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Abstract
A recurring challenge in the theory of pseudorandomness and circuit complexity is the explicit
construction of “incompressible strings,” i.e. finite objects which lack a specific type of structure or
simplicity. In most cases, there is an associated NP search problem which we call the “compression
problem,” where we are given a candidate object and must either find a compressed/structured
representation of it or determine that none exist. For a particular notion of compressibility, a
natural question is whether an efficient algorithm for the compression problem would aide us in the
construction of incompressible objects. Consider the following two instances of this question:
1. Does an efficient algorithm for circuit minimization imply efficient constructions of hard truth

tables?
2. Does an efficient algorithm for factoring integers imply efficient constructions of large prime

numbers?
In this work, we connect these kinds of questions to the long-standing challenge of proving time-space
tradeoffs for Turing machines, and proving stronger separations between the RAM and 1-tape
computation models. In particular, one of our main theorems shows that modest time-space tradeoffs
for deterministic exponential time, or separations between basic Turing machine memory models,
would imply a positive answer to both (1) and (2). These results apply to the derandomization of
a wider class of explicit construction problems, where we have some efficient compression scheme
that encodes n-bit strings using < n bits, and we aim to construct an n-bit string which cannot be
recovered from its encoding.
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1 Introduction

Mathematicians have long been familiar with the curious phenomenon of a non-constructive
proof : an argument which demonstrates the existence of an object satisfying some special
property, but which fails to indicate a particular example of such an object. The advent
of complexity theory has provided us with a formal way of defining the level of “inherent
constructivity” in a theorem: we can say that an existence theorem is constructive if there
is an accompanying polynomial time algorithm supplying an example of one of the objects
the theorem proves to exist, and is inherently non-constructive if no such algorithm exists.
Papadimitriou initiated a formal complexity-theoretic treatment of this topic three decades
ago [18], where he provided a taxonomy of total search problems (problems that always have
solutions) in NP by classifying them based on the strength of the lemma guaranteeing the
existence of a solution on all instances.
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37:2 Derandomization from Time-Space Tradeoffs

When a particular theorem appears to be inherently non-constructive, in that no polyno-
mial time algorithm can witness the solutions it guarantees, one perspective we can take is
that this theorem is “effectively false” in a certain context, despite being irrefutably true in
general. This is essentially the outlook presented by Yao in his seminal paper introducing the
basis of theoretical cryptography [24]. Here, Yao focuses on the central tenets of Shannon’s
information theory. He argues that although Shannon’s theorems are of course provably
correct, in many scenarios it appears computationally infeasible to witness their truth. For
example, an output of some function f : {0, 1}n → {0, 1}2n under the uniform distribution
on {0, 1}n has entropy n, and thus by a result of Shannon can be encoded on average using
n bits. However for an observer who sees only the outputs of this distribution, there seems
to be no efficient way to generate such a code without the ability to efficiently invert f . If we
posit that there are some specific functions f for which it is in fact impossible to efficiently
realize Shannon’s theorem in this sense, one might venture to say that Shannon’s theorem
effectively fails for f in the computational realm, perhaps allowing us to carry out tasks
which would, in the absence of computational constraints, be deemed impossible. Indeed it
is widely conjectured that there are efficiently computable functions f of this form, and this
conjecture underpins the security of many cryptographic protocols. Similar situations are
abundant in the field of cryptography, where the computational infeasibility of witnessing
impossibility theorems from information theory allows us to effectively bypass them.

With this perspective in mind, let us now turn our attention to a special family of
non-constructive proofs of great interest to complexity theorists, proofs which guarantee
the existence of “pseudorandom objects.” Key examples include the existence of truth
tables of high circuit complexity and of pseudorandom generators capable of derandomizing
algorithms. The task of making these proofs constructive is often referred to as an “explicit
construction problem,” since the goal is to print one explicit example of an object possessing
some pseudorandom property. In [14] it is shown that a broad collection of such problems can
be reduced to the following more general task: given some efficiently computable function
f : {0, 1}n−1 → {0, 1}n, find an n-bit string outside the range of f . The existence of a solution
is guaranteed by the “dual weak pigeonhole principle,” and indeed this principle guarantees
that a randomly chosen string is a solution with high probability. The question at hand is
whether this principle is inherently nonconstructive. Unlike the case of Shannon’s theorems
on information transmission, the prevailing wisdom in complexity theory is this theorem can
be made constructive: it is widely conjectured that exponential time requires exponential
circuit size, and by [14], this would in fact imply a generic non-trivial1 “witnessing” algorithm
for the dual weak pigeonhole principle, i.e. an algorithm which produces n-bit strings outside
the range of any such f .

In search of evidence for this widely-conjectured belief that the weak pigeonhole principle
can be made more constructive, the starting point of this work is to imagine what the
computational landscape would look like if it were false, i.e. if we lived in a world where
there was an “effective counterexample” to the weak pigeonhole principle. In particular,
let us model this scenario by supposing that there are a pair of efficiently computable
functions G = {gn : {0, 1}n → {0, 1}n−1}n∈N, F = {fn : {0, 1}n−1 → {0, 1}n}n∈N, such that
no polynomial time algorithm is able to construct an n-bit string x such that fn(gn(x)) ̸= x

in poly(n) time (for more then finitely many n). Note that this is a slightly different version
of the weak pigeonhole principle then what we defined in the previous paragraph: here we
are given both the length-increasing function f and a supposed inverse g, and the pigeonhole

1 The implied witnessing algorithm runs in PNP, whereas the trivial upper bound for this problem is ΣP
2 .
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principle tells us that f ◦ g cannot be the identity. In this hypothetical world where F , G
are an “effective counterexample” to the weak pigeonhole principle, we have access to an
efficient compression scheme which allows us to encode any n-bit string using n − 1 bits.
What improbable feats can be accomplished in such a world?

In this work we give one answer to this question: if the weak pigeonhole principle effectively
fails in the above sense, we can utilize this failure to construct an efficient data structure
which allows us to simulate RAM computations in low space and near-linear time on a
1-tape Turing machine. Stated in contrapositive, mild time-space tradeoffs for simulating
RAM machines on a 1-tape Turing machine would imply a generic algorithm to witness the
weak pigeonhole principle, and in turn would have significant consequences in the theory of
pseudorandomness and circuit complexity.

1.1 Our Contributions
1.1.1 Derandomization from Time-Space Tradeoffs
Let C, D = {Cn : {0, 1}n → {0, 1}n−1}n∈N, {Dn : {0, 1}n−1 → {0, 1}n}n∈N. We call such a
pair a “uniform compression scheme,” where C is the “compressor” which encodes n-bit
“messages” by n − 1-bit “codewords,” and D is the “decompressor” which maps n − 1-bit
codewords to the messages they represent2. We use the term “uniform” since in the relevant
cases, C and D will each be described by a single Turing machine which computes Cn (resp.
Dn) for all n. We will say that a string x ∈ {0, 1}n is “incompressible” for such a scheme
if Dn(Cn(x)) ̸= x, i.e. if D cannot be used to recover the message x from the codeword
assigned to it by C. In this paper, we study the complexity of the explicit construction task
of generating incompressible strings for uniform compression schemes. This task can be
viewed naturally as a derandomization problem, since a randomly chosen n-bit string will be
incompressible with high probability with respect to any fixed compression scheme.

Our results then show how to derive efficient derandomized algorithms for generating
incompressible strings, assuming certain uniform lower bounds. The lower bounds we consider
are time-space tradeoffs for simulating RAM by 1-tape machines. Roughly, they posit that
there are problems solvable in time T on a RAM machine which cannot be solved on a 1-tape
machine using T 0.01 space and T 1.01 time. Depending on certain features of the compression
scheme and the resources available to the explicit construction algorithm, the specifics of the
tradeoff assumption will vary, as we shall explain in Table 1.

Initially, we consider the case of “poly-time compression schemes”, where both C and D
are computable in polynomial time. We show that for such schemes, incompressible strings
can be constructed deterministically in polynomial time assuming time-space tradeoffs for
deterministic exponential time:

▶ Theorem (Theorem 31). Suppose there is some exponential time bound T (n) ≥ 2Ω(n) and
some ϵ > 0 such that it is impossible to simulate T (n)-time RAM computations on 1-tape
Turing machines that use T (n)1+ϵ time and T (n)ϵ space. Then for any poly-time compression
scheme, there is a polynomial time algorithm that produces incompressible n-bit strings for
this scheme on input 1n (for infinitely many n).

