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Abstract
Symmetry of information for time-bounded Kolmogorov complexity is a hypothetical inequality that
relates time-bounded Kolmogorov complexity and its conditional analogue. In 1992, Longpré and
Watanabe showed that symmetry of information holds if NP is easy in the worst case, which has
been the state of the art over the last three decades. In this paper, we significantly improve this
result by showing that symmetry of information holds under the weaker assumption that NP is
easy on average. In fact, our proof techniques are applicable to any resource-bounded Kolmogorov
complexity and enable proving symmetry of information from an efficient algorithm that computes
resource-bounded Kolmogorov complexity.

We demonstrate the significance of our proof techniques by presenting two applications. First, us-
ing that symmetry of information does not hold for Levin’s Kt-complexity, we prove that randomized
Kt-complexity cannot be computed in time 2o(n) on inputs of length n, which improves the previous
quasi-polynomial lower bound of Oliveira (ICALP 2019). Our proof implements Kolmogorov’s
insightful approach to the P versus NP problem in the case of randomized Kt-complexity. Second,
we consider the question of excluding Heuristica, i.e., a world in which NP is easy on average but
NP ̸= P, from Impagliazzo’s five worlds: Using symmetry of information, we prove that Heuristica is
excluded if the problem of approximating time-bounded conditional Kolmogorov complexity Kt(x | y)
up to some additive error is NP-hard for t ≫ |y|. We complement this result by proving NP-hardness
of approximating sublinear-time-bounded conditional Kolmogorov complexity up to a multiplicative
factor of |x|1/(log log |x|)O(1)

for t ≪ |y|. Our NP-hardness proof presents a new connection between
sublinear-time-bounded conditional Kolmogorov complexity and a secret sharing scheme.
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1 Introduction

One of the basic facts in information theory is symmetry of mutual information: For two
random variables X and Y , the mutual information I(X : Y ) is symmetric: I(X : Y ) = I(Y :
X). In terms of Shannon entropy H(-), this equality is equivalent to

H(Y ) − H(Y | X) = H(X) − H(X | Y ).

An alternative way of measuring the amount of information is to use Kolmogorov com-
plexity. The Kolmogorov complexity K(x) of a finite string x ∈ {0, 1}∗ is defined to be the
length of a shortest program that prints x. While Shannon entropy can measure the average
amount of information in a collection of strings, the notion of Kolmogorov complexity enables
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26:2 Symmetry of Information from Meta-Complexity

quantifying the amount of information in an individual string, thereby giving a finer notion
than Shannon entropy. Kolmogorov complexity has had fundamental impacts on theoretical
computer science [55].

Kolmogorov and Levin [74] established a fundamental property of Kolmogorov complexity:
Symmetry of information for Kolmogorov complexity states that

K(y) − K(y | x) = K(x) − K(x | y) ±O(log(|x| + |y|)) (1)

for any strings x and y ∈ {0, 1}∗. Here, K(x | y) denotes the conditional Kolmogorov
complexity of x given y, i.e., the length of a shortest program that prints x given y as input.

One disadvantage of Kolmogorov complexity, which was already noted in the seminal
paper of Kolmogorov [51], is that K(x) does not take into account the complexity of generating
the string x. Kolmogorov suggested considering t-time-bounded Kolmogorov complexity,
denoted by Kt(x), which is the shortest size of a program that prints x in time t. According
to Levin [52], as early as 1967 Kolmogorov suggested time-bounded versions of symmetry of
information as an interesting avenue of research. We consider the following time-bounded
version of symmetry of information.1

▶ Definition 1.1. Symmetry of information for time-bounded Kolmogorov complexity (SoI)
refers to the following hypothesis: There exists a polynomial p such that for any strings
x ∈ {0, 1}∗ and y ∈ {0, 1}∗, for every t ≥ |x| + |y|,

Kp(t)(x | y) + Kp(t)(y) − log p(t) ≤ Kt(x, y). (SoI)

Throughout this paper, we refer to this hypothesis as SoI.

Note that Kt(x, y) ≤ Kt/4(y | x) + Kt/4(x) + O(1) unconditionally holds for all large
t because strings x and y can be computed by running a program of length Kt/4(x) that
outputs x in time t/4 and a program of length Kt/4(y | x) that takes x as input and outputs
y in time t/4.2 Consequently, SoI implies that

Kp(t)(x | y) + Kp(t)(y) ≤ Kt/4(y | x) + Kt/4(x) +O(log t),

which is a natural time-bounded analogue of Equation (1).
The original Kolmogorov–Levin proof of Equation (1) is based on an exhaustive search

of all strings of a given length. By applying the original proof to a space-bounded setting,
symmetry of information for space-bounded Kolmogorov complexity was proved by Longpré
and Mocas [57]. Interestingly, as is repeatedly stated by Levin (e.g., in [53, 19, 54]), even before
the notion of NP-completeness was formalized, Kolmogorov envisioned that investigating
symmetry of information for time-bounded Kolmogorov complexity would be a good approach
toward P ̸= NP. To quote [53],

“this information symmetry theorem may be a good test case to prove that for
some tasks exhaustive search cannot be avoided (in today’s terms, P ̸= NP).”

1 Previous works [57, 58] studied a slightly different version called polynomial-time-bounded symmetry of
information, in which the time bound t of SoI is fixed to an arbitrary polynomial. SoI is stronger than
polynomial-time-bounded symmetry of information, which makes Theorem 1.2 stronger. Moreover, it is
not hard to observe that the results of [57, 58] hold for SoI. We also mention that our version of SoI is
useful to show worst-case-to-average-case connections; see Section 7.

2 For our definition of time-bounded Kolmogorov complexity (Definition 3.1), there is a larger overhead
of the simulation of the programs. For simplicity, we ignore this minor issue in this introduction.
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In 1992, Longpré and Watanabe [58]3 showed that P = NP implies SoI, and that SoI
implies the non-existence of one-way functions. Their results can be seen as formalizing
Kolmogorov’s insightful approach to P ̸= NP: Finding a single sequence of pairs (x, y)
of strings that violates SoI implies P ̸= NP! Despite the rich literature on Kolmogorov
complexity [55], providing an exact characterization of SoI remains elusive. In fact, it has
been a long-standing open question to improve the results of [58] over the last three decades.

In this work, we improve the result of [58] by showing that SoI holds under the weaker
assumption that NP is easy on average.

▶ Theorem 1.2. If DistNP ⊆ AvgP, then SoI holds.

Here, the statement DistNP ⊆ AvgP means that for every language L in NP and for every
polynomial-time samplable distribution D,4 there exists an errorless heuristic scheme that
solves L on inputs sampled from D; we refer the reader to the survey of Bogdanov and
Trevisan [16] for background on average-case complexity theory.

We find Theorem 1.2 surprising: The assumption of Theorem 1.2 is that NP is easy on
most instances, whereas SoI is an inequality for every pair of strings x and y; thus, it is
natural to expect that SoI is related to the worst-case complexity of some problem. Indeed,
we show that SoI is closely related to the worst-case complexity of GapMINKT, which is the
problem of approximating time-bounded Kolmogorov complexity. We also show that, under
the plausible assumption that E requires exponential-size circuits, SoI is sandwiched between
the existence of an errorless heuristic scheme (AvgP) for computing Kt(-) and the existence
of an error-prone heuristic scheme (HeurP) for computing Kt(-), thereby narrowing SoI.

▶ Theorem 1.3 (informal; see Theorem 8.2 for the formal version). Assume that E ̸⊆
i.o.SIZE(2ϵn) for some constant ϵ > 0. In the following list, we have 1 ⇐⇒ 2 =⇒ 3
=⇒ 4 and 3 =⇒ 5.
1. GapMINKT ∈ P.
2. For every polynomial-time samplable distribution D and for all sufficiently large polyno-

mials t, there exists an errorless heuristic scheme that computes Kt(n)(x) for a random
input x ∼ Dn.

3. SoI holds.
4. For every polynomial-time samplable distribution D and for all sufficiently large polyno-

mials t, there exists an error-prone heuristic scheme that computes Kt(n)(x) for a random
input x ∼ Dn.

5. Gapτ MINKT ∈ DTIME(2O(n/ log n)) for some function τ(n, t) = 2O(n/ log n).

The difference between errorless and error-prone heuristics is as follows: Error-prone
heuristics compute a problem on most instances but are allowed to output a wrong answer.
Errorless heuristics also compute a problem on most instances; in addition, they must output
either a correct answer or a special failure symbol “⊥”. Hirahara and Santhanam [38]
showed the equivalence between errorless and error-prone average-case complexities of any
problem that admits an instance checker in the sense of Blum and Kannan [15]. In particular,
Theorem 1.3 implies that SoI is exactly characterized by the worst-case complexity of
GapMINKT if time-bounded Kolmogorov complexity admits an instance checker (and E
requires exponential-size circuits). Whether an instance checker can be constructed or not is
an interesting open question.

3 The conference version of [58] was presented in ISAAC 1992.
4 In fact, even if we restrict the distribution D to {U , T }, the statement remains the same. Here, U

denotes the uniform distribution and T denotes the tally distribution supported only on {1}∗. This is a
consequence of the theorems of Impagliazzo and Levin [45], Buhrman et al. [18]; see [35].
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Previously, under the assumption that DistNP ⊆ AvgP, [35] showed weak symmetry
of information, which states that |x| + Kpoly(t)(y) − O(log t) ≤ Kt(x, y) holds with high
probability over x ∼ {0, 1}n uniformly chosen at random. Our proof is largely inspired by the
proof of weak symmetry of information. In fact, it is “not hard” to prove Theorem 1.2 itself
using the proof techniques developed in [35]5. Independently of this work, Goldberg and
Kabanets [28] proved Theorem 1.2 using the same proof techniques and used it to provide
an alternative proof of main results of [35].6

Our main contribution is to develop more general proof techniques that are applicable
to any resource-bounded Kolmogorov complexity and to demonstrate their significance: In
general, for any (randomized) resource-bounded Kolmogorov complexity Kµ(-), we show that
symmetry of information for Kµ(-) follows from an efficient algorithm that computes Kµ(-).
Since symmetry of information is a fundamental property of Kolmogorov complexity, we expect
that our new proof techniques will have a variety of applications in future. In the following
two subsections, we present two specific applications that concern two central questions of
computational complexity theory: (1) P ̸= NP and (2) P ̸= NP =⇒ DistNP ̸⊆ AvgP.

1.1 Kolmogorov’s Approach to the P versus NP Problem
Is Kolmogorov’s approach to the P versus NP problem an illusion made in the premature
era of theoretical computer science? We present strong evidence that this is not the case:
Using our new proof techniques of proving symmetry of information, we demonstrate that
Kolmogorov’s insightful approach is indeed useful to prove lower bounds! Specifically, we
consider a randomized version of Levin’s Kt-complexity. The randomized Kt-complexity of a
string x, denoted by rKt(x), is defined as the minimum of |M | + log t over all the randomized
programs M that print x with probability at least 2

3 in time t [62]. Let GapMrKtP be the
promise problem of approximating rKt(x) on input x up to an additive error of O(log |x|).
Using an exhaustive search, it is easy to observe that GapMrKtP ∈ pr-BPTIME(2O(n)). We
prove that this exhaustive search cannot be avoided.

▶ Theorem 1.4. GapMrKtP ̸∈ i.o.BPTIME(2ϵn) for some constant ϵ > 0.

The proof of Theorem 1.4 is given by implementing Kolmogorov’s approach in the case
of rKt: Ronneburger [66] proved that symmetry of information for Levin’s Kt-complexity
does not hold. Using this result, we observe that symmetry of information for rKt is also
false (conditionally). Then, using our proof techniques, we prove symmetry of information
for rKt from an efficient hypothetical algorithm that computes GapMrKtP, which leads to a
contradiction.

Previously, Oliveira [62] proved GapMrKtP ̸∈ pr-BPTIME(2logO(1) n) using a different
proof technique. Theorem 1.4 improves this result in the following two respects:7
1. The lower bound is improved from a quasi-polynomial 2logO(1) n to a strongly exponential

2ϵn, which is optimal up to a constant exponent.
2. Our lower bound works against algorithms that are correct infinitely often (i.o.).

5 if the feasibility of proving Theorem 1.2 is given as advice; see Appendix A.1 for more comments.
6 Independently, we also find a similar alternative proof; see Section 7.
7 A caveat is that our lower bound is applicable to BPP, i.e., randomized algorithms that satisfy the

promise of BPP-type algorithms over all the inputs, whereas the lower bound of [62] is also applicable
to pr-BPP. In this respect, these two lower bounds are incomparable. We leave an open problem of
improving our lower bound to i.o.pr-BPTIME(2ϵn). However, we note that BPP = P = pr-BPP under
the plausible assumption that E requires exponential-size circuits [46], in which case there is no difference
between the two lower bounds.
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The fact that Theorem 1.4 improves the previous state-of-the-art result of [62] indicates
the significance of the new approach of proving lower bounds via symmetry of information.
[34] developed yet another proof technique of showing lower bounds for resource-bounded
Kolmogorov complexity and showed that Kt(|x|)(x) cannot be computed in polynomial time
if t(n) = nω(1). Interestingly, this previous proof technique does not seem to be applicable to
the setting of Theorem 1.4,8 which suggests the “novelty” of Kolmogorov’s approach.

Why was Kolmogorov’s approach not implemented before? Previously, the only proof
technique of proving symmetry of information was due to Kolmogorov and Levin [74]; for
example, the aforementioned work of Longpré and Watanabe [58] showed symmetry of
information from a hypothetical efficient algorithm that computes some problem in PH, by
applying the original Kolmogorov–Levin proof to the resource-bounded case. It was not known
if symmetry of information can be proved from an efficient algorithm that computes resource-
bounded Kolmogorov complexity. Our general proof techniques of showing symmetry of
information from efficient algorithms make it possible to implement Kolmogorov’s insightful
approach, for the first time. Our results demonstrate the significance of Kolmogorov’s
approach and hint that it may indeed lead to the resolution of the P versus NP problem in
future.

1.2 Toward Excluding Heuristica
One of the central open questions in computational complexity theory is to show the
equivalence between the worst-case and average-case complexities of NP, e.g., P = NP ⇐⇒
DistNP ⊆ AvgP. Equivalently, this question is well known as whether Heuristica can be
excluded from Impagliazzo’s five possible worlds [43]. Heuristica is a hypothetical world
in which P ̸= NP and DistNP ⊆ AvgP. There are at least three types of results explaining
the difficulty of excluding Heuristica: Standard proof techniques for relating worst-case
and average-case complexities, such as black-box nonadaptive reductions [23, 17], hardness
amplification procedures [73, 72], and relativizing proof techniques [44, 36], are known to
be incapable of excluding Heuristica. To make progress on this central problem, we need to
develop new types of proof techniques that are not subject to any of these technical barriers.

