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Abstract
We study the pseudorandomness of random walks on expander graphs against tests computed
by symmetric functions and permutation branching programs. These questions are motivated by
applications of expander walks in the coding theory and derandomization literatures. A line of prior
work has shown that random walks on expanders with second largest eigenvalue λ fool symmetric
functions up to a O(λ) error in total variation distance, but only for the case where the vertices are
labeled with symbols from a binary alphabet, and with a suboptimal dependence on the bias of the
labeling. We generalize these results to labelings with an arbitrary alphabet, and for the case of
binary labelings we achieve an optimal dependence on the labeling bias. We extend our analysis
to unify it with and strengthen the expander-walk Chernoff bound. We then show that expander
walks fool permutation branching programs up to a O(λ) error in ℓ2-distance, and we prove that
much stronger bounds hold for programs with a certain structure. We also prove lower bounds
to show that our results are tight. To prove our results for symmetric functions, we analyze the
Fourier coefficients of the relevant distributions using linear-algebraic techniques. Our analysis for
permutation branching programs is likewise linear-algebraic in nature, but also makes use of the
recently introduced singular-value approximation notion for matrices (Ahmadinejad et al. 2021).
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1 Introduction

Random walks on expander graphs have numerous applications in computer science due to
their pseudorandom properties (see e.g. [13] for a survey). Typically, an expander random
walk is used to provide a randomness-efficient means for generating a sequence of vertices
v0, . . . , vt−1. In a given application, this expander walk will be used to “fool” certain desired
test functions f , in the sense that the distribution of f(v0, . . . , vt−1) is approximately the
same whether the vertices v0, . . . , vt−1 are sampled from a random walk on an expander, or
independently and uniformly at random (which is equivalent to using a random walk on
a complete graph with self loops). In this paper, we prove tight bounds on the extent to
which expander graph random walks fool certain functions f of interest, namely, symmetric
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functions as well as functions computable by permutation branching programs. These results
improve on a recent line of work [11, 6, 5]. Our results also yield further implications,
including a strengthening of the expander-walk Chernoff bound [7, 12].

An expander graph is a graph that is sparse but well connected. In this paper we consider
regular λ-spectral expanders, which are constant-degree graphs for which all nontrivial
eigenvalues of the random walk matrix have absolute value at most λ. Intuitively, the
spectrum of an expander graph approximates that of the complete graph, so an expander
provides a sparsification of the complete graph. Random walks on expander graphs therefore
provide a derandomized approximation for random walks on complete graphs. A major aim
of this paper is to obtain tight bounds on the error in this approximation.

Many explicit constructions of λ-spectral expanders are known for arbitrarily small λ > 0
(e.g. [18, 17, 19, 4]). Random walks on such expanders have many applications, such as in
randomness-efficient error reduction, error-correcting codes, and small-space derandomization
(see the surveys [13, 21, 10]). Randomness-efficient error reduction uses the ability of expander
random walks to fool threshold functions, while Ta-Shma’s recent breakthrough construction
of ϵ-balanced codes [20] uses their ability to fool the parity function. Meanwhile, work on
small-space derandomization starting from [15] uses the ability of expander walks to fool
branching programs. In this paper, we prove new bounds on the extent to which expander
walks fool symmetric functions (which include the threshold and parity functions), as well as
(permutation) branching programs.

Specifically, we strengthen and generalize a result of Cohen et al. [5], which shows that
a random walk on a sequence of λ-spectral expanders fools symmetric functions up to a
O(λ) error in total variation distance. Our result extends the result of Cohen et al. [5] to
labelings of the vertices by symbols from an arbitrary alphabet and, in the binary case,
achieves the optimal dependence on the bias of the labeling; the Cohen et al. [5] result only
applies to binary labelings, and has a suboptimal dependence on the labeling bias. We
also unite this total variation bound with a tail bound, which yields a strengthening of the
expander-walk Chernoff bound. We furthermore show that expander random walks fool
width-w permutation branching programs up to a O(λ) error in ℓ2-distance and a O(

√
w · λ)

error in total variation distance, which extends a result of [2, 14] to walks of length > 2,
and also strengthens the O(w4 ·

√
λ) total variation bound of Cohen et al. [6]. For programs

possessing a certain structure, we prove much stronger bounds. We also present several lower
bounds that show our upper bounds to be tight.

The organization of the remainder of this extended abstract is as follows. Section 2
describes the main problem we consider, and introduces notation. Section 3 describes our
contributions. We present proof outlines of our results for symmetric functions and for
permutation branching programs in Section 4 and Section 5 respectively. For complete proofs
of all results, the reader is referred to the full version of this paper [9].

2 Problem overview

For a sequence G = (G1, . . . , Gt−1) of graphs on a shared vertex set V , let RWt
G denote the

random variable taking values in V t that is given by taking a length-t random walk on V ,
where the ith step is taken in the graph Gi. If all Gi = G then we write RWt

G = RWt
G.