Constructing incompressible strings for poly-time compression schemes is a natural and
quite broad derandomization problem. Theorem 31 gives a novel connection between deran-
domizing this task and proving uniform time-space tradeoffs– in contrast, the assumptions

2 The formal definition given in Section 3 is slightly more general, but we will focus on this special case
for now.
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37:4 Derandomization from Time-Space Tradeoffs

previously required to derandomize this sort of problem require a lower bound against non-
uniform algorithms, such as circuits. To put this derandomization task in a more familiar
context, in Section 3.2 we show that several well-studied explicit construction problems, such
as the construction of large prime numbers or the construction of truth tables of high circuit
complexity/formula size, can be reduced to the problem of finding incompressible strings
for some uniform compression scheme. In each case, the compression scheme will either be
computable efficiently, or efficiently with access to an oracle for some search problem in FNP
which is not known to be NP-complete.

To state our other main results in their most interesting form, we focus our attention
now on the construction of strings/truth tables of high complexity with respect to some non-
uniform complexity measure, such as formula size, circuit size, or time-bounded Kolmogorov
complexity. In each case there is an associated NP search problem, where we are given
a string/truth table and must find a small formula/circuit/program computing it (if one
exists); we call this the “compression problem.” The following table shows how our three
main theorems relate various time-space tradeoff hypotheses to such problems:

Table 1 Main Results. We use the shorthand T = T (n).

The classes seen on the left hand side will be defined formally in Section 2.2, but we give
a brief explanation here so that the table can be interpreted appropriately. TIME[T (n)]
and NTIME[T (n)] are defined in the standard way using multitape machines; the prefixes
1 and RAM indicate, respectively, either a restriction of the model to 1-tape machines or a
strengthening to random access machines. The class TISP[T (n), S(n)] consists of problems
decidable simultaneously in time T (n) and space S(n). Finally, NTISPG[T (n), S(n), G(n)]
consists of problems decidable by a nondeterministic machine running in time T (n) which,
on every computation path, uses at most S(n) space and G(n) nondeterministic guesses.

For a concrete example of how to apply these results, lets focus on the compression
problem Circuit Synthesis (given a truth table find a small circuit for it if one exists), and
the explicit construction problem of producing truth tables of exponential circuit complexity.
The first hypothesis in the above table implies that if Circuit Syntheses is in P then
there is a polynomial time construction of hard truth tables (i.e. E has exponential circuit
complexity). The second hypothesis implies unconditionally that there is an efficient NP
oracle construction of hard truth tables (i.e. ENP has exponential circuit complexity). Finally,
the third and strongest hypothesis tells us that there is a polynomial time construction of
hard truth tables using an oracle for Circuit Synthesis.



O. Korten 37:5

The case of large prime construction does not fit in as neatly to the above picture, as the
scheme we devise for this problem will require a factoring oracle for both the compressor and
decompressor (while the above problems have a polynomial-time computable decompressor).
In this case we get the following result:

▶ Theorem (Corollary 35). Under the hypothesis in the top row of the above table, a polynomial
time algorithm for factoring implies a polynomial time algorithm to construct 32n-bit primes
of magnitude > 2n for infinitely many n.

If we forgo the questionable assumption that factoring lies in P, we get:

▶ Theorem (Corollary 36). One of the following is true:
1. For every exponential time bound T and every ϵ > 0, every language decidable in time

T (n) on a RAM machine can be decided in time T (n)1+ϵ and space T (n)ϵ by a 1-tape
machine with a factoring oracle, which makes oracle calls of length at most T (n)ϵ.

2. There is a polynomial time algorithm with a factoring oracle that generates 32n-bit primes
of magnitude > 2n for infinitely many n.

The problem of deterministically generating large primes has been investigated previously
in several works, and was notably the subject of the Polymath 4 project [20]. In the public
discussion forums for this project, it was explicitly asked whether a polyomial time algorithm
for factoring, or more generally an oracle for factoring, would help. More recently, Oliviera
and Santhanam gave a subexponential time “pseudodeterministic” construction of large
primes [17], using only the fact that primality is testable in P [1] and that primes occur with
non-negligible frequency.

1.1.2 BPP and the Weak Pigeonhole Principle
In Section 6 we briefly consider the relationship between various search problems associated
with the weak pigeonhole principle, and the “full derandomization task” characterized by the
class prBPP. Observe that the problem introduced above of finding incompressibe strings
for uniform compression schemes can be generalized to a TFNP search problem – instead of
considering compression schemes generated by uniform Turing machines, we can consider
the search problem where a compression scheme of some fixed length is given as input in the
form of a pair of boolean circuits:

▶ Definition 1. In Lossy Code, we are given as input a pair of circuits C : {0, 1}n →
{0, 1}n−1, D : {0, 1}n−1 → {0, 1}n, and must output some x ∈ {0, 1}n such that D(C(x)) ̸= x.

While finding a deterministic algorithm for Lossy Code appears to be a quite generic
derandomization problem, it would be a major breakthrough to show that Lossy Code
captures the “full derandomization problem:” since Lossy Code lies in TFNP, if prBPP
reduces to Lossy Code then BPP ⊆ NP, which is a notorious open problem. In Section 6,
we show that a natural generalization of Lossy Code, where we allow the compressor C

to be randomized, is indeed strong enough to characterize prBPP precisely. The formal
problem is as follows:

▶ Definition 2. In R-Lossy Code, we are given as input circuits C : {0, 1}n × {0, 1}m →
{0, 1}n−1, D : {0, 1}n−1 → {0, 1}n, and must find some x such that Prr[D(C(x, r)) = x] < 1

2 .

In this work we demonstrate:

CCC 2022



37:6 Derandomization from Time-Space Tradeoffs

▶ Theorem (Theorem 40). R-Lossy Code is complete for prBPP under deterministic
Turing reductions.

The relation between pigeonhole principle search problems and more standard derandom-
ization problems is summarized in Figure 1.

Figure 1 Relations between the total search problems associated with various weak pigeonhole
principles, and standard derandomization problems. Solid arrows represent deterministic polynomial
time reductions, while dotted arrows represent NP-oracle reductions.

The proof of Theorem 40 is mostly standard, following quite directly from Yao’s next
bit predictor lemma. From the proof of this theorem we are able to extract the following
interesting corollary:

▶ Corollary (Corollary 41, Informal). If the fixing of the leftover bits in Yao’s hybrid argument
can be derandomized, then BPP ⊆ NP. Indeed, under this assumption, every problem in
prBPP reduces to the search problem Lossy Code in PPP ⊆ TFNP.

In other words, derandomizing a particular step in Yao’s classical argument implies a
quite universal derandomization of prBPP.

1.2 Relation to Prior Work
Hardness vs. Randomness

As mentioned above, the task of constructing incompressible strings can be naturally viewed
as a derandomization problem, and is thus amenable to the standard hardness/randomness
paradigm. In particular, when the compression scheme is polynomial time computable as in
Theorem 31, the standard hardness assumptions used to derandomize BPP (e.g. [8]) would
suffice to yield a polynomial time construction of incompressible strings. Such hardness
assumptions require a lower bound for a language in E against some non-uniform model of
computation, such as boolean circuits. In contrast, Theorem 31 gives a hardness/randomness
connection for this problem which only requires a uniform lower bound for a a language in
E, in particular a lower bound against low-space algorithms running in slightly more time
using a weaker memory model.
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The Easy Witness Lemma

Perhaps the closest prior work to our results is the “Easy Witness Method,” initiated by [11]
and furthered in [7] and [23], which roughly says that assuming ENP has small circuits, any
nondeterministic exponential time computation must have witnesses of low circuit complexity.
This immediately implies that unless ENP requires large circuits, we can efficiently simulate
NTIME[2n] using limited nondeterminism by “guessing a small circuit.” In the full version,
we show that this old method (along with one other well-known tool) is in fact enough to
prove the second implication in Table 1, although this connection to time-space tradeoffs does
not seem to have been noted previously. However, this proof heavily utilizes the distinctive
power of nondeterminism, whereby additional “guesses” allow us to vastly simplify the
verification procedure, and does not seem to extend to our other two main results.

1.3 Known Time-Space tradeoffs
Finally, we cover the known results on time-space tradeoffs and separations between the
RAM and 1-tape models. We first emphasize the following: all three time-space tradeoff
hypotheses stated on the left-hand side of Table 1 are known to hold unconditionally when
the time bound T is O(n). In particular, an old result of Maass [15] shows that the set of
palindromes is recognizable in quasilinear time on a deterministic RAM machine, but requires
Ω(n2) time on a nondeterministic 1-tape machine. However, Maass’s proof is essentially a
counting argument which crucially relies on the entropy of the input being comparable in
magnitude to the total computation time, which is no longer the case for exponential time
computations. When it comes to separating the RAM and 1-tape models for generic time
bounds, a result of [21] shows that there must be some slowdown when simulating a RAM
on a 1-tape machine for any time bound greater then n log log n, but the slow-down is an
astronomically small multiplicative factor, on the order of log log T (n).

