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Abstract
It is a useful fact in classical computer science that many search problems are reducible to decision
problems; this has led to decision problems being regarded as the de facto computational task to
study in complexity theory. In this work, we explore search-to-decision reductions for quantum
search problems, wherein a quantum algorithm makes queries to a classical decision oracle to
output a desired quantum state. In particular, we focus on search-to-decision reductions for QMA,
and show that there exists a quantum polynomial-time algorithm that can generate a witness
for a QMA problem up to inverse polynomial precision by making one query to a PP decision
oracle. We complement this result by showing that QMA-search does not reduce to QMA-decision
in polynomial-time, relative to a quantum oracle.

We also explore the more general state synthesis problem, in which the goal is to efficiently
synthesize a target state by making queries to a classical oracle encoding the state. We prove that
there exists a classical oracle with which any quantum state can be synthesized to inverse polynomial
precision using only one oracle query and to inverse exponential precision using two oracle queries.
This answers an open question of Aaronson [1], who presented a state synthesis algorithm that makes
O(n) queries to a classical oracle to prepare an n-qubit state, and asked if the query complexity
could be made sublinear.
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5:2 Quantum Search-To-Decision and State Synthesis

1 Introduction

It is a useful fact in classical computer science that search problems are often efficiently
reducible to decision problems. For example, the canonical way of constructing a satisfying
assignment of a given 3SAT formula φ (if there exists one) using an oracle for the decision
version of 3SAT is to adaptively query the oracle for the satisfiability of φ conditioned on
some partial assignment to the variables of the formula. Based on the oracle answers, the
partial assignment can be extended bit-by-bit to a full assignment. Each oracle query reveals
an additional bit of the assignment. This strategy generally works for any problem in NP.
Likewise, the optimal value of an optimization problem can be calculated to exponential
accuracy using binary search. The main consequence of this is that complexity theory often
focuses on decision problems (without losing generality) and less on the complexity of search
problems.

Quantum information and computation has shifted our perspective on these traditional
notions of classical complexity theory. In this paper we consider quantum search problems,
where the goal is to output a quantum state (as opposed to a classical bit string) satisfying
some condition. In the quantum setting, it is no longer apparent that search-to-decision
reductions still hold, and thus it is unclear whether the complexity of quantum search
problems can be directly related to the complexity of corresponding quantum decision
problems.

To illustrate this, we consider the analogues of P and NP in quantum computing, which
are the complexity classes BQP and QMA, respectively1. The analogue of the NP-complete
problem 3SAT for QMA is the Local Hamiltonian problem, in which one has to decide
whether the lowest energy state of a local Hamiltonian H = H1 + · · · + Hm acting on n

qubits has energy greater than a or less than b for a− b = 1/poly(n), where each term Hi

acts non-trivially on only a constant number of qubits. This problem was proven to be
QMA-complete by Kitaev [10]. Is there an efficient search-to-decision reduction for the Local
Hamiltonians problem, or more generally for the class QMA? In other words, given quantum
query access to an oracle deciding the Local Hamiltonians problem, can a polynomial-time
quantum algorithm (i.e. BQP machine) efficiently prepare a low-energy state |ψ⟩ of a given
local Hamiltonian?

The classical strategy of incrementally building a partial assignment does not appear to
work in the QMA setting. First, there does not appear to be a natural way of “conditioning”
a quantum state on a partial assignment. Second, quantum states are exponentially complex:
the description size (complexity) of a general quantum state on n qubits is exponential
in n, and this is suspected to remain true even when considering ground states of local
Hamiltonians2. This complexity of quantum states poses a significant challenge to finding a
search-to-decision reduction for QMA; it is not clear how yes/no answers to QMA decision
problems (even when obtained in superposition) can be used to construct exponentially-
complex QMA witnesses.

On the other hand, there is a natural quantum analogue of the bit-by-bit search-to-
decision algorithm for NP that works for constructing general quantum states. This is due
to a general algorithm for state synthesis described by Aaronson in [1] (for which we give

1 Technically speaking, BQP and QMA are better thought of as the quantum analogues of BPP and MA,
respectively. However, even in this randomized setting, there are efficient search-to-decision randomized
reductions.

2 Due to the QMA ̸= QCMA conjecture [3]. Formally, there is no known poly-sized description of a witness
(proof) for every local Hamiltonian problem.
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an overview of in Section 1.1): there exists a polynomial-time quantum algorithm A such
that every n-qubit state |ψ⟩ can be encoded into a classical oracle f where, by making O(n)
superposition queries to the oracle f , the algorithm A will output a state that is exponentially
close to |ψ⟩. One can observe that for states |ψ⟩ that QMA witnesses (such as ground states of
local Hamiltonians), the oracle f corresponds to a PP function (which is at least as powerful
as a QMA oracle). This yields a search-to-decision reduction for QMA, albeit with a decision
oracle of higher complexity.

In this work, we explore the complexity of search-to-decision procedures in the quantum
setting, where the goal is a quantum state synthesis algorithm that outputs a target quantum
state (e.g. a ground state of a local Hamiltonian) by making quantum queries to a classical
decision oracle. We investigate how the complexity of the state synthesis algorithm and the
complexity of the decision oracle depend on the type of states we want to generate. We
consider both the generalized state synthesis problem for abritrary states in the Hilbert space
(C2)⊗n as well as the specific task of generating solutions to QMA problems.

We construct state synthesis and search-to-decision procedures for the quantum setting
using only one or two superposition queries as opposed to O(n) superposition queries; for QMA
witnesses, the synthesis procedure requires only one query to a PP oracle. Simultaneously,
we prove results suggesting the impossibility of any search-to-decision reduction for QMA.
More precisely, we show that there exists a quantum oracle O relative to which all efficient
query algorithms fail to be a good search-to-decision reduction for QMAO, the relativization
of QMA. This stands in contrast to classes such as NP, MA, and QCMA, which all have
efficient search to decision reductions, relative to any oracle. As a consequence, proving
impossibility of QMA search-to-decision without an oracle is at least as hard as separating
QCMA and QMA which is at least as hard as separating P and PP. We believe that the
juxtaposition of our results lend further weight to the view that the complexity of tasks where
the outputs (and inputs) are quantum states cannot be directly explained by the traditional
study of decision problems (which has been the main focus of quantum complexity theory
to date). In particular, we believe our results suggest that the relationship between search
and decision problems is much more mysterious in the quantum setting. As suggested by
Aaronson in [1] and others in some recent works [11, 14], the complexity of quantum states
(and more generally, quantum state transformations) deserves to be studied more deeply as a
subject in its own right.

