly(n) for the original PRG, where
poly is a polynomial depending on the computational cost of the PRG. This observation
implies the following:

▶ Corollary 23. Let a > 0 be an arbitrary constant. With probability 1 over the choice of
Oa, there exists an AIPRF fOa = {fOa

z }z∈{0,1}∗ against SIZEOa [2ϵan/ log n] for some absolute
constant ϵ > 0, where fOa

z : {0, 1}|z| × {0, 1}|z| → {0, 1} for each z ∈ {0, 1}∗.

Nanashima [33] observed that the existence of AIPRF implies the average-case hardness
of distribution-free learning, where the complexity of the concept class depends on the
complexity of computing AIPRF. Thus, we obtain the following, where we apply the standard
transformation from nonuniform Turing machines to circuit families.

▶ Corollary 24. There exist a polynomial s(n) and a constant ϵ > 0 such that for any a > 0,
SIZE[s(n)] is not PAC learnable on average by nonuniform O(2ϵan/ log n)-time algorithms with
probability 1 over the choice of Oa.

Without loss of generality, we can let s(n) = nb in above for some b > 0. By the simple
padding argument, where we stretch an n-bit example into an s(n)-bit example, the size
complexity of the target function becomes O(n) (for the input length s(n)) in above. Since
2s(n)1/(b+1) = o(2ϵan/ log n), we have the following:

▶ Corollary 25. There exists ϵ > 0 such that for any a > 0, SIZE[n] is not PAC learnable on
average by nonuniform O(2nϵ)-time algorithms with probability 1 over the choice of Oa.

The existence of AIPRF also implies the (worst-case) hardness of PAC learning SIZE[s(n)]
on the uniform distribution, as observed in [3], where s(n) is a polynomial depending on the
complexity of computing the AIPRF. In our case, we can directly construct a hard-to-learn
class and show the hardness of learning SIZE[n].

▶ Theorem 26. Let a > 0 be an arbitrary constant. With probability 1 over the choice of Oa,
SIZEOa [n] is not weakly PAC learnable with MQ on the uniform distribution by nonuniform
O(2ϵan/ log n)-time algorithms relative to Oa for some absolute constant ϵ > 0.

The proof of Theorem 26 is an analog of the proof in [20]. For completeness, we present
the formal proof in Appendix B.

Furthermore, Oliveira and Santhanam [35] showed the speedup phenomena in PAC
learning with MQ on the uniform distribution. One of their results is stated below.
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▶ Theorem 27 (speedup lemma [35]). For any polynomial s(n) and constant ϵ > 0, there
exists a polynomial s′(n) such that if SIZE[s(n)] is not weakly PAC learnable with MQ on
uniform distribution by nonuniform O(2nϵ)-time algorithms, then SIZE[s′(n)] is not weakly
PAC learnable with MQ on uniform distribution by nonuniform 2n/nω(1)-time algorithms.
Furthermore, this result is relativized.

Theorems 26 and 27 immediately imply the following.

▶ Corollary 28. There exists a polynomial s(n) such that for any a > 0, SIZE[s(n)] is not
PAC learnable with MQ on the uniform distribution by nonuniform 2n/nω(1)-time algorithms
with probability 1 over the choice of Oa.

Finally, we mention the hardness of approximation problems in meta-complexity. The
hardness of GapMINKT follows from the existence of HSG in the same manner as Corollary 22.

▶ Corollary 29. Let a > 0 be an arbitrary constant. With probability 1 over the choice of
Oa, GapσMINKTOa /∈ pr-SIZEOa [2ϵan/ log n] for any σ(s, n) = o(s) · polylog(n), where ϵ > 0 is
an absolute constant.

Proof sketch. Suppose that GapσMINKTO ∈ pr-SIZEO[2(ϵ/4)an/ log n] for some σ(s, n) = o(s) ·
polylog(n), where ϵ > 0 is the constant in Corollary 21. Then, there exists an O(2(ϵ/4)an/ log n)-
size oracle circuit C for GapσMINKTO. Based on C, we can construct an adversary for an
arbitrary HSG GO : {0, 1}2n → {0, 1}3n because, for each n ∈ N and x ∈ {0, 1}2n, it holds
that Kt,O(GO(x)) ≤ 2n + O(1) for a proper choice of t = poly(n) and Pry←u{0,1}3n [KO(y) ≥
3n− 2 (> 2n + O(1) + σ(2n + O(1), n))] ≥ 3/4. It is not hard to verify that the size of the
adversary based on C is at most O(2(ϵ/4)3an/ log 3n). Thus, this contradicts Corollary 21. ◀

Furthermore, Carmosino, Impagliazzo, Kabanets, and Kolokolova [10] constructed a PAC
learning algorithm for P/poly with MQ on the uniform distribution based on an algorithm
for GapMCSP (originally, the existence of natural proofs). As the contraposition, we obtain
the following from Corollary 28.

