
Heuristics for MDD Propagation in HADDOCK

Rebecca Gentzel #

University of Connecticut, Storrs, CT, USA

Laurent Michel #

Synchrony Chair in Cybersecurity, University of Connecticut, Storrs, CT, USA

Willem-Jan van Hoeve #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Haddock, introduced in [11], is a declarative language and architecture for the specification and the
implementation of multi-valued decision diagrams. It relies on a labeled transition system to specify
and compose individual constraints into a propagator with filtering capabilities that automatically
deliver the expected level of filtering. Yet, the operational potency of the filtering algorithms strongly
correlate with heuristics for carrying out refinements of the diagrams. This paper considers how to
empower Haddock users with the ability to unobtrusively specify various such heuristics and derive
the computational benefits of exerting fine-grained control over the refinement process.

2012 ACM Subject Classification Mathematics of computing → Decision diagrams; Theory of
computation → Constraint and logic programming

Keywords and phrases Decision Diagrams

Digital Object Identifier 10.4230/LIPIcs.CP.2022.24

Supplementary Material Software (Source Code): https://bitbucket.org/ldmbouge/minicpp/
src/v1.1/

Funding Laurent Michel and Rebecca Gentzel were partially supported by Synchrony. Willem-Jan
van Hoeve was partially supported by Office of Naval Research Grant No. N00014-21-1-2240 and
National Science Foundation Award #1918102.

1 Introduction

Heuristics are a key ingredient in Constraint Programming. They have been at the core
of search procedures for decades. The first-fail heuristic [15] is probably the most well-
known representative of how one can affect the performance of a constraint solver with a
mere influence on the search strategy that guides the branching process towards the most
promising variables. Modern constraint programming solvers typically offer a full complement
of such heuristics including weighted degree [8], impact-based search [23], activity-based
search [21], conflict-driven search [25], or counting-based search [13] to name just a few. This
practice is equally common in mathematical programming with strong branching [3, 1] or
pseudo-cost branching [10] or even machine learning based heuristics [5]. This is also true in
Boolean satisfiability, with LRB (Learning Rate Branching) [20] and VSIDS (Variable State
Independent Decaying Sum) [22] being two of the most regarded such heuristics.

Yet, all these heuristics operate on the level of the entire model and exploit “global
behaviors” of the solvers. In constraint programming, for instance, the propagators of
most constraints use a prescribed level of consistency when they execute, which dictates
the fixpoint they reach. This often leaves little to no room for heuristics to play a role
within the propagators themselves; however, this is not always true. Cost-based filtering
propagators [9, 24] can make use of relaxations to derive bounds on the objective function
of a model and use that signal to filter variable domains. Recently, [7] showed how to seek
specific Lagrangian multipliers that improve filtering. It is notable that the adoption of
relaxations within propagators creates opportunities for heuristics.

© Rebecca Gentzel, Laurent Michel, and Willem-Jan van Hoeve;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rebecca.gentzel@uconn.edu
mailto:ldm@engr.uconn.edu
https://orcid.org/0000-0001-7230-7130
mailto:vanhoeve@andrew.cmu.edu
https://orcid.org/0000-0002-0023-753X
https://doi.org/10.4230/LIPIcs.CP.2022.24
https://bitbucket.org/ldmbouge/minicpp/src/v1.1/
https://bitbucket.org/ldmbouge/minicpp/src/v1.1/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Heuristics for MDD Propagation in HADDOCK

Decision diagrams present similar opportunities. When applied to optimization problems,
multi-valued decision diagrams (MDDs) typically adopt a bounded width (the maximum
number of nodes in a layer) and therefore employ some form of relaxation to merge nodes
of the diagram [2, 14, 6]. Such merging decisions induce the presence of paths in the MDD
that no longer correspond to solutions, necessitating a search process to seek solutions.
During the search, internal nodes belonging to layers of the MDD propagator get filtered
out (possibly leading to the filtering of variable domains) which reduces the layer size and
prompts refinement phases. Indeed, a depleted layer has room to accommodate more nodes
that only currently exist in a latent form as part of another, merged node within the layer.
Merging and refining nodes are core operations that raise key questions about the impact
of choices made on the quality of the obtained relaxation. The purpose of this paper is to
explore the impact of such choices and provide the solver user with a way to dictate the
policies that govern relaxation-inducing choices. Our findings can potentially be applied to
any solver that uses relaxed decision diagrams [6, 11, 12].

Haddock [11] provides a specification language and implementation architecture for
automatic decision diagram compilation. Haddock provides the rules for refining (splitting)
and filtering (propagating) MDD abstractions. The filtering rules are determined by the
properties and functions detailed in the specification language, but the refinement process is
more abstract. While the filtering rules give valuable tools to remove arcs and states from
the MDD, how the MDD is split determines whether filtering rules are able to find infeasible
arcs and states and to ultimately filter domains [14].

Contributions. This paper presents an approach to MDD refinement containing configurable
heuristics that integrate into Haddock such that all existing Haddock solutions still fit
the framework. These heuristics allow the tailoring of refinement rules to specific constraints
or models. The rules for refinement play a large role in MDD propagation, and we present
insights into why certain refinement rules outperform others.

Paper Structure. The remainder of the paper is organized as follows. Section 2 introduces
a motivating example using among constraints. Section 3 reviews the relevant preliminaries,
including the formalization used in Haddock. Section 4 discusses the heuristics that
parameterize the refinement strategy. Section 5 treats the aggressiveness of the refinement
process across layers through the reboot hyper-parameter, while Section 6 reports on the
empirical results, and Section 7 concludes the paper.

2 Motivating Example

The following example explores the impact that state selection can have on the accuracy of
the relaxation produced by an MDD propagator.

▶ Example 1. Recall the definition of the among global constraint on an ordered set X of n

variables [4]. It counts the number of occurrences of values taken from a given set Σ and
ensures that the total number is between l and u, i.e.,

among(X, l, u, Σ) := l ≤
n∑

i=1
(xi ∈ Σ) ≤ u.

