
A Constraint Programming Approach to Ship Refit
Project Scheduling
Raphaël Boudreault #

Thales Digital Solutions, Québec, Canada

Vanessa Simard #

NQB.ai, Québec, Canada

Daniel Lafond #

Thales Digital Solutions, Québec, Canada

Claude-Guy Quimper #

Université Laval, Québec, Canada

Abstract
Ship refit projects require ongoing plan management to adapt to arising work and disruptions.
Planners must sequence work activities in the best order possible to complete the project in the
shortest time or within a defined period while minimizing overtime costs. Activity scheduling
must consider milestones, resource availability constraints, and precedence relations. We propose a
constraint programming approach for detailed ship refit planning at two granularity levels, daily
and hourly schedule. The problem was modeled using the Cumulative global constraint, and
the Solution-Based Phase Saving heuristic was used to speedup the search, thus achieving the
industrialization goals. Based on the evaluation of seven realistic instances over three objectives,
the heuristic strategy proved to be significantly faster to find better solutions than using a baseline
search strategy. The method was integrated into Refit Optimizer, a cloud-based prototype solution
that can import projects from Primavera P6 and optimize plans.

2012 ACM Subject Classification Computing methodologies → Planning and scheduling; Theory of
computation → Constraint and logic programming

Keywords and phrases Ship refit, planning, project management, constraint programming, scheduling,
optimization, resource-constrained project scheduling problem

Digital Object Identifier 10.4230/LIPIcs.CP.2022.10

Supplementary Material Software (Source Code): https://github.com/raphaelboudreault/chuffed/
releases/tag/SBPS; archived at swh:1:dir:3eb166e6188719513b62f762559a2420c13c9997

Funding This project has received financial support from the Scale AI Canadian Innovation Super-
cluster and from the Mitacs Accelerate program.

Acknowledgements Thanks are due to the many members of the Refit Optimizer project team
and our collaborators at Dalhousie University, Polytechnique Montréal, Sōdan, Simwell and Genoa
Design International. We are very grateful to the many domain experts consulted and to Seaspan
Victoria Shipyards for their invaluable feedback.

1 Introduction

Ship refit planning is a complex and tedious endeavor that requires scheduling several hundred
(or thousand) tasks across a time horizon that may span several weeks, months or even over
a year [2]. Planners must ensure that precedence relations between tasks are respected, that
the required human and material resources are available, and that the scheduled work is
completed within the maximum allocated project duration. For instance, dry-dock work
periods need to be fixed years in advance, thus leaving no flexibility for increasing project

© Raphaël Boudreault, Vanessa Simard, Daniel Lafond, and Claude-Guy Quimper;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raphael.boudreault@thalesgroup.com
https://orcid.org/0000-0002-5602-7515
mailto:vanessa.simard@nqb.ai
https://orcid.org/0000-0001-8861-8902
mailto:daniel.lafond@thalesgroup.com
https://orcid.org/0000-0002-1669-353X
mailto:claude-guy.quimper@ift.ulaval.ca
https://orcid.org/0000-0002-5899-0217
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS
https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS
https://archive.softwareheritage.org/swh:1:dir:3eb166e6188719513b62f762559a2420c13c9997;origin=https://github.com/raphaelboudreault/chuffed;visit=swh:1:snp:ff1764f3cbf74a1eccfe4b906da5fefa8d013f64;anchor=swh:1:rev:7ae65707e5d6323432668fc5dac1326c3bf0a90a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 A CP Approach to Ship Refit Project Scheduling

time span. Potential goals of planners in this context are to create schedules minimizing the
project total duration or, in case the planning horizon prevents the work to be accomplished
in time, minimizing the overtime labor costs. Some planners focus on other needs, such as
creating robust schedules leaving flexibility to adjust to unforeseen delays. Indeed, while
initial plans must be free of conflicts, unplanned events, delays and their arising work require
ongoing re-planning efforts throughout the project. While initial planning may take several
weeks for large projects, leaving time for planners to manually attempt optimizing the task
scheduling, replanning leaves very little time for planners to consider their options and thus
is mainly an opportunistic and reactive process.

There exist multiple enterprise resource planning tools such as Microsoft Project [25],
Primavera P6 [33], and IBM Maximo [18], which are typical software solutions to support
ships refit planning. Yet beyond the core project management functionalities, the support for
optimizing schedules with computational methods from operations research remains limited
to resources leveling, i.e. spreading the workload more evenly across the project duration.
Some optimization solutions have been previously created for custom projects, yet lack
reusability. To our knowledge, the only generic and reusable schedule optimization capability
currently available is the Aurora (Stottler Henke) intelligent scheduling solution [35]. While
the available information about Aurora’s proprietary optimization algorithms is limited,
these are described as being based on heuristics, as opposed to exact methods, derived from
domain experts. While this satisfying approach is highly relevant and effective for human
problem solving given the human brain’s bounded computational capabilities, we posit that
optimization algorithms can be developed to do better than human-derived heuristics. The
current work aims to push further the state-of-the-art in this area by producing a general
purpose exact method enhanced with metaheuristics.

Thales Canada has set out to create Refit Optimizer, a prototype solution for multi-
objective optimization in the ship refit domain, while also designing it to be reusable across a
wide variety of other scheduling contexts [22]. The key motivation for this work comes from
challenges and innovation opportunities identified in the context of the Arctic/Offshore Patrol
Ships and Joint Support Ships in-service support (AJISS) program with the Royal Canadian
Navy. Herein, the focus is on detailed planning, using either days or hours as the basic time
unit. The Refit Optimizer prototype is currently operational, deployed on a secure cloud
platform, and combines several complementary services for importing/exporting project
data (from/to Primavera P6), visualizing the schedule using an interactive Gantt chart
and tasks list, editing the schedule, freezing scheduled tasks, and optimizing the schedule
according to one of three different objectives (makespan, overtime costs or robustness).
Additional capabilities include comparing options, analyzing and visualizing geospatial
conflicts, forecasting progress, modeling uncertainties and assessing risks using discrete-event
simulations (see [22]).

We propose a constraint programming approach for detailed ship refit planning that is
currently fully integrated into Refit Optimizer. The problem considered is closely related to
the Resource-Constrained Project Scheduling Problem (RCPSP) [16, 17, 34] and is modeled
using the efficient Cumulative global constraint [1, 38]. We use the Solution-Based Phase
Saving (SBPS) value selection heuristic [13, 42] to speedup the search and obtain better
solutions in a reasonable time. We evaluate our approach on a benchmark formed of seven
instances supplied by our industrial partners, namely Sōdan, the AJISS team and Seaspan
Victoria Shipyards, which are compared to each other using RCPSP complexity metrics from
the literature.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:3

The paper is organized as follows. Section 2 describes the ship refit planning problem.
Section 3 presents background notions on scheduling, constraint programming, SBPS and
RCPSP complexity measures. The CP model is presented in Section 4, as well as its
extensions and the search heuristics developed in our context. Our approach is evaluated on
the benchmark instances in Section 5. Finally, Section 6 addresses the applicability of the
solution to an industrial setting, followed by a conclusion suggesting directions for future
work.