1.1 Starting point
Before describing our results in more detail, we first explain the starting point for our
investigations, which is a simple state synthesis algorithm described by Aaronson [1] in his
lecture notes. He shows that there exists a poly(n)-time quantum algorithm A which makes
O(n) quantum queries to a classical oracle such that for every n-qubit state |ψ⟩ =

∑
x αx |x⟩,

there exists a classical oracle f for which the algorithm AOf will output a state that is
exp(−n)-close to |ψ⟩. In [1], Aaronson raises the question as to whether his protocol can be
improved to a sublinear number of queries. We show, in fact, that 1 query is sufficient to
achieve polynomially small error in synthesizing arbitrary states and 2-queries are sufficient
for exponentially small error. Both the 1-query and the 2-query algorithms given here require
exponential time and polynomial space.

To understand Aaronson’s state synthesis algorithm, we first observe that we can write
any quantum state in the form

|ψ⟩ =
∑

x∈{0,1}n

eiθx
√

Pr[X = x] |x⟩ (1)

CCC 2022



5:4 Quantum Search-To-Decision and State Synthesis

where Pr[X = x] is the probability distribution of some n-bit random variable X and
{θx}{0,1}n are a set of phases. The synthesis algorithm performs 2n queries to synthesize the
“QSample state”.∑

x∈{0,1}n

√
Pr[X = x] |x⟩ (2)

and then performs two additional queries at the end to apply the phases eiθx to each basis
state |x⟩.

The 2n-query procedure to build the QSample state works in n stages. Inductively assume
that after the kth stage, for k < n, the intermediate state of the algorithm is the k-qubit
state ∑

y∈{0,1}k

√
Pr[X≤k = y] |y⟩ (3)

where Pr[X≤k = y] denotes the marginal probability of the first k bits of X are equal to y.
Controlled on the prefix |y⟩ the algorithm queries the oracle f to obtain a (classical description
of) the conditional probabilities Pr[Xk+1 = 0 | X≤k = y] and Pr[Xk+1 = 1 | X≤k = y], and
prepares a (k + 1)st qubit in the state√

Pr[Xk+1 = 0 | X≤k = y] |0⟩+
√

Pr[Xk+1 = 1 | X≤k = y] |1⟩ . (4)

The algorithm performs another query to f to uncompute the descriptions of the conditional
probabilities. The resulting k + 1 qubit state is then equal to∑

y∈{0,1}k+1

√
Pr[X≤k = y≤k] ·

√
Pr[Xk+1 = yk+1 | X≤k = y≤k] |y⟩ (5)

=
∑

y∈{0,1}k+1

√
Pr[X≤k+1 = y] |y⟩ (6)

which maintains the desired invariant. After the nth stage, a similar process applies the
phases {θx} to generate the output state. The approximations come in when the conditional
probabilities and phases are specified with poly(n) bits of precision, which result in the final
state being at most exp(−n) far from the ideal target state |ψ⟩. With this O(n)-query state
synthesis algorithm in mind, we now proceed to describe our results.

1.2 Our results
A one-query search-to-decision algorithm for QMA with a PP oracle. We show Section 2
that in the case of generating physically relevant states, i.e. solutions to QMA problems, such
as the low-energy states of local Hamiltonians, that there exists a one-query search-to-decision
algorithm using a PP oracle. While one would hope to find a search-to-decision reduction
in which the oracle complexity is only QMA, PP is the smallest complexity class containing
QMA for which we can construct an oracular algorithm for search problems. Furthermore,
given our no-go result for QMA search-to-decision (see below), this may be the optimal
search-to-decision algorithm.

▶ Theorem 1 (QMA-search to PP-decision reduction). There exists a probabilistic polynomial
time quantum algorithm making a single query to a PP phase oracle such that, given as
input a QMA problem, either aborts or outputs a witness |ϕ⟩. The algorithm will succeed in
outputting a witness (i.e. not abort) with all but inverse exponential (in the system size)
probability.
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Table 1 Summary of past work and our results on upper bounds for search-to-decision reductions
and state synthesis. The “complexity class” column refers to the complexity of the search problem
(e.g. computing NP witnesses, or QMA witnesses). The other columns refer to the algorithmic results
known for the specified number of queries; furthermore these are quantum queries performed by
quantum algorithms in superposition.

Complexity class 1 query 2 queries O(n) queries

NP NP oracle, Ω(n−1)
success probability

← NP oracle,
classical queries (folk-
lore)

QCMA QCMA oracle, Ω(n−1)
success probability

← QCMA oracle,
classical queries (folk-
lore)

QMA PP oracle, 1/poly(n)
precision, The-
orem 1

← (Theorem 4 applies
but is time-inefficient)

PP oracle, 1/exp(n)
precision [1]

QMAexp
(= PSPACE)

PSPACE oracle
Ω(1) overlap,
Theorem 1

← (Theorem 4 applies
but is time-inefficient)

PSPACE oracle,
1/exp(n) precision [1]

Arbitrary states Arbitrary oracle,
1/poly(n) precision,
Theorem 3

Arbitrary oracle,
1/exp(n) precision, 2
queries,
Theorem 4

Arbitrary oracle,
1/exp(n) precision [1]

To start sketching the proof, it is fruitful to notice that a single oracle query |x⟩ Of7→
(−1)f(x) |x⟩ for x ∈ {0, 1}n potentially contains 2n bits of information and a quantum state
requires 2n complex numbers to describe. Furthermore, the collection of 22n states

|pf ⟩
def= OfH

⊗n |0n⟩ =
∑

x∈{0,1}n

(−1)f(x) |x⟩ (7)

defined for any function f : {0, 1}n → {0, 1} are a diverse set of states in the Hilbert space.
These states, referred to as phase states henceforth, despite not forming an ϵ-net for (C2)⊗n,
turn out to provide a good approximation for (C2)⊗n when considering the Haar-random
distribution3. It follows that if we wanted to synthesize the witness to a QMA-complete
problem, such as a low-energy state |τ⟩ for a local Hamiltonian problem, it suffices to build
phase state |pf ⟩ with constant overlap with the low-energy subspace. Finding a state with
constant overlap with the target state is sufficient because QMA is efficiently verifiable, and
given a state with constant overlap with the low-energy subspace, it is possible to distill a
low-energy state with constant probability (by performing an energy measurement). However,
it is not necessarily the case that a low-energy state of QMA problem will have a good
approximation by a phase state. To solve this issue, we prove that for any state |τ⟩, with
high probability C |τ⟩ will have a good approximation by a phase state where C is a random

3 Recall, the Haar-measure is the unique left- and right- invariant distribution over unitary matrices over
(C2)⊗n and the Haar-random distribution is the distribution over quantum states U |0n⟩ where U is
sampled according to the Haar-measure.