▶ Corollary 30. Let a > 0 be an arbitrary constant. With probability 1 over the choice of
Oa, for each ϵ > 0, there exists δ > 0 such that GapϵMCSPOa /∈ pr-SIZEOa [2nδ ].

Theorem 4 follows from Theorems 15, 19, and 26 and Corollaries 20– 30 by selecting an
appropriately large parameter in the oracle construction according to a > 0 in the statement
of Theorem 4.
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A Proof of Lemma 17

Fix n ∈ N arbitrarily. Remember that T = max{n2c

, tM (n)2c

, tS(n)2c}. Let iT =
c−1 log log T .

We first show that the instance x ∈ {0, 1}n generated by SO(1n) is determined by only
ρn′,j for n′ ≤ T and j ≤ iT − 1 with probability at least 1− O(n−5). Then, we show that
A∗(M, x, 1T 2c

) returns MO(x) with probability at least 1−O(n−5) under the condition that
x is determined by only ρn′,j for n′ ≤ T and j ≤ iT − 1. If we assume these, then by the
union bound, we have the lemma as

Pr
O,x←SO(1n)

[
MO(x) ̸= A∗(M, x, 1T 2c

)
]
≤ O(n−5) + O(n−5) = O(n−5) (= O(n−4)).

Now, we show the first claim. Since tS(n) ≤ T 1/2c , the answers of A to queries made
by SO(1n) are determined by only ρn′,j for n′ ≤ T 1/2c and j ≤ iT − 2. Under an arbitrary
condition on restrictions ρn′,j for n′ ≤ T 1/2c and j ≤ itS(n)1/2c ≤ iT − 2, the output
SO(1n) is determined by only ρn′,j for n′ ≤ T and j ≤ iT − 1 unless S queries (z, x, ℓ) ∈
∪n′≤T 1/2c ρ∗n′,iT−1

−1(∗) to F . Note that, if n′ ∈ N satisfies n′ < t−1(T 1/2c), then we
have imax(n′) < c−1 log log(T 1/2c) = c−1 log log T − 1 = iT − 1. Thus, ρ∗n′,iT−1

−1(∗) =
∅. Otherwise, each element in ρ∗n′,iT−1

−1(∗) is selected from Vn′,iT−2 independently with
probability p(n′). Since SO(1n) accesses to A at most T 1/2c times, such a conditional
probability is bounded above by

T 1/2c

max
t−1(T 1/2c )≤n′≤T 1/2c

p(n′) = T 1/2c

p(t−1(T 1/2c

))

= T 1/2c

t(t−1(T 1/2c

))−6

= (T 1/2c

)−5

≤ n−5,

where the inequality holds because T ≥ n2c .
Next, we show the second claim. Under the condition that the given instance x ∈ {0, 1}n

is determined by only ρn′,j for n′ ≤ T and j ≤ iT − 1, the T -DNF formula ϕ constructed
in A∗(M, x, 1T 2c

) is determined only by ρn′,j for n′ ≤ T and j ≤ iT − 1. Then, applying
the restriction ρn′,j for n′ ≤ T and j ≤ iT under this condition is regarded as a p(n′)-
random restriction to Vn′,iT−1 for each n′ ≤ T , where we can ignore small n′ such that
n′ < t−1(T ) because imax(n′) < c−1 log log T = iT for such n′. By applying the switching
lemma (particularly, the baby switching lemma) for T -DNF [14], the probability that ϕ does
not become a constant is at most

O

(
T max

t−1(T )≤n′≤T
p(n′)

)
= O

(
T · t(t−1(T ))−6)

= O(T−5)
= O(n−5),

where the last equation holds because T ≥ n2c ≥ n. Remember that A∗ always returns the
correct answer whenever ϕ becomes constant. Therefore, the second claim holds.
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B Proof of Theorem 26

We first introduce the following lemma.