2 Problem Description

Ship refitting is an important shipyard event during which all ship’s activities are suspended
for improvements. The objective of a refit is to restore, customize, modify, or modernize
part of a ship. Most of the time, however, stopping all activities can become costly, which
makes efficient ships refit planning important. The time window, or horizon, during which a
refit takes place can be decided years in advance. When the horizon is exceeded, the dock
is no longer available and the ship has to leave. Thus, in order to estimate the required
duration, planners have to consider a large number of daily or even hourly tasks depending on
multiple capacity-limited resources, both human and material. Furthermore, due to physical
limitations, a maximum number of workers must be simultaneously allowed in some work
areas. Precedence relationships must be considered between many of the tasks, while some
date constraints, such as milestones, must be achieved. Finally, specific tasks must be idle
over the weekends. In practice, the initial planned time is often insufficient, in which case
overtime for some tasks can be scheduled to fit in the restrictive horizon.

Three main objectives are targeted in this project according to the challenges faced by
shipyards. First, to support planners in their horizon estimation, the prototype solution
has to offer to minimize the refit total duration, also known in scheduling as makespan.
This helps the planner at the tactical level by identifying the minimum time needed for
a certain ship refit, according to the constraints on tasks. Then, it has to allow the user
to produce an operational plan over a fixed horizon that minimizes the overtime costs.
Since a lot of unplanned delays happen during the actual refit execution, this option helps
a shipyard respect their obligation while minimizing costs associated with overtime labor.
Finally, the solution has to propose an operational plan taking the robustness into account
when planning overtime. The idea is to minimize the risk of exceeding the refit deadline by
planning the overtime work, as much as possible, at the beginning of the horizon. Thus, if
unforeseen events during the execution increase the need for overtime before the end of the
refit, it is still possible to proceed. With the option of these three objectives, a user can
efficiently estimate a ship refit duration, while being supported during its execution.

Our research is based on the practical needs of our industrial partners which supplied us
with realistic use cases. Table 1 presents seven instances of different sizes that were made
available for our tests. Each instance is defined by a horizon, given in days or in hours
depending on the planning granularity, which represents the available time to complete all
tasks. The proposed horizon comes from the initial planners overestimate and can be seen as
a baseline for the makespan minimization. The number of tasks, precedence relations, and
resources, as well as the task duration range (without overtime), help to better evaluate and
compare the size of the instances. The number of tasks that can be performed in overtime
(#O) is given, where a “*” indicates that those tasks must be idle during weekends. Some
tasks do not follow any work hours requirement and thus cannot be shortened nor suspended.
A common example of this in a ship refit is paint drying tasks. The number of work areas
(#WA) is also presented and included as a specific type of resource.

CP 2022

10:4 A CP Approach to Ship Refit Project Scheduling

Table 1 Size comparison of the seven instances supplied by our industrial partners.

Instance Horizon #Tasks
(#O)

Task
duration

#Precedence
relations

#Resources
(#WA)

day-yacht21 29 days 21 (20) 1-3 days 32 9 (2)
hour-yacht21 704 hours 21 (20) 1-8 hours 32 9 (2)
generic136 178 days 136 (136*) 1-20 days 99 9 (4)
software138 183 days 138 (138*) 1-10 days 341 8 (0)
navy253 728 hours 253 (253*) 1-8 hours 246 92 (87)
cruise510 268 days 510 (464*) 1-15 days 550 32 (24)
navy830 6200 hours 830 (830*) 1-200 hours 816 146 (128)

The first four instances, day-yacht21, hour-yacht21, generic136, and software138,
were artificially created by the team for testing purposes. They are used to test the limits of
the optimization algorithms, since realistic instances are somewhat simpler because they are
manually created by human experts. The instances day-yacht21 and hour-yacht21 are two
versions of the same ship with different task durations and planning granularities, respectively
days and hours. This simple problem has been used in user workshops to compare the result
of a manual optimization to the result of our approach. Instance generic136 does not
describe a particular ship refit and was created to test simultaneously various precedence
and date constraint types. Instance software138 describes the management of a software
development project, which is used to show the genericity of our approach to scheduling
problems with resources. Other instances are anonymized versions of real, or closely inspired
by real, refit use cases from recent years. Instances navy253 and navy830 are two versions
of a real use case provided by the AJISS team, while cruise510 is inspired by a sample
problem provided by Seaspan Victoria Shipyards.

3 Background

3.1 Scheduling
The problem we consider is part of the great family of scheduling problems. In the operations
research and optimization literature, scheduling problems are many and varied. Given a set
of tasks I, these problems require finding when to execute each task over a definite timeline
T := {0, 1, . . . , tm}, where each t ∈ T is a discrete time point, so that an objective function
is optimized while different constraints are satisfied. Specifically, our scheduling use case is
highly related to the Resource-Constrained Project Scheduling Problem (RCPSP). Introduced
in 1969 by Pritsker et al. [34], its standard definition (see e.g. [16, 17]) supposes first that
preemption is forbidden, i.e. that each task cannot be interrupted once started. Then, a
finite set of resources R is considered, where each task i ∈ I requires an amount hi,r ∈ Z≥0

of resource r ∈ R used for its whole duration. Each resource r ∈ R has a constant usage
capacity cr ∈ Z>0 and is fully available at any time (renewable). Also, the resources are
cumulative, i.e. more than one task can use a resource at a time. Thus, the RCPSP assumes
at each time point t ∈ T that each resource’s total usage by tasks does not exceed its capacity.
Finally, precedence relationships between some tasks are considered. The objective is to find
a schedule with the earliest project ending date or, in other words, the minimal makespan.

Blazewicz et al. [7] have shown that the RCPSP belongs to the strongly NP-hard problems.
Thus, its computation complexity and industrial application interest has led to a plethora of
techniques, both exact and heuristic, in various research domains. These approaches include

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:5

notably specialized branch-and-bound methods [12, 21, 40], mixed-integer programming [11, 20]
and, as presented in Section 3.2, constraint programming. We refer the reader to Pellerin et
al. [30] for a recent survey of current heuristic approaches.