Consider two constraints c1 = Among({x1, x2, x3}, l1 = 1, u1 = 2, Σ1 = {1}) and
c2 = Among({x1, x2, x3}, l2 = 1, u2 = 2, Σ2 = {2}) where each variable has domain {0, 1, 2}.
An MDD for these constraints is a layered directed acyclic graph with four layers (L0, . . . , L3),
a source s⊥, and a sink s⊤. Arcs flow from a node in layer Li−1 to a node in layer Li and

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:3

x1

x2

x3

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 1, 0, 2)
(0, 1, 0, 2)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

0 1 2

0 1 2

a. Initial MDD with width 1

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 0, 0, 2)
(0, 0, 0, 2)

(1, 1, 0, 2)
(0, 0, 0, 2)

(0, 0, 0, 2)
(1, 1, 0, 2)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

0 1 2 0 1 2 0 1 2

0 1 2

b. After splitting L1

x1

x2

x3

(0, 0, 1, 2)
(0, 0, 1, 2)

(0, 0, 1, 1)
(0, 0, 1, 1)

(1, 1, 0, 1)
(0, 0, 1, 2)

(0, 0, 1, 2)
(1, 1, 0, 1)

(0, 0, 0, 1)
(0, 0, 0, 1)

(1, 1, 0, 0)
(0, 0, 1, 1)

(0, 0, 1, 1)
(1, 1, 0, 0)

(2, 2, 0, 0)
(0, 0, 1, 1)

(1, 1, 0, 1)
(1, 1, 0, 1)

(0, 0, 1, 1)
(2, 2, 0, 0)

(1, 2, 0, 0)
(1, 2, 0, 0)

0 1 2

0 1 20 1 20 1 2

0 12 0 12 0 1 2 0 1 2 0 12 0 12

c. If a full split of L2 were possible

Figure 1 Exact refinement process. Dashed nodes and arcs can be filtered.

are labeled with a domain value v, stating the assignment xi = v. Every s⊥-s⊤ path denotes
a candidate solution. Each node carries a state s = ⟨s1, s2⟩ with s1 = ⟨L↓

1, U↓
1 , L↑

1, U↑
1 ⟩ and

s2 = ⟨L↓
2, U↓

2 , L↑
2, U↑

2 ⟩ with the properties of c1 and c2. Intuitively, L↓
i and U↓

i denote the
lower and upper bound, respectively, on the number of occurrences of values from Σi on any
s⊥-s paths in the MDD. L↑

i and U↑
i are similarly defined on s-s⊤ paths.

Figure 1(a) depicts the MDD at width 1. Assume one imposes a maximum width of 3.
Refinement begins by splitting L1. As shown in Figure 1(b), L1 can be fully split into three
states. Next, refinement is performed on L2. A full split is shown for this layer in Figure
1(c). While the state on the far left is infeasible and can be deleted, five states remain with
a maximum width of 3. A splitting of this layer partitions the five states into three groups.
One partitioning strategy is to solely rely on L↓

1. Since there are exactly three values for L↓
1

in these five states (0, 1, 2), the five states group neatly. The result is shown in Figure 2(a).
An alternative is depicted in Figure 2(b) the grouping is based on the labels of outgoing arcs
to s⊤ ({1}, {2}, and {0, 1, 2} after filtering infeasible arcs). While the first partition strategy
still has s⊥-s⊤ paths representing infeasible assignments, e.g. x1 = 0, x2 = 1, x3 = 1, the
second partition provides an exact MDD despite L2 still harboring merged states. It is clear
that choices made during refinement impact the accuracy of the MDD and its ability to filter.

CP 2022

24:4 Heuristics for MDD Propagation in HADDOCK

x1

x2

x3

(0, 0, 1, 2)
(0, 0, 0, 2)

(0, 0, 1, 2)
(0, 0, 0, 1)

(1, 1, 0, 1)
(0, 0, 0, 2)

(0, 0, 1, 2)
(1, 1, 0, 1)

(0, 0, 1, 1)
(1, 2, 0, 0)

(1, 1, 0, 1)
(0, 1, 0, 1)

(2, 2, 0, 0)
(0, 0, 1, 1)

(1, 2, 0, 0)
(0, 2, 0, 0)

0 1 2

1 201 2 01 2

0 120 1 20 12

a. Splitting L2 by L↓
1

(0, 0, 1, 2)
(0, 0, 1, 2)

(0, 0, 1, 1)
(0, 0, 1, 1)

(1, 1, 0, 1)
(0, 0, 1, 2)

(0, 0, 1, 2)
(1, 1, 0, 1)

(0, 0, 1, 1)
(1, 2, 0, 0)

(1, 2, 0, 0)
(0, 0, 1, 1)

(1, 1, 0, 1)
(1, 1, 0, 1)

(1, 2, 0, 0)
(1, 2, 0, 0)

0 1 2

1 20
1 2 01 2

0 120 12 0 1 2

b. Splitting L2 by outgoing arcs

Figure 2 Options for partitioning L2. Dashed arcs can be filtered.

3 Background

Following [11], we formally define an MDD as a labeled transition system [17]:

▶ Definition 2. A labeled transition system is a triplet ⟨S, →, Λ⟩ where S is a set of states,
→ is a relation of labeled transitions between states from S, and Λ is a set of labels used to
tag transitions.

▶ Definition 3. Given an ordered set of variables X = {x1, . . . , xn} with domains D(x1)
through D(xn), a multi-valued decision diagram (MDD) on X is an LTS ⟨S, →, Λ⟩ in which:

the state set S is stratified in n + 1 layers L0 through Ln with transitions from →
connecting states between layers i and i + 1 exclusively;
the transition label set Λ is defined as

⋃
i∈1..n D(xi);

a transition between two states a ∈ Li−1 and b ∈ Li carries a label v ∈ D(xi) (i ∈ 1..n);
the layer L0 consists of a single source state s⊥;
the layer Ln consists of a single sink state s⊤.

An MDD M can represent a constraint set with specific state definitions and transition
functions. If each solution in the constraint set is represented by an s⊥-s⊤ path in M , and
vice-versa, M is exact. If M represents a superset of the solutions of the constraint set, it
is relaxed. In Haddock, states consist of integer-valued sets of properties to represent the
constraints. We next describe how these are used to automatically compile the LTS, using
the Among constraint as an illustration. For a complete description, we refer to [11].

State Properties. As mentioned in Example 1, a state for Among(X, l, u, Σ) carries four
properties, i.e., ⟨L↓, U↓, L↑, U↑⟩, for each node v in the MDD:

L↓ ∈ Z: minimum number of times a value in Σ is taken from s⊥ to v.
U↓ ∈ Z: maximum number of times a value in Σ is taken from s⊥ to v.
L↑ ∈ Z: minimum number of times a value in Σ is taken from v to s⊤.
U↑ ∈ Z: maximum number of times a value in Σ is taken from v to s⊤.

We initialize the state for the source s⊥ as ⟨0, 0, −, −⟩ and the sink s⊤ as ⟨−, −, 0, 0⟩.