Recently, several new proof techniques of analyzing average-case complexity have been
developed based on meta-complexity. Meta-complexity refers to the complexity of a problem
that asks for complexity. One representative example of meta-computational problems is
MINKT [50], which asks to compute Kt(x) given (x, 1t) as input. [31] developed a non-black-
box reduction technique that goes beyond the limits of black-box reductions presented by
Feigenbaum and Fortnow [23], Bogdanov and Trevisan [17], and showed GapMINKT ∈ P if
DistNP ⊆ AvgP. Informally, GapMINKT is the problem of approximating the time-bounded
Kolmogorov complexity Kt(x) up to an additive error of O(log t) on input (x, 1t).9 As
a consequence, Heuristica can be excluded if GapMINKT is NP-hard. Subsequently, [35]
developed proof techniques that simultaneously overcome the limits of black-box reductions
[23, 17] and the impossibility of hardness amplification procedures [73, 72], and proved
(among other results) that DistNP ̸⊆ AvgP follows from the worst-case assumption that
UP ̸⊆ DTIME(2O(n/ log n)). The next goal along this research line is to develop a proof

8 By combining the infinitely-often pseudo-deterministic subexponential-time algorithm of Oliveira and
Santhanam [63] with [34], it is possible to prove GapMrKtP ̸∈ pr-BPTIME(2logO(1) n). However, this
ends up with essentially the same proof as [62].

9 More precisely, GapMINKT is the problem of computing a value v such that Kp(t)(x) − log p(t) ≤ v ≤
Kt(x) on input (x, 1t) such that |x| ≥ t, where p is some polynomial; see Fact 3.4.
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technique that overcomes the limits of relativizing barriers, for which quantitatively tight
results are known: Building on the work of Impagliazzo [44], Hirahara and Nanashima [36]
showed that a relativizing proof technique is incapable of improving the time complexity
2O(n/ log n) achieved in [35] to 2o(n/ log n). Chen et al. [20] bypassed this relativization
barrier by showing that NTIME[n] is hard on average for quasi-linear-time algorithms if
UP ̸⊆ DTIME

(
2
√

n log n
)

. To make further progress, we would need to develop a proof
technique that overcomes10 the relativization barrier.

In search of non-relativizing proof techniques, we review another line of research on
meta-complexity. A long-standing open question on meta-complexity, which dates back to as
early as the 1960s [69, 8], is to prove NP-hardness of meta-computational problems, such as
MINKT. Recently, there has been substantial progress on this question in a line of research
[7, 37, 40, 42, 41, 56, 4]. A salient feature of the proof techniques developed in this line of
research is that these are apparently non-relativizing. Specifically, Ko [50] constructed an
oracle under which NP ̸= P but GapMINKT is easy, thereby showing that a relativizing
proof technique is incapable of showing NP-hardness of GapMINKT. In contrast, building
on the work of Ilango [40], Allender et al. [4], Liu and Pass [56] showed NP-hardness of the
problem of computing sublinear-time-bounded conditional Kolmogorov complexity, which we
denote by MINcKT (“c” stands for “conditional”).

Toward excluding Heuristica, we aim at combining the two lines of research reviewed above.
One interpretation of SoI is an approximate equality between time-bounded conditional
Kolmogorov complexity and its unconditional version. Specifically, SoI implies that

Kp(t)(x | y) ≤ Kt(x, y) − Kp(t)(y) + O(log t) ≤ Kt/4(x | y) + Kt/4(y) − Kp(t)(y) + O(log t).

= Kt/4(x | y) + cdt/4,p(t)(y) + O(log t). (2)

Here, cds,t(y) := Ks(y) − Kt(y) is called the (s, t)-time-bounded computational depth of y
[9, 35] and is known to be small for most strings y [9, 11] (see Lemma 8.4 for a formal
statement). Equation (2) means that the conditional Kolmogorov complexity Kt′(x | y) can
be approximated up to an additive error of cdt/4,p(t)(y) + O(log t) for some t′ ∈ [t/4, p(t)]
if time-bounded Kolmogorov complexity can be efficiently computed.11 In other words,
SoI enables reducing the problem of approximating conditional Kolmogorov complexity to
the problem of approximating unconditional Kolmogorov complexity; i.e., GapMINcKT is
reducible to GapMINKT. As a consequence of Theorem 1.2, we generalize the approach
of [31] for excluding Heuristica as follows:

▶ Theorem 1.5. If Gapτ MINcKT is NP-hard under randomized reductions for every polyno-
mial τ , then Heuristica does not exist; that is, DistNP ⊆ AvgP if and only if P = NP. Here,
the problem Gapτ MINcKT asks to compute an integer k ∈ N such that

Kτ(|x|,|y|,t)(x | y) − log τ(|x|, |y|, t) ≤ k ≤ Kt(x | y) + cdt,τ(|x|,|y|,t)(y)

on input (x, y, 1t).

10We say that a proof technique A overcomes a barrier B if A proves a statement S such that proof
techniques subject to B are incapable of proving S. The results of [20] do not necessarily overcome the
relativization barriers of [44, 36] because the conclusion that NTIME[n] is hard on average is weaker
than DistNP ̸⊆ AvgP.

11 It is unlikely that the additive error term cdt/4,p(t)(y) can be improved by using relativizing proof
techniques; see Remark 6.4.
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More generally, our proof techniques provide a general approach of reducing conditional
resource-bounded Kolmogorov complexity Kµ(- | -) to its unconditional analogue Kµ(-) for
every resource-bounded Kolmogorov complexity Kµ: Using a hypothetical efficient algorithm
that computes Kµ(-), we prove symmetry of information for Kµ. Then, we use symmetry of
information to reduce conditional complexity Kµ(- | -) to Kµ(-).

Next, we investigate whether Gapτ MINcKT can be proved to be NP-hard. Building on
the proof techniques developed in [40, 4, 56], we prove NP-hardness of Gapτ MINcKT if the
approximation parameter τ(|x|, |y|, t) is sublinear in |y|, e.g., τ(|x|, |y|, t) ≤ |x|O(1) · |y|0.99 ·
tO(1).

▶ Theorem 1.6 (informal; see Theorem 6.6 for the formal version). Let c > 1 be an arbitrary
constant. Let τ : N3 → N be a function such that τ(n,m, t) ≤ nc ·m1−1/c · tc for all large n,m,
and t ∈ N. Then, Gapτ MINcKT is NP-hard under randomized polynomial-time reductions.
Moreover, it is NP-hard to approximate Kt(x | y) to within a factor of |x|1/(log log |x|)O(1)

.

The contributions of Theorem 1.6 are two-fold.
1. We improve an inapproximability factor. Most previous hardness proofs in the literature

[7, 37, 40, 42, 41, 56, 4] reduce the set cover problem to meta-computational problems.
In particular, the inapproximability factor obtained in [4, 56] is at most O(log |x|). Our
inapproximability factor |x|1/(log log |x|)O(1)

is a nearly exponential improvement and is close
to the trivial upper bound of |x|. In addition, we prove the NP-hardness of approximating
Kt(x | y) even when there is an additive error term cdt,τ(|x|,|y|,t)(y).
Our strong inapproximability is not only a quantitative improvement but also a qualitative
improvement. In fact, the two previous results [4, 56] prove NP-hardness of two different
versions of conditional Kolmogorov complexity, McKTP and MINcKT. Here, McKTP
is the problem of computing the KT-complexity of x given y, i.e., the minimum of
|M | + t over all programs M that compute x given y as input in time t. Because of
the previous weak inapproximability, these two results are proved by different proofs.
Our inapproximability is strong enough to prove NP-hardness of McKTP and MINcKT
simultaneously.

2. We present a new connection between a secret sharing scheme and sublinear-time-bounded
conditional Kolmogorov complexity. This new connection abstracts essential proof ideas
implicitly developed in the line of research and enables us to provide a streamlined proof.

Perspective

How should we interpret our results? Optimistically, our results indicate that excluding
Heuristica might be reachable by combining current proof techniques. We are not aware
of any technical barrier that suggests Theorems 1.5 and 1.6 cannot inherently be matched.
It is currently plausible that all the technical barriers to excluding Heuristica that we are
aware of ([23, 17, 73, 72, 44, 36]) can be overcame in this way. Pessimistically, our results
can be understood as indicating the difference between sublinear-time-bounded Kolmogorov
complexity and time-bounded Kolmogorov complexity. However, we emphasize that the fact
that Theorems 1.2 and 1.5 do not work for sublinear-time bounded Kolmogorov complexity is
not an inherent limitation of our proof techniques. Our proof techniques make it possible to
prove symmetry of information even for some version of sublinear-time bounded Kolmogorov
complexity with error [25] by using a pseudorandom generator construction from average-case
hardness. Whether there is a technical barrier that explains the inherent difficulty of the
current approach remains to be explored.12

12 A candidate is the limits of oracle-independent reductions of [39].

CCC 2022
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1.3 Related Work

Symmetry of Information

Lee and Romashchenko [52] unconditionally showed that for every polynomial p, for some
polynomial q, for any strings x and y of length n,

KAMDq(n)(x | y) + KAMDq(n)(y) −O(log3 n) ≤ Kp(n)(x, y).

Here, KAMD denotes an Arthur–Merlin variant of distinguishing Kolmogorov complexity.
Consequently, symmetry of information holds up to an additive error of O(log3 n) under the
assumption that Kq′(n)(x | y) ≤ KAMDq(n)(x | y) +O(logn) holds for any strings x and y.
They also showed that this assumption is in fact equivalent to P = NP and hence gave no
improvement over the conditional result of [58].

Symmetry of Information and Hardness

Symmetry of information is used to show hardness results for Kolmogorov complexity [34].
Similarly, an inequality analogous to SoI is used to show NP-hardness of a multi-output variant
of MCSP [42]. The Minimum Circuit Size Problem (MCSP [47]) is the meta-computational
problem that asks to compute the size of a minimum circuit that computes a given function
f : {0, 1}n → {0, 1} represented as the truth table of length 2n. Ilango [40] showed that a
conditional variant of MCSP is NP-hard under randomized reductions. Subsequently, Ilango
et al. [42] proved NP-hardness of a multi-output variant of MCSP. Their proof is based
on an inequality reminiscent of SoI, which enables translating the hardness result for the
conditional variant of MCSP [40] to an unconditional variant.

The Shortest Vector Problem

The complexity landscape about GapMINcKT is reminiscent of the shortest vector problem
GapSVP. If “approximation factors” are small, then GapMINcKT and GapSVP are NP-
hard [30]. If “approximation factors” are large, then these problems admit worst-case-
to-average-case connections. However, there are fundamental differences: On one hand,
GapSVP is known to be in NP ∩ coNP for a large approximation factor [29, 1] and thus is
unlikely to be NP-hard. Moreover, this phenomenon is inherent: The limits of black-box
reductions presented by Bogdanov and Trevisan [17] show that any problem reducible to
DistNP by nonadaptive black-box reductions must be in NP/poly ∩ coNP/poly. The worst-
case-to-average-case connections presented for GapSVP are given by black-box reductions
[2, 60] and thus subject to this barrier. On the other hand, the worst-case-to-average-case
connection for GapMINcKT (Theorem 1.5) is not subject to the barrier of [17] since it
is proved by a non-black-box reduction, i.e., a reduction that exploits the efficiency of a
hypothetical heuristic algorithm for DistNP. There is no evidence against NP-hardness of
Gapτ MINcKT for any large polynomial τ ; on the contrary, the NP-hardness of Gapτ MINcKT
for sublinear-time-bounded functions τ can be seen as supporting evidence.

2 Proof Techniques

In this section, we outline our proof techniques.
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2.1 Symmetry of Information in Heuristica
We first sketch a proof of Theorem 1.2, which shows SoI in Heuristica. In doing so, we
present a general technique of proving symmetry of information from any efficient algorithm
that computes resource-bounded Kolmogorov complexity and any pseudorandom generator
construction. We need two lemmas from previous work, which we review below.

Our proof of Theorem 1.2 is based on the meta-complexity of time-bounded Kolmogorov
complexity: We crucially use the fact that time-bounded Kolmogorov complexity can be
approximated in Heuristica.

▶ Lemma 2.1 ([31, 33]). If DistNP ⊆ AvgP, then GapMINKT ∈ P.

This result makes it possible to approximate Kt(x). For the purpose of exposition, we
assume below that there exists an algorithm which, on input (x, t), computes Kt(x) exactly
in time poly(|x|, t). It is worth emphasizing that our proof deviates from the original
Kolmogorov–Levin proof in this respect: Our proof is “meta-computational” in that we use
GapMINKT ∈ P, whereas the Kolmogorov–Levin proof cannot be “meta-computational”
since the resource-unbounded Kolmogorov complexity K(-) cannot be computed in finite
time steps.

The second lemma is the reconstruction property of a k-wise direct product generator [34],
which turned out to be a fundamental tool for analyzing Kolmogorov complexity [33, 65, 32,
35]. A k-wise direct product generator DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k is defined as
follows:

DPk(x; z) := (z1, . . . , zk, ⟨z1, x⟩, . . . , ⟨zk, x⟩)

for every x ∈ {0, 1}n and every z = (z1, . . . , zk) ∈ ({0, 1}n)k, where ⟨x, y⟩ denotes the inner
product of x and y ∈ {0, 1}n over GF(2), i.e., ⟨x, y⟩ := (

∑n
i=1 xiyi) mod 2. The k-wise

direct product generator DPk(x; -) is a pseudorandom generator secure against an algorithm
D if K(x | D) > k +O(log |x|). More formally, we have the following property:

▶ Lemma 2.2 (Deterministic Reconstruction for DPk; see [35]). Assume that E ̸⊆ i.o.SIZE(2ϵn)
for some constant ϵ > 0. Then, there exists a polynomial p such that, for every n ∈ N,
x ∈ {0, 1}n, parameters k, ϵ−1, s ∈ N, and for every randomized circuit D of size s such that∣∣∣∣Pr

z,r
[D(DPk(x; z); r) = 1] − Pr

w,r
[D(w; r) = 1]

∣∣∣∣ ≥ ϵ,

where z ∼ {0, 1}nk, w ∼ {0, 1}nk+k, and r ∼ {0, 1}s, it holds that

Kp(ns/ϵ)(x | D) ≤ k + log p(ns/ϵ).

The assumption of Lemma 2.2 is satisfied in Heuristica, as Buhrman et al. [18] showed that
E ̸⊆ i.o.SIZE(2ϵn) for some constant ϵ > 0 if DistNP ⊆ AvgP. We mention in passing that the
proof of Lemma 2.1 also uses Lemma 2.2.

Now, we sketch the proof of SoI from an efficient algorithm that computes Kt(-) and the
pseudorandom generator construction DP(-; -). Fix strings x ∈ {0, 1}n and y ∈ {0, 1}m and
an integer t ≥ n+m. We claim

Kq(t)(x | y) + Kq(t)(y) − log q(t) ≤ Kt(x, y)

for some universal polynomial q. The proof is given by analyzing the following three values
for z ∼ {0, 1}nk, w ∼ {0, 1}nk+k, z′ ∼ {0, 1}mℓ, and w′ ∼ {0, 1}mℓ+ℓ:
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Kt′( DPk(x; z), DPℓ(y; z′) ),
Kt′( w, DPℓ(y; z′) ),
Kt′( w, w′ ),

where t′, k, and ℓ are parameters chosen later.
First, by a standard counting argument, we have

Kt′
(w,w′) ≈ |w| + |w′| (3)

with high probability over the random choice of w and w′.
Next, by the contrapositive of Lemma 2.2, DPℓ(y; -) is a pseudorandom generator secure

against uniform algorithms if ℓ ≪ Kp(t)(y), where p is some polynomial; thus, we obtain

Kt′
(w,DPℓ(y; z′)) ≈ Kt′

(w,w′). (4)

In more detail, consider a randomized circuit D that takes w′ as input as well as random bits
w and checks whether Kt′(w,w′) ≥ θ for a threshold θ. By Lemma 2.2, if D can distinguishes
DPℓ(y; z′) and w′, we would get Kp(t)(y) ≤ ℓ+ log p(t). We choose ℓ := Kp(t)(y) − log p(t) − 1
so that this inequality does not hold. Equation (4) follows from the fact that D cannot
distinguish the pseudorandom distribution DPℓ(y; z′) from the uniform distribution w′.