Among the various RCPSP benchmark instance sets in the literature, three are usual:
PSPLIB [19], BL [5] and Pack [8]. While these contain from 17 to 120 tasks, our instances
listed in Table 1 are significantly larger. Furthermore, the number of resources in these
benchmarks is at most 5, while ours can go up to 146. Planning horizons, as well as navy830
maximal task duration, are also greater than the ones in these benchmarks that go up to
139 and 19 time points respectively, but are comparable to the ones in the more realistic
instances of Koné et al. [20].

3.2 Constraint Programming

Constraint Programming (CP) is a powerful programming paradigm to solve combinatorial
problems. In particular, it can be used to optimally solve many large-scale optimization
problems under constraints [36]. A CP model is formed of decision variables, each provided
with a finite set of possible values called domain and denoted dom(X) for a variable X.
The relationships between the variables are defined by constraints, each provided with a
specialized inference algorithm. Optimization problems also have an objective function to
minimize. CP solvers generally perform a tree search to find feasible solutions, where each
node of the tree corresponds to a partial solution, and each branching is a node created from
its parent with an additional assignment of an unfixed variable to a value. The branching
selection rules for variables and values are defined using heuristics.

Significant efforts have been made in the constraint programming community to effi-
ciently solve scheduling problems involving resource constraints. Introduced by Aggoun and
Beldiceanu [1], the Cumulative global constraint enforces the usage of a resource by tasks
to be at most its capacity for each time point in the optimization timeline. Formally, for a
resource r ∈ R, given variables Si and Di are respectively the starting time and duration of
task i ∈ I, Cumulative([Si | i ∈ I], [Di | i ∈ I], [hi,r | i ∈ I], cr) is logically equivalent to

∑
i ∈ I :

Si≤ t <Si+Di

hi,r ≤ cr ∀ t ∈ T .

Over the years, many efficient rules for the Cumulative constraint have been developed
to detect failures and filter variables’ domains (see e.g. [4, 6, 14, 29, 41]). Furthermore,
important progress towards solving large-scale RCPSP instances with CP has been made by
Schutt et al. [37, 38] by combining some of these rules with lazy clause generation. Introduced
by Ohrimenko et al. [28], this technique is a hybrid between CP and boolean satisfiability
(SAT) solvers. During the search, each filtered value is now recorded with an explanation as
a SAT clause. When a failure is detected, the solver uses its explanations to learn a nogood,
a core reason for what led to this conflict. This nogood is then added as a new constraint to
the solver’s underlying SAT mechanism. As a result, this process allows avoiding reproducing
the same choices later during the search. Furthermore, it enables SAT-based branching
heuristics depending on variables’ activity in conflicts, notably Variable State Independent
Decaying Sum (VSIDS) [26]. Several modern and efficient CP solvers, such as Chuffed [9]
and OR-Tools [31], are based on the lazy clause generation technique.

CP 2022

10:6 A CP Approach to Ship Refit Project Scheduling

3.3 Solution-Based Phase Saving

Large Neighborhood Search (LNS) [32, 39] is a metaheuristic that has been successfully used
in many contexts for scaling exact solving methods to large optimization problems. Given
an initial solution, the technique iteratively improves the best known solution according
to the considered objective. At each iteration, a neighborhood is chosen such as a part of
the variables are fixed to their value in the current solution, whereas the others are relaxed,
which generates a smaller subproblem. Solutions of the latter can then be quickly found by
any chosen method.

One of the major drawbacks of relying on LNS to find better solutions for an optimization
problem is the loss of exactness from the initial solving method. Thus, a relatively simple,
efficient and closely related to LNS value selection heuristic for CP solvers has been introduced
by Vion and Piechowiak [42] as Best-Solution. Demirović et al. [13] introduced the same
heuristic soon after under the name Solution-Based Phase Saving (SBPS). We refer in the
following to this heuristic as the latter terminology.

Given an optimization problem with variables X1, . . . , Xn, a variable selection heuristic
Hvar and a value selection heuristic Hval, let b = (b1, . . . , bn) denote the current best solution,
if one exists, where bi corresponds to the value of Xi in this solution. If Xk is the variable
chosen by Hvar, the SBPS branching strategy does the following:
a) If b exists and bk ∈ dom(Xk), then choose the value bk for Xk;
b) Else, choose a value for Xk following Hval.

Thus, the strategy focuses the search around the current best solution as much as possible.
Combined with a restart strategy and a dynamic variable selection heuristic such as VSIDS,
SBPS effectively mimics LNS [13]. Indeed, starting from the root node, the search fixes almost
all variables to their current best solution value, and then searches around this solution for a
subset of unassigned variables with backtracking, thus implicitly building a neighborhood.
The size of the latter is then limited by the restart strategy. Also, the dynamic aspect of
the search produces a built-in diversification of neighborhoods, besides that VSIDS tends
to select closely related variables. The resulting strategy produced interesting results on a
variety of instances [13, 42].

3.4 RCPSP Complexity

In order to properly assess the performance of our approach on the instances in Table 1,
it is important to compare them on a similar scale. To do so, Artigues et al. [3] listed a
selection of state-of-the-art indicators that characterize the complexity of RCPSP instances.
These indicators are typically used to generate instances of a targeted complexity level, but
are also relevant to evaluate existing instances. They can be classified in four categories:
precedence-oriented, time-oriented, resource-oriented, and hybrid.

The Order Strength (OS) is a precedence-oriented indicator showing how much the
instance’s precedence constraints induce an ordering of the tasks [3, 24]. If P denotes the set
of task pairs {i, j} (i, j ∈ I, i ̸= j) which cannot be executed in parallel due to a chain of
precedence constraints between them, OS is defined as the ratio of |P | over the total number
of task pairs:

OS := |P |
|I|(|I| − 1)/2 .

We have OS ∈ [0, 1]. It has been observed that the closer the value is to 1, the more ordered
the tasks and the lower the complexity.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:7

The Resource Factor (RF) is a resource-oriented indicator which evaluates the resource
usage by tasks [3]. It is defined as the ratio of the average number of required resources by
task over the number of resources:

RF :=
∑

i∈I,r∈R ui,r

|I||R|
.

where ui,r equals 1 if task i ∈ I requires resource r ∈ R (hi,r > 0), and 0 otherwise. We
have RF ∈ [0, 1]. It has been shown that as the RF value increases, the complexity also does.

The Resource Strength (RS) indicator combines a time-oriented view with the resource
complexity [3, 10]. For each resource r ∈ R, it considers its maximal usage cmax

r when tasks
are scheduled at their earliest while satisfying precedence constraints,

cmax
r := max

t∈T

∑
i∈IES

t

hi,r,

where IES
t ⊆ I is the subset of tasks executed at time point t in this schedule. The resource’s

strength RSr is then defined by the ratio of its overall availability over its availability in the
earliest schedule:

RSr := cr − cmin
r

cmax
r − cmin

r

,

where cmin
r := maxi∈I hi,r. In the case where cmax

r ≤ cr, RSr is instead fixed to 1. Thus,
every resource r ∈ R with RSr = 1 is always sufficiently available and is not a constraint.
The RS value is obtained by averaging RSr over all resources. We have RS ∈ [0, 1], and the
complexity generally increases as RS decreases.