CCC 2022



5:6 Quantum Search-To-Decision and State Synthesis

Clifford unitary. Therefore, we can instead attempt to synthesize C |τ⟩ which is the result of
Theorem 1. In particular, if we can synthesize a phase state |p⟩ that has constant overlap
with C |τ⟩, then C† |p⟩ will have constant overlap with the target |τ⟩.

Furthermore, we show that, using a slight modification of the same algorithm, we
can perform a somewhat weaker one-query search-to-decision reduction for QMAexp (see
Theorem 2.4 of the full version [8] for details). Recall QMAexp is the class of non – deterministic
quantum computations with only an inverse exponential gap between completeness and
soundness and is known to equal PSPACE [7, 6]. Our algorithm prepares a witness state
with constant overlap with a low-energy state with one query to a PSPACE oracle (note
that here, we cannot efficiently amplify the overlap with an energy measurement due to the
inverse-exponential energy gap). As a further observation, we also show that quantum query
access to a classical oracle gives one-query search-to-decision reductions when the witness
is classical: in particular, for QCMA and NP (see Theorem 2.7 of the full version [8] for
details). The one-query algorithm preparing the witness first reduces QCMA to unique QCMA
(UQCMA) using the Valiant-Vazirani reduction [4], and then uses the Bernstein-Vazirani
algorithm to extract the unique polynomial length witness with a single query.

A no-go result for search-to-decision for QMA. The previous result shows that search-to-
decision reductions for QMA are possible with a PP decision oracle. However, the optimal
search-to-decision reduction for QMA is with a QMA decision oracle (rather than a stronger
PP oracle). We provide evidence that this is unlikely to exist: we prove that there is a
quantum oracle relative to which QMA search-to-decision is impossible. This stands in
contrast to classes such as NP, MA, and QCMA, which all have efficient search to decision
reductions, relative to any oracle.

More precisely, we show that there exists a quantum oracle O relative to which all efficient
query algorithms fail to be a good search-to-decision reduction for QMAO, the relativization
of QMA. The oracle O is a reflection I− 2 |ψ⟩⟨ψ| about a Haar-random state |ψ⟩; we rely on
the concentration of measure phenomenon of the Haar measure to prove this oracle no-go
result. We formalize this result in Section 3.

▶ Theorem 2 (Oracle impossibility for QMA search-to-decision). There exists a quantum oracle
O relative to which all poly(n)-time query algorithms fail to be a good search-to-decision
reduction for QMAO.

A one-query state synthesis algorithm with inverse polynomial error. We also investigate
the query complexity of synthesizing an arbitrary state, in the same spirit as Aaronson’s
adaptive state synthesis algorithm outlined in Section 1.1. In particular, we show that that
every state |τ⟩ can be encoded into a classical oracle fτ such that by making one query to |τ⟩,
a quantum algorithm can prepare |τ⟩ with inverse polynomial error. The space complexity of
the synthesis algorithm is polynomial in n, the number of qubits in the target state |τ⟩, but
the time complexity is exponential. The starting point for the 1-query algorithm is the same
observation used in the protocol for synthesizing QMA witnesses, which is that a random
state has an expected constant overlap with some phase state. We can think of the oracle
function fτ as hard-coding the target |τ⟩, but parameterized by unitary U and standard
basis state x. The oracle fτ (U, x) = sgn(Re(⟨x|Uτ⟩)) can be used to create a phase state
|pU ⟩ which has constant overlap with U |τ⟩ with high probability for random U . The state
U† |pU ⟩ is already then a decent approximation for |τ⟩.

There are two remaining techniques to improve upon this basic synthesis protocol. First,
we use a novel distillation procedure based on the swap test (explained below) to take
a polynomial number of states generated in this manner, using unitaries U1, . . . , , Um, to
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create a single aggregated output state with greater overlap with the target state. Note that
since the target state |τ⟩ is arbitrary, we do not have a means of measuring the overlap of
an output state with |τ⟩ to boost the overlap as we did when the target state is a QMA
witness. Secondly, we address the fact that the algorithm described above suffers from
needing exponential space complexity; this is because specifying a Haar-random unitary on n
qubits requires exp(Ω(n)) space, and thus the oracle fτ (U, x) needs to act on exponentially
many input bits. We derandomize this construction, and show via the probabilistic method
that there exists a single choice of unitaries U⋆,1, . . . , , U⋆,m that works for all n-qubit states.
This will reduce the space complexity of the algorithm to polynomial, although implementing
the unitaries will still require exponential time.

▶ Theorem 3 (One Query State Synthesis – Informal). There is a 1-query algorithm that uses
polynomial space and exponential time that synthesizes a state ρ such that Tr{ρ |τ⟩⟨τ |} ≥
1− 1/q(n) for some polynomial q and an arbitrary target state |τ⟩.

The Swap Test Distillation Algorithm. This procedure takes in a polynomial number of
states each of which has at least a constant overlap with the target state and outputs a
state whose overlap with the target is at least 1 − 1/poly. In some sense, the Swap Test
Distillation algorithm provides a way to take the “mean” of a collection of quantum samples
where each state can be decomposed into a “signal” component and a “noise” component
such that (1) the signal is some constant fraction of the mass and (2) the noise is roughly
random. This may be useful in other contexts in quantum algorithms.

For formally, the algorithm requires that the sequence of input states |ψ1⟩ , . . . , |ψm⟩
satisfies two properties. The first is that there is a constant a such that | ⟨ψj |τ⟩ |2 ≥ a for all
j. (We also show that this condition can be relaxed so that the expected overlap of each
input state with the target state is at least a, as long as the input states are independently
generated.) The second condition is that for every pair of input states, their components
orthogonal to |τ⟩ are close to orthogonal to each other:

| ⟨ψj | (I− |τ⟩⟨τ |) |ψi⟩ |2 ≤ δ, (8)

for δ exponentially small in n. Intuitively, one can imagine that if the |ψj⟩ are generated
independently, then the error vectors (the components perpendicular to |τ⟩) would be random
and uncorrelated. We prove that under these two conditions, if the number of states is a
sufficiently large polynomial, then the overlap of the resulting aggregated state with |τ⟩ is at
least 1− 1/poly. The algorithm is based on the observation that if the swap test is applied
to a pair of states which each have overlap at least a with the target state, then conditioning
on the swap test succeeding (measuring a 0 in the output bit), the state in each register has
an overlap with the target state that is strictly larger than a. In each round of the algorithm,
the surviving states are paired up and the swap test is applied to each pair. One state from
every pair that succeeds the swap test advances to the next round.