Another sequence of works ([2], [3], [22] among others) has shown unconditionally that
nondeterministic linear time cannot be solved in TISP[n1+ϵ, nϵ] for certain fixed values of
ϵ > 0, even when the simulating machine is given access to RAM. These results can be
scaled to larger time bounds as follows: for any time-constructible T , Σ2TIME[T (n)] is not
contained in TISP[T (n)1+ϵ, T (n)ϵ] for certain fixed values of ϵ > 0. Such results are obtained
by combining hierarchy theorems with a fast simulation result, whereby a Σ2 machine can
simulate a TISP[T (n)1+ϵ, T (n)ϵ] computation in time T (n)1−δ time for some fixed ϵ, δ > 0.
It is evident that such results will not be sufficient for our purposes, as they only rule out
efficient low-space simulations of Σ2 computations by deterministic machines.

1.4 Main Tool: the J-tree
The basis of our main proofs is a construction which we call the “J-tree.” Roughly speaking,
the J-tree is a data structure which allows us to store an array of T elements, subject
to fast update/query operations, using significantly less then T bits. While this task is
information-theoretically impossible (by the weak pigeonhole principle), the J-tree uses a
compression scheme C, D to perform its operations, and whenever it fails in its role as a data
structure, it is able to print out an incompressible string for this scheme. Thus, assuming no
polynomial time algorithm can witness the weak pigeonhole principle for C, D, no polynomial
time algorithm can witness the failure of this data structure. This will allow our low-space
simulations to operate a RAM memory using low space on a 1-tape machine, in such a way
that if the simulation fails, then a polynomial time algorithm can witness this failure, and
thus witness the weak pigeonhole principle for C, D. The core construction underlying the

CCC 2022



37:8 Derandomization from Time-Space Tradeoffs

J-tree has a long and intriguing history, occurring in some form or another in [16, 5, 19, 9],
and [14]. The details of this history and its relation to our results are explained in the
full version; our main novel contribution to this line of work is the “J-tree Update Lemma”
(Lemma 25).

2 Preliminaries

2.1 Basics
Our notation for basic concepts is standard, e.g. all logarithms are base 2, we use [n] to
denote {1, . . . , n}, |x| to denote length of a binary string. We will define the following precise
notion of an “exponential time bound:”

▶ Definition 3. We say a function T : N → N is an “exponential time bound” if T is
time constructible, and there exist constants 0 < β < B such that for sufficiently large n,
2βn ≤ T (n) ≤ 2Bn.

This is in contrast to the more general notion of exponential growth where we have 2nβ ≤
T (n) ≤ 2nB .

2.2 Machine Models
We start by precisely defining the various machine models and complexity classes that will
be used. We begin with a definition of “random access memory” or “RAM” machines:

▶ Definition 4 (RAM machines). A RAM machine is a turing machine equipped with two
binary tapes, one called the “auxilliary tape” and the other called the “addressing tape.” We
collectively refer to these as the “linear tapes.” Both linear tapes admit the same operations as
a standard Turing machine tape, where in one step we can move the head left/right and read
or modify a cell of the tape. In addition, there is an associated “RAM memory” consisting of
a sequence of binary variables A1, A2, . . .. The addressing tape has two additional operations
that allow it to interact with the RAM memory. There is an Update operation, which in
one step sets Ai = b, where i is the integer whose binary representation lies to the left of
the addressing tapehead, and b is the bit currently read by the auxiliary tape. There is also
a Load operation, which in one step sets the cell pointed to by the auxiliary tapehead to
the value Ai, where again i is the integer whose binary representation lies to the left of the
addressing tapehead. At the start of the computation on input x, the RAM cells A1, . . . , A|x|
are initialized to the bits of x in order, and A|x|+1, . . . are initialized to 0. The addressing
tape is then initialized to |x|, so that the machine knows where the input ends.

We will use the following simplification lemma for RAM computations later, which follows
easily from the use of balanced binary search trees:

▶ Lemma 5 ([6]). A RAM machine running in time T (n) can be simulated in time T ′(n) =
Õ(T (n)) by a RAM machine that uses O(log T ′(n)) space on its addressing and auxiliary
tapes, and uses only its first T ′(n) RAM cells.

We will also make reference to k-tape Turing machines, for which we omit a formal
definition as this model is standard. However, we will at some points concern ourselves with
multi-tape machines equipped with oracles for languages/functions, and here we will need to
be precise about the oracle access mechanism:
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▶ Definition 6 (Oracle Turing Machines). For a function F : {0, 1}∗ → {0, 1}∗, an F -oracle
k-tape Turing machine has k standard read/write “work tapes,” in addition to an oracle tape
where in one step the machine can replace the leading cells of the oracle tape with F (x),
where x is the string lying to the left of the oracle tapehead prior to the oracle call; after this
the oracle tapehead is moved to the first cell of the oracle tape. In some cases we will give a
machine access to several oracles F1, F2, . . . , Fk (for a fixed constant k), in which case each
gets its own oracle tape. The oracle tape(s) and the first work tape share a single tapehead,
and in one move this tapehead can move from the first cell of the work tape to the first cell
of one of the oracle tapes, or vice-versa.

The space usage of an oracle k-tape machine is defined to be the sum of the space used
on all of its work tapes and oracle tapes.

The sharing of a single tapehead between the oracle tapes and the first work tape is only
relevant for 1-tape machines, where we don’t want the machine to “cheat” and use it’s oracle
tapes as additional work tapes.

▶ Definition 7 (Time Bounded Classes). For a function T : N → N, let TIME[T (n)] denote
the class of languages which are decidable by a deterministic multi-tape Turing machine
running in time O(T (n)). Let RAM-TIME[T (n)] be defined analogously for RAM machines.

▶ Definition 8 (Time-Space Classes). For functions T, S : N → N, let TISP[T (n), S(n)]
denote the class of languages which are decidable by a deterministic multi-tape Turing machine
running simultaneously in time O(T (n)) and total space O(S(n)). Let 1-TISP[T (n), S(n)]
be defined identically, but with the additional restriction that the machine uses only one tape.

Finally, we define an analogous “time-space” class for nondeterministic time:

▶ Definition 9 (Nondeterministic Time-Space Classes). For functions T, S, G : N → N,
let NTISPG[T (n), S(n), G(n)] (“nondeterministic time, space, guess”) denote the class
of languages decidable by a nondeterministic multi-tape Turing machine such that on
any computation path on an input of length n, the machine spends time O(T (n)), uses
space at most O(S(n)), and makes at most O(G(n)) non-deterministic guesses. Let
1-NTISPG[T (n), S(n), G(n)] be defined identically, but with the additional restriction that
the machine uses only one tape. We define NTIME[T (n)] in the standard way, which is
analogous to the above but with no restriction on space usage or nondeterminism.

We make note of the following result, which tells us that for nondeterministic computations
the multi-tape and RAM models are roughly equivalent:

▶ Lemma 10 ([6]). Any time-T (n) computation on a nondeterministic RAM machine can
be simulated in Õ(T (n)) time on a nondeterministic multi-tape machine.

We will thus not bother to explicitly define a nondeterministic RAM model, though the
definition for the deterministic case naturally extends.

3 Pigeonhole Principles and Compression Schemes

We now define the basic formalization of the weak pigeonhole principle we will investigate in
this work, and introduce the relevant terminology.

CCC 2022



37:10 Derandomization from Time-Space Tradeoffs

3.1 Compressors and Decompressors
▶ Definition 11. Let D : {0, 1}m → {0, 1}n, with m < n. We call such a map which extends
its input length a “decompresser.” The “code length” of this decompressor is m, and its
“message length” is n.

The terminology should be interpreted as follows: for a string x such that D(y) = x, y

functions as an m-bit compressed representation (or “codeword”) for the n-bit “message”
x, and D functions as an an algorithm which lets us “decompress” this codeword into the
message it represents.

By the dual weak pigeonhole principle, if n > m, any function mapping 2m “pigeons”
to 2n “holes” must leave some hole empty. We thus know there must exist an x ∈ {0, 1}n

such that ∀y ∈ {0, 1}m, D(y) ̸= x. We call such a string x an “empty pigeonhole” for the
decompressor D.
The primary subject of [14] was the problem EMPTY, originally introduced in [13], where
we are given a decompressor specified by a boolean circuit and must output one of its empty
pigeonholes. In this work, we will study a slight modification of this problem, where we are
given both a compressor and a decompressor, and must and must find a witness to the fact
that some message is not recoverable from its codeword. This was referred to by Jeřábek as
the “retractive pigeonhole principle.”[10].

▶ Definition 12. Let C : {0, 1}n → {0, 1}m, D : {0, 1}m → {0, 1}n, where m < n; we call
such a C a “compressor”, and collectively we will refer to C, D as a “compression scheme.”
Again, m and n are the “code length” and “message length” respectively. By the pigeonhole
principle, we know that there must exist some x ∈ {0, 1}n such that D(C(x)) ̸= x; we call
such an x “incompressible” with respect to the scheme C, D.