By combining Equations (3) and (4), we conclude that

Kt′
(w,DPℓ(y; z′)) ≳ |w| + |w′| = |z| + k + |z′| + ℓ ≈ |z| + k + |z′| + Kp(t)(y) (5)

with high probability over the random choice of w and z′.
On the other hand, observe that for some t′ := poly(t),

Kt′
(DPk(x; z),DPℓ(y; z′)) ≤ Kt(x, y) + |z| + |z′| +O(logn) (6)

holds because the strings DPk(x; z) and DPℓ(y; z′) can be computed from k, ℓ, z, z′, and a
program of size Kt(x, y) that outputs (x, y) in time t.

Comparing Equations (5) and (6), for a sufficiently large k := Kt(x, y)−Kp(t)(y)+O(log t),
there exists a threshold θ′ such that Kt′(w,DPℓ(y; z′)) ≥ θ′ with high probability over the
random choice of w and z′, whereas Kt′(DPk(x; z),DPℓ(y; z′)) < θ′ for every z and z′. Let
Dy be a randomized circuit that takes an input w and random bits z′ and checks whether
Kt′(w,DPℓ(y; z′)) < θ′. Then, we obtain

1 = Pr
z,z′

[Dy(DPk(x; z); z′) = 1] ≫ Pr
w,z′

[Dy(w; z′) = 1] ≈ 0

Using Lemma 2.2, we obtain

Kpoly(t)(x | Dy) ≤ k +O(log t) = Kt(x, y) − Kp(t)(y) +O(log t).

Since the circuit Dy can be efficiently constructed from y, we have Kt(Dy | y) ≤ O(log t). It
follows that for some large polynomial q,

Kq(t)(x | y) ≤ Kt(x | Dy) + Kt(Dy | y) +O(1) ≤ Kt(x, y) − Kp(t)(y) +O(log t)

as desired. This completes the proof of Theorem 1.2, except that the circuits D and Dy must
carefully be defined using an algorithm for GapMINKT. A complete proof can be found
in Section 4. We also present a simple proof of Theorem 1.2 based on weak symmetry of
information of [35] in Appendix A and clarify that the techniques of proving Theorem 1.2
were already developed in [35].
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2.2 Lower Bounds for rKt via Kolmogorov’s Approach

Observe the generality of the proof technique described in Section 2.1: The only two
ingredients of the proof of symmetry of information are (1) a hypothetical algorithm that
computes resource-bounded Kolmogorov complexity and (2) a pseudorandom generator
construction. The same proof strategy can be applied to any resource-bounded Kolmogorov
complexity; the tightness of the resulting SoI is determined by the advice complexity of a
pseudorandom generator construction.

We review the notion of pseudorandom generator construction and its advice complexity.
A pseudorandom generator construction G : {0, 1}n × {0, 1}d → {0, 1}m is an efficiently
computable function that has a (randomized) reconstruction procedure R with the following
property: For every x ∈ {0, 1}n, if an oracle D distinguishes the output distribution G(x; -)
from the uniform distribution, then there exists an advice string α ∈ {0, 1}a such that the
randomized algorithm R outputs x given α as advice with high probability. The length a

of the advice string is referred to as the advice complexity of G. Trevisan and Vadhan [71]
showed that the advice complexity a is always at least m− d− 3. In the case of the k-wise
direct product generator DPk(x; -), the advice complexity is k +O(logn), which is close to
the lower bound of m − d − 3 = k − 3. The fact that the additive term of SoI is O(log t)
comes from the nearly optimal advice complexity of DPk(x; -). The disadvantage of DPk,
however, is that the seed length d = nk is too large, which prevents us from obtaining the
tight lower bound of Theorem 1.4.

There are several different constructions of pseudorandom generators in the literature
(e.g., [70, 64, 68, 34]). For example, the pseudorandom generator construction G of Raz et al.
[64] satisfies the following properties: The advice complexity of G is at most m+O(log3 n).
In particular, if some t-time algorithm distinguishes the output distribution G(x; -) from the
uniform distribution, then rKt(x) ≤ m+O(log3 n) +O(log t). Moreover, the seed length d

is O(log3 n), which is small enough for our application.
Now, we sketch the proof of Theorem 1.4. For simplicity, we claim that the problem

MrKtP of computing rKt exactly cannot be solved in time 2o(n). Toward a contradiction,
assume MrKtP ∈ BPTIME(2o(n)). Applying the general proof technique of Section 2.1 to (1)
the algorithm that computes MrKtP and (2) the pseudorandom generator construction G,
we obtain symmetry of information for rKt:

rKt(x | y) + rKt(y) ≤ rKt(x, y) +O(log3 n) + o(n)

for any strings x and y of length n (Lemma 5.6). Next, we construct a pair (x, y) that
violates this symmetry of information. Ronneburger [66] constructed such a pair in the case
of Kt-complexity. We apply the same proof idea to the case of rKt-complexity. The pair (x, y)
is constructed as follows: Exhaustively search a string y ∈ {0, 1}n such that rKt(y) ≥ n in
time 2n+o(n). Next, exhaustively search a string x ∈ {0, 1}n such that rKt(x, y) ≥ 2n− o(n)
in time 2n+o(n). The existence of such a string x is guaranteed by symmetry of information
because rKt(x | y) + rKt(y) ≥ 2n holds for a string x such that rKt(x | y) ≥ n. Overall, the
pair (x, y) is constructed in time

2n+o(n) + 2n+o(n) = 2n+o(n),

However, by the definition of rKt, we obtain rKt(x, y) ≤ O(logn) + log 2n+o(n) ≤ n+ o(n),
which contradicts the lower bound of rKt(x, y). We present the details in Section 5.
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2.3 Secret Sharing Schemes and Sublinear-Time-Bounded Conditional
Kolmogorov Complexity

We now present a new connection between a secret sharing scheme and sublinear-time-
bounded conditional Kolmogorov complexity.

To do so, however, we first need to clarify the definition of Kt(x | y) for sublinear-time
bounds t (i.e., t ≪ |x| and t ≪ |y|). For the standard computational model of Turing
machines, it takes at least |y| time steps just to read the entire input y. To define sublinear-
time-bounded Kolmogorov complexity in a meaningful way, we assume that algorithms are
given random access to each bit of y; in other words, the input y is given as the oracle that,
on query i ∈ {1, . . . , |y|, |y| + 1}, answers the i-th bit of y if i ≤ |y| and a special stop symbol
“⊥” if i = |y| + 1. Similarly, it takes at least |x| steps for a Turing machine to output all the
bits of x; instead, we assume that an algorithm is given an index i ∈ {1, . . . , |x|, |x| + 1} as
input and is asked to compute the i-th bit of x if i ≤ |x| and “⊥” if i = |x| + 1. This notion
of sublinear-time-bounded Kolmogorov complexity is standard in the literature (e.g., [3, 32]).
See Section 3 for the formal definition.

Next, we review the notion of secret sharing scheme. A secret sharing scheme, introduced
by Blakley [14], Shamir [67], is an algorithm that shares a secret among n parties so that
any authorized set of parties can reconstruct the secret but no unauthorized set of parties
can obtain any information about the secret. Specifically, let A ⊆ 2[n] be an access structure,
i.e., a monotone collection of subsets of [n]. We say that a pair (Share,Rec) of algorithms is
a secret sharing scheme for A if it satisfies the following two properties:
Correctness: For a secret x ∈ {0, 1}∗ and an authorized set T ∈ A of parties,

Rec(Share(x)T ) = x,

where Share(x)T denotes the set of shares that are shared to some party i ∈ T .
Perfect Privacy: For an unauthorized set T ̸∈ A of parties, X and Share(X)T are statistically

independent for every random variable X.
We refer the reader to the survey of Beimel [12] for more background on secret sharing
schemes.

We present a generic reduction that takes an arbitrary secret sharing scheme and reduces
the problem of computing the minimum size of an authorized set to sublinear-time-bounded
conditional Kolmogorov complexity.

▷ Claim 2.3 (informal; see Theorem 6.14 for the formal version). Let A = {Aφ}φ∈{0,1}∗ be
a family of access structures for which there exists an efficient secret sharing scheme. Let
w(Aφ) := minT ∈Aφ

|T |. Then, there is a randomized polynomial-time reduction that takes
φ as input and outputs (x, y, t, λ) such that

w(Aφ) · λ ≈ Kt(x | y),

where t ≪ |y|.

Benaloh and Leichter [13] showed that for any monotone formula φ, there exists an efficient
secret sharing scheme for the access structure Aφ represented by φ.13 Applying their secret
sharing scheme to Claim 2.3, we obtain a reduction from the Minimum Monotone Satisfying

13 More generally, Karchmer and Wigderson [49] showed that the access structure represented by any
monotone span program admits an efficient secret sharing scheme.
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Assignment (MMSA) problem to GapMINcKT. MMSA is known to be hard to approximate
within a factor of |φ|1/(log log |φ|)O(1)

even for depth-3 monotone formulas14 [22, 21], which
will complete the proof of Theorem 1.6.

We now sketch a proof for Claim 2.3. Here is an outline of the reduction, which generalizes
the reduction presented by [4, 56]: We share a random string x ∼ {0, 1}ℓ among n parties
using a secret sharing scheme (Shareφ,Recφ) for Aφ. Let (s1, . . . , sn) := Shareφ(x), where
si is the share of the i-th party. Randomly choose k1, . . . , kn ∼ {0, 1}λ, which are called
“keys”. We define an oracle y′ : {0, 1}λ → {0, 1}m such that y′(ki) := si and y′(k) := 0m if
k ̸∈ {ki | i ∈ [n]}. Let y ∈ {0, 1}m·2λ denote the truth table of y′, i.e., the concatenation of
the values of y(k) for all the inputs k ∈ {0, 1}λ in lexicographical order. We claim that for
some time bound t,

Kt(x | y) ≲ w(Aφ) · λ+ |φ| (7)

and that

Kt(x | y) ≳ w(Aφ) · λ. (8)

It is easy to see Equation (7): Let T ∈ Aφ be an authorized set of parties. Consider an oracle
program that, given oracle access to y, takes the set {ki ∈ {0, 1}λ | i ∈ T} as input, queries ki

to the oracle y and obtains the i-th share si = y′(ki) for all i ∈ T , and then reconstructs the
secret x = Recφ({si | i ∈ T}). The size of this program is at most approximately |T | ·λ+ |φ|.
To see (8), assume, toward a contradiction, that there exists an oracle program M of size
≪ w(Aφ) · λ such that M prints x in time t given oracle access to y. Since t ≪ |y| and
k1, . . . , kn are chosen randomly, it can be shown that the program M of size |M | can read at
most approximately |M |/λ shares from y. The intuition behind this is that the i-th share
si cannot be accessed without knowing the i-th key ki, which must be hard-wired in the
program M . Let T be the set of indices i ∈ [n] such that the i-th share si is read by M .
Then, we have |T | ≲ |M |/λ ≪ w(Aφ), which implies that T ̸∈ Aφ. However, by the perfect
privacy of the secret sharing scheme, it is not possible to reconstruct x from {si | i ∈ T},
which is a contradiction.

There are two issues in the proof sketch above. First, it can be the case that w(Aφ)·λ ≪ |φ|,
in which case Equation (7) is too loose. Second, we need to show that an additive error
term cdt,τ(|x|,|y|,t)(y) is small compared to w(Aφ) · λ. Fortunately, there is a simple trick
that simultaneously fixes these two issues: Share D independent secrets x1, . . . , xD ∼ {0, 1}ℓ

among n parties, construct oracles y1, . . . , yD for each secret, and reduce φ to (x, y, t,Dλ)
for x := (x1, . . . , xD) and y := (y1, . . . , yD). Then we get

w(Aφ) · λ ≲
1
D

· Kt(x | y) ≲ w(Aφ) · λ+ |φ|
D
,

whose last term is negligible for a large enough D. This fixes the first issue. Moreover, it
can be shown that the “amortized” computational depth 1

D · cdt(y) goes to 0 as D increases,
which fixes the second issue.

Finally, we explain the relationship between our reduction and the previous reductions
in [40, 4, 56]. Previously, the set cover problem was reduced to MINcKT and a conditional
variant of MCSP by implicitly using a secret sharing scheme that can share a random
string and satisfies the imperfect privacy. Specifically, let S1, · · · , Sn ⊆ [m] be an instance

14 It is worth mentioning that MMSA for depth-2 monotone formulas corresponds to the set cover problem.
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of the set cover problem. Let A be the collection of the sets T ⊆ [n] that form a cover;
i.e.,

⋃
i∈T Si = [m]. Then, in [40, 4, 56], the following secret sharing scheme for A was

implicitly used: For a secret x = (x1, . . . , xm) ∼ ({0, 1}ℓ)m, the i-th share si is defined
to be {xj | j ∈ Si} for each i ∈ [n]. This secret sharing scheme satisfies correctness, i.e.,
the property that x can be reconstructed from sT := {si | i ∈ T} for any authorized set
T ∈ A; it also satisfies imperfect privacy in the sense that, for any unauthorized set T ̸∈ A,
there exists j ∈ [m] \

⋃
i∈T Si such that no information about xj is leaked from sT . Our

generalized reduction abstracts the essential ideas developed in [40, 4, 56] and would be
useful for making further progress on the final goal of proving NP-hardness of GapMINKT
and excluding Heuristica.

Organization

In Section 4, we present a formal proof of SoI in Heuristica. In Section 5, we prove the
lower bound for rKt. In Section 6, we examine the complexity of conditional Kolmogorov
complexity. In Section 7, we present an application of SoI to average-case complexity. In
Section 8, we present several statements that follow from SoI.

3 Preliminaries

Notation

[n] denotes {1, . . . , n}. For a function p : N → N and i ∈ N, the function p(i) : N → N is
recursively defined as follows: p(0)(n) := n and p(i+1)(n) := p(i)(p(n)) for every n ∈ N.

Kolmogorov Complexity

For a string x ∈ {0, 1}∗ and an index i ∈ N, let xi denote the i-th bit of x if i ≤ |x| and
⊥ if i > |x|. We fix an efficient universal Turing machine U . Time-bounded Kolmogorov
complexity is formally defined as follows.

▶ Definition 3.1 (Time-bounded Kolmogorov complexity). For strings x, y ∈ {0, 1}∗, a time
bound t ∈ N ∪ {∞}, and an oracle A, the A-oracle t-time-bounded Kolmogorov complexity of
x given y is defined as

Kt,A(x | y) := min
{

|d|
∣∣ UA,y,d outputs xi on input i in time t for every i ∈ [1, . . . , |x| + 1]

}
.

Here, UA,y,d indicates that the universal Turing machine is given oracle access to A and each
bit of y and d ∈ {0, 1}∗. We omit the superscript A if A = ∅, the superscript t if t = ∞, and
“ | y” if y is the empty string.

A simple counting argument implies the following basic fact of Kolmogorov-randomness.

▶ Fact 3.2. For any integer s ≥ 1 and any string y ∈ {0, 1}∗, the number of strings
x ∈ {0, 1}∗ such that K(x | y) < s is less than 2s.

