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Abstract
We make progress on understanding a lower bound technique that was recently used by the authors
to prove the first superpolynomial constant-depth circuit lower bounds against algebraic circuits.

More specifically, our previous work applied the well-known partial derivative method in a new
setting, that of lopsided set-multilinear polynomials. A set-multilinear polynomial P P FrX1, . . . , Xds

(for disjoint sets of variables X1, . . . , Xd) is a linear combination of monomials, each of which
contains one variable from X1, . . . , Xd. A lopsided space of set-multilinear polynomials is one where
the sets X1, . . . , Xd are allowed to have different sizes (we use the adjective “lopsided” to stress
this feature). By choosing a suitable lopsided space of polynomials, and using a suitable version
of the partial-derivative method for proving lower bounds, we were able to prove constant-depth
superpolynomial set-multilinear formula lower bounds even for very low-degree polynomials (as long
as d is a growing function of the number of variables N). This in turn implied lower bounds against
general formulas of constant-depth.

A priori, there is nothing stopping these techniques from giving us lower bounds against algebraic
formulas of any depth. We investigate the extent to which this lower bound can extend to greater
depths. We prove the following results.
1. We observe that our choice of the lopsided space and the kind of partial-derivative method used

can be modeled as the choice of a multiset W Ď r´1, 1s of size d. Our first result completely
characterizes, for any product-depth ∆, the best lower bound we can prove for set-multilinear
formulas of product-depth ∆ in terms of some combinatorial properties of W , that we call the
depth-∆ tree bias of W .

2. We show that the maximum depth-3 tree bias, over multisets W of size d, is Θpd1{4
q. This shows

a stronger formula lower bound of NΩpd1{4q for set-multilinear formulas of product-depth 3,
and also puts a non-trivial constraint on the best lower bounds we can hope to prove at this
depth in this framework (a priori, we could have hoped to prove a lower bound of NΩp∆d1{∆q at
product-depth ∆).

3. Finally, we show that for small ∆, our proof technique cannot hope to prove lower bounds of the
form NΩpd1{ polyp∆qq. This seems to strongly hint that new ideas will be required to prove lower
bounds for formulas of unbounded depth.
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32:2 On the Partial Derivative Method Applied to Lopsided Set-Multilinear Polynomials

1 Introduction and Motivation

Basic background

This paper is motivated by questions arising in the area of Algebraic Circuit complexity,
which studies the computational complexity of problems defined by families of multivariate
polynomials. Given an infinite family of polynomials pPN px1, . . . , xN qqNě1 over a field F, we
consider the computational problem of evaluating PN at input point a P FN . Many natural
and important computational problems can be stated in this language, including the problems
of computing the determinant and the permanent, and that of multiplying matrices.

Algebraic circuits are succinct representations of multivariate polynomials that allow us
to solve computational problems of the above form. More precisely, an algebraic circuit
is a directed acyclic graph, where the sources are labelled by variables x1, . . . , xN or field
elements and internal nodes (or gates) by algebraic operations ` and ˆ. Each internal
node thus represents a polynomial in the variables x1, . . . , xN and a designated output gate
represents the polynomial computed by the algebraic circuit. The size of the algebraic circuit
is given by the number of gates. The depth and product-depth of an algebraic circuit denote
the maximum number of gates and ˆ-gates respectively, on a directed path in the circuit.1
Finally, we call an algebraic circuit an Algebraic formula if the underlying directed graph is
a tree. (Equivalently, an Algebraic formula is just a nested algebraic expression made up of
additions and multiplications, as one might write down on paper, represented in the form of
a tree.)

An algebraic circuit for a polynomial P allows us to evaluate the polynomial P on a given
input in time polynomially related to the size of the circuit. Thus, algebraic circuits are a
restricted, but natural, model of computation for computational problems of this form. The
study of this model of computation is one of the principal topics of study in Algebraic circuit
complexity, and has received much attention over the past four decades (see e.g. [3, 26, 24] for
nice introductions). Many central questions in Boolean circuit complexity have analogous and
closely-related versions in the algebraic setting. For instance, the VP vs. VNP question [28],
which is the problem of proving explicit lower bounds against algebraic circuits, is formally
easier than the (non-uniform) P vs. NP question [2]. The problem of proving lower bounds
against algebraic formulas is similarly closely related to the problem of proving lower bounds
against the Boolean complexity class NC1.

A recent result [18]

While circuit lower bounds in the algebraic setting are formally easier than the Boolean
setting, they still have been hard to come by. For example, a famous line of research in
the 1980s [1, 7, 13, 23, 27] showed exponential lower bounds against Boolean circuits of
constant-depth, but did not yield such results for algebraic circuits.2 This situation was
somewhat rectified recently by the authors [18], building on some important earlier results in
the area [20, 21]. In particular, we were able to prove superpolynomial lower bounds against
constant-depth algebraic circuits over fields of characteristic zero.

1 W.l.o.g., we may assume that the product-depth and depth of a circuit are related to each other by a
multiplicative factor of 2. However, some results are easier to state in terms of product-depth.

2 Note that algebraic circuit lower bounds are not necessarily easier than Boolean circuit lower bounds in
the constant-depth setting. However, some of these ideas did translate in the setting of constant-sized
fields. [8, 9]
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This paper is motivated by the problem of extending this lower bound to stronger models
of computation. At a high level, our results are as follows.

We show that our previous result [18] can be formulated purely in terms of a combinatorial
property of the space of polynomials under consideration.
We characterize the best lower bound that can be achieved in this framework at product-
depth 3. It is better than the analogous lower bound from [18], but not as good as one
might hope at first sight (as explained below).
We place limitations on how well the bound extends to higher depths.

To describe these results in detail, we first recall the outline of the proof of [18].

The proof of [18]

The proof of [18] proceeds in two steps. In the first step, we reduce the problem of proving
lower bounds for general circuits of depth ∆ to proving lower bounds for product-depth-p∆´1q

circuits that have a special structure. In the second step, we prove lower bounds for the
structured circuits. We describe these steps in some more detail next.

Step 1: Set Multilinearization. We work throughout with a partition of the variable
set X “ tx1, . . . , xN u into X1 Y X2 Y ¨ ¨ ¨ Y Xd. Given such a partition, a set-multilinear
monomial w.r.t. this variable partition is a monomial of degree d that contains exactly one
variable from each of X1, X2, . . . , Xd. A set-multilinear polynomial P is a linear combination
of set-multilinear monomials. We denote the space of set-multilinear polynomials w.r.t.
X1, . . . , Xd by FsmrX1, . . . , Xds. A set-multilinear circuit or formula is one where each gate
computes a set-multilinear polynomial w.r.t. a subset of tX1, . . . , Xdu. An important example
of a set-multilinear polynomial is the Iterated Matrix Multiplication polynomial IMMn,d,
where X1, . . . , Xd are square matrices of dimension n ˆ n with distinct indeterminates, and
the polynomial represents, say, the p1, 1qth entry of the product of these matrices.

In the first step of the proof, we show that if a polynomial P P FsmrX1, . . . , Xds has a
circuit C of depth ∆ and size s, then it also has a set-multilinear circuit C 1 of product-depth
∆ ´ 1 and size s1 “ polypsq ¨ dOpdq. Note that while the blow-up in size in going from C

to C 1 is large as a function of d, it can be made small (say polypNq) assuming that d is a
slow-growing function of N (say, d “ Oplog N{ log log Nq). So, to prove superpolynomial
constant-depth circuit lower bounds, it suffices to prove superpolynomial lower bounds for
constant-depth set-multilinear circuits in this low-degree setting.

Step 2: Set-multilinear lower bounds for low-degree polynomials. Lower bounds for
constant-depth set-multilinear circuits have been known since the work of Nisan and
Wigderson [20] from the 1990s. However, such lower bounds were typically of the form
exppdΩp1qq ¨ polypNq, which are not good enough for our purposes in the low-degree setting.
The main contribution of [18] was to prove a lower bound of the form Nωdp1q, which yields a
superpolynomial lower bound for any degree d “ dpNq which is a growing function of N .

Somewhat surprisingly, the proof of this latter lower bound used just the lower bound
technique of Nisan and Wigderson [20], which goes by the name of the partial derivative
method. The key observation was to apply this technique to a suitable space of set-multilinear
polynomials. Specifically, it is crucial in the proof to allow for the sets X1, . . . , Xd to have
fairly different sizes. To stress this feature, we refer to such a space of set-multilinear
polynomials as lopsided.