The Disjunctive Ratio (DR) indicator is a hybrid between the precedence and resource
complexities [3, 5]. The set of task pairs P which cannot be executed in parallel from OS
is extended with a set D of pairs that would violate a resource constraint if both tasks
overlapped in time, i.e. D := {{i, j} : ∃ r ∈ R, hi,r + hj,r > cr}. DR is then defined as the
ratio of the number of elements in this new set over the total number of task pairs:

DR := |P ∪ D|
|I|(|I| − 1)/2 .

We also have DR ∈ [0, 1]. It has been established that the higher DR is, the more disjunctive
the instance is.

4 Methodology

4.1 Main model
In the following, we present the main CP model developed for the ship refit planning problem,
as described in Section 2. It is inspired from the classical RCPSP model for CP [38]. Note
that in this model, we assume a planning granularity in days. Extensions to support hours
and other specific constraints are discussed in Section 4.2.

Reusing the scheduling notation introduced in Section 3.1, we define the input parameters.
The horizon tm ∈ Z>0 determines the scheduling timeline as the set T = {0, 1, . . . , tm}. If
I is the given set of tasks to schedule, each task i ∈ I is associated with sL

i , sU
i ∈ T and

eL
i , eU

i ∈ T which are lower (L) and upper (U) bounds on the task starting (s) and ending
(e) times as implied by the date constraints. Each task i ∈ I also has a processing time

CP 2022

10:8 A CP Approach to Ship Refit Project Scheduling

pi ∈ T which corresponds to the task duration in days without overtime. The precedence
requirements form the set P and are encoded as triples (i, j, l), asking for task i ∈ I to
be completed l ∈ T days before task j ∈ I \ {i} starts. Each resource r in the given set
of resources R has a constant capacity cr ∈ Z>0, a daily standard usage cost wS

r ∈ R≥0,
and a daily overtime usage cost wO

r ∈ R≥0, with wS
r ≤ wO

r . The amount of resource r ∈ R
required by task i ∈ I is given by hi,r ∈ Z≥0. A working day is defined by three parameters,
dS , dO, dE ∈ {0, 1, . . . , 23}, with dS < dO ≤ dE , where [dS , dO − 1] are standard hours and
[dO, dE] are overtime hours. Finally, tasks that can be performed in overtime are contained
in the set I∗ ⊆ I.

The integer decision variables of our model are as follows. For each task i ∈ I, Si is the
task starting time, while Ei is the task total elapsed time between its start and its completion.
We define dom(Si) = [sL

i , sU
i] and dom(Ei) = T , for each i ∈ I.

The constraints of the model are presented below.

Cumulative([Si | i ∈ I], [Ei | i ∈ I], [hi,r | i ∈ I], cr) ∀r ∈ R (1)
eL

i ≤ Si + Ei ≤ eU
i ∀i ∈ I (2)

Si + Ei + l ≤ Sj ∀(i, j, l) ∈ P (3)⌈(
dO − dS

)
pi

dE − dS

⌉
≤ Ei ≤ pi ∀i ∈ I∗ (4)

Ei = pi ∀i ∈ I \ I∗ (5)

The Cumulative constraints (1) ensure that the cumulative usage of each resource by tasks
does not overload its capacity at any given point in the timeline. Since Si + Ei represents
the ending time of task i ∈ I, constraints (2) force the ending time of each task to respect
its upper and lower bounds, as implied by the problem date constraints. Constraints (3)
impose the precedence requirements from set P. Constraints (4) define the possible values
for the elapsed time Ei of task i ∈ I∗ that can include some overtime work hours. First,
the value must be at most pi since it corresponds to the task duration without overtime.
Second, note that performing overtime hours reduces the overall elapsed time in days of a
task. The number of standard hours required by task i ∈ I∗ is given by

(
dO − dS

)
pi, which

is redistributed over longer days of dE − dS hours, fully using the overtime hours each day,
thus a lower bound on Ei. For example, if (dS , dO, dE) = (8, 16, 20), a typical day is formed
of 8 standard hours and 4 overtime hours. A task i ∈ I∗ with pi = 3 requires 3 × 8 = 24
standard hours, but can be completed in

⌈ 24
12
⌉

= 2 days when working 12-hour shifts (8
hours is in overtime). Finally, constraints (5) force tasks that cannot be executed in overtime
(I \ I∗) to have their standard duration.

We considered three different objective functions, where the model can be used with
either of them. First, the makespan objective, which is the minimization of the schedule
duration, is modeled as follows:

min max
i∈I

(Si + Ei) .

This objective is considered without allowing overtime, which is done by assuming I∗ := ∅.
Then, the overtime objective is to minimize the costs associated with overtime work.

For a task i ∈ I∗, the number of standard working days transformed into overtime is given
by pi − Ei. Since each overtime day costs wO

r − wS
r per resource r ∈ R used, the total cost

is given by
∑

i∈I∗
∑

r∈R hi,r(wO
r − wS

r)(pi − Ei). Equivalently, we minimize the following
linear expression where the inner summation is pre-computed for each i ∈ I∗:

min
∑
i∈I∗

(pi − Ei)
(∑

r∈R
hi,r(wO

r − wS
r)
)

.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:9

Finally, the robustness objective is to minimize the risk of exceeding the deadline of a
schedule by planning the overtime early in the project. To evaluate this criterion for a task
i ∈ I∗, we multiply its amount of used overtime pi − Ei by its starting time Si, leading to
the following non-linear function:

min
∑
i∈I∗

(pi − Ei)Si.

4.2 Extensions
The model presented in Section 4.1 has been extended in several ways to better suit the
ship refit planning reality. First of all, more types of precedence constraints were considered
other than the ones in (3). Indeed, our current model supports any precedence of the form
Xi + l ≤ Yj , where X, Y ∈ {S, S + E} for l ∈ T and i, j ∈ I (i ̸= j). It was also asked
that our model consider that some tasks, but not all, should be suspended on weekends.
To this end, additional variables Ni representing the non-working (idle) time points of task
i ∈ I were considered. In the model, the non-working time is included in the elapsed time
of the task. Thus, constraints (4) and (5) are instead applied on the working time Ei − Ni.
Additional constraints are considered to enforce a value for Ni when the task overlaps at least
one weekend. Finally, the model has been extended to support a scheduling granularity in
hours. In this case, the overtime constraints (4) and (5) are replaced by additional variables
Oi encoding the number of hours in overtime for task i ∈ I∗. Each of these variables is
closely related via special constraints to its associated Ni which also includes the non-working
hours during the nights. Thus, in hours, the elapsed times are simply equal to pi + Ni.