Proof. The number of programs of length less than s is at most
∑s−1

i=0 2i < 2s. ◀

▶ Definition 3.3 ([50, 33]). For a polynomial τ : N → N, let

ΠYes :=
{

(x, 1t, 1s)
∣∣ Kt(x) ≤ s

}
,

ΠNo :=
{

(x, 1t, 1s)
∣∣∣ Kτ(|x|,t)(x) > s+ log τ(|x|, t)

}
.



S. Hirahara 26:15

We define Gapτ MINKT to be the promise problem (ΠYes,ΠNo). We say that GapMINKT ∈ P
if there exists some polynomial τ such that Gapτ MINKT ∈ P.

The problem GapMINKT can be equivalently formulated as follows.

▶ Fact 3.4 ([35]). The following are equivalent.
1. GapMINKT ∈ P.
2. There exist a polynomial-time algorithm K̃ and a polynomial p such that

Kp(t)(x) − log p(t) ≤ K̃(x, 1t) ≤ Kt(x)

for every string x ∈ {0, 1}∗ and every integer t ≥ |x|.

We recall the notion of time-bounded computational depth.

▶ Definition 3.5 (Time-Bounded Computational Depth [9, 35]). For time bounds s ∈ N and
t ∈ N ∪ {∞} and a string x ∈ {0, 1}∗, the (s, t)-time-bounded computational depth of x is
defined as

cds,t(x) := Ks(x) − Kt(x).

We omit the superscript t if t = ∞.

4 Symmetry of Information from Average-Case Easiness of NP

In this section, we present a formal proof of Theorem 1.2. In fact, under a plausible
assumption that E requires exponential-size circuits to compute, we prove that SoI follows
from an approximation algorithm for time-bounded Kolmogorov complexity.

▶ Theorem 4.1. If GapMINKT ∈ P and E ̸⊆ i.o.SIZE(2ϵn) for some constant ϵ > 0, then
SoI holds.

Theorem 4.1 immediately implies Theorem 1.2.

Proof of Theorem 1.2. It is known that the two hypotheses of Theorem 4.1 are implied
by the assumption that NP is easy on average: Buhrman et al. [18] showed that E ̸⊆⋂

ϵ>0 i.o.SIZE(2ϵn) if DistNP ⊆ AvgP; We also have GapMINKT ∈ P if DistNP ⊆ AvgP by
Lemma 2.1. ◀

We now present the formal proof of Theorem 4.1.

Proof of Theorem 4.1. Let K̃ be the polynomial-time algorithm of Fact 3.4 which satisfies
the property that there exists a polynomial p such that for every x ∈ {0, 1}∗ and every
t ≥ |x|,

Kp(t)(x) − log p(t) ≤ K̃(x; 1t) ≤ Kt(x) (9)

Fix strings x ∈ {0, 1}n and y ∈ {0, 1}m and an integer t ≥ n+m. The proof of SoI is given
by analyzing the following three values for z ∼ {0, 1}nk, w ∼ {0, 1}nk+k, z′ ∼ {0, 1}mℓ, and
w′ ∼ {0, 1}mℓ+ℓ:

K̃( DPk(x; z), DPℓ(y; z′) ; 1t′),
K̃( w, DPℓ(y; z′) ; 1t′),
K̃( w, w′ ; 1t′),

where t′ = tO(1), k ≈ Kt(x, y) − ℓ, and ℓ ≈ Kpoly(t)(y) are parameters chosen later.
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First, observe that Fact 3.2 implies that K(w,w′) ≥ |w| + |w′| − 2 with probability at
least 3

4 . Let θ := |w| + |w′| − 2 − log p(t′); using Equation (9), we obtain

Pr
w,w′

[
K̃(w,w′; 1t′

) ≥ θ
]

≥ 3
4 . (10)

Next, we set the parameter ℓ to Kp′(t)(y)− log p′(t)−1, where p′ is some large polynomial.
Consider a randomized circuit D that takes w′ as input as well as random bits w and
outputs 1 if and only if K̃(w,w′; 1t′) ≥ θ. By the contrapositive of Lemma 2.2, DPℓ(y; -) is a
pseudorandom generator secure against D; i.e., D cannot distinguish DPℓ(y; z′) and w′ in
the sense that∣∣∣∣ Pr

w,z′

[
K̃(w,DPℓ(y; z′); 1t′

) ≥ θ
]

− Pr
w,w′

[
K̃(w,w′; 1t′

) ≥ θ
]∣∣∣∣ < 1

4 ,

which, together with Equation (10), implies that

Pr
w,z′

[
K̃(w,DPℓ(y; z′); 1t′

) ≥ θ
]

≥ 1
2 .

Finally, we compare K̃(w,DPℓ(y; z′); 1t′) with K̃(DPk(x; z),DPℓ(y; z′); 1t′). On one hand,
since |w| = |z| + k and |w′| = |z′| + ℓ, we have

Pr
w,z′

[
K̃(w,DPℓ(y; z′); 1t′

) ≥ |z| + |z′| + k + ℓ− 2 − log p(t′)
]

≥ 1
2 . (11)

On the other hand, observe that for some t′ := poly(t),

K̃(DPk(x; z),DPℓ(y; z′); 1t′
) ≤ Kt′

(DPk(x; z),DPℓ(y; z′)) ≤ Kt(x, y) + |z| + |z′| +O(logn)

holds because the strings DPk(x; z) and DPℓ(y; z′) can be computed from k, ℓ, z, z′, and a
program of size Kt(x, y) that outputs (x, y) in time t. We now set k := Kt(x, y) − ℓ+O(log t)
so that

Pr
z,z′

[
K̃(DPk(x; z),DPℓ(y; z′); 1t′

) < |z| + |z′| + k + ℓ− 2 − log p(t′)
]

= 1. (12)

Let Dy be a randomized circuit that takes an input w and random bits z′ and outputs 1 if
and only if K̃(w,DPℓ(y; z′); 1t′) < |z|+|z′|+k+ℓ−2−log p(t′). It follows from Equations (11)
and (12) that

Pr
z,z′

[Dy(DPk(x; z); z′) = 1] − Pr
w,z′

[Dy(w; z′) = 1] ≥ 1 − 1
2 = 1

2 .

Using Lemma 2.2, we obtain

Kpoly(t)(x | Dy) ≤ k +O(log t) = Kt(x, y) − Kp′(t)(y) +O(log t).

It follows that for some large polynomial q,

Kq(t)(x | y) ≤ Kt(x | Dy) + Kt(Dy | y) +O(1) ≤ Kt(x, y) − Kp′(t)(y) +O(log t)

≤ Kt(x, y) − Kq(t)(y) + log q(t)

as desired. ◀
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5 A Lower Bound for Randomized Kt Complexity

Here, we implement Kolmogorov’s insightful approach to the P versus NP problem for
randomized Kt complexity. We recall the formal definition of rKt, which was introduced
by Oliveira [62].

▶ Definition 5.1 ([62]). For every x ∈ {0, 1}∗ and every λ ∈ [0, 1], the randomized time-
bounded Kolmogorov complexity rKtλ(x) of x is defined as

rKtλ(x | y) := min
{

|d| + ⌈log t⌉
∣∣∣∣ Pr

r∼{0,1}t
[ U(d, y, r) outputs x in time t ] ≥ λ

}
.

We omit the subscript “λ” if λ = 2
3 and “| y” if y is the empty string. The language MrKtP

is defined as

MrKtP := {(x, 1s) | rKt(x) ≤ s}.

The definition of rKtλ is robust with respect to a choice of λ.

▶ Lemma 5.2 (Lu and Oliveira [59]). For all x ∈ {0, 1}∗ and λ ∈ (0, 1],

rKt(x) ≤ rKtλ(x) +O(log(1/λ)).

For simplicity, we first prove the following weaker lower bound than Theorem 1.4.

▶ Theorem 5.3. There exists a constant ϵ > 0 such that MrKtP ̸∈ BPTIME(2ϵn).

In what follows, let ϵ > 0 be a sufficiently small positive constant. The O notation below
does not depend on ϵ. We say that a pseudo-deterministic algorithm M computes y on input
x [27] if

Pr
M

[M(x) = y] ≥ 2
3 ,

where the probability is taken over an internal coin flip sequence of the randomized algorithm
M . We use the following pseudorandom generator construction.

▶ Lemma 5.4 (see the proof of [32, Theorem 4.7]). For all sufficiently large n,m ∈ N such
that m ≤ 2n, there exists a triple (G,A,R(-)) such that

G : {0, 1}n × {0, 1}d → {0, 1}m,

A : {0, 1}n × {0, 1}d → {0, 1}m,

R(-) : {0, 1}m × {0, 1}d × {0, 1}r → ({0, 1}n)L,

and for every x ∈ {0, 1}n and any D : {0, 1}m → {0, 1} such that

Pr
z∼{0,1}d

w′∼{0,1}O(m)

[D(G(x; z);w′) = 1] − Pr
w∼{0,1}m

w′∼{0,1}O(m)

[D(w;w′) = 1] ≥ 1
m
,

it holds that

Pr
w∼{0,1}r

z∼{0,1}d

[
x ∈ RD(A(x, z), z, w)

]
≥ 1

2m2 .

Here, we have d = O(log3 n), r = O(m), and L = poly(m). Moreover, G and A can be
computed in time poly(n) and RD can be computed in time poly(n) with oracle access to D.
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Proof Sketch. The construction is given by the improvement of Trevisan’s extractor [70]
given by Raz et al. [64]. Specifically, we encode x using a list-decodable error-correcting code
and regard the encoding of x as the truth table of a hard function f . Then, the pseudorandom
generator construction G is defined as the Nisan–Wigderson generator [61] instantiated with
the function f and the weak design of [64]. ([32, Theorem 4.7] is stated as a black-box hitting
set generator construction; however, it is easy to observe that the construction actually
provides a pseudorandom generator construction, which is a stronger object.) ◀

▶ Corollary 5.5. Under the same hypothesis of Lemma 5.4, it holds that

rKtD(x) ≤ m+O(log3 n).

Proof. By an averaging argument, there exists a string z ∈ {0, 1}d such that

Pr
w

[
x ∈ RD(A(x, z), z, w)

]
≥ 1

2m2 .

Let α := A(x, z) ∈ {0, 1}m. The string x can be described by the following pseudo-
deterministic algorithm M : M takes the advice string α ∈ {0, 1}m and z ∈ {0, 1}d as input,
picks w ∼ {0, 1}r randomly, and outputs a random element of RD(α, z, w). Since the list
size is at most L = poly(m), the probability that the output of M is equal to x is at least
λ := 1

2m2 · 1
L . Therefore, we obtain rKtλ(x) ≤ m + d + O(logn). The result follows from

Lemma 5.2. ◀

▶ Lemma 5.6. If MrKtP ∈ BPTIME(2ϵn), then for all sufficiently large n ∈ N and any
strings x ∈ {0, 1}n and y ∈ {0, 1}n, it holds that

rKt(x | y) + rKt(y) ≤ rKt(x, y) +O(ϵn).

Proof. We may assume without loss of generality that rKt(y) ≫ log3 n. Let m and m′ be
parameters chosen later. Let G : {0, 1}n × {0, 1}d → {0, 1}m and G′ : {0, 1}n × {0, 1}d′ →
{0, 1}m′ be the pseudorandom generator construction of Lemma 5.4 with parameters m and
m′, respectively.

Fix z ∈ {0, 1}d and z′ ∈ {0, 1}d′ . Since the strings (G(x; z), G′(y; z′)) can be described
by z, z′, and a program that computes (x, y), we obtain

rKt(G(x; z), G′(y; z′)) ≤ rKt(x, y) + |z| + |z′| +O(logn) = rKt(x, y) +O(log3 n). (13)

Pick w ∼ {0, 1}m and z′ ∼ {0, 1}d′ randomly. We claim that rKt(w,G′(y; z′)) ≥
|w| + |w′| −O(logn) with high probability. Toward a contradiction, assume that

Pr
w,z′

[rKt(w,G′(y; z′)) < |w| + |w′| −O(logn)] ≥ 1
2 .

By Fact 3.2, we have

Pr
w,w′

[rKt(w,w′) ≥ |w| + |w′| −O(logn)] ≥ 1 − o(1).

We define an oracle D so that D(w′;w) := 1 if and only if rKt(w,w′) < |w| + |w′| −O(logn).
Then, the two inequalities above show that D distinguishes the output distribution of G′(y; -)
from the uniform distribution. By Corollary 5.5, we obtain

rKtD(y) ≤ m′ +O(log3 n).
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Using the assumption that MrKtP ∈ BPTIME(2ϵn), the oracle D can be computed by a
randomized algorithm running in time 2O(ϵm′). It follows that

rKt(y) ≤ m′ +O(ϵm′) = (1 +O(ϵ)) ·m′.

We choose m′ so that this inequality does not hold; that is,

m′ := (1 −O(ϵ)) · rKt(y).

Then, we obtain a contradiction and conclude that

Pr
w,z′

[rKt(w,G′(y; z′)) ≥ m+m′ −O(logn)] ≥ 1
2 . (14)

Define Dy to be an oracle such that Dy(w; z′) := 1 if and only if rKt(w,G′(y; z′)) ≤
rKt(x, y) +O(log3 n). By Equations (14) and (13), Dy distinguishes the output distribution
of G(x; -) from the uniform distribution if

m+m′ −O(logn) ≥ rKt(x, y) +O(log3 n).

We define m := rKt(x, y) −m′ +O(log3 n) so that this inequality holds. By Corollary 5.5,
we obtain

rKtDy (x) ≤ m+O(log3 n).

Since the oracle Dy can be computed in time 2O(ϵm) given y as hard-wired input, we conclude
that

rKt(x | y) ≤m+O(ϵm).
≤ rKt(x, y) −m′ +O(ϵn).
≤ rKt(x, y) − (1 −O(ϵ)) · rKt(y) +O(ϵn).
≤ rKt(x, y) − rKt(y) +O(ϵn). ◀

Proof of Theorem 5.3. The outline of the proof is as follows: First, we find a string y ∈
{0, 1}n such that rKt(y) ≥ n by an exhaustive search over all strings y ∈ {0, 1}n. Next, we
find a string x ∈ {0, 1}n such that rKt(x, y) ≥ 2n−O(ϵn) by an exhaustive search over all
strings x ∈ {0, 1}n. The existence of such a string x is guaranteed by Lemma 5.6. Finally,
we observe that the pair (x, y) can be pseudo-deterministically computed in time 2n+O(ϵn),
which contradicts the lower bound on rKt(x, y). Details follow.

Using the assumption that MrKtP ∈ BPTIME(2ϵn), let M be the randomized algorithm
that computes rKt(y) on input y of length n in time 2O(ϵn) with probability at least 1 − 2−2n.
Fix n ∈ N. Let yn be the lexicographically first string y ∈ {0, 1}n such that rKt(y) ≥ n.
Note that the existence of such a string yn is guaranteed by Fact 3.2.

We claim that there exists a pseudo-deterministic algorithm M1 that computes yn on
input n ∈ N in time 2n+O(ϵn). For all strings y ∈ {0, 1}n in lexicographical order, the
algorithm M1 tests whether rKt(y) ≥ n using M , and outputs the first string y that passes
this test. Since the error probability of M is at most 2−2n, by a union bound, the algorithm
M1 computes yn pseudo-deterministically with probability 1 − 2−n. The running time of M1
is at most 2n+O(ϵn).