Note that when x ∈ {0, 1}n is an empty pigeonhole for a decompressor D, it is necessarily
incompressible for all schemes C, D which use D as the decompressor. The converse is not
true in general, but when it is we use the following terminology:

▶ Definition 13. We call C a “proper compressor” for D if C, D satisfy the following for all
x ∈ {0, 1}n: if there exists an y ∈ {0, 1}m such that D(y) = x, then D(C(x)) = x.

By definition, when C is a proper compressor for D, the incompressible strings for the
scheme C, D correspond exactly to the empty pigeonholes for D. It should be noted that
when D is polynomial time computable, or is specified by some boolean circuit, there always
exists a proper compressor for D computable efficiently with an NP oracle, which simply
finds the lexicographically first preimage of a string under D or else outputs something
arbitrary when none exist. In this sense, the work of [14], which studies the complexity of
EMPTY with respect to NP-oracle reductions, was essentially studying a special case of
this problem, where the compressor is the “canonical proper compressor” which searches for
the lexicographically first preimage.

For most of this work it will be convenient to focus on the special case of functions which
exactly double their input length:

▶ Definition 14. When a compression scheme has code length n and message length 2n, we
will say that it has “stretch 2.”

We will utilize the following lemma, which tells us that if our goal is to find an incom-
pressible string with respect to some scheme, we can assume it has stretch 2 without loss of
generality:
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▶ Lemma 15. Let C, D be a compression scheme with code length n and message length m.
Then there is another scheme C ′, D′ of code length n and message length 2n, such that C ′ is
computable in poly(m) time with an oracle for C, D′ is computable in poly(m) time with an
oracle for D, and such that given an incompressible string for C ′, D′, we can construct an
incompressible string for C, D in poly(m) time with oracles for C, D.

Proof. This is proven in [14] for the special case when C is a proper compressor for D, but
the exact same proof extends to the more general case stated here. ◀

In [14], the problem EMPTY was studied as a search problem, where the decompressor
D is provided as input (in the form of a circuit), and the goal is to find one of its empty
pigeonholes. We could equivalently define such a search problem for the retractive pigeonhole
principle, where we are given circuits computing C, D as input, and must output an incom-
pressible string for this scheme (this search problem is considered in Section 6). However,
for the purposes of our main results it will be more suitable to study a uniform version of
this problem, where we have a sequence of schemes Cn, Dn of increasing size, and each are
computable within some uniform complexity class.

▶ Definition 16. A uniform compression scheme is a pair C = {Cn : {0, 1}ℓ(n) →
{0, 1}m(n)}n∈N, D = {Dn : {0, 1}m(n) → {0, 1}ℓ(n)}n∈N for some pair of time construct-
ible functions m, l : N → N such that m(n) < ℓ(n) for all n, and ℓ(n) is bounded above by a
polynomial in n.

In this work we will concern ourselves with uniform compression schemes where C, D are
computable in polynomial time, each with access to different oracles, hence the name
“uniform.”

3.2 Particular Compression Schemes of Interest
We now introduce some uniform compression schemes whose incompressible strings have
certain desirable properties for which no explicit constructions are currently known.

3.2.1 Compression Schemes for Non-Uniform Complexity Measures
We start with the case of hard truth tables. The following lemma is a well-known folklore
result, for which a formal proof can be found in [14]:

▶ Lemma 17. For sufficiently large N ∈ N, there is function fN : {0, 1}N−1 → {0, 1}N

computable uniformly in Õ(N2) time such that if x ∈ {0, 1}N has circuits of size at most
N

2 log N , then x is in the range of fN .

We now define the search problem associated with finding preimages of strings under fN ,
which has commonly been referred to as the “circuit synthesis problem:”

▶ Definition 18 (Circuit Synthesis). Given a string x ∈ {0, 1}N , output an N − 1 bit
description of a circuit C of size at most N

2 log N on ⌈log N⌉ variables such that C(i) = xi for
all 0 ≤ i < N if such a circuit exists, or else determine that no such circuit exists.

This problem is the search variant of the more well-studied “Minimum Circuit Size Prob-
lem” [12], which is not known to admit a search-to-decision reduction. By the same arguments
underlying Lemma 17, given an instance x ∈ {0, 1}N of Circuit Synthesis, any circuit
of the stated size can be represented using at most N − 1 bits via a standard encoding so
this search problem is well defined. Further, requiring the output to be specified in such an
encoding does not increase the complexity of the problem, since the standard encoding can
be computed efficiently from any description of such a circuit.
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By definition, we see that there is a proper compressor for fN computable in polynomial
time with a Circuit Synthesis oracle3, and thus any incompressible string for this scheme
is an N -bit string with high circuit complexity.

We similarly have the following:

▶ Lemma 19. For any fixed polynomial p, there is a uniform compression scheme whose
decompressor is computable in polynomial time, and whose compressor is computable with an
oracle for Kp(n) Minimization (given x ∈ {0, 1}n find a short program y ∈ {0, 1}n−2 that
prints x in p(n) steps if one exists). The incompressible strings for this scheme have Kp(n)

complexity ≥ n − 1.

▶ Lemma 20. There is a uniform compression scheme whose decompressor is computable in
polynomial time, and whose compressor is computable with an oracle for Formula Synthesis
(given a truth table find a short formula if one exists). The incompressible strings for this
scheme are truth tables of exponential formula size.

We provide these as basic examples without defining the problems too formally; more generally
it can be verified that for most reasonable non-uniform measures of complexity (which are
bounded above by Kpoly), such a uniform scheme exists whose decompressor is computable
efficiently, whose compressor is computable with access to the relevant “compression problem,”
and whose incompressible strings have high complexity with respect to this measure.

3.2.2 Large Primes
We next construct a compression scheme related to the large prime construction problem.
This scheme is unlike the previous ones, in that both the compressor and decompressor have
the same complexity: each will require an oracle for factoring.

▶ Theorem 21. There is a compression scheme R, P with code length n + ⌈log n⌉ + 3 and
message length n + ⌈log n⌉ + 4, such that R, P are each computable uniformly in polynomial
time with a factoring oracle, and given an incompressible string for this scheme, a 32n-bit
prime of magnitude > 2n can be constructed in polynomial time with a factoring oracle.

A proof of Theorem 21 can be found in the full version. This theorem is an algorithmic
analogue of a well known result of Paris, Wilkie, and Woods [19], and our proof follows from
analysing the computational resources needed to carry out their construction.

4 J-Trees

In this section we develop the core tool used in our main result, namely the “J-tree.” The J-tree
is, informally, a data structure “solving” the following information-theoretically impossible
task: store an array of T elements, subject to efficient updates and queries, using significantly
fewer then T bits. While such a data structure cannot exist unconditionally, the J-tree will
take as input a compression scheme C, D, and will be set up so that when it fails in its
capacity as a data structure, it prints out an incompressible string for C, D. In other words,
if it is hard to witness the weak pigeonhole principle for the scheme C, D, then it is hard to
find a sequence of updates/queries which causes our data structure to fail.

3 There is some subtly when considering oracles for search problems like Circuit Synthesis which have
multiple valid solutions on each input, see the full version for a discussion of how our results are robust
to this potential issue.
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Figure 2 A J-tree of depth 3. Each arrow consists of n wires, where n is the code length of the
decompressor D.

▶ Definition 22 (J-trees). Let D : {0, 1}n → {0, 1}2n be a decompressor of code length n

and stretch 2. We define D0, D1 : {0, 1}n → {0, 1}n to be the maps obtained by computing
D and taking the first n and last n bits of output respectively. Now, for any binary string
x ∈ {0, 1}∗, we define Dx : {0, 1}n → {0, 1}n as follows. When |x| = 0, Dx is the identity,
and when |x| = 1, D0, D1 are defined as above. In the general case, when x = b1 · · · bk for
some b1, . . . , bk ∈ {0, 1}, Dx is defined as:

Dx = Dbk
◦ · · · ◦ Db1

Now, for a particular input y ∈ {0, 1}n, we can define the function D[y] : {0, 1}∗ → {0, 1}n

as follows. For each x ∈ {0, 1}∗:

D[y](x) = Dx(y)

For an integer k, we then define Dk[y] : {0, 1}k → {0, 1}n, which is simply the restriction of
D[y] to the domain {0, 1}k.

We will refer to Dk[y] as a “J-tree,” D as its decompressor, y as its “seed,” and k as its
“depth.”