For some fixed integer d ≥ 2, we are given a labeling val : V → [d] = {0, . . . , d −
1}, which we extend to act on sequences componentwise, that is, val(v0, . . . , vt−1) =
(val(v0), . . . , val(vt−1)). We let the tuple p = (p0, . . . , pd−1) ∈ [0, 1]d specify the weights
of the labels, so that pb equals the fraction of vertices with label b ∈ [d].
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In this paper, we study the distribution of val(RWt
G) for a sequence G of λ-spectral

expanders. In particular, letting J denote the complete graph with self-loops, we will
compare the distributions of f(val(RWt

G)) and f(val(RWt
J)) for certain test functions f

on [d]t. Specifically, we study functions f that are either symmetric or computable by a
permutation branching program.

Let Σ : [d][t] → [t + 1][d] be the histogram function, so that (Σa)b = |{i ∈ [t] : ai = b}|
denotes the number of copies of b in the sequence a. All symmetric functions factor through
Σ, so to study symmetric functions we restrict attention to Σ.

3 Contributions

This section describes our main results. The reader is referred to the full version [9] for
theorem statements containing explicit constants.

3.1 Symmetric functions
A major objective of this paper is to study the extent to which expander walks fool symmetric
functions. In our notation, for a sequence G of λ-spectral expanders, we would like to bound
the distance between the distributions of Σ val(RWt

G) and Σ val(RWt
J) as a function of λ,

regardless of the choice of G. Rather than directly comparing these distributions, in the
following theorem we bound the change in Σ val(RWt

G) when one of the graphs Gu in the
sequence G is changed. We then apply a hybrid argument by changing the graphs in G to J

one at a time.
Thus the consideration of arbitrary expander sequences G is inherent in our proof. Yet as

a side benefit, we are able to show fine-grained bounds on the distance between Σ val(RWt
G)

and Σ val(RWt
G′) when G and G′ only differ at a few steps. Such bounds are used in a

follow-up work [8] to prove a new Berry-Esseen theorem for expander walks.
The following theorem considers the case of d = 2 possible labels; we will subsequently

show a similar result for d > 2. In a slight abuse of notation below, we let G both denote a
graph and its random walk matrix. We use ∥ · ∥ to denote the spectral norm of a matrix.

▶ Theorem 1. Fix positive integers u < t. Let G = (Gi)1≤i≤t−1 and G′ = (G′
i)1≤i≤t−1 be

sequences of regular 1/100-spectral expanders on a shared vertex set V such that Gi = G′
i

for all i ̸= u. Fix a labeling val : V → [2] that assigns each label b ∈ [2] to pb-fraction of the
vertices. Then for every c ≥ 0,∑

j∈[t+1]:|j−p1t|≥c

∣∣Pr[Σ val(RWt
G′) = (t − j, j)] − Pr[Σ val(RWt

G) = (t − j, j)]
∣∣

= O

(
∥G′

u − Gu∥ · e−c2/8t

t

)
.

Theorem 1 bounds the change in the distribution of Σ val(RWt
G) when the graph at a

single step in G is changed. A key point is that the bound decays linearly in t. That is, the
longer the walk, the less effect changing one of the graphs has. By changing all the graphs to
the complete graph with self loops J one step at a time, we obtain the following corollary.

▶ Corollary 2. For all positive integers t and all 0 ≤ λ ≤ 1/100, let G = (Gi)1≤i≤t−1 be a
sequence of regular λ-spectral expanders on a shared vertex set V with labeling val : V → [2].
Then for every c ≥ 0,∑

j∈[t+1]:|j−p1t|≥c

∣∣Pr[Σ val(RWt
G) = (t − j, j)] − Pr[Σ val(RWt

J) = (t − j, j)]
∣∣

= O(λ · e−c2/8t).

CCC 2022
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The bounds in Theorem 1 and Corollary 2 both provide unified bounds for two different
notions of distance, namely total variation distance and tail bounds. Specifically, when c = 0
then the results above bound total variation distance, while as c grows large they provide
tail bounds, as p1t is the expected value of (Σ val(RWt

G))1.
Both the total variation and tail bounds above are novel, to the best of our knowledge.