CCC 2022
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For such polynomials that have efficient small-depth set-multilinear formulas, we argue
that certain matrices associated to these polynomials have low rank. This is the basic recipe
suggested by the partial derivative method, and is described in more detail later.

To complete the argument, we need to find explicit polynomials for which the associated
matrices have high (ideally maximal) rank. We do this by considering suitable restrictions
of IMMn,d where n “ maxiPrds |Xi|. Using this idea, we showed [18] a lower bound of
Ndexpp´Op∆qq for set-multilinear circuits of product-depth ∆. In conjunction with Step 1, this
implies a superpolynomial lower bound for constant-depth algebraic circuits, and in fact for
circuits of depth oplog log dq.

The potential of this lower bound technique

Can the above proof strategy be used to prove lower bounds for stronger models of computa-
tion, such as algebraic formulas of unbounded depth or, optimistically, even algebraic circuits?
It turns out that Step 1 of the strategy still works, as shown in previous work of Nisan and
Wigderson [20] and Raz [22]. Consequently, proving superpolynomial set-multilinear lower
bounds against these models in the low-degree setting imply general circuit or formula lower
bounds.

However, a problem arises because of the technique used in Step 2. As IMMn,d (or
more precisely, its restrictions) is a polynomial of “maximal complexity” for the partial
derivative method, we cannot use it to prove lower bounds for computational models that
can compute this polynomial efficiently. In particular, this suggests a new idea is required to
prove lower bounds for, say, set-multilinear circuits of depth Oplog dq, which can compute
IMMn,d efficiently.

Nevertheless, this does not seem to rule out lower bounds for circuits of depth oplog dq,

or for formulas (of any depth). A simple, folklore divide-and-conquer strategy shows that
IMMn,d has set-multilinear circuits of product-depth ∆ and size nOpd1{∆

q, and also set-
multilinear formulas of product-depth ∆ and size nOp∆d1{∆

q. Given the fact that this basic
bound has not been improved upon significantly3 for a long time, it is tempting to conjecture
that it is tight, at least in the set-multilinear setting. If so, it seems that we could hope to
prove lower bounds for set-multilinear circuits of depth oplog dq and formulas of any depth.
Doing this would yield at least lower bounds for general algebraic formulas, which would be
a very interesting result. This brings us to our main motivating question.

▶ Question 1. Can we hope to use the partial derivative method (as applied to lopsided
spaces of set-multilinear polynomials) to prove set-multilinear lower bounds that match the
standard divide and conquer algorithms for IMMn,d?

Our results in this paper indicate that the answer to this question is probably “No”, and
that, alone, the proof technique from [18] is not powerfull enough to handle formulas of depth
plog dqop1q. In the process of proving these results, we also introduce what we believe is a
clean framework for studying the power of this technique.

We start with a more formal description of the partial derivative method and then state
our results.

3 A famous result of Gupta, Kamath, Kayal and Saptharishi [12] does improve this bound, but gives up
on set-multilinearity. Moreover, the basic form of the bound is still preserved. More precisely, their
work implies circuits of product-depth ∆ and size nOpd1{2∆q.
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The partial derivative method for lopsided set-multilinear polynomials

We prove lower bounds for set-multilinear polynomials P pX1, . . . , Xdq where each |Xi| “ nαi

for some αi P p0, 1s. Given such a polynomial P , we associate with it a matrix as follows. We
partition rds into sets P and N . The rows of the matrix are associated with set-multilinear
monomials over the variable sets tXi : i P Pu, and the columns symmetrically with the
set-multilinear monomials over tXj : j P N u. Given a row labelled by monomial m1 and a
column labelled by monomial m2, the corresponding entry in the matrix is the coefficient of
the set-multilinear monomial m1m2 in the polynomial P . We use the rank of this matrix
(or, more precisely, how close it is to full-rank) to prove lower bounds on the algebraic circuit
complexity of P .

We define this more precisely now. Note that the matrix is completely specified by the
choice of the numbers α1, . . . , αd and the partition rds “ P Y N . We can describe these
together by the multiset W Ď r´1, 1s, defined by W “ tαi : i P Pu Y t´αj : j P N u.

Finally, we use MW pP q to denote the above matrix.
Note that MW pP q is a matrix with R “ n

ř

αPW Xp0,1s α rows and C “ n
ř

αPW Xr´1,0q |α|

columns. In particular, the rank of the matrix MW pP q is bounded by the minimum of these
quantities. We consider the relative rank of P , defined as follows.

relrkW pP q “
rankpMW pP qq

?
RC

“
rankpMW pP qq

n
1
2

ř

αPW |α|
. (1)

Observe that the quantity in the denominator is the geometric mean of the number of rows
and the number of columns of MW pP q and hence relrkW pP q P r0, 1s. In fact, more generally,
it is not hard to see that as rankpMW pP qq ď mintR, Cu, we have relrkW pP q ď n´|

ř

αPW α|{2.

Further, it was shown by the authors [18] that for any W , there is a polynomial P0
such that relrkW pP0q “ n´|

ř

αPW α|{2 and P0 can be obtained by starting with an instance
of IMMpolypnq,d and setting some variables to 0 and identifying variables within certain
sub-matrices, i.e. by a set-multilinear projection.

High-level description of the results

Our results give a better understanding of what lower bounds the partial derivative method
can hope to show in this setting.

Our first main result is a transformation of our problem to a combinatorial problem
about labelled trees. More precisely, we show that understanding the best lower bound
our techniques can hope to prove in the low-degree setting is perfectly captured by the
best-possible “tree-like decomposition” of the set W .4
While this transformation is simple, it is conceptually clean, and simplifies the problem
in multiple ways. Firstly, it eliminates the parameter n (which is roughly the number
of variables in the underlying polynomial) and makes completely clear the dependence
of the lower bound on properties of the multiset W . Secondly, this reformulation of the
problem completely eliminates any mention of polynomials or algebra from the problem.
It is now purely a problem about the “additive structure” of W .
Our second result uses the above characterization of the problem to give a near-perfect
understanding of the best lower bounds we can prove for set-multilinear formulas of
product-depth 3 (i.e. ΣΠΣΠΣΠΣ formulas). More precisely, we show that the best
product-depth-3 lower bound we can prove via our proof technique is nΘpd1{4

q. This is
interesting for the following two different reasons.

4 This is not to be confused with standard tree decompositions of graphs, which have no connection with
objects studied here.

CCC 2022



32:6 On the Partial Derivative Method Applied to Lopsided Set-Multilinear Polynomials

For one, this is a stronger lower bound than known previously for set-multilinear formulas
of product-depth 3 in the low-degree regime: Nisan and Wigderson [20] showed a lower
bound of exppΩpd1{3qq ¨ polypNq (which does not yield anything for d “ Oplog Nq), while
in our earlier work [18], we showed lower bounds of nΩpd1{7

q.

On the other hand, the result also implies that this technique does not go as far as we
would like. Recall from above that the (suspected) optimal lower bound for IMMn,d at
product-depth 3 is nΩpd1{3

q. So, our result implies that this technique cannot be used to
obtain this bound at product-depth 3.
The above results already indicate that we are not able to prove the best possible lower
bound we could hope for product-depth-3 set-multilinear formulas. However, it is still
conceivable that we can hope to prove a lower bound which stays “close” to the right
expected bound for IMMn,d (say a bound of the form n∆dΩp1{∆q ), which could as yet lead
to superpolynomial formula lower bounds.
In our third result, we give strong indication that this is not the case, by showing that this
technique cannot prove lower bounds of the form nd1{Γp∆q for a quasipolynomial function
Γp¨q, and small enough ∆.

1.1 Formal description of the results
To describe the results formally, we introduce a combinatorial measure of the complexity
of the multiset W Ď r´1, 1s. In the low-degree setting, this will characterize the best lower
bound we can prove via our lower bound technique.

Notation

Let W Ď R be a multiset. Throughout |W | denotes the size of the multiset (i.e. counted
with multiplicity) and SumpW q denote the sum of its elements. Finally, }W }1 denotes the
L1-norm of W (i.e. the sum of the absolute values of the elements of W ).