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:5

Transition Functions. The transition between a node a ∈ Li−1 and b ∈ Li is an arc (a, b)
labeled by a value ℓ ∈ D(xi). We use transition functions T ↓(a, b, i, ℓ) and T ↑(b, a, i, ℓ) to
derive the property values (the states) for b and a, respectively. For each individual property p,
we use the function f(s, p, ℓ) for a given state s. For Among, we apply f(s, p, ℓ) = p(s)+(ℓ ∈
Σ) for each property p in ⟨L↓, U↓, L↑, U↑⟩. For example, we define L↓(b) = f(a, L↓, ℓ),
i.e., L↓(a) + (ℓ ∈ Σ). We likewise define L↑(a) = f(b, L↑, ℓ), U↓(b) = f(a, U↓, ℓ) and
U↑(a) = f(b, U↑, ℓ). The state-level transition functions T ↓ and T ↑ compute all the down or
up properties of the next state as follows:

T ↓(a, b, i, ℓ) = ⟨f(a, L↓, ℓ), f(a, U↓, ℓ), −, −⟩
T ↑(b, a, i, ℓ) = ⟨−, −, f(b, L↑, ℓ), f(b, U↑, ℓ)⟩.

Note that slight variants of both functions that preserve the properties of states b and a,
respectively, in the opposite directions are equally helpful. Those are:

T ↓(a, b, i, ℓ) = ⟨f(a, L↓, ℓ), f(a, U↓, ℓ), L↑(b), U↑(b)⟩
T ↑(b, a, i, ℓ) = ⟨L↓(a), U↓(a), f(b, L↑, ℓ), f(b, U↑, ℓ)⟩.

Transition Existence Function The transition existence function Et(a, b, i, ℓ) specifies
whether an arc (a, b) with label ℓ ∈ D(xi) exists in the LTS. For Among, this function
should ensure that the lower bound l is met and the upper bound u is not exceeded, i.e.:

U↓(a) + (ℓ ∈ S) + U↑(b) ≥ l ∧ L↓(a) + (ℓ ∈ S) + L↑(b) ≤ u.

Node Relaxation Functions Two states a and b in the same layer Li can be relaxed (merged)
to produce a new state s′ according to a relaxation function relax(a, b). For Among, we
can use:

relax(a, b) = ⟨ min{L↓(a), L↓(b)}, max{U↓(a), U↓(b)},

min{L↑(a), L↑(b)}, max{U↑(a), U↑(b)} ⟩.

We also call such relaxed states approximate states.
State relaxation generalizes to an ordered set of states {s0, s1, . . . , sk−1} as follows:

relax(s0, relax(s1, relax(..., relax(sk−2, sk−1)...))).

For Among, we maintain MDD-bounds consistency on this expression, i.e., we only maintain
a lower and upper bound on the count to ensure feasibility and rely on the above relaxation
function to merge nodes and bound the width of the MDD to at most w states. The usage of
a relaxation is precisely why we maintain bounds (L and U) in both up and down directions.
Note that full MDD consistency for Among can be established in polynomial time by
maintaining a set of exact counts [16].

Notation. For any state s ∈ Li with 1 ≤ i ≤ n, let δ−(s) denote the set of inbound arcs
from layer Li−1. Likewise let δ+(s) denote the set of outbound arcs into Li+1. We sometimes
overload notation and use δ−(s) and δ+(s) to also refer to the set of states in Li−1 and Li+1,
respectively, one can reach from s via those arcs.

4 Decision Diagram Refinement

Haddock [11] provides an abstract definition for refining an MDD. For refining one layer,
it takes a single state, orders all of that state’s incoming arcs, groups these arcs based on
equivalence classes, and creates new states for each of these equivalence classes [14]. This

CP 2022

24:6 Heuristics for MDD Propagation in HADDOCK

Algorithm 1 refineLayer(Li, [L0, . . . , Li−1], w, ⟨Y, Q, W ⟩).
Require: |Li| ≤ w

Ensure: |Li| = w ∨ appx(Li) = ∅
1: while |Li| < w ∧ appx(Li) ̸= ∅ do
2: let s∗ = arg maxs∈appx(Li) Y (s)
3: let cs = partition(refine(s∗), Q)
4: if |cs| ≤ w − |Li| + 1 then
5: Li = Li \ {s∗} ∪

⋃|cs|
j=1 relax(csj)

6: else
7: let π = permutation(cs) | ∀j, k ∈ 1..|cs| : j ≤ k ⇒ W (sπj

) ≤ W (sπk
)

8: Li = Li \ {s∗} ∪
⋃w−|Li|

j=1 relax(csπj) ∪ relax(
⋃|cs|

j=w−|Li|+1 csπj
)

process introduces space for multiple heuristics. Which relaxed state is selected for splitting?
How should the results of the splitting be ordered and partitioned? This section turns these
choices into definable heuristic functions building off of the framework of Haddock.

Algorithm 1 gives the pseudo-code of the layer refinement. It takes as input layer Li, a
target width w and three functions Y , W , and Q (shown in red) that are the embodiment
of the user-definable heuristics. The algorithm makes use of several sub-routines (appx,
refine, partition, and permutation) that will be explained below. Algorithm 1 refines a
layer by repeatedly pulling out states that can be refined (if any) and replacing them in the
layer by more precise versions given the availability of space in the targeted layer. The Y

function drives the selection of the approximate state to replace, while Q and W govern the
mechanisms to synthesize the replacement. The section closes with an in-depth discussion of
refineLayer once all its components are laid out.

4.1 State Selection with Y

The first step is to select which state in the layer Li should be refined (line 2 in Alg. 1).
When the MDD is first constructed, each layer only has one state, so this is trivial. We
therefore assume that 1 < |Li| < w. Li may contain both exact and approximate states as
a result of prior merging. The function call appx(Li) returns the subset of states that are
the results of prior approximations (merges). Ideally, one would wish to refine the layer and
replace all approximate nodes with exact ones until |Li| = w. The order in which we select
an approximate state s∗ for refinement is driven by state priority functions:

▶ Definition 4. A state priority function Y : S → Z takes as input state s = ⟨P0, . . . , Pk−1⟩
and returns an integer value representing its priority where the larger is the more preferable.

The refinement will retract the selected state s∗ from the layer and replace it with an
expansion that consists of one or more new states. The size of this expansion drives the
remainder of the algorithm. Focusing on Y , several natural choices come to mind. Some
are based on the local topology of the MDD around the selected state s∗, while others are
semantics driven and leverage the properties held within s∗. Recall that the layer is an
ordered set (states are ordered within the layer and have a rank between 0 and the cardinality
of the set) and that states have topological properties such as the sets of incoming (δ−(s))
and outgoing (δ+(s)) arcs. While purely syntactic, these properties may be attractive. As
the newest states are the ones most recently refined, the age of states may be a useful metric:

▶ Example 5 (Rank heuristics). Let Y (s) = −rank(s) be the heuristic to first select the
oldest states inserted in the layer. Likewise, one can define Y (s) = rank(s) to first select the
nodes that were most recently inserted in the layer.