Next, let xn be the lexicographically first string x ∈ {0, 1}n such that

rKt(x, yn) ≥ 2n− c · ϵn, (15)
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where c is a large constant to be chosen independently of ϵ. We prove that xn is well defined,
i.e., there exists a string x ∈ {0, 1}n such that rKt(x, yn) ≥ 2n− c · ϵn. By Fact 3.2, there
exists a string x ∈ {0, 1}n such that rKt(x | y) ≥ n. By Lemma 5.6,

rKt(x, y) +O(ϵn) ≥ rKt(x | y) + rKt(y) ≥ 2n.

Choosing a large constant c, we obtain rKt(x, y) ≥ 2n− c · ϵn, as desired.
We claim that there exists a pseudo-deterministic algorithm M2 that computes xn given yn

as input in time 2n+O(ϵn). For all strings x ∈ {0, 1}n in lexicographical order, the algorithm
M2 tests whether rKt(x, yn) ≥ 2n− c · ϵn using M , and outputs the first string x that passes
this test. Using a union bound, the error probability of M2 is bounded by 2−n. The running
time of M2 is at most 2n+O(ϵn).

Finally, by combining the algorithms M1 and M2, we obtain an algorithm that computes
(xn, yn) pseudo-deterministically in time 2n+O(ϵn). By the definition of rKt, this implies that

rKt(xn, yn) ≤ n+O(ϵn).

We also have rKt(xn, yn) ≥ 2n−O(ϵn) by Equation (15). Therefore, we obtain 2n−O(ϵn) ≤
n+O(ϵn), which is a contradiction for a sufficiently small constant ϵ > 0. ◀

We observe that MrKtP is in the exponential-time variant of PP.

▶ Proposition 5.7. MrKtP ∈ PEXP.

Proof. Since PP is closed under truth-table reductions [26], it suffices to show that MrKtP
is reducible to PP via an exponential-time truth-table reduction. Let (x, 1s) be an input
such that x ∈ {0, 1}n and s ∈ N. For each string d ∈ {0, 1}∗ of length at most s, we ask the
PP oracle whether U(d, r) outputs x in time t for at least a 2

3 -fraction of r ∈ {0, 1}t, where
t := 2s−|d|. We accept the input (x, 1s) if and only if a positive answer is returned from the
oracle. ◀

We expect that Theorem 5.3 can be extended to a lower bound against PP-type
algorithms. However, the original motivation of Oliveira [62] is to study a gap ver-
sion of MrKtP, for which the upper bound of pr-BPE can be proved. Specifically, let
GapMrKtP denote the promise problem (ΠYes,ΠNo) such that ΠYes = {(x, s) | rKt(x) ≤ s}
and ΠNo = {(x, s) | rKt(x) > s+ c log |x|}, where c is a sufficiently large constant. One can
observe GapMrKtP ∈ pr-BPE [62]. Theorem 5.3 can be extended to this promise problem:

▶ Theorem 5.8 (Theorem 1.4, restated). GapMrKtP ̸∈ i.o.BPTIME(2ϵn) for some constant
ϵ > 0.

Here, abusing a notation, for a class C of languages, we say that a promise problem Π ∈ C

if there exists a language L ∈ C such that ΠYes ⊆ L ⊆ {0, 1}∗ \ ΠNo for (ΠYes,ΠNo) = Π.
The lower bound of Theorem 5.8 does work against a bounded probabilistic algorithm that
satisfies the promise of BPP-type algorithms over all the inputs. In contrast, the upper bound
pr-BPE = pr-BPTIME(2O(n)) holds only for an algorithm that may not satisfy the promise
of BPP-type algorithms for some inputs. This leaves a qualitative gap between the lower
bound and the upper bound on GapMrKtP; closing this gap is an interesting open question.
We note, however, that there is no gap under the plausible assumption that E ̸⊆ i.o.SIZE(2ϵn)
for some constant ϵ > 0, in which case pr-BPP = P = BPP [46].
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Proof of Theorem 5.8. The proof is essentially the same with Theorem 5.3. We only explain
how to modify the proof of Theorem 5.3.

Toward a contradiction, we assume the existence of a randomized algorithm M that
computes some language L infinitely often, where L is a language consistent with GapMrKtP.
For all large n ∈ N and every x ∈ {0, 1}n and s ∈ [n], we assume that the binary encoding
of (x, s) is exactly equal to m(n), where m(n) = Θ(n) is some function. This ensures that
for infinitely many n ∈ N, the algorithm M computes L correctly on input (x, s) for every
x ∈ {0, 1}n and every s ∈ [n].

First, we explain how to extend the lower bound of Theorem 5.3 to the infinitely-often
version. Let n be the length of xn ∈ {0, 1}n and yn ∈ {0, 1}n constructed in the proof of
Theorem 5.3. By inspection, in the proof of Theorem 5.3, we use the algorithm M on inputs
of length at most n′, where n′ = O(n). Any input x of length less than n′ can be padded to
an input of length n′ by mapping x to x′ := x1n′−|x|. This ensures that the length of any
input to M that we use in the proof is exactly equal to n′. Moreover, the correctness of the
proof remains unchanged because rKt(x) = rKt(x′) ±O(logn).

Second, we explain how to deal with the promise problem. In the proof of Theorem 5.3,
we exhaustively search the lexicographically first string yn ∈ {0, 1}n such that rKt(yn) ≥ n.
Instead, we search the lexicographically first string yn ∈ {0, 1}n such that (yn, n−2c·logn) ̸∈ L.
Since L ⊆ {0, 1}∗ \ ΠNo, this ensures that rKt(yn) ≥ n − c logn. Similarly, we search the
lexicographically first string xn ∈ {0, 1}n such that ((xn, yn), 2n−O(ϵn)) ̸∈ L. This ensures
that rKt(xn, yn) ≥ 2n − O(ϵn). Since the language L can be decided by the randomized
algorithm M , we can compute the pair (xn, yn) pseudo-deterministically in time 2n+O(ϵn).
This is a contradiction. ◀

6 The Complexity of Conditional Kolmogorov Complexity

In this section, we examine the complexity of the problem GapMINcKT of approximating
time-bounded conditional Kolmogorov complexity.

▶ Definition 6.1. For a polynomial τ : N3 → N, we define the promise problem Gapτ MINcKT
to be (ΠYes,ΠNo) such that

ΠYes :=
{

(x, y, 1t, 1s)
∣∣∣ Kt(x | y) ≤ s− cdt,τ(|x|,|y|,t)(y)

}
,

ΠNo :=
{

(x, y, 1t, 1s)
∣∣∣ Kτ(|x|,|y|,t)(x | y) > s+ log τ(|x|, |y|, t)

}
.

6.1 Approximating Conditional Kolmogorov Complexity in Heuristica
We observe that SoI enables reducing GapMINcKT to GapMINKT.

▶ Proposition 6.2. Assume that SoI holds. If GapMINKT ∈ P, then there exists a polynomial
τ : N3 → N such that Gapτ MINcKT ∈ P.

Proof. Let K̃ be the polynomial-time algorithm of Fact 3.4 such that for some polynomial p,

Kp(t)(x) − log p(t) ≤ K̃(x, 1t) ≤ Kt(x)

for every string x ∈ {0, 1}∗ and every integer t ≥ |x|. Applying this inequality to xy and y,
we obtain

Kp(t)(xy) − log p(t) ≤ K̃(xy, 1t) ≤ Kt(xy),

Kp(t)(y) − log p(t) ≤ K̃(y, 1t) ≤ Kt(y)
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for every t ≥ |x| + |y|. Using these inequalities, we next analyze K̃(xy, 1p(t)) − K̃(y, 1p(3)(t)).
On one hand, we have

K̃(xy, 1p(t)) − K̃(y, 1p(3)(t)) ≤ Kp(t)(xy) − Kp(4)(t)(y) + log p(4)(t)

≤ Kt(x | y) + Kt(y) +O(1) − Kp(4)(t)(y) + log p(4)(t)

= Kt(x | y) + cdt,p(4)(t)(y) + log p(4)(t) +O(1).

On the other hand, we have

K̃(xy, 1p(t)) − K̃(y, 1p(3)(t)) ≥ Kp(2)(t)(xy) − log p(2)(t) − Kp(3)(t)(y)

≥ Kp(3)(t)(x | y) − 2 log p(3)(t),

where the last inequality follows from SoI.
We now set τ(n,m, t) := p(4)(t+n+m) so that p(4)(t) ≤ τ(|x|, |y|, t) for any x, y ∈ {0, 1}∗

and t ∈ N. Define an algorithm B so that B(x, y, 1t) := K̃(xy, 1p(t′)) − K̃(y, 1p(3)(t′)) − 1
2 ·

log τ(n,m, t), where t′ := max{|x| + |y|, t}. Then, we have

Kτ(n,m,t)(x | y) − log τ(n,m, t) ≤ B(x, y, 1t) ≤ Kt(x | y) + cdt,τ(n,m,t)(y)

for n := |x| and m := |y|.
In order to show that Gapτ MINcKT ∈ P, consider an algorithm M such that M accepts

an input (x, y, 1t, 1s) if and only if B(x, y, 1t) ≤ s. It is easy to see that M accepts every
Yes instance and rejects every No instance of Gapτ MINcKT. ◀

▶ Corollary 6.3. If DistNP ⊆ AvgP, then Gapτ MINcKT ∈ P for some polynomial τ .

Proof. This immediately follows from Proposition 6.2, Theorem 1.2, , and Lemma 2.1 ◀

As a consequence, Heuristica can be excluded if GapMINcKT is NP-hard under random-
ized reductions.

Proof of Theorem 1.5. Assume that DistNP ⊆ AvgP. By Corollary 6.3, there exists a
polynomial τ such that Gapτ MINcKT ∈ P. By the NP-hardness assumption, we obtain
NP ⊆ BPP = P, where the last equality follows from the theorem of Buhrman et al. [18]. ◀

▶ Remark 6.4 (On the optimality of the additive error). Generalizing Corollary 6.3, it holds
that DistΣp

2 ⊆ AvgP implies that GapMINcKTNP ∈ P, where GapMINcKTNP is an NP-oracle
version of GapMINcKT which asks to approximate Kt,SAT(x | y) within an additive error
cdt,p(t)(y)+O(log t). Below, we informally argue that a relativizing proof technique is unlikely
to improve the error term cdt,p(t)(y) of GapMINcKTNP: In [34], NP-hardness of MINcKTNP

was proved. The NP-hardness reduction in fact shows that for every L ∈ NP, an instance
y for L can be reduced to the problem of approximating Kt,NP(x | y) up to an additive
error ∆ in time 2O(∆+log |y|). In particular, applying this reduction to GapMINcKTNP, L
can be solved in time 2O(cdt,p(t)(y)+log |y|+log t) on input (y, 1t) if GapMINcKTNP ∈ P. This
induces a universal heuristic scheme for L, which yields an algorithm that solves L in time
2O(n/ log n) (see Section 7). Now, if Kt,SAT(x | y) could be approximated with an additive
error o(cdt,p(t)(y)) under the assumption that DistΣp

2 ⊆ AvgP, then we would obtain an
improved algorithm that solves every language L ∈ NP in time 2o(n/ log n), which contradicts
the relativization barrier of [36].
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6.2 NP-Hardness of Sublinear-Time-Bounded Conditional Kolmogorov
Complexity

We now show that Gapτ MINcKT is NP-hard under randomized reductions if τ(|x|, |y|, t) is
sublinear in the length of y. In fact, we prove that it is NP-hard to approximate Kt(x | y) to
within a factor of |x|1/(log log |x|)O(1)

. We define a version of GapMINcKT that incorporates a
multiplicative factor as follows.

▶ Definition 6.5. For a polynomial τ : N3 → N and a function σ : N → N, we define the
promise problem Gapτ,σMINcKT to be (ΠYes,ΠNo) such that

ΠYes :=
{

(x, y, 1t, 1s)
∣∣∣ Kt(x | y) ≤ s− cdt,τ(|x|,|y|,t)(y)

}
,

ΠNo :=
{

(x, y, 1t, 1s)
∣∣∣ Kτ(|x|,|y|,t)(x | y) > σ(|x|) · s+ log τ(|x|, |y|, t)

}
.

Note that Gapτ,1MINcKT = Gapτ MINcKT is trivially reducible to Gapτ,σMINcKT for
every σ ≥ 1. We show that Gapτ,σMINcKT is NP-hard for σ(|x|) = |x|1/(log log |x|)O(1)

.

▶ Theorem 6.6. Let c > 1 be an arbitrary constant and τ : N3 → N be a function such that
τ(n,m, t) ≤ nc ·m1−1/c · tc for all large n,m, and t ∈ N. Then, Gapτ,σMINcKT is NP-hard
under one-query randomized polynomial-time reductions for some function σ : N → N such
that σ(n) = n1/(log log n)O(1) .

6.2.1 Secret Sharing Scheme
We review the notion of secret sharing scheme below.

▶ Definition 6.7 (Access Structure). An access structure A ⊆ 2[n] is a “monotone” collection
of subsets of [n]; that is, for every T ⊇ S ∈ A, we have T ∈ A. The minimum weight of A is
defined to be w(A) := min{|T | | T ∈ A}.

We will prove that there is a generic reduction from the problem of estimating the weight
of access structures A to GapMINcKT if there exists an efficient secret sharing scheme for A.

▶ Definition 6.8 (Secret Sharing [12]). A secret sharing scheme for A is a pair (Share,Rec) of
a randomized algorithm Share and a deterministic algorithm Rec with the following properties
for every ℓ ∈ N:
1. Correctness: For every T ∈ A and for every string x ∈ {0, 1}ℓ, any output of Share(x) is

a sequence (y1, . . . , yn) of n strings that satisfies

Rec(yT ) = x,

where yT := {(i, yi) | i ∈ T}.
2. Privacy: For every T ̸∈ A and for every random variable X on {0, 1}ℓ, the random

variables X and Share(X)T are statistically independent.

We observe that the privacy condition can be stated in terms of Kolmogorov complexity.15

15 We mention in passing that Kolmogorov complexity-theoretic versions of privacy conditions are studied
in, e.g., [10, 48].
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▶ Lemma 6.9. Let (Share,Rec) be a secret sharing scheme for an access structure A over
[n]. Then, for every ℓ and k ∈ N, it holds that

Pr
[

min
T ̸∈A

K(X | Share(X)T ) ≥ ℓ− n− k

]
≥ 1 − 2−k,

where X is the uniform distribution over {0, 1}ℓ and the probability is taken over X as well
as the internal randomness of Share.

Proof. Fix an arbitrary subset T ̸∈ A of [n]. Let yT ∈ supp(Share(X)T ) be an outcome of
Share(X)T . By Fact 3.2, we obtain

Pr [K(X | yT ) < ℓ− n− k] ≤ 2−n−k.

By the privacy of the secret sharing scheme, the random variables X and Share(X)T are
statistically independent. By averaging the inequality above over all yT ∈ supp(Share(X)T ),
we obtain

Pr [K(X | Share(X)T ) < ℓ− n− k] ≤ 2−n−k.

Finally, we take the union bound over all subsets T ̸∈ A and conclude that

Pr [∃T ̸∈ A, K(X | Share(X)T ) < ℓ− n− k] ≤ 2−k. ◀

The “efficiency” of a secret sharing scheme is defined as follows.