A two-query state synthesis algorithm with inverse exponential error. While we do
not know how to improve the error of the previous one-query algorithm beyond inverse
polynomial, we show that there is a two-query state synthesis algorithm that achieves inverse
exponential error.

▶ Theorem 4 (Two Query State Synthesis – Informal). There is a 2-query algorithm that uses
polynomial space and exponential time that with high probability synthesizes a state ρ such
that Tr{ρ |τ⟩⟨τ |} ≥ 1− 1/r(n) for some function r = exp(n) and an arbitrary target state |τ⟩.

CCC 2022



5:8 Quantum Search-To-Decision and State Synthesis

Like with the one-query synthesis algorithm, we take advantage of the properties of
Haar-random unitaries. Let |τ⟩ denote the target state to be synthesized. Whereas the
basic building block of the one-query algorithm described is to synthesize the phase state
corresponding to U |τ⟩ where U is a Haar-random unitary, the two-query algorithm attempts
to directly synthesize the state U |τ⟩, and then apply the inverse unitary U† to recover |τ⟩.
Since U is Haar-random, the distribution of U |τ⟩ is that of a Haar-random state.

We then argue that with overwhelmingly high probability, a Haar-random state can be
synthesized via two queries to a classical oracle. This relies on the observation that the
amplitude profile of a Haar-random state concentrates extremely tightly around a fixed profile.
By profile, we mean the list of absolute values of amplitudes of the state in sorted order.
In other words, there exists a fixed, universal state |θ⟩ =

∑
x βx |x⟩ such that, with very

high probability, a Haar-random state |ψ⟩ =
∑

x αx |x⟩ satisfies the following: there exists a
permutation σ on the set of basis states |x⟩ such that the distance∥∥∥∥∥|θ⟩ −∑

x

|αx| |σ(x)⟩

∥∥∥∥∥ (9)

is exponentially small. To prove this, we utilize bounds from the theory of optimal transport
that control the convergence of the Wasserstein distance (also known as the Earth Mover
Distance) between a log-concave distribution and the empirical distribution resulting from
sampling from the distribution.

Given this, the two-query algorithm to synthesize |τ⟩ to exponential precision is clear:
the algorithm first prepares the universal state |θ⟩. It then queries the classical oracle to
determine how to permute the basis states |x⟩ and what phase to apply to all the basis
states. The algorithm applies the permutation and the phases in superposition. Finally, the
algorithm queries the oracle again to uncompute the permutation/phase information.

Just as with the one-query algorithm, we also perform a derandomization step in order to
make the query algorithm space-efficient (but not necessarily time-efficient). By expanding
the dimension of the random unitary U , we show that there exists (via the probabilistic
method) a single unitary U⋆ that maps every target state |τ⟩ to one whose amplitude profile
is exponentially close to the universal one.

Open Questions. We conclude with some open questions which are elaborated in greater
detail in Section 7. Can the 1- and 2-query algorithms for general state synthesis be improved
to polynomial time by using random Cliffords instead of Haar-random unitaries? Is there
a 1-query algorithm for state synthesis that also achieves inverse exponential error? What
is the power of a QMA decision oracle? In particular, what states can be synthesized with
queries to a QMA oracle in superposition? Is there a weaker oracle class than PP that can
achieve search-to-decision for QMA witnesses?

Preliminaries. Preliminaries and definitions necessary are listed in Appendix A of the full
version [8].

2 Search-to-decision for QMA problems

In the traditional search-to-decision paradigm, the goal is to create a witness |ψ⟩ which could
convince a verifier that indeed some string is in a particular QMA language. The creation of
this witness should be carried out by a quantum machine running in polynomial time with
access to a QMA oracle. There are multiple ways to relax this paradigm; here we consider
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using a PP oracle instead of a QMA oracle and show that there is a polynomial time quantum
algorithm which makes only one PP oracle call4 and generates a solution to a QMA-complete
problem.

Our algorithm proceeds from two observations:
1. Any phase state |pf ⟩ = 2−n/2 ∑

x∈{0,1}n(−1)f(x) |x⟩ for which the function f is computable
in PP may be prepared by a single quantum query to a PP oracle.

2. Any state |τ⟩, after applying a random unitary U , looks like a phase state: in particular,
with high probability over the choice of U , the state U |τ⟩ has constant overlap with some
phase state.

2.1 One-query search-to-decision for QMA
We now consider the QMA search problem with respect to phase oracles. In general, the
statement of the QMA search problem is to construct, given a verification circuit for some
QMA language, and an input χ in the language, a state |ψχ⟩ that is accepted by the
verification circuit with high probability. Rather than working with general verifiers, we will
restrict to verifiers that measure the energy of a local Hamiltonian on the witness state up
to inverse-polynomial precision. This restriction is almost without loss of generality, for two
reasons. First, the local Hamiltonian problem with this precision is QMA-complete, so any
QMA language has a verifier of this form. And secondly, the reduction to local Hamiltonian
can be performed so that every low-energy state is very close to an accepting witness |ψ⟩ for
the original verifier. More precisely, given a general QMA verification circuit V , we can apply
the padding trick of Nirkhe, Vazirani and Yuen [13] to generate a local Hamiltonian instance
H such that any ground-state ρ of H, ∥ρ− σ ⊗ Φ∥ ≤ δ where σ is an accepting witness of V
and Φ is a fixed state independent of the instance. The size of the Hamiltonian instance H
scales as poly(1/δ) and therefore the approximation can be chosen as any inverse polynomial
function of the system size.

Assume the input to the problem is an instance χ = (H, a, b) of the Local Hamiltonian
problem with Hamiltonian H on n qubits and two thresholds a < b such that b−a = 1/poly(n).
Moreover, we assume that χ is a YES instance, so the minimum eigenvalue of H is at most
a: λmin(H) ≤ a. The goal is to construct a state |ϕ⟩ such that

⟨ϕ|H|ϕ⟩ ≤ a+ b

2 . (10)

While it would be ideal to construct a state for which the energy is at most a (since one exists),
this may drastically increase the computational complexity of the function f : {0, 1}n → {0, 1}
defining the oracle. Instead, due to the promise gap in the problem, it suffices to construct
a witness state which proves that the Hamiltonian has a state with energy at most < b. A
state |ϕ⟩ satisfying eq. (10) is a proof that χ is a yes instance. We now prove the formal
version of Theorem 1.

▶ Theorem 5 (QMA-search to PP-decision reduction). There exists a probabilistic polynomial
time quantum algorithm with access to a single PP phase oracle query that, given as input an
instance (H, a, b) of the local Hamiltonian problem on n qubits, either aborts or outputs a
witness |ϕ⟩ with ⟨ϕ|H|ϕ⟩ ≤ (a+ b)/2 for b− a = 1/poly(n). The algorithm will succeed in
outputting a witness (i.e. not abort) with probability5 ≥ 1/1024.