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:7

Another natural option is to consider the in-degree of the state in the MDD to get:

▶ Example 6 (Degree heuristics). Let Y (s) = −δ−(s) be the heuristic to first select low
in-degree states, i.e., states that have few parents in the prior layer.

▶ Example 7 (Semantics-based heuristic). Consider the constraint Among(X, l, u, Σ) using
state s = (L↓, U↓, L↑, U↑) with L↓ and U↓ as specified earlier. Define the state selection
heuristic Y (s) = L↓(s) + L↑(s) to preferentially select a state with the largest lower bound
on the number of occurrences of values from Σ on any path s⊤ to s⊥. Likewise, the heuristic
Y (s) = −(U↓(s) + U↑(s)) would select the state with the smallest upper bound on the
number of occurrences of values from Σ along those paths.

4.2 Candidate Selection with Q and W

Once line 2 of Algorithm 1 has executed, state s∗ needs to be refined. To evaluate its
incoming arcs, we define the function A(s) that collects the set of arcs leading to state s

from the prior layer:

A(s) = {pj
ℓj−→ s | pj ∈ Li−1 ∧ ℓj ∈ D(xi)}

Equipped with A(s∗) one can compute what the true endpoint of each arc should have been
without relaxation. The outgoing arcs of these endpoints are a subset of δ+(s∗) built by
removing infeasible arcs from δ+(s∗). Namely for a true descendent s′ computed from an
endpoint in A(s), we have

δ+(s′) = {s′ ℓj−→ cj | s
ℓj−→ cj ∈ δ+(s) ∧ Et(s′, cj , i, ℓj)}

If δ+(s′) = ∅, then the corresponding arc in A(s∗) can be removed from the MDD. With this,
we can compute K(s∗), the multiset of true descendants according to the remaining arcs in
A(s∗) thanks to the forward state transition rule T ↓:

K(s) = {s′ = T ↓(pj , s, i, ℓj) | pj
ℓj−→ s ∈ A(s) ∧ δ+(s′) ̸= ∅}.

Note how relax(K(s∗)) = s∗ since K(s∗) is none other than the multiset of states that
would yield s∗ if merged. The refine(s∗) function in Algorithm 1 (line 3) is responsible
for producing the multiset K(s∗). With unbounded width, one could retain the unique
states in K(s∗) and add all of them into Li \ {s∗} to upgrade s∗. Otherwise, we need to
group together states in K(s∗) to be merged. The generic partition function (line 3 in
Alg. 1) returns a partition of K(s∗) into multisets S1, . . . , Sp, each of which representing an
approximately equivalent multiset of states. That is, Si ⊆ K(s∗) for 1 ≤ i ≤ p, Si ∩ Sj = ∅
for 1 ≤ i < j ≤ p, and

⋃p
i=1 Si = K(s∗). The heuristic function Q determines which states

should be grouped together. For example, if Q is a binary relation that encodes equality,
partition(K(s∗), Q) must ensure that Q(a, b) holds for all a, b ∈ Si (1 ≤ i ≤ p) and Q(a, b)
does not hold for all a ∈ Si, b ∈ Sj (1 ≤ i < j ≤ p).

Whenever |Si| > 1, we can apply the relax function to collapse Si into a single state.
The resulting states can all be added to the layer if it would not exceed maximum width
(lines 4-5 in Alg. 1). Otherwise, we need to determine which states to add and which to
merge. To do this, we use heuristic function W to compute a sorted permutation of the
partition S1, . . . , Sp. The permutation induced by W identifies the first (and most promising)
w − |Li| collapsed states for inclusion and merges the remaining ones into a single state.

To formalize the description above, let us adopt the following definitions:

CP 2022

24:8 Heuristics for MDD Propagation in HADDOCK

▶ Definition 8 (Equivalence class). A state equivalence function takes the form Q : S ×S → B.
It takes as input states a = ⟨A0, . . . , Ak−1⟩ and b = ⟨B0, . . . , Bk−1⟩ and returns whether the
two states are considered similar enough.

So long as Q is an equivalence relation (reflexive, symmetric, and transitive), Q can generate
a partition of K(s∗). Naturally, the most direct example is pure equality.

▶ Example 9 (Equality). Let Q(a, b) be a binary state equivalence function that holds over
states a = ⟨A0, . . . , Ak−1⟩ and b = ⟨B0, . . . , Bk−1⟩ when all properties are point-wise
equal, i.e., Q(a, b) holds if and only if

∧k−1
i=0 Ai = Bi.

While combining equal states is helpful, one may wish to group states that are similar
but not identical. We refer to all other types of state equivalence as approximate equivalence.
Which properties are used for determining equivalence may be problem dependent. Hence
the desire to make it programmable. Any states that are deemed approximately equivalent
are relaxed together by virtue of being members of the same class. The desire to preserve a
strong relaxation should bias the design of Q to induce the weakest possible losses as a result
of applying the relax function. To appreciate this semantic use, consider this example:

▶ Example 10 (Bound Slackness). Consider the constraint Among(x, l, u, Σ) using state
s = (L↓, U↓, L↑, U↑) as before. It is easy to assess how close the current bounds on the
number of occurrences of values in Σ are compared to l and u. Given two states a, b ∈ K(s),
a = T ↓(pa, s, i, ℓa) and b = T ↓(pb, s, i, ℓb). If L↓(a) + L↑(a) and L↓(b) + L↑(b) are equally
close to l, one would incur a weak loss of precision when merging a with b since merging uses
min on property L↓, and L↑(a) = L↑(b) = L↑(s) because a and b are derived by only calling
the forward state transition rule. The same argument applies to the U↓, U↑ properties and
the distance to the upper bound u. Therefore, let Qt(a, b) be a parametric approximate
equivalence class (with parameter t) defined as

Q(a, b) =((l − (L↓(a) + L↑(a)) > t) = (l − (L↓(b) + L↑(b)) > t))
∧((u − (U↓(a) + U↑(a)) > t) = (u − (U↓(b) + U↑(b)) > t))

Interestingly, setting t = 0 means that states a and b are equivalent as soon as both bounds
have any amount of slack while t = +∞ means that the inequalities are never satisfied forcing
each state to stand in a separate class (no relaxations as a result of similar slackness).

▶ Definition 11 (Weight function). A candidate weight function takes the form W : S → Z.
It takes as input a state and returns an integer value representing its desirability (smaller is
better).