It will be useful to visualize a J-tree as a binary tree (hence the name). Refer to Figure 2
which illustrates a J-tree Dk[y] where k = 3. For a given D and depth k, we can construct
a tree-like circuit which starts with one copy of D, then feeds each of its two n-bit output
blocks into another copy of D, and so on for k iterations, ultimately yielding a circuit with n

inputs and 2kn outputs which has the structure of a perfect binary tree of depth k. If we
now fix the inputs to some value y (the seed), by passing y through this tree-like circuit we
obtain 2k n-bit values at the output. As seen in the figure, each of the 2k n-bit values is
associated uniquely with a leaf in this binary tree of depth k, and thus can be specified by a
k-bit index indicating whether to move left or right at each step along a root-to-leaf path.
Dk[y] is then the function which, given the description of such a path, returns the value at
the corresponding leaf.
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We will think of a J-tree Dk[y] operationally as a data structure which stores an array of
2k n-bit values, one for each for each of its 2k “leaves”, where the ith value is simply Dk[y](i).
The state of the data structure is described purely by y and D, which in our use cases will
require far fewer bits then storing 2k n-bit strings explicitly. In the following, we now prove
that the J-tree data structure admits fast query and update operations, i.e. operations that
allow us to read one entry of the data structure, or update the value of one entry. While the
query operation will be computable efficiently by evaluating only the decompressor D O(k)
times, the update operation will require evaluating some compressor C, and might “fail” in a
certain well-defined sense. However, when the update does not fail, there is a deterministic
algorithm which can verify, using O(k) evaluations of D, that the resulting J-tree is in fact
the true updated version of the original. We begin with the query or “access” operation:

▶ Lemma 23 (J-tree Access Lemma). Let Dk[y] be a J-tree. Then for any i ∈ {0, 1}k we can
compute Dk[y](i) in time O(nk) given i, y and using O(k) evaluations of D.

Proof. This follows directly from the definition of Dk[y]. Letting b1, . . . , bk be the individual
bits of i, we have that:

Dk[y](i) = Dbk
◦ Dbk−1 ◦ · · · ◦ Db1(y)

So we can compute Dk[y](i) by evaluating D k times successively starting with the input
y. ◀

▶ Definition 24 (J-tree Modifications). Let Dk[y], Dk[y′] be J-trees of depth k and code
length n. We say that the relation Modified(y, y′, i, s, D) holds if:
1. Dk[y′](i) = s

2. For all i′ ∈ {0, 1}k, i′ ̸= i, Dk[y′](i′) = Dk[y](i′)
In other words, Modified(y, y′, i, s, D) asserts that the J-tree Dk[y′] represents a local modi-
fication of the J-tree Dk[y] which changes its ith value to s and leaves all other values the
same.

▶ Lemma 25 (J-tree Update Lemma). There exist algorithms Find and Verify satisfying the
following.

Verify takes as input a decompressor D (specified as an oracle) of code length n and
stretch 2, a pair of seeds y, y′ ∈ {0, 1}n, an index i ∈ {0, 1}k, and a value s ∈ {0, 1}n, and
either accepts or rejects. Verify runs in deterministic time O(nk) using O(k) evaluations of
D, and satisfies the property that if Verify(y, y′, i, s, D) accepts, then Modified(y, y′, i, s, D)
must hold.

Find takes as input a compression scheme C, D of code length n and stretch 2 (again
specified as oracles), a seed y ∈ {0, 1}n, an index i ∈ {0, 1}k, and a value s ∈ {0, 1}n. It either
“succeedes” and outputs a string y′ ∈ {0, 1}n, or else outputs FAIL⟨e⟩, where e ∈ {0, 1}2n.
Find runs in O(nk) time using O(k) evaluations of C and D, and satisfies the property that
for every input y, i, s, C, D, one of the following holds:
1. Find(y, i, s, C, D) outputs a string y′ such that Verify(y, y′, i, s, D) accepts.
2. Find(y, i, s, C, D) outputs FAIL⟨e⟩, where e is incompressible with respect to C, D.

Proof. We start by defining the procedure Find. Given inputs y, i, s, C, D, Find begins by
computing a sequence of k values z1, . . . , zk ∈ {0, 1}n as follows. Let b1, . . . , bk denote the
bits of i in order. For each j ∈ [k], we set

zj = D[y](b1b2 . . . bj−1¬bj)
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Figure 3 “Forward phase” of
Find(y, 100, s, C, D) (where k = 3), during
which the z1, . . . , zk are computed.

Figure 4 “Backward phase” of
Find(y, 100, s, C, D) (where k = 3), during
which the v1, . . . , vk are computed.

It is clear that the list of zj be computed in O(nk) time using O(k) evaluations of D, by
storing the intermediate values of D[y](b1 · · · bj) for each j and computing the zj in increasing
order of j.

Now, given this list of values, we compute a second sequence v1, . . . , vk ∈ {0, 1}n. We
compute the vj for each j ∈ [k] in decreasing order of k as follows. First we set:

vk =
{

C(szk) if bk = 0
C(zks) if bk = 1

We then check that D(C(szk)) = szk (resp. D(C(zks)) = zks). If this check fails we
abort and return FAIL⟨szk⟩ (resp. FAIL⟨zks⟩). Now, for each j ∈ {k − 1, k − 2, . . . , 1}, we set:

vj =
{

C(vj+1zj) if bj = 0
C(zjvj+1) if bj = 1

Again, each time we evaluate C on some input, we check that that input is indeed compressible
with respect to C, D, and if not then we return FAIL⟨e⟩ where e is the incompressible string
we found. If we get to the end of this process without returning failure, we return the string
v1. This completes the description of the Find procedure, which overall requires at most
O(nk) time to compute using at most O(k) evaluations of C and D. Figures 3 and 4 illustrate
this procedure for a J-tree of depth 3.

We now describe the Verify procedure on input y, y′, i, s, D, which simply verifies that
a given string y′ is a possible successful output of Find(y, i, s, C, D) for some C. Given
y, y′, i, s, D, again let b1, . . . , bk denote the bits of i in order. First, Verify iterates over
each value of j ∈ [k], and checks that D[y′](b1, . . . , bj−1, ¬bj) = D[y](b1, . . . , bj−1, ¬bj).
Next, it checks that D[y′](b1, . . . , bk) = Dk[y′](i) = s. If all these conditions hold, the
Verify procedure accepts, and otherwise it rejects. It is clear that these conditions can
be verified in O(nk) time using O(k) evaluations of D, by storing the intermediate values
D[y](b1, . . . , bj),D[y′](b1, . . . , bj) at each step.
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We now show that if Find(y, i, s, C, D) succeeds and returns a string y′, then
Verify(y, y′, i, s, D) accepts. By definition, if Find(y, i, s, C, D) doesn’t fail, then it is able to
compute some list of values v1, . . . , vk ∈ {0, 1}n such that for all j < k, Dbj

(vj) = vj+1 and
D¬bj (vj) = zj , and it returns v1 as its output. So then we have that D[v1](b1, . . . , bj−1, ¬bj) =
D[vj ](¬bj) = zj for all j ∈ [k]. Further, we have that D[v1](b1, . . . , bk−1, bk) = D[vk](bk) = s.
So overall Verify(y, v1, i, s, D) must accept if Find(y, i, s, C, D) succeeds and returns v1.

It remains only to show that if Verify(y, y′, i, s, D) accepts, then Modified(y, y′, i, s, D)
must hold. Recall that Modified(y, y′, i, s, D) asserts that the two J-trees Dk[y], Dk[y′] agree
an all indices i′ ̸= i, and that Dk[y′](i) = s. If Verify accepts then this second condition
holds trivially, since Verify explicitly checks that Dk[y′](i) = s and rejects if this does not
hold. Now consider the first condition of Modified. Let i′ ∈ {0, 1}k, i′ ̸= i. Let ℓ1, . . . , ℓk

denote the bits of i′ in order, and let t ∈ [k] be the smallest index such that ℓt ̸= bt. By our
assumption that Verify accepted, we have that

D[y](ℓ1, . . . , ℓt) = D[y](b1, . . . , bt−1, ¬bt) = D[y′](b1, . . . , bt−1, ¬bt) = D[y′](ℓ1, . . . , ℓt)

But by definition we also know that

D[y](ℓ1, . . . , ℓt, ℓt+1, . . . , ℓk) = D[D[y](ℓ1, . . . , ℓt)](ℓt+1, . . . , ℓk)

and similarly

D[y′](ℓ1, . . . , ℓt, ℓt+1, . . . , ℓk) = D[D[y′](ℓ1, . . . , ℓt)](ℓt+1, . . . , ℓk)

so if D[y](ℓ1, . . . , ℓt) = D[y′](ℓ1, . . . , ℓt) then it must be that D[y](ℓ1, . . . , ℓk) =
D[y′](ℓ1, . . . , ℓk). So we have established that Dk[y](i′) = Dk[y′](i′), which completes
the proof. ◀

In addition to the update and access lemmas, we will need the following “initialization”
lemma, which lets us efficiently set all leaves of a J-tree to a common value in time proportional
to its depth:

▶ Lemma 26 (J-Tree Initialization Lemma). There is an algorithm Initialize which takes as
input a compression scheme C, D of code length n and stretch 2 (specified as oracles), a value
s ∈ {0, 1}n, and a depth parameter k. It either succeeds and returns a seed y ∈ {0, 1}n such
that for all i ∈ {0, 1}k, Dk[y](i) = s, or else outputs Fail⟨e⟩ where e is incompressible with
respect to C, D. Initialize(s, k, C, D) runs in time O(nk) using O(k) evaluations of C an D.