▶ Lemma 31 ([11]). Let S, T ⊆ {0, 1}∗ be finite subsets of the same size N , and let b : S → T

be a bijection. Let A? be a deterministic oracle machine that makes at most q queries
to b. If Af (y) = f−1(y) for all y ∈ T , then b has the representation of length at most
2 log

(
N
a

)
+ log((N − a)!) when A is given, where a = N/(q + 1).

Now, we present the formal proof of Theorem 26.

Proof of Theorem 26. For every choice of Oa, we define a concept class COa as

COa = {F|z|(z, ·, 1) : z ∈ {0, 1}∗}.

Then, we show that COa is not weakly PAC learnable with MQ on the uniform distribution
by nonuniform tL(n) = O(2(a/2)n/ log n)-time algorithms with probability 1 over the choice of
Oa. Since COa ⊆ SIZEOa [n], the theorem also holds.

Let ϵ(n) = n− log n. We fix n ∈ N arbitrarily. We consider an arbitrary nonuniform
randomized oracle machine (i.e., a learner) L. For each z ∈ {0, 1}n, we define Iz as an event
(over the choice of O) that L succeeds in learning fz(x) ≡ Fn(z, x, 1) ∈ COn in tL(n) time
with advantage ϵ(n), i.e.,

Iz =
(

Pr
L

[
LO,MQfz (n) → hO s.t. Pr

x
[hO(x) = fz(x)] ≥ 1/2 + ϵ(n) in tL(n) time

]
≥ 2/3

)
.

We will show that PrO[∧z∈{0,1}nIz] ≤ 2−2Ω(n) . For now, we assume this and show the
hardness of learning CO. Since any nonuniform tL(n)-time oracle machine has a binary
representation of length at most O(tL(n)) (for each n ∈ N), the event En that there exists a
nonuniform tL(n)-time oracle machine succeeds in learning COn is at most 2O(tL(n)) ·2−2Ω(n) =
negl(n) by the union bound. By the Borel–Cantelli lemma, these events En occur only for
finitely many n ∈ N with probability 1 over the choice of O. In such cases, there is no
nonuniform tL(n)-time algorithm that succeeds in weak learning for CO.

Now, we show that PrO[∧z∈{0,1}nIz] ≤ 2−2Ω(n) . For any z, x ∈ {0, 1}n, we use a notation
LO(n)(x) to refer to the following procedure: We execute LO,MQfz (n) and if L outputs some
hypothesis h? in tL(n) time, then we also execute hO(x). For any z ∈ {0, 1}n, we define an
event Jz as the event (over the choice of O) that L or its hypothesis directly access a target
function fz by F , i.e.,

Jz =
(

Pr
L,x∼{0,1}n

[
F(z, x′, ℓ) is queried for some (x′, ℓ) ∈ {0, 1}n × [n] during LO(n)(x)

]
≥ ϵ(n)4

)
.

We say that z ∈ {0, 1}n is a hard index (relative to O) if z ∈ Sn,imax(n)−1. Then, we have
that

Pr
O

 ∧
z∈{0,1}n

Iz

 ≤ Pr
O

 ∧
z∈{0,1}n:hard

Iz


≤ Pr
O

 ∧
z∈{0,1}n:hard

(Iz ∨ Jz)


≤ Pr
O

[ ∧
z:hard

Jz

]
+ Pr
O

[∃z : hard s.t. Iz ∧ ¬Jz] .

In the following, we show that each term is bounded above by 2−2Ω(n) , which implies the
theorem.
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▷ Claim 32. PrO [
∧

z:hard Jz] ≤ 2−2Ω(n) .

Proof. Let N = |Sn,imax(n)−1|. For any choice of Sn,imax(n)−1, we can divide a random
selection of ρn,imax(n) into the following two steps without loss of generality: (i) select N

random functions x1, . . . , xN ∈ {0, 1}n2n uniformly at random (where we regard each xj

as a truth table of a mapping from n bits to n bits), and (ii) select a random bijection
b : Sn,imax(n)−1 → {x1, . . . , xN} to assign each value of F (z, ·, ·) as F (z, ·, ·) ≡ b(z) for each
z ∈ Sn,imax(n)−1.