4.3 Search Heuristics
Two branching heuristics for the CP model are considered herein as a basis. For the
makespan objective, we select the starting time variable Si, i ∈ I, with the smallest value
in its domain, and we assign it to this value. This way, the search focuses as much as possible
around the schedule where each task begins at its earliest starting time. For the overtime
and robustness objectives, the branching heuristic selects the task i ∈ I that has a starting
time variable Si with the smallest value in its domain. Then, it assigns, in order, the smallest
value in dom(Si) to Si and the greatest value in dom(Ei) to Ei. In the hour granularity case,
this last branching is replaced by assigning the smallest value in dom(Oi) to Oi, and then
the smallest value in dom(Ei) to Ei. In both cases, the intuition is to place the tasks as early
as possible, while simultaneously choosing a task duration with as few overtime time points
as possible. The resulting heuristic can be formulated with the priority search annotation
from the MiniZinc modeling language [15, 27], and is supported by Chuffed CP solver [9].

5 Experimentation

The benchmark we considered for our experiments is formed of the seven instances presented
in Section 2. In order to compare them on the same basis and assess their complexity, we
computed for each instance the indicators OS, RF, RS and DR introduced in Section 3.4.
The resulting values are presented in Table 2. In the case of RS, since many resources gave a
value RSr = 1 which makes the comparison difficult, we decided to compute RS by averaging
RSr over all resources r ∈ R that are in fact restrictive (RSr < 1). Values in bold font
highlight the most complex instances according to each indicator.

CP 2022

10:10 A CP Approach to Ship Refit Project Scheduling

Table 2 Complexity indicators of the seven instances.

Instance OS RF RS DR

day-yacht21 0.72 0.28 0.40 0.82
hour-yacht21 0.72 0.28 0.40 0.82
generic136 0.02 0.23 0.24 0.06
software138 0.27 0.12 0.01 0.32
navy253 0.19 0.02 0.71 0.18
cruise510 0.07 0.06 0.27 0.07
navy830 0.02 0.01 0.66 0.02

Each instance has its strengths and weaknesses. Looking first at OS, instance generic136
is one with the least ordered structure. It can be explained by the fact that the instance was
created with arbitrary precedence relations as a means of testing. It seems nonetheless that
our three realistic use cases, navy253, cruise510 and navy830, are also relatively complex
according to this indicator. In terms of resource usage (RF) and disjunctive structure (DR),
the two smallest instances, day-yacht21 and hour-yacht21 are the most complex ones. A
big part of that comes from the fact these instances contain a lot less resources, but are
more often used at full capacity. Finally, considering the time-oriented view (RS), the typical
RCPSP instance software138 is the most constrained in terms of resources. Although the
realistic instances seem to be less affected by their resource constraints, their complexity lies
in the large number of tasks to schedule and the lack of artificially induced ordering.

The CP model presented in Section 4 was modeled in the MiniZinc 2.5.5 language [27]. We
implemented1 the SBPS scheme as described in Section 3.3 into the solver Chuffed [9], which
we used to solve the instances. The Cumulative constraint was set to apply the optional
Time-Table-Edge-Finding (TTEF) checking and filtering rules [37, 41]. The experiments
were performed on a MSI GP63 Leopard 8RE machine with an Intel i7-8750H CPU at 2.2
GHz, 6 cores and 16 GB of RAM. Each optimization execution was given a timeout of 4
hours, and a constant restart strategy of 100 failures.

Each instance was solved for each objective, makespan, overtime and robustness. For
the last two objectives, we have empirically chosen a “restricted” horizon for each instance
corresponding to a reduction between 2% and 30% of the best known makespan. However,
due to its specific constrained nature preventing overtime to be performed, generic136 could
not be considered for these objectives.

For each optimization, two search methods were compared. The Baseline strategy
consists simply of using the search heuristics defined in Section 4.3. The SBPS strategy,
on the other hand, also uses these heuristics until a first solution is found. When it is the
case, the SBPS branching procedure activates. Furthermore, the variable selection scheme
of choosing Si, i ∈ I, with the smallest value in dom(Si) is replaced by selecting Si with
the greatest conflict activity, as provided by the VSIDS score of Chuffed [9, 26]. The latter
modification allows the resulting procedure to effectively reproduce an LNS [13]. We did
not directly use the free search (-f) option of Chuffed, which is alternating between the
user-defined heuristic and the VSIDS strategy (on all the variables), since we observed the
solving process was generally slowed down by its usage. However, since no solution was
found before the timeout without it, we added the free search for instance software138
when optimizing the overtime and the robustness.

1 The code is available at https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS. We
thank Emir Demirović for providing his original implementation [13].

https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:11

Table 3 Results on the benchmark instances when considering the makespan objective.

Instance
Baseline SBPS Time (s)

improv.Objective Time (s) Objective Time (s)

day-yacht21 28 days 0.2* 28 days 0.2* 0.2
hour-yacht21 78 hours 0.4* 78 hours 0.4* 0.4
generic136 178 days 0.7* 178 days 0.7* 0.7
software138 144 days 1.4 119 days 41.6 1.1
navy253 389 hours 4.2 389 hours 3.7 3.7
cruise510 228 days 14.7 227 days 785.7 229.3
navy830 5216 hours 18.7 5144 hours 199.7 18.2

Table 4 Results on the benchmark instances when considering the overtime objective.

Instance
Baseline SBPS Time (s)

improv.Objective Time (s) Objective Time (s)

day-yacht21 1560 0.3* 1560 0.3* 0.3
hour-yacht21 485 0.4* 485 0.4* 0.4
software138 5600 14 359.6 2600 153.4 34.3
navy253 70 4.2 66 5.0 4.0
cruise510 26 000 11.7 15 760 7555.3 5.8
navy830 227 25.2 36 276.5 26.6

Table 5 Results on the benchmark instances when considering the robustness objective.

Instance
Baseline SBPS Time (s)

improv.Objective Time (s) Objective Time (s)

day-yacht21 47 0.3* 47 0.3* 0.3
hour-yacht21 192 0.4* 192 0.4* 0.4
software138 900 13 571.8 258 320.2 15.3
navy253 10 686 5057.6 3480 1411.9 6.7
cruise510 4870 13 022.5 842 1321.7 14.2
navy830 146 794 11 208.9 9076 13 863.4 41.1

Tables 3, 4, and 5 present respectively the results obtained when considering the
makespan, overtime and robustness objectives. In each table, we report the best
objective value found (Objective) as well as the solving time (Time) in seconds. When the
timeout was reached, we instead show the required time to find the best solution. A “*” next
to a solving time value indicates that the instance was optimally solved. For comparison
purposes, we also report the time in seconds taken with SBPS to find a solution with an
objective value less than or equal to the best one found with Baseline (Time improv.).