▶ Definition 2 (W -trees, path bias, tree bias). Let W “ tα1, . . . , αdu be a multiset contained
in r´1, 1s. A W -tree T , or equivalently a tree T for W , is a rooted, directed tree5 with d “ |W |

leaves which are labelled by distinct elements of the form pi, αiq (i P rds).6 Any vertex v of
T thus corresponds to a subset Wv of W (corresponding to the leaves of the subtree induced
by v) and we define Sumpvq to be SumpWvq.

An internal path π in T is a path from the root to an internal (i.e. non-leaf) node. Given
such an internal path π, we define the set of Off-path nodes of π, denoted Offpathpπq to be
the set of nodes v of the tree T that are not on the path π, but have a parent on the path
π. We define the bias of the path π, denoted biaspπq “

´

ř

vPOffpathpπq |Sumpvq|

¯

´ |Sumprq|

where r is the root of T .
(It is easy to check that if π is any internal path, then W “ Wr is the disjoint

union of Wv (v P Offpathpπq). Hence, by the triangle inequality, we have |Sumprq| ď
ř

vPOffpathpπq |Sumpvq|. Thus, biaspπq ě 0 for any internal path π.)
Finally, we define the path bias of T w.r.t. W , denoted PathbiasW pT q, to be the maximum

bias of any internal path of T . If the tree T has depth 0 (i.e. it consists of just the root node),
then we define the path bias of T w.r.t. W to be 0.

5 The edges are directed away from the root.
6 We require the label to be a pair here as W is a multiset where elements may repeat. If the elements of

W are all distinct, then we can think of the labels as simply elements of W .
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With the above notation in place, we can define the combinatorial measure mentioned
above. We define the depth-∆ tree bias of W to be the minimum path bias of any depth-∆
W -tree T . We denote this quantity by Treebias∆pW q.

Our first theorem relates the depth-∆ tree bias of W “ tα1, . . . , αdu Ď r´1, 1s with the
best lower bound we can prove using the complexity measure relrkW p¨q.

▶ Theorem 3 (Connecting tree bias with relative rank). Let n, d be positive integer para-
meters.7 Let ∆ ě 1 be any integer. Assume W Ď r´1, 1s is a multiset of size d such that
Treebias∆pW q “ t. Then, for any set-multilinear formula F of product-depth at most ∆ and
size at most s, we have relrkW pF q ď pd3d ¨ s ¨ n´t{2q ¨ n´|SumpW q|{2. Conversely, for any n

and d, there is a set-multilinear formula F with at most 3dnt{2 leaves and of product-depth ∆
such that relrkW pF q ě 2´d ¨ n´|SumpW q|{2.

This theorem is the consequence of Lemmas 13 and 14 and will be proved in Section 3.
As already noted above, for any polynomial P P FsmrX1, . . . , Xds (with |Xi| “ n|αi| for each
i P rds), we have relrkW pP q ď n´|SumpW q|{2. Theorem 3 shows that this maximum possible
relative rank can be achieved by product-depth-∆ formulas of size nOptq, but not those of
size noptq, where t “ Treebias∆pT q. This means that the best lower bound we can hope to
prove via this technique is nΘptq.

The next couple of theorems give an understanding of the maximum possible tree bias
for various depths ∆. The first result gives tight bounds on the maximum possible tree bias
of a given multiset W for depth 3 (Section 4 will be dedicated to this result).

▶ Theorem 4 (Tight bounds on tree bias for depth 3). Let d be a growing integer parameter.
Then, maxW Treebias3pW q “ Θpd1{4q, where W ranges over multisets from r´1, 1s of size d

in the expression above.

The second result (proved in the long version of the paper) gives an asymptotic bound
for larger depths (as long as ∆ is bounded by a small function of d).

▶ Theorem 5 (Bounds on tree bias for larger depths). Let d, ∆ be growing integer parameters
with ∆ “ 2op

?
log log dq. Then, we have maxW Treebias∆pW q ď d1{∆Ωplog ∆q

, where W ranges
over multisets from r´1, 1s of size d.

1.2 Proof Outline
Throughout this section, we work with a multiset W “ tα1, . . . , αdu Ď r´1, 1s and a space of
lopsided set-multilinear polynomials FsmrX1, . . . , Xds where |Xi| “ n|αi|. Recall also that we
are working in the low-degree setting, i.e. d is a slow-growing function of n. All formulas in
this section should be assumed to be set-multilinear.

Motivation for tree bias

We start by motivating the notion of tree bias which, at first sight, might appear mysterious
to the reader. In fact, this notion comes up quite naturally in the course of constructing
small set-multilinear formulas that have large relative rank. These constructions, in turn, are
motivated by the following basic properties of relative rank which are all slight modifications
of standard facts used in the literature. In this form they can be found in our earlier
work [19].8

7 We think of d as a slow-growing function of n.
8 The paper deals with a related notion of relative rank w.r.t. ordered W (or equivalently, W is replaced

by a tuple pα1, . . . , αdq). However, the proof works in the same way for multisets.

CCC 2022



32:8 On the Partial Derivative Method Applied to Lopsided Set-Multilinear Polynomials

▶ Lemma 6 (Properties of Relative Rank).
1. (Imbalance) Say P P FsmrX1, . . . , Xds. Then, relrkW pP q ď n´|SumpW q|{2.

2. (Sub-additivity) Say P, Q P FsmrX1, . . . , Xds. Then relrkW pP ` Qq ď relrkW pP q `

relrkW pQq.

3. (Multiplicativity) Say P “ P1 ¨ P2 ¨ . . . ¨ Pt and assume that for each i P rts, Pi P FsmrXj :
j P Sis, where tS1, . . . , Stu is a partition of rds. Then
relrkW pP q “ relrkW pP1 ¨ P2 ¨ . . . ¨ Ptq “

ś

iPrts relrkWi pPiq, where Wi “ tαj | j P Siu.

With these properties in mind, we try to construct small set-multilinear formulas with
optimally large relative rank. We do not lose much generality in assuming that SumpW q « 0,
which we will do in the rest of this proof outline. So, the optimal relative rank is 1.

It is instructive to consider the example of W such that α1 “ ¨ ¨ ¨ “ αd{2 “ 1 and
αd{2`1 “ ¨ ¨ ¨ “ αd “ ´1. We start with a trivial formula F that consists of a single variable
x1 P X1, which has relative rank n´1{2. Does it make sense to take linear combinations of
such formulas? From the perspective of relative rank, the answer is No, because that increases
the size without increasing the relative rank at all, by the Imbalance criterion in Lemma 6.
So we can only multiply variables (from different sets, as we are dealing with set-multilinear
formulas). Moreover, it makes sense to multiply variables such that the corresponding αis
have different signs, as multiplying variables from X1 and X2 (say) would only make the
imbalance worse. So we multiply x1 P X1 and xd{2`1 P Xd{2`1. This creates a formula of
relative rank 1{n, by the property of Multiplicativity. By Sub-additivity, we need to sum at
least n such formulas to get a formula of relative rank 1 (which is optimal). And indeed, this
can be done, say, with an inner product between the variables of X1 and Xd{2`1. Multiplying
d{2 such formulas together (for a partition of α1, . . . , αd into positive and negative pairs)
gives us a formula of product-depth 2, size Odpnq, and relative rank 1.9 One can see that
the underlying multiplicative structure of the formula thus constructed naturally suggests a
W -tree T of the form shown in Figure 1. This is a W -tree of depth-2 and bias 2 (which is
the best possible for this W ).

p1, 1q p d
2 ` 1, ´1q p2, 1q p d

2 ` 2, ´1q p d
2 , 1q pd, ´1q

. . . . . . . . .

Figure 1 The W -tree of depth 2 and bias 2 arising from the formula construction above.