We consider an arbitrary choice of O except for the aforementioned bijection b and use the
notation C to refer to such a partial choice of O. We regard C as a condition on the choice
of O. We say that the partial choice C is bad if there are two distinct indices j1, j2 ∈ [N ]
such that xi1 = xi2 . Since x1, . . . , xN is uniformly and independently selected from 2n2n

elements, by the union bound, we obtain that

Pr
O

[C is bad ] ≤ N2 · 2−n2n

≤ 22n · 2−n2n

= 2−Ω(2n).

Thus, we have that

Pr
O

[ ∧
z:hard

Jz

]
= ExpC

[
Pr
O

[ ∧
z:hard

Jz

∣∣∣∣∣C
]]

≤ ExpC

[
Pr
O

[ ∧
z:hard

Jz

∣∣∣∣∣C
]∣∣∣∣∣C is not bad

]
+ Pr

O
[C is bad]

≤ ExpC

[
Pr
b

[ ∧
z:hard

Jz

∣∣∣∣∣C
]∣∣∣∣∣C is not bad

]
+ 2−Ω(2n).

Therefore, it is sufficient to show that for every not bad condition C,

Pr
b

[ ∧
z:hard

Jz

∣∣∣∣∣C
]

= 2−2Ω(n)
.

To show the aforementioned bound, we assume that
∧

z:hard Jz holds under a not bad
condition C (notice that C determines all hard indices), i.e., for any hard index z ∈ {0, 1}n,

Pr
L,x∼{0,1}n

[
F(z, ·, ·) is queried during LO(n)(x)

]
≥ ϵ(n)4

By the standard probabilistic argument, we can reduce the upper bound from 1− ϵ(n)4

to 2−2n on the probability that F(z, ·, ·) is not queried by L or its hypothesis by repeating
LO(n)(x) 2n/ϵ(n)4 times. Then, by the union bound for all hard indices, there exists a
random seed r ∈ {0, 1}tL(n)·2n/ϵ(n)4 such that for any hard index z, F(z, ·, ·) is queried during
at least one execution of LO(n)(x) by using the randomness r. We remark that all queries
to O by L or its hypothesis are determined by C except for F(z, ·, ·) for each hard index
z. This is because L and its hypothesis are executed in time O(tL(n)) = O(2(a/2)n/ log n) ≤
2an/ log n = t(n) (for sufficiently large n), i.e., all answers from A depend on only ρ·,j for
j ≤ c−1 log log t(n)1/2c = c−1 log log t(n)− 1 < imax(n).

Therefore, by executing L with the randomness r and tracing queries to F , we can obtain
a deterministic inverter for b of the query complexity at most tL(n) · 2n/ϵ(n)4, where the
inverter simulates membership queries by using its input and its own query access to b.
Particularly, the inverter accesses b only for answering the queries of the form F(z′, ·, ·)
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for some z′ ∈ Sn,imax(n)−1. However, by Lemma 31, such a bijection b is represented by
2 log

(
N
a

)
+ log((N − a)!) bits, where a = N/(tL(n) · 2nϵ(n)−4 + 1), when L and r are given.

Thus, we obtain that

a ≥ 2n · p(n)imax(n)

O(tL(n)nϵ(n)−4) ≥
2n · 2−

6an
log n ·

1
c log n

O(2(a/2)n/ log nn4 log n+1)
≥ 2n · 2− 6

7 n

2O(n/ log n) ≥ 2Ω(n),

and

Pr
b

[ ∧
z:hard

Jz

∣∣∣∣∣C
]
≤

(
N
a

)2 · (N − a)! · 2O(tL(n)·2nϵ(n)−4)

N !

≤
(

N

a

)
· 1

a! · 2
O(2(a/2)n/ log n)

≤
(

Ne

a

)a

· 1√
2πa

( e

a

)a

· 22O(n/ log n)

≤
(
e(tL(n) · 2nϵ(n)−4 + 1)

)a ·
( e

a

)a

· 22O(n/ log n)

≤
(

2O(n/ log n)

a

)a

· 22O(n/ log n)

≤ 2−a · 22O(n/ log n)
= 2−2Ω(n)

. ◁

▷ Claim 33. PrO [∃z : hard s.t. Iz ∧ ¬Jz] ≤ 2−2Ω(n) .

Proof. We consider an arbitrary choice of O except for values of ρn,imax(n) (we write this
condition as C). Note that hard indices are determined by the condition C, and for any hard
index z ∈ {0, 1}n, fz is a random function even under the condition C.