▶ Definition 6.10. A family A = {Aφ}φ∈{0,1}∗ of access structures is said to admit efficient
secret sharing schemes if there exists a pair (Share,Rec) of a randomized polynomial-time
algorithm Share and a deterministic polynomial-time algorithm Rec such that for every φ ∈
{0, 1}∗, the pair (Share(φ, -),Rec(φ, -)) is a secret sharing scheme for the access structure Aφ.

Benaloh and Leichter [13] showed that access structures represented by monotone formulas
admit efficient secret sharing schemes.

▶ Lemma 6.11 ([13]). Let A := {Aφ}φ∈{0,1}∗ be the family of access structures Aφ := {T ⊆
[n] | φ(χT ) = 1}, where φ is a monotone formula on n variables and χT ∈ {0, 1}n denotes
the characteristic vector of T ⊆ [n]. Then, A admits efficient secret sharing schemes.

6.2.2 Minimum Monotone Satisfying Assignment
In order to prove Theorem 6.6, we reduce the Minimum Monotone Satisfying Assignment
(MMSA) problem to GapMINcKT.

▶ Definition 6.12 (Minimum Monotone Satisfying Assignment; MMSA). For a monotone
formula φ on n variables, the weight of an assignment α ∈ {0, 1}n is defined to be

∑n
i=1 αi.

Let MMSA(φ) denote the minimum weight of α ∈ {0, 1}n such that φ(α) = 1.

Observe that MMSA(φ) = w(Aφ) for the family A of access structures of Lemma 6.11.
It is known that MMSA is NP-hard to approximate:

▶ Lemma 6.13 ([22, 21]). For some function g(n) = n1/(log log n)O(1) , it is NP-hard to solve
the promise problem GapgMMSA = (ΠYes,ΠNo) defined as follows:

ΠYes := {(φ, s) | MMSA(φ) ≤ s},
ΠNo := {(φ, s) | MMSA(φ) > s · g(|φ|)},

where |φ| denotes the length of the binary string that represents φ.
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Proof Sketch. Dinur and Safra [22] presented a polynomial-time reduction from any con-
straint satisfaction problem (CSP) to GapgMMSA with the following property: Let ψ be an
instance of the CSP. Let (φ, s) be the output of the reduction. Let D be the arity of ψ. If ψ is
satisfiable, then MMSA(φ) ≤ s. If there is no assignment satisfying a 1/

(
2(2Dg)D

)
fraction

of the constraints of ψ, then MMSA(φ) > s ·g, where g is an arbitrary parameter. Dinur et al.
[21] showed that it is NP-hard to decide whether a given CSP with n variables and of arity
D = (log logn)O(1) is satisfiable or every assignment satisfies at most a 1/poly(n) fraction
of the constraints. Combining these two hardness results, we conclude that GapgMMSA is
NP-hard, where g ≥ poly(n)1/D ·D−D ≥ n1/(log log n)O(1) . ◀

6.2.3 A Generic Connection from Secret Sharing Schemes
We now formally state a generic reduction that reduces the problem of estimating the weight
of access structures to GapMINcKT.

▶ Theorem 6.14. Let A = {Aφ}φ∈{0,1}∗ be a family of access structures that admits efficient
secret sharing schemes. Let τ : N3 → N be a function such that t ≤ τ(n,m, t) ≤ nc ·m1−1/c · tc
for some constant c > 1. Then, there exists a randomized polynomial-time algorithm R that
takes φ ∈ {0, 1}∗ as input and outputs x, y ∈ {0, 1}∗ and t, ρ ∈ N such that

ρ

8c · w(Aφ) + log t′ ≤ Kt′
(x | y) ≤ Kt(x | y) ≤ ρ · w(Aφ) − cdt(y)

holds with probability at least 1 − o(1) over the internal randomness of R, where t′ :=
τ(|x|, |y|, t).

It is easy to observe that this reduction implies NP-hardness of GapMINcKT.

Proof of Theorem 6.6. Let A = {Aφ}φ be the family of access structures for monotone
formulas given in Lemma 6.11. Let R be the reduction of Theorem 6.14. Consider a
reduction R′ that reduces an instance (φ, s) of GapgMMSA to an instance (x, y, 1t, 1s′) of
Gapτ MINcKT such that (x, y, t, ρ) := R(φ) and s′ := s · ρ.

Let (ΠYes,ΠNo) := GapgMMSA. We claim below that the reduction R′ reduces
GapgMMSA to Gapτ,σMINcKT for some σ, which implies NP-hardness of Gapτ,σMINcKT
by Lemma 6.13. If (φ, s) ∈ ΠYes, then w(Aφ) = MMSA(φ) ≤ s. By the properties of
R, with high probability, it holds that Kt(x | y) ≤ ρ · w(Aφ) − cdt(y) ≤ s′ − cdt,t′

(y),
which implies that (x, y, 1t, 1s′) is a Yes instance of Gapτ,σMINcKT. If (φ, s) ∈ ΠNo, then
w(Aφ) = MMSA(φ) > g(|φ|) · s. Also by the properties of R, with high probability, it holds
that Kt′(x | y) ≥ ρ

8c ·w(Aφ)+log t′ > g(|φ|)
8c ·s′ +log t′, which implies that (x, y, 1t, 1s′) is a No

instance of Gapτ,σMINcKT for some σ(|x|) := g(|φ|)
8c ≥ |φ|1/(log log |φ|)O(1)

≥ |x|1/(log log |x|)O(1)
,

where the last inequality follows from the fact that |φ| ≥ |x|Ω(1). ◀

It remains to prove Theorem 6.14. To show that the additive error cdt(y) is relatively
small, we use the fact that for D independent random samples y1, . . . , yD from a distribution
D samplable by polynomial-size circuits, the amortized time-bounded Kolmogorov complexity
of y1, . . . , yD approaches the entropy of D asymptotically.

▶ Lemma 6.15 ([6, 5]). Let D = {Dx}x∈{0,1}∗ be a family of distributions sampled by circuits
of size poly(|x|). Then, there exist a polynomial p and a constant δ > 0 such that for every
x ∈ {0, 1}∗ and for every D ≥ p(|x|),
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1
D

· Kt(y1, . . . , yD) ≤ H(Dx) + 1
2 ·D−δ,

1
D

· K(y1, . . . , yD) ≥ H(Dx) − 1
2 ·D−δ

holds with probability at least 1 − 2−|x| over a random choice of D independent samples
y1, . . . , yD from Dx, where t := p(|x|).

This lemma immediately implies that the computational depth of independent samples from
Dx is small.

▶ Corollary 6.16. Under the same assumptions as Lemma 6.15, with probability at least
1 − 2−|x| over a random choice of D independent samples y1, . . . , yD from Dx, it holds that

cdt(y1, . . . , yD) ≤ D1−δ.

Proof. It follows from Lemma 6.15 that

cdt(y1, . . . , yD) = Kt(y1, . . . , yD) − K(y1, . . . , yD) ≤ D1−δ. ◀

We are now ready to prove Theorem 6.14.

Proof of Theorem 6.14. Fix an input φ ∈ {0, 1}∗. Let n be the number of parties in the
access structure Aφ. Let λ = O(log |φ|), t, and ℓ be parameters chosen later.

We first define a family D = {Dφ}φ∈{0,1}∗ of distributions by using the following sampling
procedure: Choose x ∼ {0, 1}ℓ uniformly at random. Let (s1, . . . , sn) := Share(φ, x) and let
m be the length of each share; i.e., m := |si|. Pick k1, . . . , kn ∼ {0, 1}λ randomly. We define
a string y ∈ {0, 1}2λ·m, which we identify with a function y : {0, 1}λ → {0, 1}m: For every
q ∈ {0, 1}λ, let y(q) := si if q = ki for some i ∈ [n] and let y(q) := 0m otherwise. Note that
y is not well defined if (ki)i∈[n] is not pairwise distinct; however, we will show that y is well
defined with high probability. The output of the sampling procedure is defined as (x, y, k, s),
where k := (k1, . . . , kn) and s := (s1, . . . , sn).

The algorithm R operates as follows: For a given input φ ∈ {0, 1}∗, pick D in-
dependent samples (x1, y1, k1, s1), . . . , (xD, yD, kD, sD) from Dφ. Let x := (x1, . . . , xD),
y := (y1, . . . , yD), and ρ := 2λD. The output of R is defined to be (x, y, t, ρ).

Below, we prove the correctness of R using a sequence of claims. Let k := (kd
i | i ∈ [n], d ∈

[D]) and let s := (sd
i | i ∈ [n], d ∈ [D]). We first observe that k is Kolmogorov-random with

high probability:

▷ Claim 6.17. With probability at least 1 − o(1), it holds that

K(k | s) ≥ nDλ− logn. (16)

Proof. Since k = (kd
i )i∈[n],d∈[D] is uniformly distributed over ({0, 1}λ)nD and independent of

s, the claim follows from Fact 3.2. ◁

▷ Claim 6.18. If Equation (16) holds, then k = (kd
i )i∈[n],d∈[D] is pairwise distinct and hence

y is well defined.

Proof. If there exists (i, d) ̸= (i′, d′) such that kd
i = kd′

i′ , then k can be described by a program
of size nDλ − λ + O(lognD). Choosing a large enough λ = O(log |φ|), this implies that
K(k) ≤ nDλ− λ+O(lognD) < nDλ− logn, which contradicts Equation (16). ◁

Below, we assume that Equation (16) holds. We prove an upper bound of Kt(x | y).
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▷ Claim 6.19. Kt(x | y) ≤ ρ · w(Aφ) − cdt(y) holds with probability at least 1 − o(1).

Proof. Let T ∈ Aφ be a minimum authorized set of parties such that |T | = w(Aφ). We
present an oracle program My that takes an index d and outputs xd ∈ {0, 1}ℓ as follows: My

takes d ∈ [D] as input and T ,
{
kd

i

∣∣ i ∈ T, d ∈ [D]
}

and φ as hard-wired input, computes{
sd

i

∣∣ i ∈ T
}

=
{
yd(ki)

∣∣ i ∈ T
}

by making queries to the oracle y, and outputs Rec(φ, sd
T ),

which is equal to xd by the correctness of a secret sharing scheme and the assumption that
T ∈ Aφ. The size of the oracle machine M is at most

O(|T | · logn) + |T | ·D · λ+ |φ| +O(logD) ≤ 2λD · w(Aφ) −D1−δ,

where δ > 0 is the constant from Corollary 6.16 and this inequality follows by choosing
sufficiently large D ≥ poly(|φ|). Applying Corollary 6.16 to the distribution of y, we obtain
cdt(y) ≤ D1−δ with probability at least 1−o(1); thus, |M | ≤ ρ ·w(Aφ)−cdt(y). The running
time of M is at most poly(|φ|), which is independent of λ. We choose t so that this running
time is at most t. ◁

The remainder of the proof is devoted to proving the lower bound.

▷ Claim 6.20. Let θ := ρ
8c · w(Aφ) + log t′. Then, Kt′(x | y) ≥ θ with probability at least

1 − o(1).

We first clarify the condition of random variables under which the claim holds. Let
s

[D]\{d}
[n] := (sd′

i | i ∈ [n], d′ ∈ [D] \ {d}).

▷ Claim 6.21. With probability at least 1 − o(1), it holds that for every unauthorized set
T ̸∈ Aφ of parties and for every d ∈ [D],

K
(
xd

∣∣∣ sd
T , s

[D]\{d}
[n] , k

)
≥ ℓ− n− 2 logD. (17)

Proof. Fix d ∈ [D]. Since the random variable xd is independent of s[D]\{d}
[n] and k, by

Lemma 6.9,

min
T ̸∈Aφ

K
(
xd

∣∣∣ sd
T , s

[D]\{d}
[n] , k

)
≥ ℓ− n− 2 logD

holds with probability at least 1 − 1
D2 . The claim follows by taking a union bound over all

d ∈ [D]. ◁

In what follows, we assume Equations (16) and (17) and prove Kt′(x | y) ≥ θ, which will
complete the proof of Claim 6.20. Assume, by way of contradiction, that Kt′(x | y) < θ. Let
M ∈ {0, 1}∗ be the description of an oracle program such that |M | ≤ θ+O(log ℓ) and My(d)
outputs xd ∈ {0, 1}ℓ in time t′′ := t′ℓ for every d ∈ [D]; the machine M can be constructed
from a program that witnesses Kt′(x | y) < θ. For each d ∈ [D], let T (M,d) be the set of
indices i ∈ [n] such that some bit of yd(kd

i ) ∈ {0, 1}m is queried during the computation of
My(d).

▷ Claim 6.22. Let M be an oracle program that runs in time t′′ and let α :=
∑D

d=1 |T (M,d)|.
Then,

K(k | s) ≤ |M | + (nD − α) · λ+ α · (log t′′ + lognD) +O(lognD).
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Proof. By the definition of T (M,d), for every i ∈ T (M,d), there exists a time step ti,d ∈ [t′′]
such that My makes a query kd

i to the oracle y on input d ∈ [D]. To describe k given s,
consider the following program M ′: M ′ takes

{(i, d, ti,d) ∈ [n] × [D] × [t′′] | i ∈ T (M,d)},{
kd

i ∈ {0, 1}λ
∣∣ (i, d) ∈ [n] × [D], i ̸∈ T (M,d)

}
,

and M as input and simulates My on input d for every d ∈ [D]. At the time step ti,d of the
simulation of My(d) for some i ∈ T (M,d), M ′ reads the query kd

i that My(d) makes to the
oracle yd and answers the query with sd

i . M ′ continues the simulation until the time step t′′,
at which point M ′ knows kd

i for every i ∈ T (M,d). Finally, M ′ outputs k. The input of M ′

can be encoded as a string of length α · (log t′′ + lognD) + (nD − α) · λ+ |M | +O(lognD).
◁

It follows from Claim 6.22 and Equation (16) that

nDλ− logn ≤ |M | + (nD − α) · λ+ α · (log t′′ + lognD) +O(lognD),

which can be simplified to

(λ− log t′′ − lognD) · α ≤ |M | +O(lognD). (18)

Since t′′/ℓ = t′ = τ(|x|, |y|, t) ≤ |x|c · |y|1−1/c · tc ≤ 2(1−1/c)·λ · (D · |φ| · ℓ · m)O(c), we may
choose λ = O(log |φ|) large enough so that t′′ ≤ 2(1−1/2c)·λ−log nD. Then, by Equation (18),
we obtain

α ≤ 2c
λ

· (|M | +O(lognD)) < 4c
λ

· (θ − log t′) = ρ

2λ · w(Aφ) = D · w(Aφ),

where the second inequality follows from |M | + O(lognD) ≤ θ + O(lognDℓt′) < 2θ.16 It
follows that there exists d ∈ [D] such that |T (M,d)| ≤ α/D < w(Aφ), which implies that

T (M,d) ̸∈ Aφ.

By Equation (17), we obtain

K
(
xd

∣∣∣ sd
T (M,d), s

[D]\{d}
[n] , k

)
≥ ℓ− n− 2 logD.

However, this contradicts the following claim.

▷ Claim 6.23. Let M be an oracle program such that My(d) outputs xd for every d ∈ [D].
Then, for every d ∈ [D], it holds that

K
(
xd

∣∣∣ sd
T (M,d), s

[D]\{d}
[n] , k

)
≤ |M | +O(logD).