Our tails bounds can be viewed as strengthening the expander-walk Chernoff bound [7, 12],
and indeed our proof of Theorem 1 draws on similar techniques as used in Healy’s [12] proof
of the expander-walk Chernoff bound. Recall that for a sequence G of λ-spectral expanders
with λ bounded away from 1, the expander-walk Chernoff bound states that

∑
j∈[t+1]:|j−p1t|≥c

Pr[Σ val(RWt
G) = (t − j, j)] = O(e−Ω(c2/t)),

that is, the tails of Σ val(RWt
G) decay approximately as quickly as the tails of the binomial

distribution as c2/t → ∞. Corollary 2 shows the stronger statement that as λ → 0, the tails
of Σ val(RWt

G) converge to the tails of the binomial distribution Σ val(RWt
J), even when

c2/t = O(1).
The c = 0 case of Corollary 2 shows a O(λ) bound on the total variation distance between

Σ val(RWt
G) and Σ val(RWt

J ). Equivalently, this result shows that every symmetric function
f : {0, 1}t → {0, 1} satisfies |E[f(val(RWt

G))] − E[f(val(RWt
J))]| = O(λ), that is, random

walks on λ-spectral expanders O(λ)-fool symmetric functions. This bound improves upon
a line of prior work [11, 6, 5]. Guruswami and Kumar [11] initiated this line of work by
showing a O(λ) bound on the total variation distance between Σ val(RWt

G) and Σ val(RWt
J )

for the special case where G is the 2-vertex sticky random walk. Cohen et al. [6] then
showed a O(λ(log(1/λ))3/2) bound on this total variation distance for arbitrary expanders
G with a balanced labeling, that is, when p0 = p1 = 1/2. A follow-up paper of Cohen
et al. [5] generalized to arbitrary p, and improved the total variation distance bound to
O(λ/

√
min(p)), where min(p) = min{p0, p1}. In contrast, the c = 0 case of Corollary 2

strengthens this bound to O(λ) regardless of p. Our results also allow for sequences G of
λ-spectral expanders with different graphs at different steps, whereas the prior work [6, 5]
assumed that the graph was the same at each step.

Theorem 1, Corollary 2, and all of the prior work [11, 6, 5] assumes a binary labeling
val : V → {0, 1} on the expander graph’s vertices. Jalan and Moshkovitz [16] asked whether
these results generalize to labelings val : V → [d] for d > 2. We provide an affirmative
answer to this question in the following results, which generalizing the total variation distance
bounds in Theorem 1 and Corollary 2 to arbitrary d ≥ 2. Below, we let min(p) = minb∈[d] pb.

▶ Theorem 3. For every integer d ≥ 2 and every distribution p ∈ [0, 1]d over the labels [d],
there exists a constant λ0 = λ0(d, p) > 0 such that the following holds. For all positive integers
u < t, let G = (Gi)1≤i≤t−1 and G′ = (G′

i)1≤i≤t−1 be sequences of λ0-spectral expanders on
a shared vertex set V , such that for all i ̸= u we have Gi = G′

i. Let val : V → [d] be any
labeling that assigns each label b ∈ [d] to pb-fraction of the vertices. Then

dTV
(
Σ val(RWt

G′), Σ val(RWt
G)
)

= O

((
d

min(p)

)O(d)
· ∥G′

u − Gu∥
t

)
.
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▶ Corollary 4. For all integers t ≥ 1 and d ≥ 2, let G = (Gi)1≤i≤t−1 be a sequence of
λ-spectral expanders on a shared vertex set V with labeling val : V → [d] that assigns each
label b ∈ [d] to pb-fraction of the vertices. Then

dTV
(
Σ val(RWt

G), Σ val(RWt
J)
)

= O

((
d

min(p)

)O(d)
· λ

)
.

In the results above, it is helpful to think of d and p as fixed, so that Corollary 4 gives a
O(λ) bound on total variation distance. When d = 2, Theorem 1 and Corollary 2 with c = 0
show that the factor of (d/ min(p))O(d) in the bounds above can be removed. We suspect
that this (d/ min(p))O(d) dependence for d > 2 is not tight, and we leave the determination
of the optimal dependence on d and p as an open question.

To show that the O(λ) upper bounds on total variation distance described above are
tight, we present the following lower bound.

▶ Theorem 5. For every 0 < λ < 1 and p = (p0, p1), there exists a sufficiently large
t0 = t0(p, λ) ∈ N and a λ-spectral expander G = Gλ,p with vertex labeling val : V → [2] that
has label weights given by p, such that for every t ≥ t0,

dTV(Σ val(RWt
G), Σ val(RWt

J)) = Ω(λ).

Theorem 5 generalizes a similar result of Guruswami and Kumar [11] for the special case
of p0 = p1 = 1/2, and indeed our proof method is similar to theirs. Cohen et al. [5] showed a
similar Ω(λ) lower bound for all t but only when p0 = p1 = 1/2. Their result is incomparable
to ours, as Theorem 5 considers all p but only sufficiently large t.

The graph Gλ,p in Proposition 8 is the λ-sticky, p-biased random walk, which generalizes
the sticky walk studied by Guruswami and Kumar [11] for the case where p = (1/2, 1/2).
From a given vertex v ∈ V , with probability 1 − λ the sticky walk chooses the next vertex
v′ ∈ V uniformly at random, and with probability λ it instead chooses a random v′ that
has the same label val(v′) = val(v). This sticky walk is in some sense a canonical λ-spectral
expander, and arises in all of our lower bounds in this paper.