4 The improvement over the algorithm of Aaronson [1] is in the number of oracle queries.
5 We will later argue that this probability can be amplified through a variation of parallel repetition to

improve to any function 1− exp(−n).
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See Theorem 2.1 in the full version [8] for proof.
We remark that we see that the algorithm achieves something stronger: if the algorithm

does not abort, then the output state is almost entirely supported on states of energy less
than a+ (b− a)/4 + ϵ, where ϵ = 1/poly(n) is a precision parameter much smaller than b− a.
This is performed by using phase estimation to “check” the outcome of the query algorithm
by measuring the energy.

At this point, it is useful to remember that in general, the notion of a QMA witness is
defined only with reference to a specific verifier. The guarantee we achieve ensures that
the “standard” verifier, which measures the energy of the local Hamiltonian H, has a high
chance of accepting the given state. If one is willing to use a more sophisticated verifier,
e.g. a verifier that performs the Marriott-Watrous amplification procedure [12], a witness of
considerably worse quality could still be acceptable. Our theorem also sidesteps the issue of
unique witnesses: we only guarantee that the energy of our state is low, not that it is the
unique such state.

One can easily boost probability that our algorithm does not abort to 1− exp(−n) by
repeating the construction in parallel with independent randomness and selecting any witness
which did not cause the algorithm to abort. Furthermore, from the design of the algorithm,
one can merge the oracle queries into a single larger PP query6, so the query complexity does
not increase.

Additional remarks. In Section 2.1 of the full version [8], we also provide remarks on why
it is difficult to improve the oracle complexity as well as how to extend this argument for the
class QMAexp = PSPACE (see Section 2.2 of the full version [8]). Furthermore, Section 2.3
of the full version [8] includes a completely different procedure, which generates one oracle
query search-to-decision for QCMA.

3 Impossibility of search-to-decision for QMA in oracle model

In this section we show that efficient search-to-decision reductions for QMA do not exist
in general in the oracle setting, perhaps providing some evidence that QMA does not have
efficient search-to-decision reductions “in the real world.” More precisely, we show that there
exists a quantum oracle O relative to which all polynomial-time quantum query algorithms fail
to be a good search-to-decision reduction for QMAO, the relativization of QMA. Equivalently,
QMAO-search problems are not reducible to QMAO-decision problems. We contrast this
impossibility result with the fact that complexity classes like NP, MA and QCMA all have
efficient search-to-decision reductions, relative to any oracle (i.e. the reductions relativize)!
For example, it is not hard to verify that the search-to-decision procedure for QCMA described
in Section 2.3 of the full version [8] relativizes. Thus, Theorem 6 illustrates that, at least
in the relativized setting, changing the proof model from classical to quantum nullifies the
possibility of search-to-decision reductions.

We first define QMAO by way of a complete problem. Fix a small constant δ < 1
100 .

Define an O-verifier circuit C to be a quantum circuit that can make queries to O (which can
be viewed as applying a unitary gate for O), and also takes as input a quantum proof state
|ϕ⟩, as well as some ancilla qubits set to |0⟩. Define the promise problem O-QCircuitSAT

6 One way to see that the merged oracle is also definable in PP is through the connection PP = PostBQP.
The merged oracle can be seen as the logical exclusive-or (XOR) of multiple PP functions, and it is easy
to create a new PostBQP function equal to the logical XOR of multiple PostBQP functions.
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whose YES instances consist of O-verifier circuits C for which there is a quantum proof
state |ϕ⟩ such that C(|ϕ⟩) accepts with probability at least 1− δ, and the NO instances are
those circuits such that on all quantum witness states, C accepts with probability at most δ.
Without access to O, this is simply the canonical QMA-complete problem QCircuitSAT.
The class QMAO is then the set of all promise decision problems that are polynomial-time
reducible to O-QCircuitSAT.

Now we formalize the notion of search-to-decision reductions for QMAO. Consider
quantum circuits that can make queries in superposition to both the quantum oracle O and
a classical oracle AO that decides the promise problem O-QCircuitSAT as well as the
controlled-versions of these oracles. Alternatively, we can consider a standard quantum circuit
with special oracle “gates” implementing O and AO unitary transformations. Specifically,
the oracle AO implements the unitary transformation

|C⟩ |b⟩ 7→ |C⟩ |b⊕AO(C)⟩ (11)

where C is supposed to be a description of an O-oracle circuit, b ∈ {0, 1}, AO(C) ∈ {0, 1} with
AO(C) = 1 if C is a YES instance of O-QCircuitSAT, AO(C) = 0 if C is a NO instance,
and otherwise AO(C) is defined arbitrarily. This is sufficiently general as we previously
remarked that all QMAO problems can be expressed as O-oracle circuits C. We then say
that such a quantum circuit S is an ϵ-good search-to-decision reduction for the problem
O-QCircuitSAT – or, alternatively, ϵ-solves the search version of O-QCircuitSAT – if
when given a YES instance C of O-QCircuitSAT, it outputs a state that is accepted by C
with probability at least 1− δ − ϵ.

We now state the main result of this section (the technical version of Theorem 2).

▶ Theorem 6. There exists a constant ϵ > 0 and a quantum oracle O relative to which there
is no poly(n)-sized ϵ-good search-to-decision reduction for O-QCircuitSAT.7

See Theorem 3.1 in the full version [8] for proof.

4 1-query state synthesis algorithm with polynomially small error

We describe here a 1-query, polynomial-space algorithm that achieves polynomially small
error. The state synthesis algorithm will not be efficient. We will start with a first attempt,
which has exponential space complexity and then fix it so that it has polynomial space
complexity. The algorithm makes use of the Swap Test Distillation algorithm described in 5
that takes as input a polynomial number of states, each with at least constant overlap with
the target state, and uses successive applications of the Swap Test to produce a final state
whose overlap with the target state is at least 1− 1/poly(n).

4.1 A space-inefficient algorithm
Let d = 2n, n′ = n2, and d′ = 2n′ . The m applications of the 1-query algorithm along
with the Swap Test Distillation algorithm will be applied to n′-qubit registers with target
state |τ ′⟩ = |τ⟩ ⊗ |0⟩⊗(n′−n). The expansion of the space is important for derandomizing the

7 Technically, we should be considering an infinite family of oracles O and AO where each oracle is
parameterized by some input length n. However for simplicity we shall just deal with one input length;
we will forgo the trouble of spelling out the details of stating our results for asymptotic n. To that end,
let O be a unitary that acts on n qubits, and we only consider O-verifier circuits who accept n-qubit
quantum proof states; the verifier circuits themselves will be of size poly(n).
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algorithm later on. In particular, we will show that there is a fixed sequence of unitaries
that works for all |τ ′⟩ of the form |τ⟩ ⊗ |0⟩⊗(n′−n). This will allow us to hard-code the
unitaries into the oracle function. The resulting algorithm will still require exponential time
to implement the unitaries, but the derandomized algorithm will require only polynomial
space.