The above indicates a general technique for constructing formulas of large relative rank.
Start by finding a W 1 Ď W such that |SumpW 1q| is small. Construct a formula of plausibly
optimal relative rank (i.e. n´|SumpW 1

qq|{2) over the variable sets corresponding to W 1 by
adding enough set-multilinear monomials so that sub-additivity no longer indicates that the
rank of the formula is small. In doing this, we end up taking a sum of size nb where

b :“ 1
2

ÿ

iPW 1

|αi| ´
|SumpW 1q|

2 . (2)

9 This is an example of Nisan and Wigderson [20], aptly called the Product of Inner Products polynomial.
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This indicates that it helps to take W 1 to be a small set, since otherwise this formula would
be too large (if there were no such constraint, we could simply have taken W 1 “ W ). We
partition W into small sets W 1

1, . . . , W 1
r this way, and construct formulas for each. Then,

applying again the same principle to the multiset tSumpW 1
1q, . . . , SumpW 1

rqu, we get a high-
rank set-multilinear formula over all of X1, . . . , Xd. As in the simple example above, this
gives rise to a multiplicative structure that can be described by means of a W -tree T . The
set W 1 constructed above corresponds to one of the nodes at height 1 in T and the quantity
b in (2) is (almost) something we will define later to be the bias of the corresponding node,
and nb{2 lower bounds the size of the constructed formula. However, a careful analysis of the
construction shows that the size of the formula is actually larger: at each node of the tree T ,
the formula uses a sum governed by the bias of the corresponding node. This naturally ends
up yielding a formula whose size is governed by the path bias of T . Minimizing this over the
choice of all trees yields the tree bias of W , as defined above.

Proof of Theorem 3

The above outline already indicates how to construct a set-multilinear formula of product-
depth ∆ and size nOpTreebias∆pW qq that computes a polynomial of optimal relative rank.
The only part that is unclear is how to ensure that the bounds on relative rank imposed
by sub-additivity are actually tight. We do this by a careful inductive definition of the
formulas. In a revision of our earlier paper [18], we showed how to do this for a specific W

which contains only the two distinct elements ´1 and 1{
?

2. In this paper, we extend this
construction to all W . This gives the second part of Theorem 3.

In the process, we note that the formulas we construct all have a special property: they
have a unique multiplicative structure, i.e. they build up all their set-multilinear monomials
in the same way, given by a single W -tree T . In principle, a general set-multilinear formula
could contain many different kinds of trees (e.g. by summing formulas corresponding to
different trees). These special formulas that we construct have been studied before: they are
called Pure formulas [20] or Unique Parse Tree (UPT) formulas [16, 15]. We use the latter
terminology.

For the first part of Theorem 3, we proceed as follows. We first show that UPT formulas
of product-depth ∆ have indeed the claimed upper bound on the relative rank, by using the
basic properties of relative rank from Lemma 6 and a simple inductive argument. To argue
about a general set-multilinear formula F , we show that any set-multilinear formula can be
written as a sum of Odp1q many UPT formulas of the same size and product-depth. Using
the sub-additivity of relative rank and the bound for UPT formulas, we see that F also has
small relative rank.

We illustrate the power of the latter theorem with a short proof of one of the main
results of [18]: an nΩp

?
dq lower bound for set-multilinear formulas of product-depth 2.10

By Theorem 3, it suffices to construct a multiset W Ď r´1, 1s with |SumpW q| “ 0 and
tree bias Ωp

?
dq. Consider a W with Θpdq copies each of p´1q and α :“ p1 ´ 1{

?
dq so that

SumpW q “ 0. Given any depth-2 W -tree T , it can be checked that one of the following hold.

There is a depth-1 vertex u with tu ě
?

d{2 children. In this case, any path through u

has bias Ωp
?

dq.
Every u at depth-1 has tu ă

?
d{2 children, in which case |Sumpuq| ě tu{p2

?
dq. This

implies that any path in T has bias
ř

u tu{p2
?

dq “
?

d{2.

10 This is essentially the heart of the argument of [18], abstracting away the details about algebraic
formulas, and keeping only the combinatorial core.
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Proof of Theorem 4

In a similar way, we can also extend the results of [18] to show improved lower bounds
for product-depth 3 (i.e. ΣΠΣΠΣΠΣ formulas). More precisely, taking W as above but
redefining α “ 1´p1{d1{4q´p1{d3{4q, we are able to prove a tree-bias lower bound of Ωpd1{4q.

This implies a formula lower bound of nΩpd1{4
q, which improves upon a lower bound of nΩpd1{7

q

from our previous work.
In the second part of the proof, we show that this is the best bound that this technique

can prove, for any choice of W . Equivalently, we can show that every W has depth-3 tree
bias Opd1{4q. We illustrate the idea with a sketch of the special case when W has two distinct
elements (as in the two lower bounds above). In this case, it is not hard to argue that without
loss of generality, the two distinct elements of W are p´1q and α P p0, 1s.

First of all, we observe that any W has a tree of depth ∆ and path bias Op∆}W }
1{∆
1 q,

where }W }1 denotes the sum of the absolute values of the elements of W . This is analogous
to the fact that IMMn,d has set-multilinear formulas of depth-∆ and size nOp∆d1{∆

q. Call
this the “basic construction”.

Now, given W as above, we proceed as follows. By a classical result of Dirichlet (see,
e.g. [14, Theorem 4.9]), for any t, there exist integers q P rts and p P t0, . . . , tu such that
|qα´p| ď 1{t. Note that this gives a multiset W 1 Ď W of size p`q such that |SumpW 1q| ď 1{t.

We apply this result with t “
?

d and proceed in one of two ways depending on the value
of p ` q.

If p ` q ě d1{4, then we can partition W into at most r ď d3{4 sets W1, . . . , Wr of size
p ` q, each of which has sum at most 1{

?
d. As p ` q ď 2

?
d, using the basic construction

of depth 2, we get a tree Ti of bias Opd1{4q for each Wi. Attaching all these to a common
root gives a tree of path-bias Opd1{4q (the root adds at most d3{4 ¨ p1{

?
dq “ d1{4 to the

bias of any path).
If p ` q ď d1{4, then by using d1{4{pp ` qq many disjoint sets of sum 1{

?
d each, we get a

set W 1 of size d1{4 and sum at most d1{4{ppp ` qq ¨
?

dq ď 1{d1{4. We partition W into
r ď d3{4 sets W 1

1, . . . , W 1
r of this form. We use a tree Ti of depth-1 for each W 1

i (which
has path bias at most d1{4 trivially) and attach these to the leaves of a depth-2 tree for
the set W̃ “ tSumpW1q, . . . , SumpWrqu. The latter tree is constructed using the basic
construction of depth 2, and has bias Opd1{4q as }W̃ }1 ď r{d1{4 ď

?
d.

This gives the argument in the case of W with only two distinct elements. For general W , we
use a similar high-level argument. However, we need a suitable replacement for Dirichlet’s
theorem, which only works for the special W dealt with above. We prove a generalization of
this theorem (see Lemma 9 below) to the setting of arbitrary multisets W . We think the
statement is natural and interesting in its own right, but could not find mention of it in the
literature.

In the special case that W contains d copies of α P p0, 1q and d copies of ´1, the above
implies the standard Dirichlet theorem used above. With the above generalized theorem
in place, we can follow the structure of the argument for the special case, with technical
modifications. This yields the depth-3 relative rank upper bound for any W .

Proof of Theorem 5 for depth ∆

While the proof of this theorem employs the same high-level argument as Theorem 22
described above, it is considerably more technical. We illustrate the idea again with the
case when W contains only two distinct elements, which we can assume to be ´1 and some
α P r0, 1s. Let Biasp∆, dq denote the largest possible bias of a depth-∆ W -tree. We give a
constructive bound on this quantity by an inductive construction (based on ∆).
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For ∆ “ 1, we have the trivial bound Biasp1, dq ď d. For ∆ ą 1, we use Dirichlet’s
theorem to find integers p, q ď d1´ε such that |q ´pα| ď d´p1´εq. This gives us a set W 1 Ď W

of size p ` q such that |SumW 1| ď d´p1´εq. There are again two cases to consider based on
the magnitude of q.

If q ě dε, then this yields that |W 1| ě dε. Partitioning W into t “ d1´ε subsets
W 1

1, . . . , W 1
t of this form and using a recursive construction for each of W 1

1, . . . , W 1
t , we

get a W -tree of bias Biasp∆ ´ 1, dεq ` Op1q. (Here, the last Op1q term accounts for the
bias accrued at the root, which is only a constant.)
Conversely, if q ď dε, we pick as many sets W 1

1, . . . , W 1
r as we can to form a set W 2 of

size (roughly) d1´ε. Note that |SumpW 2q| ď d1´ε{d1´ε ď 1. We partition W into s ď dε

sets W 2
1 , . . . , W 2

s of this form. We can construct a W -tree T of depth ∆ “ ∆1 ` ∆2 by
Constructing a W 2

i -tree Ti of depth ∆1 by constructing W 1
j-tree Ti,j of depth ∆1 ´ 1

for each W 1
j Ď W 2

i and connecting these trees to a common root.
Constructing a depth-∆2 W̃ -tree T̃ , where W̃ “ tSumpW 2

1 q, . . . , SumpW 2
s qu11 and

replacing the leaf labelled i with the tree Ti.
As the sets W̃ and W 1

i have size dε each, it makes sense to take ∆1 “ ∆2 “ ∆{2. This
leads to a bound on the bias of the tree T of 2 ¨ Biasp∆{2, dεq ` Op1q.