The weight function is used to derive a permutation of K(s∗). Consider the following
examples that leverage simple structural properties:

▶ Example 12 (Number of arcs heuristic). Let W (s) = |δ−(s)| be the heuristic that favors
nodes with fewer antecedents in the layer above.

▶ Example 13 (Parent rank heuristic). Let W (s) = − maxp∈δ−(s) rank(p) be the heuristic
that favors nodes with parents that were created in the parent layer the most recently.

4.3 Composing Heuristics
Haddock delivers a framework to automatically deliver MDD-driven propagators for con-
straints through specifications that use state definitions together with several functions to
capture transition, transition existence, state existence, and relaxations. Perhaps even more

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:9

interestingly, Haddock provides a composition mechanism to produce MDD specifications
from the conjunction of multiple high-level constraints. Such composite specifications then
drive the generation of the MDD propagator.

The addition of heuristics (Y , Q, and W) to modulate the behavior of the underlying
propagator raises a natural question. When each constraint brings its own preferred heuristics,
how does one combine them into a single composite heuristic for the propagator? We extend
the definition of an MDD language from [11] to incorporate the bundle of 3 heuristics:

▶ Definition 14 (MDD Language). Given a constraint c(x1, . . . , xn) over an ordered set
of variables X = {x1, . . . , xn} with domains D(x1), . . . , D(xn) the MDD language for c is
a tuple Mc = ⟨X, P, s⊥, s⊤, T ↓, T ↑, U, Et, Es, R, H = ⟨Y, Q, W ⟩⟩ where P is the set of
properties used to model states, s⊥ is the source state, s⊤ is the sink state, T ↓ is the forward
state transition rule, T ↑ is the reverse state transition rule, U is the state update function, Et

is the transition existence function, Es is the state existence function [11], and H = ⟨Y, Q, W ⟩
is the trio of heuristics controlling the refinement process.

4.3.1 Direct Composition
Consider two MDD languages M1 and M2 for constraints c1 and c2 defined over overlapping
ordered sets of variables X and Y (X ∩ Y ≠ ∅). Let the language M1 ∧ M2 denote the
composition of M1 and M2 and associate to it a heuristic bundle HM1∧M2 defined as:

▶ Definition 15. Given heuristic bundles Hc1 = ⟨Yc1 , Qc1 , Wc1⟩ and Hc2 = ⟨Yc2 , Qc2 , Wc2⟩,
let HM1∧M2 = ⟨Yc1 +Yc2 , Qc1 ∧Qc2 , Wc1 +Wc2⟩ denote the heuristic bundle of the composition.

4.3.2 Portfolio Composition
While direct composition can be effective, it may be sometimes too restrictive. An MDD may
encapsulate several constraints that disagree on the guidance that they offer individually. In
such circumstances, it might be preferable instead to base the refinements on the advice of
a portfolio in which the heuristic bundles coming from each constraint are prioritized. To
allow for this, we define the refinement portfolio as:

▶ Definition 16. A refinement portfolio is an ordered list (h1, . . . , hk) of heuristic bundles
with hi = ⟨Yi, Qi, Wi⟩ for each i ∈ {1, . . . , k}.

To understand how the portfolio is leveraged, consider the fixpoint algorithm used within
an MDD propagator for the conjunction of m constraints ∧m

i=1ci shown in Algorithms 2
and 3. Blue text can be ignored at first as it relates to the reboot and maximum refinement
described in Section 5. Algorithm 2 is the core of the fixpoint in the MDD propagator. It
first collects into the list HP all the heuristic bundles to be used. It then proceeds in lines
3-9 to carry out passes over the layers of the MDD. Each iteration starts with a backwards
pass going over layers Ln−1 to L0 to update the “up” properties of all states. This can lead
to the deletion of arcs and states. It then proceeds (line 5) with a down pass to update
the forward properties of the states that changed, but also to replenish layers that are no
longer full. Finally, lines 6-7 trim the variable domains to echo the changes done to the
MDD representation. Any changes prompt another iteration. Algorithm 3 is the crux of the
forward pass over layers L1 to Ln. The loop in lines 3-8 does the layer refinement while lines
9-10 compute the update and the pruning of each layer. While Algorithm 3 implies that the
process iterates over all layers, this is a simplification as the implementation only considers
changed states in changed layers. That simplification does not affect the layer refinement.

CP 2022

24:10 Heuristics for MDD Propagation in HADDOCK

Algorithm 2 mddFixpoint(Mc1∧···∧cm , [x1, . . . , xn], width, reboot, maxRef).
1: let HP = [⟨Y1, Q1, W1⟩, . . . , ⟨Yk, Qk, Wk⟩]
2: let iter = 0
3: repeat
4: changed = computeUp(Mc1∧···∧cm)
5: changed = computeDown(Mc1∧···∧cm

, width, HP, iter, reboot, maxRef) ∨ changed

6: for i ∈ 1..n do
7: trimVariable(xi)
8: iter = iter + 1
9: until ¬changed

Algorithm 3 computeDown(Mc1∧···∧cm , width, HP, iter, reboot, maxRef).
1: let changed = false

2: if iter < maxRef then
3: for hp ∈ HP do
4: let i = 1
5: repeat
6: l = refineLayer(Li, [L0, . . . , Li−1], width, hp)
7: i = (l < i) ? max(l, i − reboot) : (i + 1)
8: until i = n

9: for i ∈ 1..n do
10: changed = pruneLayer(Li) ∨ changed

11: return changed

4.3.3 Refinement Portfolio Options
Different choices for Q are possible. One could use (for a given constraint c) either an
approximation Q̃ or pure state equality Q. Alternatively, both can be used in a portfolio
[⟨Y, Q̃, W ⟩, ⟨Y, Q, W ⟩] that uses them in a round-robin style. This first conservatively expands
with a coarse equivalence, and, if room is still available, uses the finer grain equality.

4.3.4 Refinement Portfolio with Constraint Ranking
Another option is to populate the portfolio with heuristic bundles from each constraint
embedded in the MDD. Given the constraint set {c1, . . . , cm}, one can produce a portfolio
HP = [⟨Yπ0 , Qπ0 , Wπ0⟩, . . . ⟨Yπm−1 , Qπm−1 , Wπm−1⟩] that permutes the bundles according to
a user defined ordering π. This can be taken a step further by grouping constraints. Groups
have a single heuristic bundle obtained through composition. This grouping of constraints
for MDD refinement bears similarities to propagator groups [18]. Both ideas for portfolios
compose, expanding HP to include two bundles for each constraint, one that uses Q̃πi

and
one that uses Qπi

. This preserves the ranking goal by prioritizing constraints with a higher
rank above constraints of lower rank while always first splitting with Q̃ before Q.