We will define a function fτ ′ : U(d′)× {0, 1}n′ → {0, 1}, where U(d′) is the space of all
unitaries on a d′-dimensional Hilbert space, and

fτ ′(U, x) def= sgn (Re (⟨x|U |τ ′⟩)) (12)

The corresponding phase state is

|pU ⟩ =
∑

x∈{0,1}n′

(−1)fτ′ (U,x) |x⟩ (13)

OneQueryStateSynthesis (space inefficient version)
(1) for j = 1, . . . ,m in parallel:
(2) Sample Haar-random n′-qubit unitary Uj .
(3) In the jth n’-qubit register, prepare the equal superposition

∑
x∈{0,1}n′ |x⟩.

(3) Controlled on basis state |x⟩, query the oracle on input (Uj , x) to apply
fτ ′(Uj , x) and produce phase state

∣∣pUj

〉
on n′ qubits.

(4) Apply U†
j to the phase state.

(5) Apply the SwapTestDistillation Algorithm (Figure 2) to the m resulting
states |ψ1⟩ , . . . , |ψm⟩.

(6) Output the first n qubits of any surviving register.

Figure 1 Pseudo-code for the OneQueryStateSynthesis query algorithm that uses exponential
space complexity.

The algorithm will output m expanded registers on n′ qubits. We will apply the Swap
Test Distillation algorithm to m states on n′ qubits generated by m parallel (and independent)
applications of the 1-query algorithm and analyze the probability that the resulting state
has at least 1− 1/poly(n) overlap with |τ ′⟩. The mixed state ρ in the first n-qubits will also
have Tr{ρ |τ⟩⟨τ |} ≥ 1− 1/poly(n).

The following lemma establishes that with high probability after step (4) of the algorithm,
the conditions for the Swap Test Distillation Algorithm are met.

▶ Lemma 7 (Probability Conditions Satisfied for Swap Test Distillation). Let |ψ1⟩ ⊗ · · · ⊗ |ψm⟩
be the states in the m registers after Step (4). There is a constant C such that
1. PrU1,··· ,Um

[
minj{| ⟨ψj |τ ′⟩ |2} ≤ 1/8

]
≤ m · exp(−Cd′)

2. PrU1,··· ,Um

[
maxi̸=j{| ⟨ψi| (I − |τ ′⟩⟨τ ′|) |ψj⟩ |2} ≥ (d′)−1/4]

≤ m2 · exp(−C(d′)1/2)
See Lemma 4.1 in the full version [8] for proof.

4.2 A space-efficient algorithm
The algorithm described above suffers from needing exponential space complexity; this is
because specifying a Haar-random unitary on n′ qubits requires exp(Ω(n′)) space, and thus
the oracle f(U, x) needs to act on exponentially many input bits. We derandomize this
construction, and show via the probabilistic method that there exists a single choice of
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unitaries U⋆,1, . . . , , U⋆,m that works for all n-qubit states – this is why we expanded the
space to dimension d′.

Let |v1⟩ , . . . , |vD⟩ denote an ϵ-net for the space of n-qubit quantum states where ϵ = d−1.
Then there at most D ≤ ϵ−d = dd states in this enumeration. Fix an index 1 ≤ i ≤ D.
Imagine running the 1-query protocol in Figure 1 in parallel m times with target state
|vi⟩ ⊗ |0⟩. The probability that the protocol fails to satisfy the conditions for the Swap
Test Distillation algorithm from Lemma 7 is at most 2m2exp(−Ω((d′)3/4)) over the choice of
U1, . . . , Um. By a union bound, the probability that a random choice of U1, . . . , Um fails to
satisfy the conditions from Lemma 7 for a single one of the |v1⟩ , . . . , |vD⟩ is at most

dd · 2m2exp(−Ω((d′)1/2)) ≤ 2n2n

· 2m2exp(−Ω(2n2/2)). (14)

Since m is polynomial in n, for sufficiently large n, this probability is less than 1. Thus there
exists a choice of unitaries U⋆,1, . . . , , U⋆,m that results in a set of m states that satisfy the
conditions for the Swap Test Distillation algorithm for all the |v1⟩ , . . . , |vD⟩. Hardcode these
unitaries into the algorithm and oracles: fτ,i(x) = fτ (U⋆,i, x). Now the oracles only take n′

bits as input each, and the resulting query algorithm now only requires poly(n) space. Note
that the implementation of the unitaries U⋆,1, . . . , , U⋆,m will not be time-efficient in general,
but they are still fixed unitary operators that act on n′ qubits.

Thus for an arbitrary target state |τ⟩, use the oracles fvi
(U⋆,1, x), . . . , fvi

(U⋆,m, x) cor-
responding to the nearest state |vi⟩ in the ϵ-net, which is within d−1 of |τ⟩. Therefore,
the one-query algorithm using unitaries U⋆,1, . . . , , U⋆,m, followed by the Swap Distillation
Algorithm will incur an additional O(d−1) error.

▶ Theorem 8 (One Query State Synthesis Performance). For every polynomial q, there is
a polynomial p and constant C ′ such that if the OneQueryStateSynthesis is run with
m ≥ p(n) registers, then with probability at least 1− exp(−C ′n), the algorithm produces a
state ρ such that Tr{ρ |τ⟩⟨τ |} ≥ 1− 1/q(n). The oracle queried by the algorithm will depend
on the closest state to |τ⟩ in the ϵ-net.

See Theorem 4.2 in the full version [8] for proof.