We choose ε to balance the bias obtained from each of the above two strategies. It is
clear that if ε ă 1{p2∆q (say), then the first strategy yields a bad bound of d1{2 (or worse).
This implies that we must take ε ě 1{2∆, which can yield a best possible upper bound of
d1{∆Oplog ∆q from the second strategy. We show that this upper bound is indeed achievable,
by taking ε “ Θplog2 ∆{∆q.

1.3 Related Work

Barriers for lower bound techniques

The partial derivative method and its variants have been used to prove several lower bounds in
algebraic complexity theory including the recent work of the authors. While these techniques
have been quite useful, it is unclear whether they can be used to separate VP from VNP. In
the last decade, there were many attempts at understanding the limitations of these lower
bound techniques. This has led to a body of work about barrier results [25, 10, 6, 11, 5, 4]
in algebraic complexity theory. These results typically consider a large family of lower
bound techniques and argue that such techniques cannot be used to prove strong lower
bounds. However, all such results are either conditional, or hold for relatively weak models
of computation (such as set-multilinear formulas of product-depth 1). In contrast to these
results, here we focus on a specific technique, namely the technique that gave the first
super-polynomial lower bound for low-depth circuits. We show an unconditional limitation
on this technique with respect to a reasonably strong model of computation. Hence, our
work is incomparable to this literature.

11 There is a small technical point here, which is that we will be left with a few more elements not covered
by any of the W 2

i s. We ignore this here.
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Our other recent work [17]

In a different recent paper, we prove algebraic formula lower bounds for formulas of larger
depths. Specifically, we are able to prove superpolynomial set-multilinear formula lower
bounds for IMMn,n and non-commutative formula12 lower bounds for formulas of depths up
to op

?
log dq. Note that the first of these results is a lower bound in the high-degree setting.

This does not immediately imply a lower bound for general formulas, as we do not know of
an efficient transformation to set-multilinear formulas when the degree is large. The second
result does not imply any lower bounds in the commutative setting, as far as we know.
The results of this paper are thus somewhat orthogonal, as they apply to set-multilinear
(commutative) formulas in the low-degree setting.

Organization

We start with some preliminaries in Section 2. We then prove Thorems 3 and 4 in Sections 3
and 4 respectively. The proofs of Theorem 5 and many other statements are deferred to the
full version for lack of space.

2 Basic Preliminaries and Results from Previous Work

Fix any multiset W “ tα1, . . . , αdu Ď r´1, 1s and let FsmrX1, . . . , Xds be a lopsided set-
multilinear space of polynomials with |Xi| “ nαi .

The following is a consequence of earlier work of the authors.

▶ Lemma 7 (Lower bounds from relative rank, Implicit in [18]). Let d and n be integer
parameters. Assume that W “ tα1, . . . , αdu Ď r´1, 1s is an arbitrary multiset and consider
the space FsmrX1, . . . , Xds where |Xi| “ n|αi|. Assume that we have shown the following: for
any set-multilinear formula F (over variable sets X1, . . . , Xd) of size at most spn, dq and
product-depth at most ∆, we have

relrkW pF q ď Cd ¨ εn ¨ n´|SumpW q|{2,

where Cd depends only on d and εn Ñ 0 as n Ñ 8.

Then, for n large enough in comparison to d, any set-multilinear formula F of product-
depth ∆ computing IMMpolypnq,d must have size at least spn, dq. Further, any (possibly
non-set-multilinear) formula of depth at most ∆ ` 1 computing IMMpolypnq,d must have size
at least spn, dq{dOp∆dq.

The following simple proposition regarding path bias will be useful.

▶ Proposition 8. Let W Ď r´1, 1s be any finite multiset and let T be a W -tree with internal
vertex u. If u has children u1, . . . , ur, then

PathbiasWu
pTuq “

ˆ

max
iPrrs

PathbiasWui
pTui

q

˙

`

˜

r
ÿ

j“1
|Sumpujq|

¸

´ |Sumpuq|

where Tv denotes the subtree rooted at vertex v (which is, by definition, a Wv-tree in the
natural way).

12 This means that the operations of the formula are those of the non-commutative polynomial ring
Fxx1, . . . , xN y where variables do not commute.
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Proof. Let pv denote PathbiasWv
pTvq for any vertex v of T .

For any i P rrs, let πui
denote the path of bias pui

in Tui
. Let πu denote the path in Tu

obtained by adding the vertex u to πui
. Note that the off-path nodes of πu are precisely the

off-path nodes of πui along with uj (j ‰ i). Thus, the bias of πu can be written as

biaspπuq “

¨

˝

ÿ

vPOffpathpπuq

|Sumpvq|

˛

‚´ |Sumpuq|

“ biaspπui q ` |Sumpuiq| `
ÿ

jPrrsztiu

|Sumpujq| ´ |Sumpuq|

“ pui
`

˜

r
ÿ

j“1
|Sumpujq|

¸

´ |Sumpuq|.

As this holds for each i P rrs, we have shown that

pu ě

ˆ

max
iPrrs

pui

˙

`

˜

r
ÿ

j“1
|Sumpujq|

¸

´ |Sumpuq|. (3)

For the reverse inequality, we proceed in the same way. Let πu be a path in Tu of bias pu. If
πu has length 0, then we have

pu “ biaspπuq “

˜

r
ÿ

j“1
|Sumpujq|

¸

´|Sumpuq| ď

ˆ

max
iPrrs

pui

˙

`

˜

r
ÿ

j“1
|Sumpujq|

¸

´|Sumpuq|

and hence we are trivially done. Otherwise, the path πu passes through some child ui of
u. Let πui be the path in Tui obtained by removing u from πu. Then, through the same
sequence of equalities proved above, we get

pu “ pui
`

˜

r
ÿ

j“1
|Sumpujq|

¸

´ |Sumpuq| ď

ˆ

max
iPrrs

pui

˙

`

˜

r
ÿ

j“1
|Sumpujq|

¸

´ |Sumpuq|.

Hence, we have proved the reverse inequality to (3) and we are done. ◀

2.1 A Generalized form of Dirichlet’s theorem
Here we prove a generalized form of the standard Dirichlet Principle (see, e.g. [14, Theorem
4.9]), which we will use in Sections 4 and in the proof of Theorem 5 in the full version.

▶ Lemma 9 (A Generalized Form of the Dirichlet Principle). Assume d ě 2. Let W Ď r´1, 1s be
any multiset with at least d non-negative and d non-positive elements. Then, for each positive
integer t ď 2d, there is a multiset T Ď W of size at most t such that |SumpT q| ď 4{pt ´ 1q.

Proof. The proof is via the Pigeonhole principle. Fix a t as above and let ℓ “ tt{2u. If W

contains an element x such that |x| ď 2{ℓ, then we are done trivially, so we assume that this
is not the case.

Let tx1, . . . , xℓu and t´y1, . . . , ´yℓu be any ℓ positive and negative elements of W re-
spectively (here, xi, yi P p2{ℓ, 1s for each i).

For i P t0, . . . , ℓu, define ui “
ři

j“1 xj and vi “
ři

j“1 yj . For i, j P t0, . . . , ℓu, let
wi,j “ ui ` vj . Note that as xi, yi P r0, 1s for each i P rℓs, we have ui, vj P r0, ℓs and
wi,j P r0, 2ℓs for each i, j P t0, . . . , ℓu. Also note that u0, . . . , uℓ and v0, . . . , vℓ are increasing
sequences in which the difference between any pair of elements is strictly more than 2{ℓ.
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Divide the interval r0, 2ℓs into ℓ2 sub-intervals of length 2{ℓ each. By the pigeonhole
principle, there exist distinct pi, jq and pi1, j1q from t0, . . . , ℓu ˆ t0, . . . , ℓu such that wi,j and
wi1,j1 lie in the same interval. In particular, we have

|wi,j ´ wi1,j1 | “ |pui ´ ui1 q ´ pvj1 ´ vjq| ď
2
ℓ

. (4)

Fix such pi, jq and pi1, j1q. Since these pairs are distinct, they must differ in some coordinate.
We assume that they differ in the first coordinate (the other case is similar).