5 Layer Processing

5.1 Reboot Distance
The refinement of a layer in Algorithm 1 may terminate with a full layer (|Li| = w) that
still hosts approximate states and has the potential for further refinements. As refinements
proceed through layers, a call to refineLayer(Li, . . . that causes the deletion of nodes in Li

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:11

x1

x2

x3

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 0, 0, 2)
(0, 0, 0, 2)

(0, 1, 0, 2)
(0, 1, 0, 2)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

0 1 2 0 1 2

0 1 2

a. A refinement of L1

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 0, 0, 2)
(0, 0, 0, 2)

(0, 1, 0, 2)
(0, 1, 0, 2)

(1, 1, 0, 1)
(0, 0, 0, 1)

(0, 0, 0, 1)
(1, 1, 0, 1)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

1 2 0 1 2

0 1 2 0 1 2 0 1 2

b. Beginning refinement of L2

Figure 3 Two Among constraints with maximum width=2. Highlighted nodes are approximate.

and in some preceding layers Ll can trigger a return to the shallowest layer Ll to immediately
refine it again as opposed to continuing onward from i. When this happens, the referenced
loop would “reboot” to layer Ll. It may be desirable to bound how far one might reboot
with a maximum reboot distance between l and i. To reflect this, we add to computeDown
the changes in blue on lines 6-7 of Algorithm 3. We further assume that refineLayer is
modified to return the index of the highest layer l changed during the function call.

▶ Example 17. Consider an MDD similar to Example 1 with l2 = 2 and maximum width 2.
After splitting L1, we obtain the graph in Figure 3(a). Nodes are highlighted if their state is
relaxed. After refining L1 the right state is still relaxed and cannot be refined due to lack of
space in the layer. While splitting L2, two states in K(s) have no feasible children leading to
the deletion of the corresponding arcs in A(s). As a result, a state in L1 can be removed as
shown in Figure 3(b). Without reboot (or reboot = 0), L2 would continue being refined. If
reboot ≥ 1, the refinement will instead elect to further refine L1 first.

5.2 Maximum Refinement Iterations
Algorithm 2 iterates until a fixpoint is reached. It may be wise to bound the number of
times refinement can occur within one call to the fixpoint. We denote this the maximum
refinement iterations. The refinement in Algorithm 3 is conditional (line 2) and keeps track
of the iteration number in Algorithm 2 (lines 2, 8).

6 Empirical Evaluation

Haddock is part of MiniC++, a C++ implementation of the MiniCP specification [19]. All
benchmarks were executed on a Macbook Pro with a 3.1 GHz Intel Core i7-5557U processor
and 16GB. This section explores the effects of several heuristics on the behavior of the
Haddock propagator. Specifically, we consider the following experiments:
Experiment 1 Investigate the impact of the Y and W heuristics.
Experiment 2 Explore the merits of Q̃, Q, and a portfolio using first Q̃, then Q.

CP 2022

24:12 Heuristics for MDD Propagation in HADDOCK

Table 1 CPU time (seconds) to obtain all solutions for Nurse Rostering using HP =
[⟨Y, Q̃, W ⟩, ⟨Y, Q, W ⟩] for different Y (columns) and W (rows) heuristics.

Instance Width 16 Width 32 Width 64
HR LR HD LD HR LR HD LD HR LR HD LD

C-I

MA 1.9 3.4 3.6 6.2 2.2 1.5 1.0 1.9 2.1 1.1 0.6 1.1
LA 5.4 1.5 6.0 2.5 2.3 1.0 1.1 0.9 1.7 0.8 0.6 0.9
MinPI↓ 2.1 0.6 1.4 1.0 1.0 0.7 1.1 0.9 0.4 0.9 0.7 0.8
MinPI↑ 2.2 4.3 5.0 7.9 1.0 1.1 1.2 1.2 1.0 0.9 0.8 1.0
MaxPI↓ 1.7 2.7 1.6 2.2 0.9 1.4 0.9 1.3 0.5 0.6 0.6 0.6
MaxPI↑ 3.7 3.2 5.2 6.7 1.0 1.1 0.8 1.1 1.4 1.0 1.0 0.9

C-II

MA 12.4 9.3 10.6 10.5 5.8 4.5 6.7 4.3 3.8 3.0 4.2 3.2
LA 19.1 14.2 12.3 12.9 5.7 4.9 4.2 4.7 5.0 2.0 3.9 2.7
MinPI↓ 8.1 5.9 5.2 5.2 2.2 6.5 1.4 5.5 2.0 1.0 1.4 0.8
MinPI↑ 8.2 9.9 10.5 10.1 4.0 2.0 4.7 2.1 3.0 1.5 2.8 1.5
MaxPI↓ 6.7 5.7 4.8 4.2 4.7 4.5 1.4 3.2 1.5 1.9 1.3 1.8
MaxPI↑ 7.7 9.0 10.1 9.2 3.8 3.0 3.6 3.4 2.6 2.9 3.2 2.8

C-III

MA 21.2 28.8 27.2 18.4 19.6 20.7 13.7 19.1 15.9 18.6 14.8 19.8
LA 17.7 27.7 30.0 24.7 18.7 14.5 15.6 14.1 19.9 14.4 15.1 16.0
MinPI↓ 16.5 18.1 20.1 15.4 16.7 11.1 10.8 11.2 16.1 11.4 13.9 11.5
MinPI↑ 19.5 29.1 23.8 23.6 16.7 16.3 12.8 16.9 17.1 15.8 12.8 15.4
MaxPI↓ 15.5 21.5 13.4 19.5 17.1 12.9 11.9 16.8 13.7 14.8 13.8 17.0
MaxPI↑ 22.4 26.0 27.0 23.5 16.5 11.8 11.9 11.4 16.4 12.7 12.7 12.4

Experiment 3 Explore portfolios where constraint groups are prioritized.
Experiment 4 Investigate the impact of reboots.
Experiment 5 Investigate how results carry over to MDD propagators with other constraints.

Experiment 1: Role of Y and W . First, we evaluate the performance of the Y and W

heuristics on three “nurse rostering” problems from [16], which ask to schedule nurse work
shifts over a horizon of 40 days, subject to a collection of Among constraints. There are
three classes of instances: Class C-I requires at most 6 out of 8 consecutive work days and at
least 22 out of 30 consecutive work days. C-II uses 6 out of 9 and 20 out of 30, while C-III
uses 7 out of 9 and 22 out of 30. Each instance also requires 4 or 5 work days each week.