5 Swap test distillation procedure

If a synthesis protocol is able to produce a state with at least constant overlap with the
target state and the target state is a witness for a QMA verifier, then phase estimation can
be used to boost the overlap and the probability of success. If the target state is an arbitrary
state, we may not have the means to directly measure whether the output state is close to
the target. In this section we describe a procedure that can take the output of m parallel
applications of a state synthesis protocol, each of which has a constant overlap with the
target state and apply a procedure to increase the overlap. The algorithm begins with m

states, |ψ1⟩ , . . . |ψm⟩, each of which is stored in an n-qubit register. We show that if the
number of states m is a sufficiently large polynomial in n, then the overlap of the final output
state will be at least 1− 1/poly(n), with high probability. The distillation process is based
on the Swap Test and works subject to two conditions on the collection of input states:
1. For all j, | ⟨ψj |τ⟩ |2 ≥ a, for some constant a.
2. For all i ̸= j | ⟨ϕj |ϕi⟩ |2 ≤ δ, where δ is exponentially small in n and for all j

|ϕj⟩
def= |ψj⟩ − ⟨ψj |τ⟩ |τ⟩
∥|ψj⟩ − ⟨ψj |τ⟩ |τ⟩∥

. (15)
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The second condition is satisfied if the portion of each state |ψj⟩ that is perpendicular to
the target state |τ⟩ is essentially random. If the |ψj⟩’s are generated according to some
independent randomness, one might expect that the overlap between these perpendicular
components to be (exponentially) small. In this section, we analyze the behavior of the Swap
Test distillation procedure subject to these two properties. At the end of the section, we
will show that the first condition can be relaxed to a lower bound on the expectation of the
overlap as long as the m states are generated according to some independent randomness. In
Section 4, we showed how the algorithm can be used in conjunction with a 1-query protocol
to produce a state that has 1− 1/poly(n) overlap with the target state.

The Algorithm
Each round of the algorithm begins with some set of surviving registers. The surviving
registers are paired up and the swap test is applied to each pair. An auxiliary qubit is used
in each application of the swap test which is measured at the end of the swap test. If the
outcome is 0 (a successful outcome), then one of the two registers is selected to survive to
the next iteration. If the outcome is 1 (an unsuccessful outcome), neither register survives.
Figure 2 shows the pseudocode for the procedure. Figure 3 shows an example of the procedure
for one iteration applied to eight input states. Note that the state in a surviving register
may be entangled with the other registers. If ρ is the reduced density matrix of the state
in one of the surviving registers obtained by tracing out the other registers, we will refer
to Tr{ρ |τ⟩⟨τ |} as the overlap of ρ with |τ⟩. We will show that for m sufficiently large, with
high probability the overlap of a surviving register with |τ⟩ is at least 1− 1/poly(n).

Consider one round of the algorithm applied to a particular pair of registers. We will
prove that if the swap test succeeds, then the surviving register has an overlap with |τ⟩
that is at least the average of the overlap of the states in the two registers before the round.
Moreover, if each of the two registers at the beginning of a round have overlap at least γ,
then the overlap of a surviving register is strictly larger than γ and with enough successful
rounds will tend towards 1.

The analysis of the swap test distillation is provided in Section 5.1-2 of the full version [8].

6 2-query state synthesis algorithm with exponentially small error

We now describe a 2-query state synthesis algorithm that achieves exponentially small error.
Like with the 1-query algorithm from Section 4, it will be space-efficient, but not time-efficient.
And also like in Section 4, we first describe a version of the algorithm with exponential space
complexity, and then describe how to reduce the space complexity to polynomial.

6.1 A space-inefficient algorithm
Let d = 2n, n′ = n2 and d′ = 2n′ . Let {σU,V }U,V denote a set of permutations on {0, 1}n′ ,
indexed by unitaries U, V on n′ qubits. For all unitaries U, V and n′-bit strings x, let
ϕ(U, V, x) denote a number in [0, 2π), representable using (n′)2 bits. We will specify {σU,V }
and ϕ later. Define the oracles

f(U, V, x) def= (ϕ(U, V, x), σU,V (x)) and g(U, V, y) = (σ−1
U,V (y), ϕ(U, V, σ−1

U,V (y))) . (16)

These oracles have the property that if f(U, V, x) = (ϕ, y), then g(U, V, y) = (x, ϕ).
An analysis of the correctness of the algorithm is provided in Section 6.1 of the full

version [8].
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SwapTestDistillation
Input: m states |ψ1⟩ , . . . |ψm⟩ stored in n-qubit registers numbered 1 through m

(1) Initialize (R1, . . . , Rm)← (1, . . . ,m)
(2) ℓ = ⌊log6(m/n)⌋
(3) for k = 1, . . . , ℓ:
(4) count = 0
(5) for j = 1, . . . , ⌊m/2⌋
(6) if SwapTest(R2j−1, R2j) returns 0
(7) count = count +1
(8) Rcount = R2j−1
(9) end
(10) m = count
(11) end

SwapTest(R,R′)
Start with auxiliary qubit b initialized to |0⟩
(1) Apply:
(2) Hb ⊗ IR,R′

(3) Controlled SWAP operation on Registers R and R′, controlled by qubit b
(4) Hb ⊗ IR,R′

(5) Measure qubit b and return the result
(6) end

Figure 2 Pseudo-code for SwapTestDistillation algorithm.

6.2 A space-efficient algorithm
The algorithm described above suffers from needing exponential space complexity; this is
because specifying a Haar-random unitary on n′ qubits requires exp(Ω(n′)) space, and thus the
oracles f, g need to act on exponentially many input bits. We derandomize this construction,
and show via the probabilistic method that there exists a single choice of unitary U⋆, V⋆ that
works for all n-qubit states – this is why we expanded the space to dimension d′.

Let |ψ1⟩ , . . . , |ψD⟩ denote an ϵ-net for the space of n-qubit quantum states. Set ϵ = d−1.
Then there at most D ≤ ϵ−d = dd states in this enumeration. Fix an index 1 ≤ i ≤ D.
Imagine running the aforementioned protocol on state |ψi⟩. As discussed, the probability that
the protocol fails to synthesize a (d′)−1/4-approximation to |ψi⟩ is at most exp(−Ω((d′)1/4))
over the choice of U, V . By a union bound, the probability that a random choice of U, V fails
to synthesize a (d′)−1/4-approximation to a single one of the |ψ1⟩ , . . . , |ψD⟩ is at most

dd · exp(−Ω((d′)1/4)) ≤ 2n2n

· exp(−Ω(2n2/4)) (17)

which, for sufficiently large n, is less than 1. Thus there exists a choice of unitaries U⋆, V⋆

that enables successful synthesis of all the |ψ1⟩ , . . . , |ψD⟩. Hardcode these unitaries into the
algorithm and oracles in Figure 4; i.e., the oracles f and g only take n′ bits as input. The
resulting query algorithm now only requires poly(n) space. Note that the implementation
of the unitaries U⋆, V⋆ will not be time-efficient in general, but they are still fixed n′-qubit
unitary operators that are independent of the state being synthesized.