Finally, we utilize the following “iterated compression” lemma.

▶ Lemma 27 (J-Tree Iterated Compression Lemma). Let C, D be a compression scheme of
code length n, and let S = (s1, s2, . . . , sℓ) be a sequence of strings, where si ∈ {0, 1}n. There
exists an algorithm Iter-Compress running in time poly(n, ℓ) and using poly(ℓ) evaluations of
C and D which, given C, D and S, either “succedes” and outputs a seed y ∈ {0, 1}n such
that D⌈log ℓ⌉[y](i) = si for all i ∈ {0, 1}⌈log ℓ⌉, i ≤ ℓ, or else “fails” and outputs a string e

which is incompressible with respect to C, D.

The proofs of both the iterated compression and initialization lemmas follow the same format
as the update lemma, and can be found in the full version.
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5 Low-Space Simulations

In this section we prove our main set of theorems. In each case, we show how to simulate
an exponential time computation with a drastic reduction in certain resources, using short
oracle calls to some uniform compression scheme. We then show that either this simulation
is successful, or there is an explicit construction algorithm that prints incompressible strings
for this compression scheme.

5.1 Proofs of Main Theorems

▶ Theorem 28. Let C, D = {Cn}n∈N, {Dn}n∈N be a uniform compression scheme.
Then one of the following must hold:

1. There is polynomial time algorithm with oracle access to C, D which, for infinitely many
n, outputs an incompressible string for Cn, Dn on input 1n.

2. For every exponential time bound T , every language L ∈ RAM-TIME[T (n)], and every
ϵ > 0, there is 1-tape Turing machine with oracle access to C, D which decides L in time
T (n)1+ϵ, uses space at most T (n)ϵ, and makes oracle calls of length at most T (n)ϵ.

Proof. Let L ∈ RAM-TIME[T (n)], and let M be the deterministic random access oracle
machine witnessing this inclusion. Let C, D be a uniform compression scheme. By Lemma 15,
we can assume Cn, Dn have stretch 2 for all n. We will define a “simulator machine” which
attempts to decide L using low space and small oracle calls to C, D. We then define a second
“checker machine” which checks the work of the simulator. We show that whenever the
simulator fails to decide L, the checker will be able to witness this failure in the form of
an incompressible string. We will thus conclude that if simulation of L fails for infinitely
many inputs, the “checker” will constitute an explicit construction algorithm which prints
incompressible strings for C, D.

Step 1 – Defining the Simulator. Let 0 < ϵ < 1 be a fixed rational constant. We define a
machine Sϵ which will attempt to efficiently simulate M using low space, short C, D-oracle
queries, and which operates on a 1-tape oracle Turing machine. Let x ∈ {0, 1}n be an input.
For the remainder of thi s section we will keep a particular input length n fixed in our mind
and thus drop the dependence of other terms on n in our notation; in particular we will
use the abbreviation T = T (n). Our machine will now fix a particular instance of C, D, in
particular C⌈2ϵn⌉, D⌈2ϵn⌉; again we simplify our notation from here on and simply write C, D

for this scheme. By definition of a uniform compression scheme, we see that the code length
of C, D will by poly(2ϵn) = T (n)O(ϵ), and by assumption its message length is twice its code
length. We will use W to denote its code length for the remainder of the proof.

We start by invoking Lemma 5, which lets us assume without loss of generality that
M uses its first T cells of RAM and uses at most O(log T ) space on its linear tapes. This
simplification will come at a log T multiplicative cost to run time, which is negligible here.
Now, our simulating machine will initialize a variable Mem ∈ {0, 1}W which will be used as a
seed in a J-tree with decompressor D and depth ⌈log T ⌉. From now on we will fix k = ⌈log T ⌉.
The simulation Sϵ will run in T phases, and will maintain the invariant that if M’s ith

memory cell has value b ∈ {0, 1} at the start of M’s tth time step, then Dk[Mem](i) = bW

at the start of Sϵ’s tth phase. Aside from Mem, Sϵ will also explicitly store a copy of M’s
linear tapes (which have total length O(k)), the input x, and descriptions of M’s state and
tape-head pointers, each requiring at most k bits. Thus the total space required to store all
local variables between phases in the simulation is at most O(W (n)2 + n) = T (n)O(ϵ) (recall
that T is an exponential time bound).
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Figure 5 Simulating a RAM memory with a J-tree. While the RAM memory on the left requires
T bits to store explicitly, the virtual RAM on the right can be stored with |Mem| = W = T O(ϵ) bits.

At the start of the first phase, Sϵ initializes Mem to a value such that Dk[Mem](i) = 0W for
all i ∈ {0, 1}k, which matches the initial state of M’s RAM memory at the beginning of its
computation. By Lemma 26, this can be accomplished in time O(kW ) = T O(ϵ) with oracle
access to C, D; if the initialization procedure fails and returns an incompressible string for
C, D, the simulation halts and rejects its input x. Now, in phase t ∈ [T ], Sϵ will simulate the
tth step of M as follows:
1. Read the values at the current tapehead positions on all linear tapes, and the current

state of M.
2. Based on these values, determine which of M’s transition rules to apply. Every rule

involves a state update, which we can perform manually as we explicitly store M’s
state. If the new state is an accept/reject state for M, then Sϵ halts and accepts/rejects
accordingly. Otherwise:
a. First, say the rule only involves updates to the linear tapes. In this case we just carry

out the rule explicitly, which requires at most poly(k) = T o(ϵ) operations since the
linear tapes have length O(k).

b. Next, say the rule involves a RAM operation. In this case we start by reading the entire
contents of the addressing tape, which we denote i ∈ {0, 1}k. Now, if the operation
is a Load, we compute the first bit of Dk[Mem](i) and update the auxiliary tape at its
current tapehead position to this value. If the operation is an Update, we read the
value at the current position of the auxiliary tape, call it s ∈ {0, 1}. We then compute
Find(Mem, i, sW , C, D). If this procedure fails and returns an incompressible string, Sϵ

aborts its entire simulation and rejects its input. Otherwise, we update Mem to the
value returned by this Find call.

If we get through all T phases without halting, we reject the input.
We now show that Sϵ operates within the required resource bounds. First, we note that

all oracle calls are of length W = T O(ϵ). Second, it is clear that the Find/Initialize operations
and the evaluations of Dk[Mem] can be carried out in poly(W ) space, since in particular they
require at most poly(W ) time by Lemmas 23, 25, and 26. So the space used within a phase
is at most poly(W ) = T O(ϵ) and the size of oracle calls are bounded identically. To bound
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the time complexity, we note that by the same arguments each phase can be completed in
time T O(ϵ), and overall there are T phases, so the total time complexity is T 1+O(ϵ). In the
above description of each phase, we were informal about the number of work tapes required
to carry out these computations. However, since any multi-tape machine running in space S

and time T can be simulated on a one-tape machine in time poly(S, T ) and space poly(S),
we see that we can modify the algorithm within each phase to operate on a 1-tape machine
with at most a polynomial blowup in space and time. So the above bounds still hold on a
1-tape machine, where the space is bounded by poly(T ϵ) = T O(ϵ), and the time within each
phase is bounded identically.

Step 2 – If Find Never Fails Then the Simulator Works. We now show that if Sϵ completes
its computation on an input x without any Initialize or Find operation failing, then Sϵ accepts
x if and only if x ∈ L. To prove this, we show by induction on t ∈ [T ] that at the beginning of
the tth phase of Sϵ’s simulation on x, Sϵ’s simulated configuration matches the configuration
of M on input x at the beginning of time step t. This is clearly true for t = 1, since at
the start of the simulation we initialize explicit representations of M’s linear tapes to all
zeroes, and do the same for the RAM memory using the Initialize operation, which succeeds
by assumption.

Now assume the inductive hypothesis up to step t. So at the beginning of this time step
on input x, M’s linear tapes, tapehead pointers, machine state and RAM memory at the
start of time step t are faithfully represented by Sϵ at the start of phase t. Thus, Sϵ is able
to choose the correct transition rule to apply during this phase. It then updates the linear
tapes, tapehead pointers, and machine state accordingly; all of these are stored explicitly so
Sϵ has no potential for failure here. Next, if M uses a Load operation at this step, since we
assumed the previous state of the virtual RAM is accurate, the correct value will be found
by Sϵ. Finally, if M uses a Update operation at this step, Sϵ makes the associated call to
the Find procedure. By Lemma 25, if this does not fail, then the state of the virtual RAM
after this step will accurately represent M’s ram at the end of time step t. This completes
the inductive case.