The main idea to prove Theorem 5 is that by the Markov chain CLT, as t → ∞ then
((Σ val(RWt

Gλ,p
))1 − p1t)/

√
p0p1t converges in distribution (that is, in Kolmogorov distance)

to a normal distribution with variance (1 + λ)/(1 − λ). In contrast, the CLT implies that
the normalized binomial distribution ((Σ val(RWt

J))1 − p1t)/
√

p0p1t converges to a normal
distribution with variance 1. Theorem 5 then follows because the distance between these two
normals is Ω(λ). All the details are provided the full version [9].

3.2 Permutation branching programs
This section describes our main results on the extent to which expander walks fool permutation
branching programs.

To begin, we recall the formal definition of a permutation branching program B, which
sequentially reads in inputs ai and updates its internal state according to a permutation
Bi(ai).

▶ Definition 6. A permutation branching program B of length t, width w, and degree
d is a collection of functions Bi : [d] × [w] → [w] for i ∈ [t] such that for b ∈ [d], each
restriction Bi(b) = Bi|{b}×[w] : [w] → [w] is a permutation. The program is said to compute
the function B : [d]t → [w] defined by1

B(a) = (Bt−1(at−1) ◦ · · · ◦ B0(a0))(0).

1 Without loss of generality the initial state is assumed to be 0 ∈ [w].

CCC 2022



27:6 Pseudorandomness of Expander Walks

We first present a bound that makes no assumptions on the structure of the program.

▶ Theorem 7. For integers t ≥ 1, w ≥ 2, and d ≥ 2, let G be a λ-spectral expander with
λ < .1, and assign some vertex labeling val : V → [d]. Let B : [d]t → [w] be computed by a
permutation branching program B of length t, width w, and degree d. Then

dℓ2(B(val(RWt
G)), B(val(RWt

J))) = O(λ).

Note that the bound in Theorem 7 has no dependence on the width w of the branching
program, but only bounds ℓ2 rather than total variation distance. Applying the Cauchy-
Schwartz inequality to this ℓ2-bound gives the total variation bound

dTV(B(val(RWt
G)), B(val(RWt

J))) = O(
√

w · λ). (1)

This bound improves upon the work of Cohen et al. [6], who showed a O(w4 ·
√

λ) bound on
dTV(B(val(RWt

G)), B(val(RWt
J))) for the special case where d = 2 and p0 = p1 = 1/2.

Theorem 7 is closely related to the analysis of the Impagliazzo-Nisan-Wigderson [15]
pseudorandom generator studied by Hoza et al. [14], which also uses expander walks to fool
permutation branching programs. Both Theorem 7 and the results of Hoza et al. [14] are
also proven using similar matrix approximation notions. However, Hoza et al. [14] consider
many length-2 expander walks, whereas we consider a single longer walk.

The following lower bound shows that Theorem 7 is tight.

▶ Proposition 8. For every 0 ≤ λ ≤ 1 and every p = (p0, p1), there exists a λ-spectral
expander G = Gλ,p with vertex labeling val : V → [2] that assigns each label b ∈ [2] to
pb-fraction of the vertices, such that the following hold:
1. There exists a permutation branching program B of length t = 2, width w = 2, and degree

d = 2 such that∣∣Pr[B(val(RWt
G)) = 0] − Pr[B(val(RWt

J)) = 0]
∣∣ = 2p0p1λ.

2. There exists a permutation branching program B of length t = ⌊1/ min{p0, p1}⌋ + 1, width
w = t + 1, and degree d = 2 such that∣∣Pr[B(val(RWt

G)) = 0] − Pr[B(val(RWt
J)) = 0]

∣∣ ≥ λ

2e2 .

For these lower bounds, a smaller program length and width corresponds to a stronger
result, as the length and width can be increased arbitrarily with padding. Proposition 8
implies a Ω(λ) lower bound for both the ℓ2 and total variation distance between B(val(RWt

G))
and B(val(RWt

J)). This ℓ2 lower bound meets the upper bound in Theorem 7. However,
whereas the Ω(λ) total variation lower bound has no dependence on the program width w,
the O(

√
w · λ) upper bound in (1) decays with w. It is an open question to resolve this gap.

The graph Gλ,p in Proposition 8 is same the λ-sticky, p-biased random walk used to show
Theorem 5, as described in Section 3.1. More details can be found in the full version [9].

Although Proposition 8 shows that Theorem 7 is tight in general, much stronger bounds
hold for certain permutation branching programs.