Without loss of generality, assume that i ą i1. We note that it cannot be the case that
j ě j1. This is because we would then have

|wi,j ´ wi1,j1 | “ pui ` vjq ´ pui1 ` vj1 q ě ui ´ ui1 ą
2
ℓ

where for the inequalities we use the fact that u0, . . . , uℓ and v0, . . . , vℓ are increasing
sequences in which the difference between any pair of elements is strictly more than 2{ℓ.

This contradicts (4) above. In particular, this implies that j ă j1. By (4), this yields

|pui ´ ui1 q ´ pvj1 ´ vjq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i
ÿ

p“i1`1
xk ´

j1

ÿ

q“j`1
yj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2
ℓ

.

This implies that to get a set T satisfying the requirements of the lemma, it is sufficient
to take T “ txi1`1, . . . , xi, ´yj`1, . . . , ´yj1 u. Note that |T | ď 2ℓ ď t, and by the above
computation |SumpT q| ď 2{ℓ ď 4{pt ´ 1q. ◀

3 The Lower Bound technique and Tree bias

In this section we will show that tight bounds on the tree bias yield the best possible bound
on the relative-rank of set-multilinear low-depth formulas. Specifically, we prove Theorem 3.

3.1 Set-multilinear formulas and Unique Parse Trees
First, it will be helpful to make some structural changes to the formula. We will write a
set-multilinear formula as a small sum of set-multilinear formulas such that each formula
has a unique parse tree. In order to describe this we introduce some definitions.

▶ Definition 10 (Parse Formula). Let F be a set-multilinear formula. A parse formula F 1 is
obtained from F as follows.

The root ` gate is added to F 1.
For every ` gate added to F 1, one of its children is added to F 1.
For every ˆ gate added to F 1, all its children are added to F 1.

Note that, such a parse formula computes a set-multilinear monomial. The polynomial
computed by F is the sum of monomials computed by its parse formulas.

Parse trees and W -trees

Let F 1 be a parse formula from a set-multilinear formula F . We define the parse trees of F

as follows. Let g be a ` gate with the parent u and child v. We draw a direct edge between
u and v and remove the ` gate from F 1. We do this short-circuiting step for each ` gate of
the parse formula. Similarly, we remove the ` root of F 1. Let T be the tree thus obtained.
We call this the shape of F 1.
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Let ℓ be a leaf of T. It corresponds to a gate g in F which is either a ` gate in F 1 or a
leaf in F 1. The polynomial computed by g is a linear polynomial on variable set Xi for some
i P rds. We label ℓ with pi, αiq. This way, we label each leaf of T with elements of W . We
call the W -tree T thus obtained a parse tree of F . Note that the depth of T is the same as
the product-depth of F .

▶ Definition 11 (UPT formula). We say that a set-multilinear formula F is a Unique Parse
Tree formula (or UPT) if all the parse trees of F are identical.

▶ Lemma 12. Let F be a set-multilinear formula of size s and depth ∆. Then F can be
written as a sum of at most d3d many set-multilinear UPT formulas such that each formula
has size at most s and depth ∆.

We defer the proof of this lemma to the full version due to lack of space.

3.2 Tree bias lower bounds imply formula lower bounds
In this section, we show how lower bounds on Treebias∆pW q imply set-multilinear formula
lower bounds in the low-degree setting. By Lemma 7, this implies lower bounds for general
formulas as well.

We first show this connection for a UPT formula and then use the lemma from the
previous section to conclude the same for general set-multilinear formulas. Specifically, we
prove the following statement.

▶ Lemma 13. Let n, d be positive integers. Let ∆ ě 1. Let W be a multiset of r´1, 1s of
size d. Let F be a set-multilinear UPT formula of size s, product-depth ∆, and parse tree T .
Assume, moreover, that PathbiasW pT q “ p. Then,

relrkW pF q ď ps ¨ n´p{2q ¨ n´|SumpW q|{2.

We first use this lemma to prove part (1) of Theorem 3.

Proof of Part (1) of Theorem 3. Let W and t be as in the statement of Theorem 3. Let F

be a set-multilinear formula of product depth ∆ and size at most s. From Lemma 12 we
know that F can be written as a sum of UPT formulas, say Ψ1, Ψ2, . . . , Ψr, where r ď d3d.
We also know that the size of each Ψi is at most s and their depth is ∆. Let Γ1, . . . , Γr be
the parse trees of these formulas and let pi “ PathbiasW pΓiq for i P rrs.

By Lemma 13, for each i P rrs, relrkW pΨiq ď ps¨n´pi{2q¨n´|SumpW q|{2. As Treebias∆pW q “

t, we have pi ě t for each i P rrs. Therefore, we get

i P rrs, relrkW pΨiq ď ps ¨ n´t{2q ¨ n´|SumpW q|{2.

As F “
řr

i“1 Ψi, r ď d3d and by sub-additivity of relrk, we get the claimed bound on
the relrk of F , i.e.

relrkW pF q ď pd3d ¨ s ¨ n´t{2q ¨ n´|SumpW q|{2. ◀

We now prove Lemma 13.

Proof of Lemma 13. We prove the statement by induction on the depth of T (which is also
the product depth of F ).
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Base case. Let F “
ř

i

ś

j Fi,j be a set-multilinear UPT formula of product-depth ∆ “ 1.
Let T be the W -tree corresponding to F . Let u0 be the root of T and let u1, . . . , ud be the
children of u0 with labels p1, α1q, . . . , pd, αdq, respectively.

By sub-additivity and sub-multiplicativity (Lemma 6, Items 2 and 3) of relrk, we can say
that relrkW pF q ď

ř

i

ś

j relrktαj upFi,jq. By using the Imbalance bound (Lemma 6 Item 1)
on the relative rank of each Fi,j we get that

relrkW pF q ď
ÿ

i

n´
ř

j |αj |{2
“ s ¨ n´

ř

j |αj |{2
“ sn´p{2n´|SumpW q|{2

where the last equality follows from Proposition 8. We get the desired bound.

Induction step. Let F “
ř

i

ś

j Fi,j be a set-multilinear UPT formula of depth ∆ ą 1.
Let T be the W -tree corresponding to F . Let u0 be the root of T and let u1, . . . , uk be the
children of u0. Let T1, . . . , Tk be the trees rooted at u1, . . . , uk respectively.

As F is a UPT formula, we have that for each i ‰ i1 and for any j P rks, the parse tree of
Fi,j is the same as the parse tree of Fi1,j . Without loss of generality let us say the parse tree
of Fi,j is Tj for every i.

Also, for T , let us assume without loss of generality that the path bias of T is realised
by a path π, where π “ u0 ¨ u1 ¨ π1, i.e. specifically it passes through u1. Let p1 denote
PathbiasWu1

pT1q.
Finally, let si,j denote the size of the subformula Fi,j . Note that

ř

i,j si,j ď s.

relrkW pF q ď
ÿ

i

relrkWu1
pFi,1q ¨

ź

jě2
relrkWuj

pFi,jq Properties of relrk

ď
ÿ

i

relrkWu1
pFi,1q ¨

ź

jě2
n´|Sumpuj q|{2 Trivial bound on relrk

ď
ÿ

i

´

psi,1 ¨ n´p1{2q ¨ n´|Sumpu1q|{2
¯

¨
ź

jě2
n´|Sumpuj q|{2 Induction Hypothesis

ď
ÿ

i

si,1 ¨ n´pp1`
řk

j“1 Sumpuj qq{2

“
ÿ

i

si,1 ¨ n´pp`|SumpW q|q{2 Proposition 8

ď s ¨ n´p{2 ¨ n´|SumpW q|{2. ◀

3.3 Tree bias upper bounds imply formula upper bounds

We now sketch the proof of the second part of Theorem 3. The main idea is an abstraction
of a proof from our earlier result [18]13 where we constructed polynomials to show that our
lower bound technique was “tight” for certain concrete spaces of lopsided set-multilinear
polynomials. In the second part of Theorem 3, we essentially show that the lower bound
proved via tree-bias is tight for all lopsided spaces.

The main technical result (which generalizes [18, Lemma 26]) is the following, which
handles the case where each |Xi| is a power of 2.