Step 3 – Failure of the Simulator Witnesses the Pigeonhole Principle for C, D. We now
show that if the above simulation Sϵ fails to decide L for infinitely many inputs, then there
is an algorithm which, given 1n, outputs an incompressible string for Cn, Dn in polynomial
time using oracles for C, D, for infinitely many n.

In particular, assume that there is an infinite set R ⊆ N such that for all n ∈ R, S
makes a mistake on some length n input in its attempt to decide L. Recall that Sϵ uses
the compression scheme C⌈2ϵn⌉, D⌈2ϵn⌉ in its simulation on inputs of length n. Now, let
I = {⌈2ϵn⌉ | n ∈ R}. We will give a construction algorithm that succeeds for all input lengths
in I.

Given an input 1m, our construction algorithm H operates as follows. It starts by
computing an n such that ⌈2ϵn⌉ = m; by construction we see n = O(log m). Next, H runs
the simulation Sϵ on all inputs of length n one after the other; by construction we see that Sϵ

uses the same compression scheme Cm, Dm on all such inputs. During each simulation, if Sϵ

fails on some Find or Initialize operation and returns an incompressible string for Cm, Dm, H
halts and outputs that string. If H gets through all inputs of length n without any operation
failing, it outputs something arbitrary, say 1m. By definition we see that when m ∈ I, H
cannot get through all simulations without Sϵ failing, since by definition of I we know that Sϵ

fails to compute L on some input of length n, and by the previous section we know this can
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only happen when Sϵ fails on some Find/Initialize operation. So overall we have that H runs
in poly(2n) = 2O(n) = 2O(log m) = poly(m) time, and successfully finds an incompressible
string for Cm, Dm on input 1m for infinitely many m.

Step 4 – Wrapping Things Up. We now have that for any language L ∈ RAM-
TIME[T (n)] and every ϵ > 0, there is a machine Sϵ running in time T (n)1+O(ϵ), space T O(ϵ),
and making C, D oracle calls of length T O(ϵ), such that one of the following holds:
1. Sϵ correctly decides L on all but finitely many inputs.
2. There is a polynomial time construction algorithm which finds incompressible strings for

Cn, Dn given oracles for C, D, which works for infinitely many inputs.
Clearly if the first possibility holds then we can get a simulation of the same complexity
which decides L exactly. In addition, if the first possibility holds for all ϵ > 0, then we can
replace the O(ϵ) terms with ϵ as we take ϵ to zero. This yields the stated theorem. ◀

We now prove a variant of the above theorem, which allows us to replace the oracle for
the compressor C in our low-space simulation with nondeterminism. This will be relevant for
schemes C, D where C is significantly harder to compute then D.

▶ Theorem 29. Let T be an exponential time bound, and let C, D be a uniform compression
scheme.

Then one of the following must hold:
1. There is polynomial time algorithm with oracle access to C, D which, for infinitely many

n, outputs an incompressible string for Cn, Dn on input 1n.
2. For every language L ∈ RAM-TIME[T (n)] and every ϵ > 0, there is nondeterministic

1-tape Turing machine with oracle access to D which decides L in time T (n)1+ϵ, uses space
at most T (n)ϵ, and makes at most T (n)ϵ nondeterministic guesses on all computation
paths.

Proof. We follow the same simulation Sϵ of some language L in RAM-TIME[T (n)], with
a slight modification. The key observation is the following: the procedure Find is proven to
work with access to both C and D oracles by Lemma 25. However, recall that Lemma 25
also defines separate procedure Verify, which is able to verify that a certain J-tree seed is the
updated form of another, and this verification only needs the D oracle. Recall also the key
property relating Find and Verify, which says that Verify will accept any successful output of
a Find operation.

Thus, if we make our simulator Sϵ nondeterministic, it can replace the Find operation
by a nondeterministic guess as to the new value of the seed Mem during each phase, and
then use Verify to check that this guess is correct, which requires only the D oracle. This
immediately gives us a low space nondeterministic simulator Sϵ with similar properties as
that in the proof of Theorem 28. However, the total nondeterminism used by this simulation
is T (n)1+O(ϵ), since it has to guess a seed of length T O(ϵ) during each of the T phases.

To get away with T O(ϵ) bits of nondeterminism, we use the following trick4. At the
beginning of Sϵ’s simulation, it guesses a single seed for a separate J-tree of the same code
length, call this seed Up. Now, during phase t, to simulate an Update operation which sets
RAM cell i ∈ {0, 1}k to value s ∈ {0, 1}, we first set Mem′ = Dk[Up](t), and then check if
Verify(Mem, Mem′, i, sW , D) holds. If so we then set Mem = Mem′ and continue to the next phase,

4 This trick is essentially the “easy witness method” of [11].
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and if not then we halt the simulation and reject outright. It is straightforward to see that
this simulation runs in time T (n)1+O(ϵ), uses space T (n)O(ϵ), and guesses at most T (n)O(ϵ)

nondeterministic bits.
By the same arguments as in Theorem 28, we have that if every Verify call accepts during

Sϵ’s computation on input x, then Sϵ correctly decides if x ∈ L. To finish the proof, it
suffices to show that given some x such that Sϵ fails to decide if x ∈ L, we can construct
an incompressible string for C2ϵn , D2ϵn in poly(T (n)) time with C, D oracles; from here the
theorem follows directly using the arguments at the end of the proof of Theorem 28.

So, say we have such an x. Since our simulation errs on the side of rejecting, we know
that x ∈ L but Sϵ rejects x. We start by running the deterministic low space simulation from
Theorem 28 (corresponding to L, ϵ) on x, which can be done in poly(T (n)) time with C, D
oracles. During this simulation, we keep track of all updated memory seeds constructed using
Initialize and Find. If at any step a Find or Initialize procedure fails, we find an incompressible
string and output it. Otherwise, we have found a sequence of seeds Mem1, . . . , MemT ∈ {0, 1}W

(where W is the code length used by the simulation), such that Memt+1 represents a correct
update to the RAM memory previously represented by Memt after time step t. Now, we use
the Iter-Compress procedure to construct a seed Up ∈ {0, 1}W such that for all t ∈ {0, 1}k,
Dk[Up](t) = Memt. By Lemma 27, in poly(T (n)) time we can either find such a seed Up,
or else find an incompressible string for our scheme. But if such a string Up exists, this is
precisely the nondeterministic guess which would cause our nondeterministic simulation Sϵ

to accept x. So by assumption that it rejects x, if we get to this point then Iter-Compress
must find an incompressible string. ◀

Finally, we show that if the explicit construction algorithm in the above theorem is also
granted access to an NP oracle, we can get the same result, but where we simulate languages
in the larger class NTIME[T (n)].

▶ Theorem 30. Let T be an exponential time bound, and let C, D be a uniform compression
scheme.

Then one of the following must hold:
1. There is polynomial time algorithm with oracle access to C, D, and SAT which, for

infinitely many n, outputs an incompressible string for Cn, Dn on input 1n.
2. For every language L ∈ NTIME[T (n)] and every ϵ > 0, there is nondeterministic 1-tape

Turing machine with oracle access to D which decides L in time T (n)1+ϵ, uses space at
most T (n)ϵ, and makes at most T (n)ϵ nondeterministic guesses on all computation paths.

Proof. This will follow quite directly from the proof of the previous theorem. Let M
be some NTIME[T (n)] machine which we are attempting to simulate. At the outset of
its computation, in addition to guessing one seed Up which encodes a sequence of RAM-
seed updates, our new simulator Sϵ also guesses a second seed Wit which will encode the
nondeterministic choices made by M during its computation. In particular, after guessing this
seed, at each phase t of our simulation the simulator reads the first O(1) bits of Dk[Wit](t),
and uses this to determine which transition rule to apply at that step (in a nondeterministic
machine there can be O(1) such rules, which will be smaller then the code length of the
decompressor for sufficiently large input lengths). Otherwise we run the simulation exactly
as in the above proof.