▶ Theorem 9. For integers t ≥ 1, w ≥ 2, and d ≥ 2, let G be a sequence of λ-spectral
expanders on a shared vertex set V with labeling val : V → [d]. Let Bt : [d]t → [w]
denote the sum modulo w, that is Bt(a) =

∑
i∈[t] ai (mod w). Then there exists a constant

c = c(d, w, p, λ) < 1 such that

dTV(Bt(val(RWt
G)), Bt(val(RWt

J))) ≤
√

w · ct.
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That is, expander walks fool the small modular functions Bt, which are naturally computed
by permutation branching programs, up to an exponentially small error. This result can be
viewed as a generalization of the previously known fact that expander walks fool the parity
function up to an exponentially small error, as can be recovered by letting w = 2 and d = 2
in Theorem 9. This fact that expander walks are good parity samplers played a pivotal role
in Ta-Shma’s breakthrough construction of almost optimal ϵ-balanced codes [20].

For arbitrary w ≥ 2, Guruswami and Kumar [11] showed that the total variation distance
between Bt(val(RWt

G)) and Bt(val(RWt
J )) is exponentially small in t when G is the 2-vertex

sticky random walk. Theorem 9 generalizes this exponential decay bound to arbitrary
expander walks.

Theorem 9 presents a particular class of permutation branching programs B for which
B(val(RWt

G)) approaches a uniform distribution exponentially quickly. In the full version [9],
we provide a more general class of such permutation branching programs B, and deduce
Theorem 9 as a special case. For illustrative purposes to avoid more cumbersome notation,
we have omitted the more general case here.

4 Proof overview for symmetric functions

In this section, we outline the proof of Theorem 1, which contains many of the key technical
insights in our paper. In particular, the proof of Theorem 3 follows the same general argument,
so for the exposition in this section we focus on Theorem 1. All of the proof details can be
found in the full version [9].

As in Theorem 1, for some u < t let G = (Gi)1≤i≤t−1 and G′ = (G′
i)1≤i≤t−1 be sequences

of 1/100-spectral expanders that agree at all positions i ̸= u, and again fix a vertex labeling
val : V → [2]. Define g ∈ [−1, 1][t+1] ⊆ [−1, 1]Z to be the difference between the probability
mass functions of (Σ val(RWt

G′))1 and (Σ val(RWt
G))1, that is,

gj = Pr[Σ val(RWt
G′) = (t − j, j)] − Pr[Σ val(RWt

G) = (t − j, j)].

In this notation, the c = 0 case of Theorem 1 states that g has ℓ1-norm ∥g∥1 = O(∥G′
u−Gu∥/t),

which is bounded by O(λ/t) if G′
u and Gu are λ-spectral expanders.

We first show that the ℓ2-norm of g satisfies

∥g∥ = O

(
∥G′

u − Gu∥
t

· 1
(p0p1t)1/4

)
. (2)

The proof of this bound is sketched below in Section 4.1. We will then explain in Section 4.2
how to go from this ℓ2-bound to the desired ℓ1-bound. We compare our techniques to those
of prior work in Section 4.3, and in particular we draw connections with Healy’s proof of the
expander-walk Chernoff bound [12].

4.1 Bounding the ℓ2-distance ∥g∥
In this section, we sketch the proof of the ℓ2-bound (2). Because the Fourier transform
preserves ℓ2-norms, we will bound the ℓ2-norm ∥ĝ∥ = ∥g∥ of the Fourier transform ĝ of g.
Recall that here the Fourier transform is given by ĝ(θ) =

∑
j∈Z e−iθjgj , and has ℓ2-norm

∥ĝ∥ =
√∫ π

θ=−π
|ĝ(θ)|2dθ/2π.

CCC 2022
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To motivate this shift to the Fourier basis, recall that the Fourier transform interchanges
convolution and multiplication, so that addition of independent random variables translates
to multiplication of the Fourier transforms of their probability density functions (i.e. mul-
tiplication of their characteristic functions). Such products can be easier to analyze than
convolutions, so the Fourier transform is a natural tool for analyzing sums of independent
random variables, as is exemplified in proofs of the central limit theorem. Theorem 1 and
Corollary 2 intuitively show that the expander walk distribution (Σ val(RWt

G))1 is close to
the sum of independent variables, so it is also natural to analyze this distribution with the
Fourier transform.

Whereas we apply the Fourier transform over the group Z to the random variable
Σ val(RWt

G) (which is distributed over Z), the prior work of Cohen et al. [6] and Cohen et
al. [5] applied the Fourier transform over the group (Z/2)t to the random variable val(RWt

G)
(which is distributed over {0, 1}t ∼= (Z/2)t). As described above, our approach seems well
suited for symmetric functions, and it generalizes naturally to give Theorem 3 and Corollary 4
for alphabet sizes d > 2. In contrast, Cohen et al. [6] only consider d = 2, but they are able
to apply their techniques to other classes of functions such as bounded-depth circuits, which
we do not consider. More comparisons to prior techniques are provided in Section 4.3.