For the makespan objective (Table 3), instances day-yacht21, hour-yacht21, and
generic136 are quickly solved optimally using both strategies. For the other instances, the
Baseline method finds its best solution in the first 20 seconds of the search, without being

CP 2022

10:12 A CP Approach to Ship Refit Project Scheduling

able to improve it after. In comparison, the SBPS strategy improves the minimal makespan
for software138 by 25 days, cruise510 by 1 day and navy830 by 9 days, while instance
navy253 gave the same solution. The use of SBPS thus reduced the best makespan by 5%
on average. Furthermore, the improved solutions are found in a similar time than Baseline,
except for cruise510 where the solution of 227 days is found 15.6 times slower.

For the overtime objective (Table 4), the objective value corresponds to the costs induced
by overtime work. Since our benchmark is formed of abstract and anonymized realistic
instances, the obtained costs are of different sizes and units, thus incomparable in-between
instances. Note that instances day-yacht21 and hour-yacht21 are still trivially solved
optimally with both strategies. Bigger instances see their best objective value from Baseline
considerably improved with SBPS. The best cost is reduced by 48% on average using SBPS,
while the best solution of Baseline is found 94 times faster for software138, and 2 times
faster for cruise510.

For the robustness objective (Table 5), the unconventional way of representing it is
a challenge for the Baseline method. While day-yacht21 and hour-yacht21 are still
optimally solved, the larger instances need a lot of computation time to settle on a good
solution. In fact, for software138 and cruise510, the time to find the best solution is close
to the timeout (14 400 seconds). In comparison, the SBPS strategy finds a solution with the
same robustness value much faster, in no more than 42 seconds. For cruise510, the solution
is found 917 times faster. Furthermore, the best objective found by Baseline is reduced on
average by 79%.

6 Discussion

The main goal of this research was to create a prototype solution for multi-objective opti-
mization in the ship refit domain. By successfully proposing plans to the targeted instances
supplied by our industrial partners within a reasonable time limit, we have demonstrated
the applicability of our constraint programming model. It was important for practical use to
obtain a good solution under predetermined time limits: 15 minutes for instances under 100
tasks, one hour for instances between 100 and 500 tasks, and four hours for instances over
500 tasks. In comparison, an expert manually planning smaller instances like day-yacht21
could take up to four hours. While it was possible to consider the Baseline strategy as an
attempt to solve the biggest instances, the computation time and the solution’s quality were
sometimes less than satisfactory for industrial purposes. The use of SBPS proved to be a
fairly good strategy, leading to improved objective values in a significantly shorter amount
of time for the makespan, overtime and robustness objectives. These experiments also
demonstrated the Refit Optimizer prototype’s relevance for real-world project planning and
ongoing project management with re-optimization. Qualitative user feedback from usability
tests with domain experts also supports this assessment.

A lot of effort was put in designing Refit Optimizer to be reusable across a wide variety
of other scheduling contexts. The terminology and architecture of the product database
were made consistent with the terms and structures from the project management field.
Plus, the genericity of the constraints formulation allows to consider more than ten different
types of precedence and time constraints on tasks. Resources can include workers as well as
locations and equipment, which opens to future improvements with geospatial constraints [22].
Preliminary tests on real projects in the naval, avionics, and ground transportation domains
also show that the solution has a strong cross-domain potential.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:13

The main reason why we chose Chuffed [9] over other CP solvers was its proven efficiency on
large-scale RCPSP instances by combining state-of-the-art Cumulative filtering algorithms
with lazy clause generation [37, 38]. Its built-in VSIDS branching heuristic allowed us to
easily reproduce the gains obtained in recent SBPS-related work [13, 42]. Furthermore,
Chuffed could directly support the priority search MiniZinc annotation [15, 27] used to
formulate our baseline search heuristics. We did try the OR-Tools CP-SAT solver [31] via its
FlatZinc implementation, but preliminary results showed greater computation times to find
similar or worse solutions. We did also try a standard LNS procedure prior implementing
SBPS. However, we rapidly found that the technique was rather inefficient for the overtime
and robustness objectives, while it was difficult to find a suitable solution deconstruction
rule.

There were many challenges in working in an industrial setting. First, the importance of
anonymity for the industrial partners made it difficult to analyze some results. For many
instances, the estimated workforce costs were changed to abstract values, which produced
unrealistic execution costs. Having access to real data would have allowed us to produce
more complex realistic instances to challenge our prototype. Explainability of results was
also an important challenge. Since the tool needs to be used in an industrial setting by many
different people, it is important to document and explain each potential source of incoherent
results encountered. Thus, a lot of effort was put on explaining the input data format and
importance of each parameter to untrained users in order to avoid as much illogical data
as possible. It was also important to focus on results interpretation and solution selection.
Furthermore, one recurring issue was that, in a lot of situations, real projects could not be
optimized because of an unsatisfiability proof by the algorithm. Without any feedback to
the users as to why it is the case, users were at a loss for identifying which constraints to
relax or remove. An automated method for identifying causes and potential solutions to help
overcome over-constrained problems appears to be an essential requirement for the successful
use of the prototype in the field. We did use FindMUS [23] from the MiniZinc tool suite to
help us identify the data inconsistencies. However, its usage required complete knowledge of
the optimization model, thus was not a viable option for end users.

A comparison of the complexity of our seven instances to the complexity of PSPLIB [19],
BL [5] and Pack [8] benchmarks, as evaluated by Artigues et al. [3], shows the difference
between real-life and theoretical applications. Our set of realistic instances is more complex
on average when looking at OS (precedence) and RS (resources over time), although the
difference is small. This can be explained by the significant greater size of our instances.
However, the literature benchmarks are widely more complex in terms of RF (resource
usage) and DR (resources and precedence). That can be explained by the changes made by
experts so the instances could be manually planned. Manually defined resources are also less
restrictive than in computer generated instances.

It would have been interesting to test our CP approach on the three literature benchmarks,
as well as the extended ones from Koné et al. [20]. We established that our set of seven
instances, although closer to the ship refit reality, were less complex than the computer
generated instances, thus more extensive tests would be necessary to complete the constraint
programming prototype. Although our industrial partners may not be subject to high levels
of precedence-resource complexity, it is important to be aware of the prototype’s limits in the
hopes of further improving the solution. Being able to consider more complex problems could
also become a strategic advantage for shipyards, allowing them to include more constraints
normally not considered with manual plans.