Proof. Since My(d) outputs xd without making any query in
{
kd

i

∣∣ i ∈ [n] \ T (M,d)
}

, we
can define another oracle z = (z1, . . . , zD) such that zd′ := yd′ for every d′ ∈ [D] \ {d} and
zd(kd

i ) := sd
i for every i ∈ T (M,d) and zd(k) := 0m otherwise, so that there is no difference

between y and z on inputs queried by My(d); therefore, we obtain xd = My(d) = Mz(d).
The claim follows by observing that the oracle z can be constructed from M , d ∈ [D], sd

T (M,d),
s

[D]\{d}
[n] , and k. ◁

16 We may assume without loss of generality that w(Aφ) ≥ 1; then, we have θ ≥ Ω(ρ) ≥ Ω(D), which can
be assumed to be larger than logarithmic terms.
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We conclude that ℓ−n−2 logD ≤ |M |+O(logD) ≤ O(θ) ≤ O(nλD), which is a contradiction
by letting ℓ ≫ O(nλD). This completes the proof of Claim 6.20. ◀

▶ Remark 6.24. It is not hard to observe that our NP-hardness hardness reduction also
proves the NP-hardness of McKTP [4] because the upper bound of Claim 6.19 also holds for
KT(x | y).

7 A Simple Proof for Worst-Case to Average-Case Connections

In this section, using SoI, we present an alternative proof of the connection from the worst-case
complexity of the polynomial hierarchy PH to the average-case complexity of PH.

▶ Theorem 7.1 ([35]). DistPH ⊆ AvgP implies that PH ⊆ DTIME(2O(n/ log n)).

One important component of the proof of Theorem 7.1 is the notion of universal heuristic
scheme.

▶ Definition 7.2 (Universal Heuristic Scheme [35]). A (strong) universal heuristic scheme for
a language L is a pair (S,C) of polynomial-time algorithms such that, for some polynomial
p, for any n ∈ N, any t ≥ p(n), and any x ∈ {0, 1}n,
1. if cdt,p(t)(x) ≤ k, then C(x, 1t, 1k) = 1, and
2. if C(x, 1t, 1k) = 1, then S(x, 1t, 12k ) = L(x).
S and C are referred to as a solver and a checker, respectively.

A strong universal heuristic scheme enables the construction of an efficient algorithm:

▶ Lemma 7.3 ([35]). For every language L, if there exists a strong universal heuristic scheme
for L, then L ∈ DTIME(2O(n/ log n)).

Our goal is to construct a strong universal heuristic scheme for every language in PH. To
this end, we introduce a weaker version of a universal heuristic scheme:

▶ Definition 7.4. A weak universal heuristic scheme for a language L is a polynomial-time
algorithm S such that, for some polynomial p, for any n ∈ N, any t ≥ p(n), and any
x ∈ {0, 1}n, if cdt,p(t)(x) ≤ k, then S(x, 1t, 12k ) = L(x).

We observe that weak and strong universal heuristic schemes are in fact equivalent in
Heuristica.

▶ Lemma 7.5. If GapMINKT ∈ P, the following are equivalent for every language L.
1. There exists a strong universal heuristic scheme for L.
2. There exists a weak universal heuristic scheme for L.

Under the assumption that DistNP ⊆ AvgP, [35] showed the equivalence between the existence
of a strong universal heuristic scheme for L and {L}×PSamp ⊆ AvgPP, where AvgPP denotes
the class of distributional problems solvable by algorithms whose running time is bounded
above by some polynomial-time-computable average-case polynomial-time bound. Lemma 7.5
adds a new equivalent statement to this.

Proof of Lemma 7.5.
strong → weak. For a strong universal heuristic scheme (S,C), the solver S satisfies the

definition of a weak universal heuristic scheme.
weak → strong. The idea of constructing a checker is to estimate the time-bounded compu-

tational depth of an input by using an algorithm for GapMINKT.
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Let S be a weak universal heuristic scheme for L and let p be the polynomial in Defini-
tion 7.4. Let K̃ be the polynomial-time algorithm of Fact 3.4 such that for every x ∈ {0, 1}∗

and every t ≥ |x|,17

Kp(t)(x) − log p(t) ≤ K̃(x, 1t) ≤ Kt(x).

Observe that

cdp(t),p(2)(t)(x) − log p(t) ≤ K̃(x, 1t) − K̃(x, 1p(2)(t)) ≤ cdt,p(3)(t)(x) + log p(3)(t). (19)

We define a checker C as follows: C(x, 1t, 1k) = 1 if and only if K̃(x, 1t) − K̃(x, 1p(2)(t)) ≤
k + log p(3)(t). We define a solver S′ so that S′(x, 1t, 12k ) := S′(x, 1p(t), 12k′

), where k′ :=
k + log p(t) + log p(3)(t).

Below, we claim that (S′, C) is a strong universal heuristic scheme by showing that it
satisfies the two properties of Definition 7.2.
1. If cdt,p(3)(t)(x) ≤ k, then by the upper bound of Equation (19), we have C(x, 1t, 1k) = 1.
2. If C(x, 1t, 1k) = 1, then by the definition of C and by the lower bound of Equation (19),

we obtain cdp(t),p(2)(t)(x) ≤ k + log p(t) + log p(3)(t) = k′. It follows from the property of
the weak heuristic scheme S that S′(x, 1t, 12k ) = S(x, 1p(t), 12k′

) = L(x). ◀

The following lemma shows that any string that can be efficiently compressed with some
PH oracle can also be compressed without the oracle if DistPH ⊆ AvgP.

▶ Lemma 7.6 ([33]). Let A be an oracle. Assume that DistNPA ⊆ AvgP. Then, there exists
a polynomial p such that, for every x ∈ {0, 1}∗ and every t ≥ |x|,

Kp(t)(x) ≤ Kt,A(x) + log p(t).

We now use SoI to construct a weak universal heuristic scheme for every language in PH.

▶ Lemma 7.7. Let k ∈ N. If DistΣp
k+1 ⊆ AvgP, then for every language L ∈ Σp

k, there exists
a weak universal heuristic scheme for L.

Proof. We prove this by induction on k ∈ N. The base case (k = 0) is trivial because every
language L ∈ Σp

0 = P admits a weak universal heuristic scheme. Let k ≥ 1. Let V be a
language in Πp

k−1 such that x ∈ L if and only if V (x, y) = 1 for some y ∈ {0, 1}poly(|x|). For
every x ∈ L, let yx be the lexicographically first string y such that V (x, y) = 1. The following
claim is the key to the construction of a weak universal heuristic scheme.

▷ Claim 7.8. There exists a polynomial q such that for every x ∈ L and every t ≥ |x|,

Kq(t)(yx | x) ≤ cdt,q(t)(x) + log q(t).

Proof. By a standard search-to-decision reduction, yx can be computed from x in polynomial
time with oracle access to some oracle A in Σp

k; thus, it follows that

Kp(2)(t)(yx, x) ≤ Kp(t),A(yx, x) + log p(2)(t) ≤ Kt(x) + log p(2)(t) +O(1),

where the first inequality follows from Lemma 7.6.

17We may assume without loss of generality that the polynomial p in Fact 3.4 is the same polynomial
with Definition 7.4.
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We claim that Kq(t)(yx | x) ≤ cdt,q(t)(x) + log q(t) for some polynomial q. Note that SoI
holds because of Theorem 1.2. Using SoI, we obtain

Kp(3)(t)(yx | x) ≤ Kp(2)(t)(yx, x) − Kp(3)(t)(x) + log p(3)(t)

≤ Kt(x) − Kp(3)(t)(x) +O(log p(3)(t))

= cdt,p(3)(t)(x) +O(log p(3)(t)),

where the first inequality follows from SoI. The claim follows by letting q(t) := p(3)(t)O(1).
◁

By the induction hypothesis, there exists a weak universal heuristic scheme S for V . Let
p be the polynomial in Definition 7.4.

We now present a weak universal heuristic scheme S′ for L: The algorithm S′ takes
(x, 1t, 12k ) as input and computes the set Y of strings y ∈ {0, 1}∗ such that there exists a
program of length at most k + log q(t) that takes x as input and outputs y in time q(t).
Equivalently, we define

Y :=
{
y ∈ {0, 1}∗

∣∣∣ Kq(t)(y | x) ≤ k + log q(t).
}

Note that |Y | ≤ 2k+log q(t)+1 and Y can be computed in time poly(|x|, t, 2k). The algorithm
S′ outputs 1 if and only if there exists a string y ∈ Y such that S((x, y), 1t′

, 12k′

) = 1, where
t′ = tO(1) and k′ = O(k+ log t) are parameters chosen later. Clearly, S′ is a polynomial-time
algorithm.

We claim the correctness of S′. Let q′ be a polynomial chosen later. Assume that
cdt,q′(t)(x) ≤ k. We claim that for some parameter t′ = q(t)O(1) and for every y ∈ Y , the
(t′, p(t′))-time-bounded computational depth of (x, y) is at most k′, which will imply that
the output of the weak universal heuristic scheme S is correct on input (x, y). For every
y ∈ Y , we have

cdt′,p(t′)(x, y) ≤ Kq(t)(x) + Kq(t)(y | x) − Kp(t′)(x, y) +O(1)

≤ cdq(t),2p(t′)(x) + k + log q(t) +O(1)
≤ 2k + log q(t) +O(1) =: k′,

where the first inequality follows from the definition of time-bounded computational depth,
the second inequality follows from the fact that K2p(t′)(x) ≤ Kp(t′)(x, y) +O(1) and y ∈ Y ,
and the third inequality follows from the assumption that cdq(t),2p(t′)(x) ≤ cdt,q′(t)(x) ≤ k,
where we define q′(t) := 2p(t′). By the correctness of the weak universal heuristic scheme
S, we obtain S((x, y), 1t′

, 12k′

) = V (x, y). If x ∈ L, Claim 7.8 implies that yx ∈ Y ; thus,
we have S((x, yx), 1t′

, 12k′

) = V (x, yx) = 1, which implies that S′ outputs 1. If x ̸∈ L, then
V (x, y) = 0 for every string y; thus, we obtain S((x, y), 1t′

, 12k′

) = V (x, y) = 0, which implies
that S′ outputs 0. ◀

Proof of Theorem 7.1. By Lemma 7.7, every language L ∈ PH admits a weak universal
heuristic scheme. By Lemmas 2.1 and 7.5, the weak universal heuristic scheme can be
converted into a strong universal heuristic scheme. Finally, using Lemma 7.3, we obtain
L ∈ DTIME(2O(n/ log n)). ◀
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8 What Is Implied by Symmetry of Information?

Toward giving an exact characterization of SoI, we investigate what SoI implies. We show
that SoI is sandwiched between the existence of errorless heuristic schemes (denoted by
AvgP) for MINKT and the existence of error-prone heuristic schemes (denoted by HeurP)
for MINKT under the plausible assumption that E requires exponential-sized circuits. We
start with the definition of error-prone and errorless heuristic schemes.

▶ Definition 8.1. For a function t : N → N and a family D = {Dn}n∈N of distributions, an
algorithm A is said to be an error-prone heuristic scheme for Kt(-) with respect to D if for
every n ∈ N and every δ−1 ∈ N,
1. A(x;n, δ) halts in time poly(n/δ) for every x ∈ supp(Dn).
2. Prx∼Dn

[
A(x;n, δ) ̸= Kt(n)(x)

]
≤ δ.

If A satisfies the additional condition that
resume A(x;n, δ) ∈

{
Kt(n)(x),⊥

}
for every x ∈ supp(Dn),

then A is said to be an errorless heuristic scheme for Kt(-) with respect to D. We write
(Kt(-),D) ∈ AvgP and (Kt(-),D) ∈ HeurP if there exists an errorless heuristic scheme and
an error-prone heuristic scheme for Kt(-) with respect to D, respectively.

Definition 8.1 is different from the standard definition given in [16] in the following two
respects.
1. The classes AvgP and HeurP are usually defined as the class of decision problems; here, we

require that heuristic algorithms output an integer Kt(n)(x) ∈ N on input x ∈ supp(Dn).
2. The output Kt(n)(x) of the distributional problem (Kt(-),D) depends on the size para-

meter n.18

We mention that it is possible to state Theorem 8.2 below using only the standard definitions,
though the statement becomes somewhat awkward; see Footnote 19. We now state the main
result of this section.

▶ Theorem 8.2. Assume that E ̸⊆ i.o.SIZE(2ϵn) for some constant ϵ > 0. In the following
list, we have 1 ⇐⇒ 2 =⇒ 3 =⇒ 4 and 3 =⇒ 5.
1. GapMINKT ∈ P.
2. For every D ∈ PSamp, there exists a polynomial t0 such that (Kt(-),D) ∈ AvgP for every

polynomial t ≥ t0.19

3. SoI holds.
4. For every D ∈ PSamp, there exists a polynomial t0 such that (Kt(-),D) ∈ HeurP for

every polynomial t ≥ t0.
5. Gapτ MINKT ∈ DTIME(2O(n/ log n)) for some function τ(n, t) = 2O(n/ log n).

Here, PSamp denotes the class of families D = {Dn}n∈N of distributions such that there
exists a randomized polynomial-time algorithm S such that the distribution induced by S(1n)
is identical to Dn.

Longpré and Watanabe [58] showed that SoI implies that Kt(-) admits an error-prone
heuristic scheme with respect to the uniform distribution. Theorem 8.2 extends their result
to an arbitrary polynomial-time samplable distribution. To prove this, we need the following
result from [58].

18 The output does not depend on the size parameter n in the special case that n = |x| for every
x ∈ supp(Dn).

19 This statement can be equivalently stated as the statement that (MINKT, Dt) ∈ AvgP, where MINKT
is the language defined as

{
(x, 1t, 1s)

∣∣ Kt(x) ≤ s
}

and Dt denotes the family {Dt
n}n∈N of distributions

such that Dt
n is the distribution that picks (x, 1s) ∼ Dn and outputs a sample (x, 1t(n), 1s).
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▶ Lemma 8.3 ([58]). If SoI holds, then there exist a polynomial p and a polynomial-time
algorithm M such that for every x ∈ {0, 1}∗ and every t ≥ p(|x|) such that cdt,p(t)(x) ≤ k, on
input (x, 1t, 12k ), M outputs the lexicographically first program of length Kt(x) that outputs
x in time t.

Interestingly, this was proved even before the notion of computational depth was introduced
by Antunes et al. [9]. Lemma 8.3 is reminiscent of a weak universal heuristic scheme for
the search version of MINKT; however, it does not satisfy the definition of a weak universal
heuristic scheme in that the parameter t cannot be chosen independently of the instance of
MINKT. For completeness, we present the proof of Lemma 8.3.

Proof. Let x ∈ {0, 1}∗, t ∈ N, and k ∈ N be given inputs. Let dx,t ∈ {0, 1}∗ be the
lexicographically first program of length Kt(x) that outputs x in time t. By SoI, for some
polynomial p, we have

Kp(2t)(dx,t | x) ≤ K2t(dx,t, x) − Kp(2t)(x) + log p(2t)

≤ |dx,t| +O(1) − Kp(2t)(x) + log p(2t) = cdt,p(2t)(x) + log p(2t) +O(1),

where the last inequality holds because (dx,t, x) can be computed from the description dx,t

of the program. Consequently, there exists a polynomial q such that

Kq(t)(dx,t | x) ≤ cdt,q(t)(x) + log q(t). (20)

We now describe the algorithm M : Given an input (x, 1t, 12k ) such that cdt,q(t)(x) ≤ k,
the algorithm M computes the set Y of strings d ∈ {0, 1}∗ such that Kq(t)(d | x) ≤ k+log q(t)
and the program described by d outputs x in time t. The set Y can be computed in time
poly(|x|, t, 2k) by enumerating all the programs of length at most k + log q(t) that take x as
input. Let s := min{|d| | d ∈ Y }. The algorithm M outputs the lexicographically first string
d ∈ Y ∩ {0, 1}s.