To begin, we express ĝ(θ) linear-algebraically. Specifically, let 1⃗ = (1/
√

|V |, . . . , 1/
√

|V |)
denote the uniform unit vector, and define the diagonal matrix Pθ = diag(xθ) ∈ CV ×V ,
where xθ ∈ CV is the vector with (xθ)v = e−iθ(val(v)−p1). Then it can be verified that

eiθp1t · ĝ(θ) = 1⃗⊤

(
t∏

i=u+1
GiPθ

)
(G′

u − Gu)
(

u−1∏
i=0

PθGi

)
1⃗,

where the products above multiply from right-to-left, and we take G0 = Gt = J . This
equality can be seen by expanding the right hand side above as a sum over all length-t walks
v0, . . . , vt−1 on V . Therefore because G′

u − Gu annihilates 1⃗ from both sides, we have

|ĝ(θ)| ≤

∥∥∥∥∥∥
(

1⃗⊤

(
t∏

i=u+1
GiPθ

))⊥
∥∥∥∥∥∥ · ∥G′

u − Gu∥ ·

∥∥∥∥∥∥
((

u−1∏
i=0

PθGi

)
1⃗
)⊥
∥∥∥∥∥∥ , (3)

where the notation x⊥ denotes the projection of a vector x onto the orthogonal complement
of 1⃗. We will also use x∥ to denote the projection of x onto 1⃗.

We bound the rightmost factor above by induction on u. Splitting off a factor of PθGu−1
gives∥∥∥∥∥∥

((
u−1∏
i=0

PθGi

)
1⃗
)⊥
∥∥∥∥∥∥

≤ ∥(Pθ1⃗)⊥∥ ·

∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
1⃗
)∥
∥∥∥∥∥∥+ ∥Pθ∥ · λ(Gu−1) ·

∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
1⃗
)⊥
∥∥∥∥∥∥

≤ ∥(Pθ1⃗)⊥∥ ·

∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
1⃗
)∥
∥∥∥∥∥∥+ 1

100 ·

∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
1⃗
)⊥
∥∥∥∥∥∥ , (4)

where the last inequality follows because ∥Pθ∥ = 1 and Gu−1 is a 1/100-spectral expander.
Thus if we can bound the first term on the right hand side of (4) by some B(u) that decays
less rapidly than 100−u (i.e. B(u) = Θ(β−u) for β < 100), we can inductively bound the left
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hand side by B(u) + B(u − 1)/100 + B(u − 2)/1002 + · · · = O(B(u)). Specifically, we will
show this bound for B(u) = Θ(√p0p1 · θ · e−Ω(p0p1(u−1)θ2)). Intuitively, it suffices to bound
what happens to the component parallel to 1⃗, because the component orthogonal to 1⃗ is
shrunk by a factor of 100 with each application of PθGi.

Letting F = J + (1/10)(I − J) be the matrix that preserves 1⃗ and scales its orthogonal
complement by 1/10, then because by assumption all i ̸= u have λ(Gi) ≤ 1/100, it follows
that ∥F −1GiF

−1∥ ≤ 1. Thus∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
1⃗
)∥
∥∥∥∥∥∥ =

∥∥∥∥∥1⃗⊤

(
u−2∏
i=0

FPθF · F −1GiF
−1

)
1⃗

∥∥∥∥∥ ≤ ∥FPθF∥u−1.

Next via some technical calculations, we show that for all −π < θ ≤ π,

∥(Pθ1⃗)⊥∥ = ∥x⊥
θ ∥√
|V |

= Θ(√p0p1 · θ). (5)

For intuition, observe that if p0p1 or θ equals 0, then all entries of xθ are the same, so x⊥
θ = 0.

Using (5), we also deduce that

∥FPθF∥ ≤ 1 − Ω((∥(Pθ1⃗)⊥∥2) = e−Ω(p0p1θ2).

Here for intuition, as F is a 1/10-spectral expander, we should expect ∥FPθF∥ to be close
to ∥JPθJ∥ = ∥(Pθ1⃗)∥∥ =

√
1 − ∥(Pθ1⃗)⊥∥2 = 1 − Ω(∥(Pθ1⃗)⊥∥2). Thus (4) becomes∥∥∥∥∥∥

((
u−1∏
i=0

PθGi

)
1⃗
)⊥
∥∥∥∥∥∥ ≤ O

(√
p0p1 · θ · e−Ω(p0p1(u−1)θ2)

)
+ 1

100 ·

∥∥∥∥∥∥
((

u−2∏
i=0

PθGi

)
1⃗
)⊥
∥∥∥∥∥∥ .

Recursively applying this inequality to bound the last term on its right hand side then gives∥∥∥∥∥∥
((

u−1∏
i=0

PθGi

)
1⃗
)⊥
∥∥∥∥∥∥ = O

(√
p0p1 · θ · e−Ω(p0p1u·θ2)

)
.