CP 2022

10:14 A CP Approach to Ship Refit Project Scheduling

7 Conclusion

In this paper, we introduced a CP approach to the ship refit planning problem. Our prototype
solution was successfully tested on seven realistic instances supplied by our industrial partners
with varying levels of complexity, which demonstrated the CP applicability for this problem.
The proposed CP model is highly related to the classical RCPSP model, while multiple
extensions are considered to address problem-specific constraints and objectives. As a means
to speedup the search of better solutions, we proposed to use the SBPS value selection
heuristic. Its usage improved on average the objective value by 5%, 48% and 79% when
minimizing respectively the makespan, the overtime costs and the robustness, as better
solutions are found significantly faster than with our baseline heuristics.

Directions for future work include the integration of an optimization algorithm based on
mixed-integer programming, and extending algorithms by considering task priority levels
for scope optimization, i.e. when work requirements surpass the capacity. We also aim to
further explore the use of probabilistic discrete-event simulations for robustness assessment,
and the use of geospatial modeling and visualization to improve planning as well as users
understanding.

References
1 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve complex

scheduling and placement problems. Mathematical and Computer Modelling, 17(7):57–73,
April 1993. doi:10.1016/0895-7177(93)90068-A.

2 Rashpal Ahluwalia and Denis Pinha. Decision support system for production planning in the
ship repair industry. Industrial and Systems Engineering Review, 2(1):52–61, July 2014.

3 Christian Artigues, Oumar Koné, Pierre Lopez, Marcel Mongeau, Emmanuel Néron, and
David Rivreau. Benchmark instance indicators and computational comparison of methods. In
Resource-Constrained Project Scheduling, pages 107–135. John Wiley & Sons, Ltd, 2008.

4 Philippe Baptiste, Claude Le Pape, and Wim Nuitjen. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. International Series in Operations Research
& Management Science. Springer, Boston, MA, first edition, 2001.

5 Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Constraints, 5(1):119–
139, January 2000. doi:10.1023/A:1009822502231.

6 Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives constraint with
negative heights. In Pascal Van Hentenryck, editor, Principles and Practice of Constraint
Programming - CP 2002, Lecture Notes in Computer Science, pages 63–79, Berlin, Heidelberg,
2002. Springer. doi:10.1007/3-540-46135-3_5.

7 J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan. Scheduling subject to resource
constraints: Classification and complexity. Discrete Applied Mathematics, 5(1):11–24, January
1983. doi:10.1016/0166-218X(83)90012-4.

8 Jacques Carlier and Emmanuel Néron. On linear lower bounds for the resource constrained
project scheduling problem. European Journal of Operational Research, 149:314–324, September
2003. doi:10.1016/S0377-2217(02)00763-4.

9 Geoffrey G. Chu. Improving Combinatorial Optimization. PhD thesis, The University of
Melbourne, 2011. GitHub: https://github.com/chuffed/chuffed.

10 Bert De Reyck and Willy Herroelen. On the use of the complexity index as a measure of
complexity in activity networks. European Journal of Operational Research, 91(2):347–366,
June 1996. doi:10.1016/0377-2217(94)00344-0.

11 Sophie Demassey. Mathematical programming formulations and lower bounds. In Resource-
Constrained Project Scheduling: Models, Algorithms, Extensions and Applications, pages 49–62.
John Wiley & Sons, Ltd, 2008.

https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1023/A:1009822502231
https://doi.org/10.1007/3-540-46135-3_5
https://doi.org/10.1016/0166-218X(83)90012-4
https://doi.org/10.1016/S0377-2217(02)00763-4
https://github.com/chuffed/chuffed
https://doi.org/10.1016/0377-2217(94)00344-0

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:15

12 Erik L. Demeulemeester and Willy S. Herroelen. New benchmark results for the resource-
constrained project scheduling problem. Management Science, 43(11):1485–1492, November
1997. doi:10.1287/mnsc.43.11.1485.

13 Emir Demirović, Geoffrey Chu, and Peter J. Stuckey. Solution-Based Phase Saving for CP:
A Value-Selection Heuristic to Simulate Local Search Behavior in Complete Solvers. In
John Hooker, editor, Principles and Practice of Constraint Programming, Lecture Notes
in Computer Science, pages 99–108, Cham, 2018. Springer International Publishing. doi:
10.1007/978-3-319-98334-9_7.

14 Hamed Fahimi, Yanick Ouellet, and Claude-Guy Quimper. Linear-time filtering algorithms
for the disjunctive constraint and a quadratic filtering algorithm for the cumulative not-first
not-last. Constraints, 23(3):272–293, July 2018. doi:10.1007/s10601-018-9282-9.

15 Thibaut Feydy, Adrian Goldwaser, Andreas Schutt, Peter J Stuckey, and Kenneth D Young.
Priority Search with MiniZinc. In ModRef 2017: The Sixteenth International Workshop on
Constraint Modelling and Reformulation, 2017.

16 Sönke Hartmann and Dirk Briskorn. An updated survey of variants and extensions of the
resource-constrained project scheduling problem. European Journal of Operational Research,
297(1):1–14, February 2022. doi:10.1016/j.ejor.2021.05.004.

17 Willy Herroelen, Bert De Reyck, and Erik Demeulemeester. Resource-constrained project
scheduling: A survey of recent developments. Computers & Operations Research, 25(4):279–302,
April 1998. doi:10.1016/S0305-0548(97)00055-5.

18 IBM Maximo Application Suite. IBM, 2021. Website: https://www.ibm.com/ca-en/
products/maximo.

19 Rainer Kolisch and Arno Sprecher. PSPLIB - A project scheduling problem library. European
Journal of Operational Research, 96(1):205–216, January 1997. doi:10.1016/S0377-2217(96)
00170-1.

20 Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau. Event-based MILP
models for resource-constrained project scheduling problems. Computers & Operations Research,
38(1):3–13, January 2011. doi:10.1016/j.cor.2009.12.011.

21 Philippe Laborie. Complete MCS-based search: Application to resource constrained project
scheduling. In Proceedings of the 19th International Joint Conference on Artificial Intelligence,
IJCAI’05, pages 181–186, San Francisco, CA, USA, July 2005. Morgan Kaufmann Publishers
Inc.

22 Daniel Lafond, Dave Couture, Justin Delaney, Jessica Cahill, Colin Corbett, and Gaston
Lamontagne. Multi-objective schedule optimization for ship refit projects: Toward geospatial
constraints management. In Tareq Ahram, Redha Taiar, and Fabienne Groff, editors, Human
Interaction, Emerging Technologies and Future Applications IV, Advances in Intelligent Systems
and Computing, pages 662–669, Cham, 2021. Springer International Publishing. doi:10.1007/
978-3-030-74009-2_84.