13 More specifically, this result appeared in a later version of the paper that can be found on ECCC.
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▶ Lemma 14. Let n, d be growing parameters and ∆ any positive integer. Let W “

tα1, . . . , αdu Ď r´1, 1s be a multiset. Assume that FsmrX1, . . . , Xds be a lopsided space of
set-multilinear polynomials with |Xi| “ n|αi| “ 2ki for non-negative integers k1, . . . , kd.

Let T be any W -tree of depth ∆ with PathbiasW pT q “ p. Then, there is a UPT formula F

of parse tree T (and hence product-depth ∆) with at most d¨np{2 leaves such that rankpMW pF qq

is as large as possible (i.e. equal to either the number of its rows or columns).

We defer the proof of this lemma, as well as its generalization which yields the second
part of Theorem 3, to the full version of the paper.

4 Optimal bounds for depth 3 via our technique

This section is devoted to the proof of Theorem 4, which characterizes (up to constant factors)
the maximum possible tree bias of a tree of depth 3.

In proving this theorem, it will be useful to consider a variant on the notion of tree bias
defined above, that we will call node bias. The node bias of W (at any given depth ∆) is
equal to the tree bias of W up to a factor of Op∆q. By Theorem 3, for constant-depths ∆, the
node bias also captures the best lower bound that we can hope to prove via our technique.

▶ Definition 15 (Node bias). Fix a W -tree T . For an internal node v of T , we define the
bias of v, denoted biaspvq, to be

ř

u |Sumpuq| where the sum runs over the children u of v.
The node bias of T , denoted NodebiasW pT q, is the largest bias of any internal node v of T .
Further, the depth-∆ node bias of W , is the minimum node bias of any depth-∆, W -tree T .
This quantity is denoted Nodebias∆pW q.

The following basic proposition (proof omitted) relates the node bias of W and the tree
bias of W .

▶ Proposition 16. For any depth-∆ W -tree T , we have

NodebiasW pT q ď PathbiasW pT q ` |SumpW q| ď ∆ ¨ NodebiasW pT q.

In particular, for any multiset W Ď r´1, 1s and any depth ∆, we have Nodebias∆pW q ď

Treebias∆pW q ` |SumpW q| ď ∆ ¨ Nodebias∆pW q.

4.1 Some simple claims
This section presents several statements about W -trees. As the proofs are simple, we defer
them to the full version of the paper.

Given a partition14 P of the elements of W , we define the grouping W 1 of W to be the
multiset obtained by taking the sums of elements of P. Formally,

W 1 “ tSumpAq | A P P u.

The following basic lemma shows how to construct a W -tree from trees of its groupings and
subsets.

14 We follow the usual convention that H R P .
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▶ Lemma 17. Assume that P “ tW1, . . . , Wtu is a partition of W and let W 1 be the
corresponding grouping. Say we have a W 1-tree T 1 of node bias b1 and depth ∆1 and for each
i P rts, a Wi-tree Ti of depth ∆i and node bias at most bi. Then, there is a W -tree T of node
bias at most maxtb1, biu and depth at most ∆1 ` maxiPrts ∆i.

Moreover, if each Wi is sign-monochromatic (i.e., all elements of Wi have the same
sign)15, then there is a W -tree T of depth ∆1 and bias b1.

▶ Lemma 18 (Preprocessing Lemma). Let W Ď r´1, 1s be any multiset. Then, there is a
partition P “ tW1, . . . , Wtu of W such that each Wi is sign-monochromatic (as in Lemma 17),
SumpWiq P r´1, 1s for all i P rts and SumpWiq P r´1, ´1{2s Y r1{2, 1s for each i P t3, . . . , tu.

In particular, there is a grouping W 1 Ď r´1, 1s of W such that |W 1z pr´1, ´1{2s Y r1{2, 1sq|
ď 2 and for each W 1-tree T 1, there is a W -tree T of same depth and node bias.

The next lemma shows, in particular, how to construct W -trees of depth ∆ and node
bias Opd1{∆q for any multiset W Ď r´1, 1s of size d and of sum at most 1.

▶ Lemma 19. Let W Ď r´1, 1s such that }W }1 ď L and |SumpW q| ď 1. Then, for any
∆ ě 1, there is a W -tree of depth at most ∆ and node bias at most 5L1{∆.

We also have the following simple “pasting” lemma.

▶ Lemma 20. Let P “ tW1, . . . , Wru be a partition of W and assume that for all i there is
a Wi-tree Ti of depth at most ∆, node bias at most bi and such that the root node of each Ti

has bias at most b1
i. Then, there is a W -tree T of depth at most ∆ and of node bias at most

maxtb1, . . . , br,
ř

i b1
iu.

Finally, the following claim will allow us to balance a given subset of W so that removing
this subset results in two sets of absolute sum at most 1.

▶ Lemma 21 (Balancing lemma). Say W Ď r´1, 1s is such that |SumpW q| ď 1. Let W 1 Ď W

be arbitrary. Then there exists W 2 Ď W such that W 2 Ě W 1 and }W 2zW 1}1 ď |SumpW 1q|`1
and |SumpW 2q|, |SumpW zW 2q| ď 1.

4.2 Depth-3 trees of small bias

The main theorem of this section is the following.

▶ Theorem 22. Let W Ď r´1, 1s be any multiset such that |W | ď d and |SumpW q| ď 1.

Then, there is a W -tree T of depth 3 and node bias Opd1{4q.

The rest of the section is devoted to the proof of the above theorem. To construct the
required W -tree T , we use the following procedure.

1. Preprocessing: By the Preprocessing lemma (Lemma 18), it suffices to consider multisets
W such that |W zpr´1, ´1{2s Y r1{2, 1sq| ď 2.

2. We apply the following procedure to our multiset W .

15 Here, we think of 0 as having the same sign as any other number.
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Algorithm 1 ApW q.

Assignment d :“ |W |.
Initialization If d ď 25 then return the trivial depth-1 W -tree of node bias at most 25.
Phase 1: As long as it is possible, pick pairwise disjoint sets A such that |A| ď d1{4 and

|SumpAq|

|A|
ď

12
d1{2 .

When this is no longer possible, let A1, . . . , Ae1 be the sequence of sets picked and let
W 1

1 “ A1 Y A2 ¨ ¨ ¨ Y Ae1 . Using the Balancing lemma, let W1 “ W 1
1 Y ta1, . . . , af1 u Ď W

be such that
ř

iďf1
|ai| ď |SumpW 1

1q| ` 1 and |SumpW1q|, |SumpW zW1q| ď 1.

Construct a W1-tree T1 in the following way. Fix the grouping W̃1 corresponding to the
partition P1 “ tA1, . . . , Ae1 , ta1u, . . . , taf1 uu of W1. For each element of P1, construct a
trivial tree of depth-1 and for the grouping W̃1, construct a depth-2 tree T̃1 of node bias
at most 5

b

}W̃1}1 (using Lemma 19). Combine these using Lemma 17 to get a tree T1 of
depth 3 for W1.
Set W 1 “ W zW1 and continue.

Phase 2: As long as it is possible, pick pairwise disjoint sets B Ď W 1 such that |B| ď d1{2

and

|SumpBq|

|B|
ď

12
d3{4 .

When this is no longer possible, let B1, . . . , Be2 be the sequence of sets picked and let
W 1

2 “ B1 Y B2 ¨ ¨ ¨ Y Be2 . Using the balancing lemma, let W2 “ W 1
2 Y tb1, . . . , bf2 u Ď W 1

be such that
ř

iďf1
|bi| ď |SumpW 1

2q| ` 1 and |SumpW2q|, |SumpW 1zW2q| ď 1.

Construct a W2-tree T2 in the following way. Fix the grouping W̃2 corresponding to the
partition P2 “ tB1, . . . , Be2 , tb1u, . . . , tbf2 uu of W2. Construct a trivial depth-1 W̃2-tree
T̃2 of node bias }W̃2}1. For each element B of P2, construct a depth-2 tree of node bias
at most 5

a

}B}1 (using Lemma 19). Combine these using Lemma 17 to get a tree T2 of
depth 3 for W2.
Set W 2 “ W 1zW2 and continue.

Recursive call Compute T3 “ ApW 2q.
Return The W -tree T of node bias at most b1 ` b2 ` b3, where bi “ NodebiaspTiq (for i P r3s)

given by T1, T2, T3 and Lemma 20.