We now apply the above bound on ∥((
∏u−1

i=0 PθGi)⃗1)⊥∥, along with an analogous bound
on ∥(⃗1⊤(

∏t
i=u+1 GiPθ))⊥∥, in (3) to give

|ĝ(θ)| = O
(

p0p1 · θ2 · e−Ω(p0p1t·θ2) · ∥G′
u − Gu∥

)
.

We then obtain the desired ℓ2-bound (2) by squaring and integrating this bound with the
substitution q = c

√
p0p1t · θ for a sufficiently small constant c > 0:

∥g∥ = ∥ĝ∥ = O

(
p0p1 · ∥G′

u − Gu∥ ·

√∫ π

−π

θ4e−Ω(p0p1t·θ2) dθ

2π

)

= O

(
∥G′

u − Gu∥
t · (p0p1t)1/4 ·

√∫ ∞

−∞
q4e−q2dq

)

= O

(
∥G′

u − Gu∥
t · (p0p1t)1/4

)
.
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4.2 Going from an ℓ2 to ℓ1 bound
In this section, we show how to extend the techniques for bounding ∥g∥ described above to
bound ∥g∥1, and more generally to prove Theorem 1.

First observe that by the expander-walk Chernoff bound, Σ val(RWt
G) and Σ val(RWt

G′)
are mostly supported in an interval of length ℓ ≈ O(

√
t) about their mean. Applying the

Cauchy-Schwartz inequality to (2) on this interval (which costs a factor of
√

ℓ ≈ O(t1/4) to
convert from ℓ2 to ℓ1), and the expander-walk Chernoff bound on the tails lying outside of
the interval, yields a total variation bound of

∥g∥1 = O

(
∥G′

u − Gu∥
t

·
(

log(∥G′
u − Gu∥/t)
p0p1

)1/4
)

.

However, the above ℓ1-bound does not help us prove Theorem 1 when c2/t is large.
Furthermore, even to prove the c = 0 case Theorem 1, we need to remove the factor
(log(∥G′

u − Gu∥/t)/p0p1)1/4 from the bound above.
To obtain these improvements, we first generalize (2) to bound the ℓ2-norm of the vector

g(sr) = (esr(j−p1t)gj)j∈[t+1] for s = ±1 and various values of r ≥ 0. The proof of this bound
on ∥g(sr)∥ for general r simply generalizes the argument presented in Section 4.1. The
special case r = 0 recovers g = g(0), while when r > 0 then the sum of the elements of g(sr)

equals the difference between the moment generating functions E[esr((Σ val(RWt
G))1−p1t)] and

E[esr((Σ val(RWt
G′ ))1−p1t)] that are used in the proofs of Chernoff bounds.

We then partition [t+1] ⊆ Z into intervals of length approximately
√

p0p1t, and we bound
the ℓ1-norm of g restricted to each interval by applying the Cauchy-Schwartz inequality with
our ℓ2-bound on g(sr) for appropriately chosen s, r. Summing these bounds over all intervals
lying at least some distance c from p1t yields Theorem 1.

Intuitively, as Σ val(RWt
G) and Σ val(RWt

G′) have standard deviation Θ(
√

p0p1t), we
would expect these distributions to be somewhat evenly distributed across an interval of
length

√
p0p1t. This is the regime where Cauchy-Schwartz is tight. Appropriately choosing

s, r allows us to “isolate” a given length-
√

p0p1t interval, by ensuring that the components of
g(sr) in that interval dominate components outside that interval.

4.3 Comparison with techniques in prior work
Our techniques described above to prove Theorem 1 are closely related to Healy’s [12] proof
of the expander-walk Chernoff bound. In some sense, Healy’s proof [12] makes up “half” of
our proof: Healy’s proof bounds the moment-generating function E[esr((Σ val(RWt

G))1−p1t)], but
does not bound the characteristic function E[e−iθ((Σ val(RWt

G))1−p1t)] as described in Section 4.1
(as the Fourier coefficient ĝ(θ) by definition equals the difference between the characteristic
functions of (Σ val(RWt

G))1 and (Σ val(RWt
G′))1). Intuitively, our proof combines the moment

generating and characteristic function bounds, as in order to bound ∥g(sr)∥, we bound the
difference eiθp1t · ĝ(sr)(θ) between the generating functions E[e(sr−iθ)((Σ val(RWt

G))1−p1t)] and
E[e(sr−iθ)((Σ val(RWt

G′ ))1−p1t)].
Although Cohen et al. [6] and Cohen et al. [5] also studied the extent to which expander

walks fool symmetric functions, their proofs are less similar to ours. Most notably, both
of these papers use Fourier analysis over the group (Z/2Z)t by viewing val(RWt

G) as a
distribution on (Z/2Z)t. In contrast, we use Fourier analysis over Zd−1 by viewing Σ val(RWt

G)
as a distribution on Zd (or Zd−1, if we drop the first component). This explains why our
results generalize more naturally to the case d > 2, which is not considered in [6, 5]. We
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could also do our analysis using discrete Fourier analysis over (Z/m)d−1 instead, for any
m ≥ t, but then the modulus m is superfluous (as it is cleaner to avoid modular reduction)
and only makes the notation more cumbersome.