23 Kevin Leo and Guido Tack. Debugging unsatisfiable constraint models. In Domenico
Salvagnin and Michele Lombardi, editors, Integration of AI and OR Techniques in Con-
straint Programming, Lecture Notes in Computer Science, pages 77–93, Cham, 2017.
Springer International Publishing. GitLab: https://gitlab.com/minizinc/FindMUS. doi:
10.1007/978-3-319-59776-8_7.

24 Anthony A. Mastor. An experimental investigation and comparative evaluation of production
line balancing techniques. Management Science, 16(11):728–746, July 1970. doi:10.1287/
mnsc.16.11.728.

25 Microsoft Project. Microsoft, 2019. Website: https://www.microsoft.com/en-ca/
microsoft-365/project/project-management-software.

26 M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design Automation Conference, pages 530–535,
June 2001. doi:10.1145/378239.379017.

CP 2022

https://doi.org/10.1287/mnsc.43.11.1485
https://doi.org/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/s10601-018-9282-9
https://doi.org/10.1016/j.ejor.2021.05.004
https://doi.org/10.1016/S0305-0548(97)00055-5
https://www.ibm.com/ca-en/products/maximo
https://www.ibm.com/ca-en/products/maximo
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/j.cor.2009.12.011
https://doi.org/10.1007/978-3-030-74009-2_84
https://doi.org/10.1007/978-3-030-74009-2_84
https://gitlab.com/minizinc/FindMUS
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1287/mnsc.16.11.728
https://doi.org/10.1287/mnsc.16.11.728
https://www.microsoft.com/en-ca/microsoft-365/project/project-management-software
https://www.microsoft.com/en-ca/microsoft-365/project/project-management-software
https://doi.org/10.1145/378239.379017

10:16 A CP Approach to Ship Refit Project Scheduling

27 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck,
and Guido Tack. MiniZinc: Towards a standard CP modelling language. In Christian
Bessière, editor, Principles and Practice of Constraint Programming – CP 2007, Lecture
Notes in Computer Science, pages 529–543, Berlin, Heidelberg, 2007. Springer. Website:
https://www.minizinc.org/. doi:10.1007/978-3-540-74970-7_38.

28 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, September 2009. doi:10.1007/s10601-008-9064-x.

29 Yanick Ouellet and Claude-Guy Quimper. A O(n log2 n) checker and O(n2 log n) filtering
algorithm for the energetic reasoning. In Willem-Jan van Hoeve, editor, Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, Lecture Notes in
Computer Science, pages 477–494, Cham, 2018. Springer International Publishing. doi:
10.1007/978-3-319-93031-2_34.

30 Robert Pellerin, Nathalie Perrier, and François Berthaut. A survey of hybrid metaheuristics
for the resource-constrained project scheduling problem. European Journal of Operational
Research, 280(2):395–416, January 2020. doi:10.1016/j.ejor.2019.01.063.

31 Laurent Perron and Vincent Furnon. OR-Tools. Google, 2022. Website: https://developers.
google.com/optimization/.

32 David Pisinger and Stefan Ropke. Large Neighborhood Search. In Michel Gendreau and
Jean-Yves Potvin, editors, Handbook of Metaheuristics, International Series in Operations
Research & Management Science, pages 399–419. Springer US, Boston, MA, 2010. doi:
10.1007/978-1-4419-1665-5_13.

33 Primavera P6 Enterprise Project Portfolio Management (P6 EPPM). Oracle,
2022. Website: https://docs.oracle.com/en/industries/construction-engineering/
primavera-p6-project/index.html.

34 A. Alan B. Pritsker, Lawrence J. Waiters, and Philip M. Wolfe. Multiproject scheduling with
limited resources: A zero-one programming approach. Management Science, September 1969.
doi:10.1287/mnsc.16.1.93.

35 Robert Richards and Richard Stottler. Complex project scheduling lessons learned from NASA,
boeing, general dynamics and others. In 2019 IEEE Aerospace Conference, pages 1–9, March
2019. doi:10.1109/AERO.2019.8741996.

36 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

37 Andreas Schutt, Thibaut Feydy, and Peter J. Stuckey. Explaining time-table-edge-finding
propagation for the cumulative resource constraint. In Carla Gomes and Meinolf Sellmann,
editors, Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, Lecture Notes in Computer Science, pages 234–250, Berlin, Heidelberg,
2013. Springer. doi:10.1007/978-3-642-38171-3_16.

38 Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Explaining the cumu-
lative propagator. Constraints, 16(3):250–282, July 2011. doi:10.1007/s10601-010-9103-2.

39 Paul Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing
Problems. In Michael Maher and Jean-Francois Puget, editors, Principles and Practice of
Constraint Programming — CP98, Lecture Notes in Computer Science, pages 417–431, Berlin,
Heidelberg, 1998. Springer. doi:10.1007/3-540-49481-2_30.

40 Arno Sprecher. Scheduling resource-constrained projects competitively at modest memory
requirements. Management Science, 46(5):710–723, 2000.

41 Petr Vilím. Timetable edge finding filtering algorithm for discrete cumulative resources. In
Tobias Achterberg and J. Christopher Beck, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer
Science, pages 230–245, Berlin, Heidelberg, 2011. Springer. doi:10.1007/978-3-642-21311-3_
22.

42 Julien Vion and Sylvain Piechowiak. Une simple heuristique pour rapprocher DFS et LNS
pour les COP. In Actes des 13e Journées Francophones de la Programmation par Contraintes,
JFPC 2017, pages 38–45, Montreuil sur Mer, France, June 2017.

https://www.minizinc.org/
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/978-3-319-93031-2_34
https://doi.org/10.1007/978-3-319-93031-2_34
https://doi.org/10.1016/j.ejor.2019.01.063
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1007/978-1-4419-1665-5_13
https://doi.org/10.1007/978-1-4419-1665-5_13
https://docs.oracle.com/en/industries/construction-engineering/primavera-p6-project/index.html
https://docs.oracle.com/en/industries/construction-engineering/primavera-p6-project/index.html
https://doi.org/10.1287/mnsc.16.1.93
https://doi.org/10.1109/AERO.2019.8741996
https://doi.org/10.1007/978-3-642-38171-3_16
https://doi.org/10.1007/s10601-010-9103-2
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/978-3-642-21311-3_22

	1 Introduction
	2 Problem Description
	3 Background
	3.1 Scheduling
	3.2 Constraint Programming
	3.3 Solution-Based Phase Saving
	3.4 RCPSP Complexity

	4 Methodology
	4.1 Main model
	4.2 Extensions
	4.3 Search Heuristics

	5 Experimentation
	6 Discussion
	7 Conclusion