We now analyze the above construction. We first state a technical lemma.

▶ Lemma 23. If d ą 25, then after Phases 1 and 2, we have |W 2| ď d{2.

Let us assume the above lemma for now and prove the theorem.
Let bipdq denote the node bias of the tree Ti (i P r3s) assuming that the word W has

size at most d. Then, the node bias of the tree is b1pdq ` b2pdq ` b3pdq. By Lemma 23, we
can bound b3pdq by b1pd{2q ` b2pd{2q ` b3pd{2q. Continuing recursively in this way (until d

becomes smaller than 25) we have

NodebiaspT q ď

˜

ÿ

iě0
b1pd{2iq ` b2pd{2iq

¸

` 25.

So to prove Theorem 22, it suffices to show that b1pdq, b2pdq ď Opd1{4q. From now on, we fix
d and let bi “ bipdq for i P r2s.
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We first bound b1. By construction each element of the partition P1 is a set A of size at
most d1{4 and hence has a depth-1 tree of node bias at most d1{4. Moreover, we have

}W̃1}1 “
ÿ

iďe1

|SumpAiq| `
ÿ

jďf1

|aj |

ď
ÿ

iďe1

|SumpAiq| ` |SumpW 1
1q| ` 1 ď 2

ÿ

iďe1

|SumpAiq| ` 1

ď 2
ÿ

iďe1

12|Ai|

d1{2 ` 1 ď Opd1{2q.

Hence, the tree T̃1 has node bias b̃1 “ Opd1{4q. Hence, by Lemma 17, we see that b1 ď Opd1{4q.

We can bound b2 similarly. By construction, each element of P2 is a set B of size at most
d1{2 and hence by Lemma 19 has a depth-2 tree of node bias at most 5d1{4. Moreover, we
have

}W̃2}1 “
ÿ

iďe2

|SumpBiq| `
ÿ

jďf1

|bj |

ď
ÿ

iďe2

|SumpBiq| ` |SumpW 1
2q| ` 1 ď 2

ÿ

iďe2

|SumpBiq| ` 1

ď 2
ÿ

iďe1

12|Bi|

d3{4 ` 1 ď Opd1{4q.

In particular, this implies that the tree T̃2 has node bias b̃2 “ Opd1{4q. In particular, by
Lemma 17, we see that b2 ď Opd1{4q.

Thus, we have shown that b1, b2 “ Opd1{4q and we are done.
It remains only to prove Lemma 23, which we do now.

Proof of Lemma 23. Let d2 “ |W 2|. Assuming that d ą 25 and d2 ą d{2, we will show that
Phases 1 and 2 of the algorithm could not have concluded, and hence derive a contradiction.

Let W 2
` and W 2

´ denote the positive and negative elements of W 2 respectively. Recall
that W 2 Ď W and the latter set contains at most two elements of absolute value less than
1{2 (by the preprocessing in Step 1). Further using the fact that |SumpW 2q| ď 1, it is easy
to see that |W 2

`|, |W 2
´| ě d3 where d3 “ pd2 ´ 4q{3 ą 2.

By Lemma 9, it follows that there is a non-empty set T Ď W 2 of size t ď
?

d3 ` 1
such that |SumT | ď 4{

?
d3. Since d ě 24, this set T has size at most

?
d and satisfies

|SumT | ď 12{
?

d.
Now, we do a short case analysis. Assume |T | ď d1{4. Then, T is the kind of set that the

algorithm tries to find in Phase 1. Hence, the existence of such a T tells us that Phase 1
could not have concluded.

Otherwise, we have |T | ą d1{4. In this case, we have |SumT |{|T | ď 12d´3{4 and is hence
the kind of set that the algorithm tries to find in Phase 2. Hence, the existence of such a T

tells us that Phase 2 could not have concluded.
In either case, we are done. ◀

4.3 Optimality of the quartic bound
We will show here that the bound of Theorem 22 is optimal.

▶ Proposition 24. Let d be a growing integer parameter. There exists a multiset W Ď r´1, 1s

such that |W | ď d, |SumW | ď 1, and for all W -tree T of depth 3, T has node bias at least
Ωpd1{4q.
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Proof. If d ă 16 the result follows immediately (just adapt the constant in the Ωpq to deal
with these cases). So let us assume that d ě 16. Let d1 be the largest integer such that
d1 ď d and d1 is a fourth power of an integer. So d11{4 ě 2 and d1 ě d{16.

Let q be the closest integer to d1

2´1{d11{4`1{p2d13{4q
. So

ˇ

ˇ

ˇ
q ´ d1

2´1{d11{4`1{p2d13{4q

ˇ

ˇ

ˇ
ď 1

2 . Let
us construct W with q copies of 1 ´ 1{d11{4 ` 1{p2d13{4q and p “ d1 ´ q copies of ´1. So
|W | ď d1 ď d and

|SumpW q| “

ˇ

ˇ

ˇ
´p ` qp1 ´ 1{d11{4 ` 1{p2d13{4qq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
´d1 ` qp2 ´ 1{d11{4 ` 1{p2d13{4qq

ˇ

ˇ

ˇ

ď
ˇ

ˇp´d1 ` d1q
ˇ

ˇ `
1
2

ˇ

ˇ

ˇ
p2 ´ 1{d11{4 ` 1{p2d13{4qq

ˇ

ˇ

ˇ
ď 1.

It is sufficient to prove that any W -tree has large enough node bias.
Let T be any W -tree. Let us assume that NodebiasW pT q ă d11{4{4.
Since every internal node α at distance two of the roots with k children (in particular the

children of α are leaves of T ) has bias at least biaspαq ě k minvPW |v| ě k{2, it implies that
k ă d11{4{2.

Assume then that there is an internal node α at distance one of the root such that the
subtree rooted in α has at least d11{2 leaves. Notice that for any children β of α with pβ

negative children and qβ positive ones we have

|Sumβ| “

ˇ

ˇ

ˇ
´pβ ` qβp1 ´ 1{d11{4 ` 1{p2d13{4qq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
p´pβ ` qβq ´ qβp1 ´ 1{2d11{2q{d11{4

ˇ

ˇ

ˇ
.

Since qβ ď pβ ` qβ ă d11{4{2 and pβ , qβ are integers, it implies that the fractional part of
|Sumβ| is at least qβp1 ´ 1{2d11{2q{d11{4. Moreover, if |Sumpβq| ă 1, it means that qβ ě pβ ,
i.e., qβ ě ppβ ` qβq{2. Hence in all cases,

|Sumpβq| ě
qβ ` pβ

2 ¨
1
2 ¨

1
d11{4 .

Consequently, biaspαq “
ř

β child of α |Sumpβq| ě d11{2

4d11{4 “ d11{4

4 , which contradicts the hypo-
thesis. So any node at depth 1 of the tree has less than d11{2 leaves in its subtree.

Let us show that finally the root ρ of T has large bias. Let β one of its children. Say
that in the tree rooted in β, there are pβ negative leaves and qβ positive ones. So,

|Sumβ| “

ˇ

ˇ

ˇ
´pβ ` qβp1 ´ 1{d11{4 ` 1{p2d13{4qq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

p´pβd11{4 ` qβd11{4 ´ qβq
1

d11{4 ` qβ
1

2d13{4

ˇ

ˇ

ˇ

ˇ

.

Since qβ{p2d13{4q ă 1{p2d11{4q, it implies that the distance of |Sumpβq| to the set N{d11{4 is
at lest qβ{p2d13{4q. Again, if |Sumpβq| ă 1, it ensures that qβ ě ppβ ` qβq{2. So in all cases,

|Sumpβq| ě
pβ ` qβ

2 .
1

2d13{4 .

Consequently,

biaspρq “
ÿ

β child of ρ

|Sumpβq| ě
1

4d13{4

ÿ

β child of ρ

pβ ` qβ “
d11{4

4

which again contradicts the hypothesis.
In conclusion, we have that for any W -tree T and NodebiasW pT q ě d11{4

4 ě d1{4

8 . ◀
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▶ Remark 25. We can generalize the previous proof to larger depths by defining q to be the
closest integer to d1{p2 `

ř∆´1
i“1 p´1qi{d1p2i

´1q{2∆´1
q. It implies that for all ∆, there exists a

multiset W such that any W -tree of depth ∆ has node bias at least Ωpd1{2∆´1
q. It improves

the constant in the exponent slightly in the lower bound from [18].
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