5 Proof overview for permutation branching programs

In this section, we outline the proof of Theorem 7, which uses singular-value approximations
as described below. We do not outline the proof of our other results for permutation branching
programs, specifically Theorem 9, and instead refer the reader to the full version [9], as this
latter result uses techniques somwhat similar to those described above in Section 4.

5.1 Proof outline
We now describe the proof of Theorem 7. As in the theorem statement, for arbitrary integers
t ≥ 1, w ≥ 2, and d ≥ 2, let B be a permutation branching program of length t, width w,
and degree d that computes some function B : [d]t → [w]. Let G be a λ-spectral expander
with λ < .1, and assign some vertex labeling val : G → [d]. We again let g ∈ [−1, 1][w] denote
the difference between the distributions B(val(RWt

G)) and B(val(RWt
J )) of interest, that is,

gj = Pr[B(val(RWt
G)) = j] − Pr[B(val(RWt

J)) = j].

In this notation, Theorem 7 states that ∥g∥ = O(λ).
As in the proof of Theorem 1, we begin by expressing g linear-algebraically. Let P̃ be the

operator on the vector space RV ⊗ Rt ⊗ Rw given by

P̃ =
∑

v∈V,i∈[t]

δvδ⊤
v ⊗ δi+1δ⊤

i ⊗ Bi(val(v)),

where i+ 1 is taken (mod t) above, and by abuse of notation Bi(val(v)) ∈ Rw×w refers to the
permutation matrix associated to the permutation Bi(val(v)) : [w] → [w]. Also for W = G

or J , let W̃ = W ⊗ I ⊗ I. Then for every j ∈ [w],

g = (⃗1 ⊗ δ0 ⊗ I)⊤((G̃P̃ )t − (J̃ P̃ )t)(⃗1 ⊗ δ0 ⊗ δ0). (6)

This equality can again be seen by expanding the right hand side above as a sum over all
length-t walks on V .

We will bound the right hand side using singular-value approximations [1, 3]. A matrix
W ′ ∈ CN×N is a singular-value ϵ-approximation of another matrix W ∈ CN×N , written
W ′ sv

≈ϵ W , if for all x, y ∈ CN ,

|x∗(W ′ − W )y| ≤ ϵ

2(∥x∥2 + ∥y∥2 − ∥x∗W∥2 − ∥Wy∥2),

where x∗ denotes the conjugate transpose of x. The following properties were shown by
Ahmadinejad et al. [1, 3]:
1. G̃

sv
≈λ J̃ .

Assume that W ′ sv
≈ϵ W . Then:

2. For every matrix X with spectral norm ∥X∥ ≤ 1, then W ′X
sv
≈ϵ WX.

3. If ϵ < .1, then (W ′)t sv
≈ϵ+5ϵ2 W t. (Importantly, the bound ϵ + O(ϵ2) does not grow with

t.)
4. ∥W ′ − W∥ ≤ ϵ.

CCC 2022
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We now bound the right hand side of (6) using singular value approximations. Because by
definition ∥P̃∥ = 1, property 1 and property 2 above imply that G̃P̃

sv
≈λ J̃ P̃ . Then property 3

implies that (G̃P̃ )t sv
≈λ+5λ2 (J̃ P̃ )t, and property 4 then gives that ∥(G̃P̃ )t −(J̃ P̃ )t∥ ≤ λ+5λ2,

so ∥g∥ ≤ λ + 5λ2 = O(λ).

5.2 Comparison with techniques in prior work
The proof of Theorem 7 described above is closely related to the analysis of the Impagliazzo-
Nisan-Wigderson (INW) [15] pseudorandom generator in Hoza et al. [14]. Hoza et al. [14]
use unit-circle approximations [2] to show that length-2 walks on λ-spectral expanders fool
permutation branching programs up to a O(λ) ℓ2-error; the INW generator they study
recursively applies many such length-2 walks. We generalize this O(λ) bound to walks
of arbitrary length, and simplify the analysis by replacing the unit-circle approximations
with singular-value approximations. We obtain these improvements because the unit-circle
approximations, though similar in nature to singular-value approximations, do not satisfy
property 2 described above. Although our results do not directly translate to an improved
pseudorandom generator, it is an interesting question whether longer walks could somehow
be used to improve the seed length.

As described in Section 3.2, Theorem 7 implies a O(
√

w · λ) total variation distance
bound, which improves upon the O(w4 ·

√
λ) total variation bound of Cohen et al. [6].

However, Cohen et al. [6] prove their result using bounds on the Fourier tails over (Z/2Z)t

of permutation branching programs with alphabet size d = 2, differing significantly from our
proof using singular-value approximations, which generalizes readily to d > 2.
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