To see the correctness of M , fix an input (x, 1t, 12k ) such that cdt,q(t)(x) ≤ k. We claim
that M outputs dx,t. Observe that s ≥ Kt(x) by the definition of Kt(x). Moreover, it follows
from Equation (20) that dx,t ∈ Y ; hence, we obtain s ≤ |dx,t| = Kt(x). Since s = Kt(x), the
lexicographically first string d ∈ Y ∩ {0, 1}s is equal to dx,t. ◀

Under a plausible derandomization hypothesis, Antunes and Fortnow [11] showed that if
a string x is drawn from a polynomial-time samplable distribution, then the computational
depth of x is small with high probability. The same conclusion holds under SoI.

▶ Lemma 8.4 (see [35, Theorem 9.6 and Corollary 9.8]). If SoI holds, then for every D =
{Dn}n∈N ∈ PSamp, there exists a polynomial t such that for every n ∈ N,

Pr
x∼Dn

[
cdt(n)(x) > k

]
≤ 2−k+log t(n).

▶ Theorem 8.5. If SoI holds, then for every D ∈ PSamp, there exist a polynomial t and an
error-prone heuristic scheme for Kt(-) with respect to D.

Proof. Let M be the polynomial-time algorithm and p be the polynomial of Lemma 8.3. Let
t0 be the polynomial of Lemma 8.4.

We describe an error-prone heuristic scheme A: The algorithm A takes (x;n, δ) as input,
where x is sampled from Dn and δ−1 ∈ N is an error parameter. Let k := log(1/δ) + log t0(n).
The algorithm A outputs the length of the program computed by M(x, 1t(n), 12k ). Clearly,
the algorithm A runs in time poly(n/δ).

CCC 2022



26:34 Symmetry of Information from Meta-Complexity

We claim the correctness of A, i.e., for every n ∈ N and every δ−1 ∈ N,

Pr
x∼Dn

[
A(x;n, δ) ̸= Kt(n)(x)

]
≤ δ.

By the property of M , the algorithm M fails to output a program of size Kt(n)(x) on input
(x, 1t(n), 12k ) only if cdt(n),p(t(n))(x) > k, which implies that cdt0(n)(x) ≥ cdt(n)(x) > k. By
Lemma 8.4, this happens with probability at most 2−k+log t0(n) ≤ δ. We conclude that the
probability that A(x;n, δ) ̸= Kt(n)(x) is at most δ, as desired. ◀

Next, we present an errorless heuristic version of Theorem 8.5.

▶ Theorem 8.6. If SoI holds and GapMINKT ∈ P, then for every D ∈ PSamp, there exist
a polynomial t and an errorless heuristic scheme for Kt(-) with respect to D.

Proof. The proof is similar to that of Theorem 8.5, except that we use the algorithm for
GapMINKT to translate the error-prone algorithm of Theorem 8.5 to an errorless algorithm
in a way similar to Lemma 7.5.

Let p be the larger of the polynomial of Lemma 8.3 and the polynomial of Fact 3.4. Let
C be the checker defined in the proof of Lemma 7.5, which satisfies the following properties:
For every x ∈ {0, 1}∗ and every t ≥ |x| and every t ∈ N,
1. if cdt,p(3)(t)(x) ≤ k, then C(x, 1t, 1k) = 1, and
2. if C(x, 1t, 1k) = 1, then cdp(t),p(2)(t)(x) ≤ k + log p(t) + log p(3)(t).

We now describe an errorless heuristic scheme A: The algorithm A takes (x;n, δ) as
input. Let t := t(n) and k := log(1/δ) + log t. The algorithm A outputs the special failure
symbol ⊥ if C(x, 1t, 1k) = 0. Otherwise, A outputs the length of the program computed by
M(x, 1p(t), 12k′

), where we define k′ := k + log p(t) + log p(3)(t). Clearly, the algorithm A

runs in time poly(n/δ).
To prove the correctness of A, we first show that A is errorless. For every n ∈ N and

every x ∈ supp(Dn), we claim

A(x;n, δ) ∈ {Kt(x),⊥}

by considering the following two cases: (1) If the checker C outputs 0, then by definition, A
outputs ⊥. (2) Otherwise, we have C(x, 1t, 1k) = 1, which implies that cdp(t),p(2)(t)(x) ≤ k′.
In the latter case, by the properties of M , the output of A is equal to Kt(x).

Next, we show that the failure probability of A is at most δ. Observe that A fails only if
C(x, t, 1k) = 0, which implies that cdt(x) ≥ cdt,p(3)(t)(x) > k. This happens with probability
at most 2−k+log t ≤ δ by Lemma 8.4. We conclude that

Pr
x∼Dn

[A(x;n, δ) = ⊥] ≤ δ. ◀

Finally, we construct a slightly sub-exponential-time algorithm for GapMINKT from SoI.

▶ Theorem 8.7. If SoI holds, then for every constant δ > 0, there exists an algorithm M that,
on input (x, t) such that |x| ≤ t ≤ 2|x|1−δ , outputs a program of length Kt(x) that outputs x
in time t′, where t′ = 2O(|x|/ log |x|). The algorithm M runs in time 2O(|x|/ log |x|) on input
(x, t).

In particular, the length of the program d computed by M on input (x, t) satisfies that

Kt′
(x) ≤ |d| ≤ Kt(x). (21)
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Proof of Theorem 8.7. Let M be the algorithm and p be the polynomial from Lemma 8.3.
Fix a string x ∈ {0, 1}∗ of length n and an integer t ∈ N. Following [35], we consider the
following telescoping sum:

I∑
i=1

cdp(i−1)(t),p(i)(t)(x) = cdt,p(I)(t)(x) ≤ n+O(1) ≤ 2n,

where I is a parameter chosen later. By taking the minimum term on the left-hand side,
there exists an index i ∈ [I] such that

cdp(i−1)(t),p(i)(t)(x) ≤ 2n/I. (22)

We define an algorithm M ′ as follows. Given (x, t) as input, let t0 := max{t, p(n)} and
ti := p(i)(t0) for every i ∈ [I]. Let di be the program computed by M(x, 1ti , 122n/I ) for every
i ∈ [I]. The algorithm M ′ outputs the shortest program di that outputs x in time ti.

The running time of M ′ is at most

poly(tI , 22n/I) ≤ tc
I

· 2O(n/I) ≤ 2O(cI ·n1−δ+n/I),

where c is some universal constant. By letting I := ϵ logn for a sufficiently small constant
ϵ > 0, the running time can be bounded by 2O(n/ log n).

We prove the correctness of M ′. Let i∗ be the index that satisfies Equation (22). Then,
by the correctness of M , the program di∗ prints x in time ti∗ and |di∗ | = Kti∗ (x). This
means that the output of M ′ is well defined. Let di be the program computed by M ′. By the
definition of M ′, we have |di| ≤ |di∗ | = Kti∗ (x) ≤ Kt(x). Moreover, the program di prints x
in time ti ≤ tI . ◀

Proof of Theorem 8.2. The implication from Item 2 to 1 is proved in [33]. Theorems 4.1
and 8.6 prove the implication from Item 1 to 2. Theorem 4.1 proves the implication from
Item 1 to 3. Theorem 8.5 proves the implication from Item 3 to 4.

The implication from Item 3 to 5 easily follows from Theorem 8.7: We describe a 2O(n/ log n)-
time algorithm that solves Gapτ MINKT. Given an instance (x, 1t, 1s) of Gapτ MINKT, if
t ≤ |x|2, then we use the search algorithm M of Theorem 8.7 and output 1 if and only if
the length of the program computed by M(x, t) is at most s. The search algorithm M runs
in time 2O(|x|/ log |x|). If t > |x|2, then we use a trivial exhaustive search to find a shortest
program that prints x in time t; this exhaustive search runs in time 2O(|x|) · tO(1). In both
cases, the algorithm runs in time 2O(n/ log n), where n denotes the length Θ(|x| + t) of the
instance (x, 1t, 1s). The correctness of the algorithm follows from Equation (21). ◀
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A Symmetry of Information from Weak Symmetry of Information

In this appendix, we present a simple proof of SoI based on weak symmetry of information.
Weak symmetry of information is formally stated as follows:

▶ Lemma A.1 (Weak Symmetry of Information [35]). If GapMINKT ∈ P and E ̸⊆ i.o.SIZE(2ϵn)
for some constant ϵ > 0, then there exists a polynomial p such that, for any n,m ∈ N, any
t ≥ n+m, any ϵ > 0, and any x ∈ {0, 1}n,

Pr
w∼{0,1}m

[
Kt(x,w) ≥ Kp(t/ϵ)(x) +m− log p(t/ϵ)

]
≥ 1 − ϵ.

Alternative Proof of Theorem 4.1. Let M be an algorithm for Gapτ MINKT, where τ is
some polynomial. Fix x, y ∈ {0, 1}∗, and t ∈ N such that t ≥ |x| + |y|. Let n := |x|. We
prove SoI by analyzing the behavior of

M(DPk(x; z) · y, 1t′
, 1s)
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over a random choice of z ∼ {0, 1}nk, where k, s and t′ are parameters chosen later. To
this end, we first compare the time-bounded Kolmogorov complexity of DPk(x; z) · y with
that of w · y for random choices of z ∼ {0, 1}nk and w ∼ {0, 1}nk+k: On one hand, since
DPk(x; z) · y can be described by z, k ≤ O(t), and a program that outputs (x, y), we have

Kt′
(DPk(x; z) · y) ≤ Kt(x, y) + |z| + log t′, (23)

where t′ = poly(t) is some polynomial. On the other hand, by Lemma A.1, there exists a
polynomial p0 such that

Kt′
(w · y) ≥ Kp0(t′)(y) + |w| − log p0(t′) (24)

with probability at least 1
2 over a random choice of w ∼ {0, 1}nk+k.

Comparing Equations (23) and (24), when k is sufficiently large, the output distribution
of DPk(x; -) can be distinguished from the uniform distribution by using the algorithm M .
In more detail, let s := Kt(x, y) + |z| + log t′, which is the right-hand side of Equation (23).
Let k := Kt(x, y) − Kp0(t′)(y) + log p0(t′) + log t′ + log τ(n′, t′) + 1 so that the right-hand side
of Equation (24) is greater than s+ log τ(n′, t′), where n′ := |w| + |y|. Then, Equation (23)
implies that DPk(x; z) · y is a Yes instance of Gapτ MINKT; thus, we obtain

Pr
z

[
M(DPk(x; z) · y, 1t′

, 1s) = 1
]

= 1.

Equation (24) implies that w · y is a No instance of Gapτ MINKT with probability at least
1
2 ; thus, we obtain

Pr
w

[
M(w · y, 1t′

, 1s) = 1
]

≤ 1
2 .

Define a circuit Dy so that Dy(w) := M(w · y, 1t′
, 1s) for every input w ∈ {0, 1}nk+k; then,

it follows that

Pr
z

[Dy(DPk(x; z)) = 1] − Pr
w

[Dy(w) = 1] ≥ 1
2 ,

which, by Lemma 2.2, implies that

Kp1(t)(x | Dy) ≤ k + log p1(t)

for some polynomial p1. Finally, observe that the circuit Dy can be described by using
y ∈ {0, 1}∗, n, k, t′, and s ∈ N as well as an O(1)-size program for M ; therefore, we obtain

Kp1(t)(x | y) ≤ Kt(x | Dy) +O(log t) ≤ k +O(log t) ≤ Kt(x, y) − Kp0(t′)(y) +O(log t).

By choosing a large enough polynomial p, it follows that

Kp(t)(x | y) + Kp(t)(y) ≤ Kt(x, y) + log p(t). ◀

A.1 Why Was Symmetry of Information Not Proved Before?
The alternative proof of Theorem 1.2 is reminiscent of the lemma of [35] that constructs
a universal heuristic scheme from an algorithm for Gap(KPH vs K). In retrospect, the
proof techniques for Theorem 1.2 were already developed in [35]. It is natural to ask why
Theorem 1.2 was not proved in [35]. The reason is that previous results suggested the
infeasibility of proving Theorem 1.2, as we explain below.
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Weak symmetry of information is implicitly proved in [33] under the strong assumption
that DistPH ⊆ AvgP. Specifically, [33] showed that if DistPH ⊆ AvgP, then

Kpoly(t)(x) ≤ Kt,PH(x) +O(log t)

for every x ∈ {0, 1}∗ and every t ≥ |x|.20 That is, the PH-oracle time-bounded Kolmogorov
complexity of x is approximately equal to Kt(x). By using the Kolmogorov–Levin proof of
symmetry of information (as in [58]), it can be shown that

Kpoly(t),PH(y | x) + Kpoly(t),PH(x) ≤ Kt(x, y) +O(log t).

Now, for a random y ∼ {0, 1}m, we have Kpoly(t),PH(y | x) ≈ |y| by Fact 3.2. Therefore, we
obtain weak symmetry of information:

|y| + Kpoly(t)(x) ≤ Kt(x, y) +O(log t)

holds with high probability over a random choice of y ∼ {0, 1}m.
One may be tempted to try to prove symmetry of information by extending the result

of [33] to

Kpoly(t)(x | y) ≤ Kt,PH(x | y) +O(log t) (25)

under the assumption that DistPH ⊆ AvgP. However, this statement is in fact equivalent
to the equivalence between the average-case easiness of PH and the worst-case easiness of
PH (i.e., P = PH ⇐⇒ DistPH ⊆ AvgP) [52, 24], which is a long-standing open question and
cannot be proved by relativizing proof techniques [44, 36]. These results suggest the difficulty
of proving symmetry of information because it relates conditional Kolmogorov complexity
and unconditional Kolmogorov complexity, which previously seemed to imply Equation (25).

[35] proved DistPH ⊆ AvgP =⇒ PH ⊆ DTIME(2O(n/ log n)), which is the first non-trivial
worst-case-to-average-case connection of PH. [35] also proved weak symmetry of information
under the weaker assumption that DistNP ⊆ AvgP than [33]. What was overlooked in [35] is
that symmetry of information does not necessarily imply Equation (25). In fact, under the
assumption that DistPH ⊆ AvgP, SoI implies a weaker statement that

Kpoly(t)(x | y) ≤ Kt,PH(x | y) + cdt,poly(t)(y) +O(log t). (26)

This statement looks quite similar to Equation (25), especially because the computational
depth of y is small for most strings y (Lemma 8.4). Although Equation (26) is not sufficient
to obtain P = PH, it does suffice to prove PH ⊆ DTIME(2O(n/ log n)), which provides the
alternative proof of the main results of [35] presented in Section 7. The fact that SoI provides
the worst-case-to-average-case connections indicates the importance of SoI in average-case
complexity theory.

20 Kt,PH(x) is an informal notation that represents the A-oracle t-time-bounded Kolmogorov complexity of
x for an oracle A ∈ PH. The statement is true for every oracle A ∈ PH.
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