The portfolio was set to use [⟨Y, Q̃, W ⟩, ⟨Y, Q, W ⟩]. Namely, layer refinement is driven by
approximate equivalence first, followed by strict equality when space is still available. Y and
W are selected among the following options:
HR Define Y (s) = rank(s) to select the most recent state first.
LR Define Y (s) = −rank(s) to select the oldest state first.
HD Define Y (s) = |δ−(s)| to select the state with largest in-degree.
LD Define Y (s) = −|δ−(s)| to select the state with lowest in-degree.
MA W (s) = −|δ−(s)| ranks nodes according to decreasing arc set cardinality.
LA W (s) = |δ−(s)| ranks nodes according to increasing arc set cardinality.
MinPI↓ W (s) = − minp∈δ−(s) rank(p) ranks nodes with decreasing age of oldest parent.
MinPI↑ W (s) = minp∈δ−(s) rank(p) ranks nodes with increasing age of oldest parent.
MaxPI↓ W (s) = − maxp∈δ−(s) rank(p) ranks nodes with decreasing age of youngest parent.
MaxPI↑ W (s) = maxp∈δ−(s) rank(p) ranks nodes with increasing age of youngest parent.

Table 1 shows the CPU time taken for each combination of Y and W above. The state
equivalence function used for approximate equivalence is from example 10 using t = 3,
maximal reboot distance is 0 and maximum refinement is 10.

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:13

0 20 40 60
Width

100

101

102
CP

U
Ti

m
e

(s
ec

on
ds

)

0 20 40 60
Width

100

101

102

103

104

105

Ba
ck

tra
ck

s

Classic, C-I
Classic, C-II
Classic, C-III
HADDOCK HP = Q, C-I
HADDOCK HP = Q, C-II
HADDOCK HP = Q, C-III
HADDOCK HP = Q, C-I
HADDOCK HP = Q, C-II
HADDOCK HP = Q, C-III
HADDOCK HP = [Q, Q], C-I
HADDOCK HP = [Q, Q], C-II
HADDOCK HP = [Q, Q], C-III

Figure 4 CPU time (left) and backtracks (right) for finding all solutions for amongNurse using
different equivalence functions.

0 20 40 60
Width

10 1

100

101

CP
U

Ti
m

e
(s

ec
on

ds
)

0 20 40 60
Width

100

101

102

103

104

105

Ba
ck

tra
ck

s

Classic, C-I
Classic, C-II
Classic, C-III
HADDOCK maxW First, C-I
HADDOCK maxW First, C-II
HADDOCK maxW First, C-III
HADDOCK minW First, C-I
HADDOCK minW First, C-II
HADDOCK minW First, C-III
HADDOCK resW First, C-I
HADDOCK resW First, C-II
HADDOCK resW First, C-III

Figure 5 CPU time (left) and backtracks (right) for finding all solutions for amongNurse with
different constraint group portfolios.

These results indicate that both Y and W have a clear impact on the method. While no
single pair Y ,W dominate, the LR option for Y seems to fare particularly well. Likewise,
MinPI↓ and MaxPI↓ appear to be consistently effective. We also observe that implementing
this generic heuristic framework introduces minimal, if not negligible, overhead.

Experiment 2: Role of Q̃ vs. Q. Consider the role of the two equivalence heuristics.
Figure 4 graphs the shortest time and least number of backtracks when Q̃ is used alone, Q is
used alone, or as a portfolio [Q̃, Q]. At higher widths, the heuristic bundle with Q̃ stagnates
since the approximate equivalence prevents it from making full use of the width. The bundle
using Q improves as the width increases, which is good. Yet, the best results come from the
portfolio which suggest that coarser equivalence is helpful to more judiciously make use of
the space in each layer and rely on the stricter Q when space is plentiful.

Experiment 3: Portfolio with constraint groups. Given the three classes of constraints
that model different aspects (lower bounding the number of work days: minW , upper
bounding the number of work days: maxW and restricting the number of work days to
4 or 5 in any given week: resW) it is tempting to rely on 3 constraint groups and use a
portfolio based on the three bundles of heuristics {H(minW), H(maxW), H(resW)}. To
simplify, we test three portfolios: minW First ([H(minW), H(maxW ∧ resW)]), maxW

CP 2022

24:14 Heuristics for MDD Propagation in HADDOCK

Figure 6 CPU time (left) and backtracks (right) for proving infeasibility for Multiple
AllDifferent across different reboot values using HP = ⟨HR, Q, MinP I ↓⟩.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Maximum Reboot

100

101

102

103

CP
U

Ti
m

e
(s

ec
on

ds
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Maximum Reboot

100

101

102

103

104

105

Ba
ck

tra
ck

s

C-I
C-II
C-III
Auto, C-I
Auto, C-II
Auto, C-III
INF, C-I
INF, C-II
INF, C-III

First ([H(maxW), H(minW ∧ resW)]), and resW First ([H(resW), H(minW ∧ maxW)]).
Figure 5 shows the results while using ⟨LR, Q, MinPI↓⟩ for each bundle; the results are quite
spread out. The best performance, on all of C-I, C-II, and C-III, occurs whenever resW is
the first entry in the portfolio, giving it the first opportunity to drive refinements.

The characteristics of constraints in resW do explain such a behavior. First, these always
have the tightest bounds (l = 4 and u = 5). Refining on the tightest constraints may give
better opportunities for filtering. Second, the resW constraint groups are always the smallest.
Last, resW constraints are stated over disjoint variable sets and since refinements occur on
a layer basis (layers are associated to variables) the refinements are more focused.

Table 2 Multiple AllDifferent for different reboot values using HP = ⟨HR, Q, MinP I ↓⟩ and
a width of 16. Each row reports the fraction of full reboots and runtime (in seconds).

reboot 1 2 3 4 5 6 7 8 Auto INF

A-I Full 39.2% 66.7% 54.5% 83.8% 94.3% 98.0% 98.1% 98.6% 99.5% 100%
Time 671.6 430.7 447.0 0.3 0.5 0.6 1.9 4.0 6.2 452.5

A-II Full 52.2% 66.1% 90.5% 82.5% 94.8% 97.3% 99.3% 99.4% 97.3% 100%
Time 303.5 226.8 435.4 0.4 1.6 1.3 1.8 3.6 1.3 33.0

A-III Full 48.8% 46.8% 27.3% 69.6% 66.7% 97.5% 99.1% 99.4% 99.5% 100%
Time 1834.0 2036.0 1387.2 1202.5 622.6 1.0 1.4 4.4 3.0 725.8

Experiment 4: Reboot for Multiple AllDifferent. The assessment of the reboot heuristic
is done with randomly generated CSPs that use allDifferent constraints, are infeasible and
take a non-negligible amount of time to solve with a classic solver. The generator uses the
parameters ⟨n, d, [(s1, f1, p1), . . . , (sk, fk, pk)]⟩ where n is the number of variables, d is the
domain size, and each (si, fi, pi) tuple describes a single group of constraints. Group i uses
(si, fi, pi) to produce a set of AllDifferent constraints. Each constraint ck in that set ranges
over a random subset (of size ≥ 2) of variables sampled from {xk·fi+1, . . . , xk·fi+si

} where each
variable has a probability pi of being included. Three instances (available online at http://
hidden.url.domain) were created from ⟨50, 7, [(3, 1, 1), (6, 6, 1), (10, 1, .3), (8, 5, .6), (20, 7, .2)].
Performance is measured with time and backtracks to prove infeasibility.