By the same reasoning as in the previous proof, we see that if this machine accepts an
input x then x ∈ L (since the simulation errs on the side of rejection), but it is possible that
x ∈ L and the simulation fails to determine this. In such a case, the only possibility is that
for all sequences z ∈ {0, 1}O(T ) of nondeterministic guesses causing M to accept x, there is
no pair Up, Wit ∈ {0, 1}W such that Wit encodes z (as described above), and Up encodes a
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sequence of valid RAM seeds representing the deterministic computation of M on x with
witness z. Thus, if we have some input x on which our simulation fails, we can use an NP
oracle to compute a witness z causing M to accept x. We then run the deterministic low
space simulation M on x with witness z, and either find an incompressible string for C, D,
or else find a sequence of valid RAM seeds Mem1, . . . , MemT for this computation. We then
proceed as in the previous Theorem, attempting to compress the Memt to a single seed Up and
the bits of z to another seed Wit, both using the Iter-Compress procedure. By assumption
that our main nondeterministic simulation rejected x, if we get to this point we know that
one of these Iter-Compress procedures must return an incompressible string. ◀

5.2 Implications
Consider the following three hypotheses:

▶ Hypothesis 1. There exists some exponential time bound T and some ϵ > 0 such that:

RAM-TIME[T (n)] ̸⊆ 1-TISP[T (n)1+ϵ, T (n)ϵ]

▶ Hypothesis 2. There exists some exponential time bound T and some ϵ > 0 such that:

NTIME[T (n)] ̸⊆ 1-NTISPG[T (n)1+ϵ, T (n)ϵ, T (n)ϵ]

▶ Hypothesis 3. There exists some exponential time bound T and some ϵ > 0 such that:

RAM-TIME[T (n)] ̸⊆ 1-NTISPG[T (n)1+ϵ, T (n)ϵ, T (n)ϵ]

The first Hypothesis asserts that deterministic exponential time RAM computations
cannot be simulated on 1-tape machines using low space and near-linear blowup in time. The
second Hypothesis asserts roughly the same for nondeterministic computations, claiming that
such a simulation cannot occur which simultaneously uses a small amount of nondeterminism.
Recall that for nondeterministic time, the multi-tape and RAM models are roughly equivalent,
which is why we don’t make a distinction here on the left-hand side. Finally, the third
hypothesis says that deterministic RAM computations cannot be recognized by machines
with short “proofs” verifiable in low space and near-linear time on a 1-tape machine.

While 1 and 2 seem incomparable and both quite reasonable, we see that 3 is formally
stronger then the previous two, and we have significantly less intuition as to whether or not
it should be true. However, recall from Section 1.3 that when the time bound T is linear, all
three of these hypotheses are known to hold unconditionally (indeed they hold for all ϵ < 1).
In any case, the results of the previous section give us the following:

▶ Theorem 31. If Hypothesis 1 holds, then for any uniform compression scheme C, D where
both C and D are computable in polynomial time, there is a polynomial time algorithm which,
given 1n, prints an incompressible string for Cn, Dn for infinitely many n.

▶ Theorem 32. If Hypothesis 2 holds, then for any uniform decompressor D computable in
polynomial time, there exists there is a polynomial time NP-oracle algorithm which, given 1n,
prints an empty pigeonhole for Dn for infinitely many n. In particular, ENP ̸⊆ size[2n/2n].

▶ Theorem 33. If Hypothesis 3 holds, then for any uniform compression scheme C, D where
D is computable in polynomial time, there is a polynomial time algorithm using a C oracle
which, given 1n, prints an incompressible string for Cn, Dn for infinitely many n.
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In each case, the stated result follows from the fact that oracle calls of length T O(ϵ) to
a problem computable in polynomial time can be simulated directly without effecting the
resource bounds of the simulation as we take ϵ → 0. To illustrate the use of these theorems,
we first consider their implications for the compression schemes related to non-uniform
complexity measures described in Section 3.2.1. In these cases, we have some complexity
measure on strings/truth tables, such as circuit complexity, formula size, or Kpoly complexity,
and wish to construct strings/truth tables of high complexity (for infinitely many input
lengths), which we call the “construction problem.” In each case there is an associated
“compression problem” in FNP, where we are given a string/truth table and wish to find a
small circuit/formula/program computing it if one exists. For these sorts of problems, we
now have the following:

▶ Corollary 34. For each of the above mentioned uniform compression schemes related to
non-uniform complexity measures, we have:
1. If Hypothesis 1 holds, then an efficient algorithm for the compression problem implies an

efficient algorithm for the construction problem.
2. If Hypothesis 2 holds, then there is an efficient NP-oracle algorithm for the construction

problem.
3. If Hypothesis 3 holds, then there is an efficient algorithm for the construction problem

using an arbitrary oracle for the compression problem. In other words, the construction
problem reduces to the compression problem.

We see here that the conclusion of the third implication implies the conclusion of the previous
two. As noted in the introduction, the second implication can be proved by simpler techniques,
utilizing the “Easy Witness Lemma.” We give an alternate proof using this method in the
full version for the interested reader. However, for the first and third implication, the J-tree
update lemma seems necessary.

The case of large prime construction does not quite fit in with the others, as both the
compressor and decompressor given in Theorem 21 require a factoring oracle. In addition,
the second implication of Corollary 34 above is trivial when applied to the construction of
large primes, since primality testing is in P [1]. However we can still derive the following
from Theorem 31:

▶ Corollary 35. If Hypothesis 1 holds, then a polynomial time algorithm for factoring implies
a polynomial time algorithm to construct 16n-bit primes of magnitude > 2n (for infinitely
many n).

More generally we can conclude the following directly from Theorem 28:

▶ Corollary 36. One of the following is true:
1. For every exponential time bound T and every ϵ > 0, every language decidable in time

T (n) on a RAM machine can be decided in time T (n)1+ϵ and space T (n)ϵ by a 1-tape
machine with a factoring oracle, which makes oracle calls of length at most T (n)ϵ.

2. There is a polynomial time algorithm with a factoring oracle that generates 32n-bit primes
of magnitude > 2n for infinitely many n.

6 BPP, TFNP, and the Weak Pigeonhole Principle

Throughout this paper we have studied the problem of finding incompressible strings for
uniform compression schemes. As mentioned in Section 3, it would also be natural to study
the more general search problem, where a compression scheme of a fixed message/code length
is given as input in the form of a boolean circuit:
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▶ Definition 37. Lossy Code is the following problem: given circuits C : {0, 1}n → {0, 1}n−1

and D : {0, 1}n−1 → {0, 1}n, find some x such that D(C(x)) ̸= x.

It follows from the definition that Lossy Code lies in TFNP (more specifically the class
PPP defined in [18]), and reduces to the problem Empty studied in [13] and [14]. Further,
we have seen that Lossy Code admits a randomized algorithm that outputs a solution with
high probability. Since solutions can be verified efficiently, this fits it into a family of search
problems studied by Goldreich [4], whose results imply the following:

▶ Lemma 38. Lossy Code is polynomial time Turing reducible to CAPP.

Here, CAPP denotes the canonical complete problem for prBPP, where we are given as
input a circuit E : {0, 1}n → {0, 1}, and must output an approximation of Prx[E(x) = 1]
that is accurate to within ± 1

6 . A natural question is whether the converse holds, i.e. whether
CAPP reduces deterministically to Lossy Code. As hinted towards in Section 3.2, a
polynomial time algorithm for Circuit Synthesis would imply such a reduction, but an
unconditional reduction would be a major breakthrough as it would place BPP ⊆ NP.
We show here that if the compressor C in Lossy Code is allowed to be randomized, the
associated total search problem is in fact Turing-equivalent to CAPP, and thus complete for
prBPP. The problem is defined formally as follows:

▶ Definition 39. R-Lossy Code is the following problem: given C : {0, 1}n × {0, 1}m →
{0, 1}n−1, D : {0, 1}n−1 → {0, 1}n, find some x ∈ {0, 1}n such that Prr[D(C(x, r)) = x] < 1

2 .

To clarify, this is precisely the same problem as Lossy Code, except that the “compressor
circuit” C now uses some random coins. In this case, we seek a string which has a < 1

2
probability of being recoverable from its description (where the probability is taken over
the random coins of the compressor C). Just like Lossy Code this search problem is total,
but verifying a solution is no longer in P. Indeed, it may be PP-hard to determine if any
particular string is a solution, but there is a efficient randomized verification procedure that
accepts only valid solutions, and accepts a random solution with high probability.

In the full version we show the following:

▶ Theorem 40. R-Lossy Code and CAPP are Turing reducible to one another in determ-
inistic polynomial time.

An interesting takeaway from the proof of the above theorem is the following: choosing a
good fixing of the “leftover bits” in Yao’s lemma is in some sense a universal probabilistic
search problem, since derandomizing this step would give a reduction from prBPP to Lossy
Code ∈ TFNP (and in particular would imply BPP ⊆ NP). More formally:

▶ Corollary 41. Consider the following promise problem: we are given a circuit E : {0, 1}n →
{0, 1}, a matrix A ∈ {0, 1}m×n, and an index i ∈ [n], such that A fails Yao’s next-bit test
with respect to E at index i with bias ϵ = poly( 1

m ), and we must produce some z ∈ {0, 1}n−i

such that fixing the last n − i bits of E to z preserves a non-negligible bias for this next-bit
test. If this problem can be solved in deterministic polynomial time, then prBPP reduces to
Lossy Code.
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