Thus for an arbitrary state |ψ⟩, by letting the oracles A,B correspond to the nearest
state |ψi⟩ in the ϵ-net that is within d−1 of |ψ⟩, the two-query algorithm synthesizes |ψ⟩ with
O(d−1) error.
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Figure 3 The Swap Test Distillation algorithm applied to eight input registers. The value
measured in the auxiliary qubit indicates whether an application of the Swap Test is successful.
In the first iteration, the swap tests applied to pairs |ψ3⟩ , |ψ4⟩ and |ψ5⟩ , |ψ6⟩ are successful. The
resulting states in registers 3 and 5 advance to the next round. In each iteration, the sequence
(R1, R2, . . .) indicates the indices of the surviving registers from left to right.

TwoQueryStateSynthesis (space inefficient version)
(1) Sample Haar-random n′-qubit unitaries U, V .
(2) Prepare the state |θ⟩ = U |0⟩⊗n′

in an n′-qubit register A.
(3) Controlled on basis state |x⟩ in register A, call the oracle f on input (U, V, x)

to obtain ϕ ∈ [0, 2π) in register B and y ∈ {0, 1}n′ in register C.
(4) Controlled on basis state |ϕ⟩ in register B, apply the phase eiϕ.
(5) Controlled on basis state |y⟩ in register C, call the oracle g on input (U, V, y) to

uncompute |x⟩ ⊗ |ϕ⟩ in registers A and B.
(6) Apply the inverse unitary V † on register C.
(7) Output the first n qubits of register C.

Figure 4 Pseudo-code for the TwoQueryStateSynthesis query algorithm that uses exponential
space complexity.

▶ Theorem 9 (Two Query State Synthesis Performance). For all n-qubit states |τ⟩, the
algorithm TwoQueryStateSynthesis uses poly(n) space, makes two queries to a classical
oracle depending on |τ⟩, and outputs a mixed state that is exp(−Ω(n))-close in trace distance
to |τ⟩⟨τ |.

7 Open Questions

We exhibited state synthesis algorithms for QMA witnesses and arbitrary states that only
require a single query to a classical oracle, that generate the target state up to inverse
polynomial error. We also presented a two-query state synthesis algorithm that generates the
target state up to inverse exponential error. As mentioned, this resolves Open Question 3.3.6
of Aaronson [1]. However, there are several remaining open questions regarding these
algorithms.
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1. The one- and two-query algorithms for arbitrary states use polynomial space, but they
aren’t time efficient (because their existence is argued by sampling a Haar-random
unitary and applying the probabilistic method). Can this probabilistic construction be
derandomized (and thus be made time efficient) by using (approximate) unitary designs?

2. Is there a one-query algorithm for state synthesis that also achieves inverse exponential
error?

7.1 The power of quantum queries to QMA oracles
Our impossibility result in Section 3 combined with our reduction of QMA-search to PP-
decision problems leaves an interesting gap as to what exactly is the power of QMA oracle.
More specifically, are there interesting computational tasks solvable only with quantum
access to a QMA oracle? One question is to understand the collection of problems which
have search-to-decision reductions where the oracle is a QMA oracle. Is this class strictly
larger than QCMA, a class with known search-to-decision reductions (see Theorem 2.7 of the
full version [8])?

7.2 The Unitary Synthesis Problem
In Aaronson’s lecture notes [1] and his published list of open questions in quantum query
complexity [2], he identifies the unitary synthesis problem as one of the major unresolved
questions.

▶ Conjecture 10 ([2, Problem 6]). For every n-qubit unitary transformation U , does there
exists an oracle A : {0, 1}∗ → {0, 1} such that a BQPA machine can implement U?

While, we do not know how to synthesize the unitary U , we do know how to synthesize the
Choi - Jamiolkowski state, [5, 9]

|gU ⟩LR

def=
√

1
2n

∑
x∈{0,1}n

|x⟩L U |x⟩R , (18)

which can also be seen as applying the unitary IL ⊗ UR to the maximally entangled state.
This comes from the previously constructed state synthesis algorithms or the state synthesis
algorithm of Aaronson [1]. While the Choi - Jamiolkowski state contains all the information
about U , it is unclear how to use |gU ⟩ to apply the unitary U . One idea is to use the
gate-by-teleportation technique from measurement-based quantum computation to apply U .
In this procedure, one measures an n-qubit input state |ψ⟩ in register A and the half of |gU ⟩
in register L in the generalized Bell basis, i.e. the POVM with elements |gXaZb⟩⟨gXaZb |AL

for a, b ∈ {0, 1}n. It is known that each outcome (a, b) is equally likely to occur and the
resulting state on the R register is UXaZb |ψ⟩. Unfortunately, the Pauli twirl, XaZb, has
been applied inside of the unitary U .

However, note that whenever the measurement outcome a = b = 0n occurs, the resulting
state is U |ψ⟩ as desired. Therefore, there is a post-selection algorithm which generates
the output U |ψ⟩ by post-selecting on the outcome a = b = 0n. The issue, of course, is
that post-selection is a non-unitary operation. However, we note that while post-selection
is non-unitary, the classes PostBQP and PostQMA have definitions as classical complexity
theory classes PP and PSPACE, respectively. We previously outlined search-to-decision
reductions for both of these classes through their equivalences with PGQMA and QMAexp,
respectively. While not obvious to us at the moment, we suspect that there may be an insight
connecting these ideas together to generate a solution to the unitary state synthesis problem.
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7.3 Improving the construction of witnesses for QMAexp

We leave it as an open question as to whether the Swap Test Distillation algorithm can
be used to improve the overlap with a QMAexp witness produced by the protocol described
in Section 2.2 of the full version [8]. The challenge is establishing that the conditions for
the distillation algorithm are met when t-designs (such as Clifford unitaries) are used to
randomize the target state instead of Haar-random unitaries. We know that Clifford unitaries
will produce a state whose expected overlap with the target state is at least a constant.
Theorem 5.8 of the full version [8] shows that the Swap Test Distillation algorithm still
works under this relaxed condition (instead of requiring that every input state have constant
overlap with probability 1). The problem lies in the second condition: showing that with
high probability, for two independently generated output states, their components orthogonal
to the target state are close to orthogonal to each other. The proof in Lemma 7 showing that
this holds for the 1-query protocol that uses Haar-random unitaries relies on the following
fact: for any two orthogonal states |ψ1⟩ and |ψ2⟩, even when conditioning on the event that
U |ψ1⟩ = |ϕ⟩ for some specific |ϕ⟩, the state U |ψ2⟩ is still distributed in a manner that looks
close to random. We leave it as an open question whether a similar fact can be shown when
U is a t-design or whether there is a different way to establish the second requirement for
the Swap Test Distillation algorithm. A proof that t-designs satisfy the second requirement
for the distillation algorithm would also result in an improvement over the 1-query protocol
for synthesizing arbitrary states shown in Section 4, by reducing the time complexity of the
protocol from exponential to polynomial time.
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