Suppose that z is a hard index, and ¬Iz ∧ Jz occurs. By Markov’s inequality, we derive
the following from ¬Iz:

Pr
L

[
Pr
x

[
F(z, ·, ·) is queried during LO,MQfz (n)(x)

]
≤ 4ϵ(n)3

]
≥ 1− ϵ(n)/4.

Since Jz holds, we also have

Pr
L

[
LO,MQfz (n)→ hO s.t. Pr

x
[hO(x) = fz(x)] ≥ 1/2 + ϵ(n) in tL(n) time

]
≥ 2

3 .

From the aforementioned two inequalities, there exists a random string r for L such that
LO,MQfz (n; r) outputs some hypothesis hO in tL(n) time without querying (z, ·, ·) to F ;
Prx[hO(x) queries (z, ·, ·) to F ] ≤ 4ϵ(n)3; and
Prx[hO(x) = fz(x)] ≥ 1/2 + ϵ(n).

Since L and h are only executed in O(tL(n)) ≤ t(n) time (for sufficiently large n), any
query (M, x′, 1T 2c

) to A by L and h satisfies that T 2c ≤ t(n) and iT = c−1 log log T =
c−1 log log t(n) − 1 < imax(n). Therefore, if L and h do not query (z, ·, ·) to F , then the
answers from O do not depend on ρn,imax(n), i.e., they are determined only by the condition C.

In this case, we show that a truth table of fz has a short description under the condition C.
This implies the upper bound on the probability of this case because a random function does
not have such a short description with extremely high probability.

The short description of fz is obtained as follows. Let Bz ⊆ {0, 1}n be the subset
consisting of x such that hO(x) queries F(z, ·, ·). By the second property of the above,
|Bz| ≤ 2n · 4ϵ(n)3 holds. We execute LO,MQfz (n; r) to obtain hO, and we write down all
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answers from the membership query oracle MQfz
in Q, i.e., Q is a binary string of length at

most tL(n). By the first property on r, the answers from O are determined by the condition C.
Next, we execute the outputted hypothesis hO(x) on each input x ∈ {0, 1}n \Bz. From these
predictions and auxiliary information fz(Bz) = {(x, fz(x)) : x ∈ Bz}, we obtain a function
f̃ : {0, 1}n → {0, 1} defined as

f̃(x) =
{

hO(x) if x /∈ Bz

fz(x) if x ∈ Bz.

Then, by the third property, f̃ is (1/2 − ϵ(n))-close to fz. We define e ∈ {0, 1}2n as
ex+1 = fz(x)⊕ f̃(x), where we identify x ∈ {0, 1}n with an integer in [0, 2n − 1]. Then, the
Hamming weight of e is at most 2n · (1/2− ϵ(n)), and e is represented by a binary string ẽ of
length at most (1−Ω(ϵ(n)2)) · 2n by lexicographic indexing among binary strings of the same
weight. Obviously, fz is reconstructed from f̃ and ẽ. Therefore, based on the aforementioned
constructions, fz is represented only by L, r, Q, fz(Bz), and ẽ on the condition C. The total
number of such representations is at most

|L|+ tL(n) + tL(n) + (n + 1) · |Bz|+ (1− Ω(ϵ(n)2)) · 2n

≤ O(tL(n)) +
(
1 + 4(n + 1)ϵ(n)3 − Ω(ϵ(n)2)

)
2n

≤ O(tL(n)) +
(
1− Ω(ϵ(n)2)

)
· 2n.

Therefore, we have that for any condition C and any hard index z ∈ {0, 1}n,

Pr
O

[Iz ∧ ¬Jz|C] ≤ 2O(tL(n))+(1−Ω(ϵ(n)2))·2n

22n

≤ 22O(n/ log n)−Ω(n−2 log n)·2n

≤ 2−2Ω(n)
.

Thus, we conclude that

Pr
O

[ ∨
z:hard

Iz ∧ ¬Jz

]
= ExpC

[
Pr
O

[ ∨
z:hard

Iz ∧ ¬Jz

∣∣∣∣∣C
]]

≤ ExpC

 ∑
z∈{0,1}n

Pr
O

[z is hard and Iz ∧ ¬Jz|C]


≤ 2n · 2−2Ω(n)

= 2−2Ω(n)
. ◁

◀
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