Figure 6 shows the performance using a heuristic bundle of ⟨HR, Q, MinPI↓⟩ for different
maximum reboot values with INF representing an unlimited reboot. A dramatic improvement
in performance occurs around reboots between 4 and 6 that gets erased as the maximum
reboot increases. When a reboot occurs, the refinement either moves as far back as possible or
is stopped by the maximum reboot distance (Algorithm 3, line 7). To shed light on Figure 6,
consider Table 2 that gives the percentage of full reboots across all calls to computeDown

http://hidden.url.domain
http://hidden.url.domain

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:15

Table 3 CPU time (sec.) to prove infeasibility for Multiple AllDifferent using Q for different
Y (columns) and W (rows) heuristics with the MDD width = 16.

HR LR HD LD

A-I

MA 755.98 920.56 899.14 917.74
LA 746.80 939.54 925.50 933.94

MinPI↓ 0.91 0.91 0.90 .91
MinPI↑ 795.84 949.96 923.89 935.30
MaxPI↓ 0.90 0.92 0.91 0.92
MaxPI↑ 808.84 961.56 923.37 931.59

A-II

MA 224.45 311.54 304.52 302.08
LA 228.62 318.84 303.10 308.09

MinPI↓ 1.28 1.29 1.33 1.28
MinPI↑ 203.46 267.36 260.42 270.50
MaxPI↓ 1.29 1.29 1.29 1.31
MaxPI↑ 206.10 268.60 259.29 261.77

A-III

MA 2594.93 3240.10 3553.28 3546.93
LA 2595.43 3138.61 3481.61 3622.81

MinPI↓ 1.00 390.37 0.87 0.89
MinPI↑ 2420.01 2926.05 3256.71 3316.82
MaxPI↓ 0.98 375.55 0.87 0.85
MaxPI↑ 2507.99 2938.20 3275.93 3321.35

Table 4 AIS (n = 11) for different reboot with HP = ⟨HR, Q, MinP I↓⟩ and width = 16.

reboot 0 1 2 3 4 5 6 7 8 Auto INF
Total 0% 14% 44% 54% 66% 75% 85% 87% 93% 49% 100%

CPU Time 5.99 7.29 6.24 7.85 6.72 8.79 9.14 8.77 12.38 6.31 16.12
Backtracks 2960 3682 2672 2848 2187 2280 1735 2030 633 2416 13

during the search, that is, reboots that were not cut short. The gains occurs when around
80 − 90%. By the time reboot = 7, 98% of reboots are full meaning any further increase
is unlikely to improve refinements but may still add overhead. In the benchmarks, each
AllDifferent constraint has at most 7, sometimes fewer, variables. Hence, the reboot may
benefit from staying within the scope of the constraint. A tempting Auto strategy for limiting
reboots for any variable xi associated to layer Li is as follows. As usual, let vars(c) denote
the set of variables appearing in c and cstr(x) be the set of constraints mentioning variable
x. Let L(x) be the layer of variable x. Then,

related(xi) =
⋃

c ∈ cstr(xi) | |vars(c)|≤ |X|
2

vars(c)

in reboot(i) = miny∈related(xi) index(L(y)) denotes the layer that the propagator should
return to when refinement aborts early. The rationale is to consider the shallowest layer of
variables directly related to xi provided that the constraint connecting them does not cover
a majority of the variables in the CSP. Figure 6 and Table 2 give the results. While the Auto
strategy does not beat the best static reboot value shown, it performs quite well and avoids
the risk of setting the maximum reboot too small or too large.

Experiment 5: Similarities across benchmarks. Last, we check how the heuristics behave
across benchmarks. Table 3 gives results for different Y and W using the All Different
benchmarks with a reboot of 6. While MinPI↓ and MaxPI↓ are again the clear favorites
for W , HR appears to be the best option for Y . This differs from Nurse Rostering and
underlines the usefulness of having programmable heuristics.

To assess whether Auto performs on other benchmarks, it is tested on the All-Interval
Series problem (#007 on CSPLIB) measuring the time, number of backtracks, and percentage
of full reboots when looking for all solutions. Table 4 shows the results with n = 11. Auto
picks a good compromise somewhere between 2 and 3 which matches the arity of the absolute
value constraints. Using an infinite reboot pays off in backtracks, but not in run time.

CP 2022

24:16 Heuristics for MDD Propagation in HADDOCK

7 Conclusion

Heuristics can have a significant impact on the filtering ability of an MDD propagator and
ultimately on the efficiency of a model. This paper introduces several heuristics that govern
such behaviors, formalized their integration into a generic framework, and reported on the
impact they have in practice. Interestingly it led to an automatic setting for the reboot
heuristic. The keystone of the paper is the recognition that such heuristics should be user
programmable to get the most out of decision diagram technologies.

References
1 Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Opera-

tions Research Letters, 33, 2005. doi:10.1016/j.orl.2004.04.002.
2 H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A Constraint Store Based on

Multivalued Decision Diagrams. In Proceedings of CP, volume 4741 of LNCS, pages 118–132.
Springer, 2007.

3 David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William Cook. Finding cuts in the
tsp. Annals of Physics, 54, 1995.

4 N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP. Journal of
Mathematical and Computer Modelling, 20(12):97–123, 1994.

5 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of Operational Research,
290:405–421, April 2021. doi:10.1016/J.EJOR.2020.07.063.

6 D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Decision Diagrams for
Optimization. Springer, 2016.

7 Raphaël Boudreault and Claude-Guy Quimper. Improved cp-based lagrangian relaxation
approach with an application to the tsp. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI, volume 21, pages 1374–1380, 2021.

8 Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. Revision ordering heuristics for
the constraint satisfaction problem. In First International Workshop: Constraint Propagation
and Implementation, 2004. URL: http://www.cril.univ-artois.fr/~lecoutre/research/
publications/2004/CPW2004.ps.

9 T Fahle and M Sellman. Cost based filtering for the constrained knapsack problem. Annals of
Operations Research, 115:73–93, 2002.

10 J. M. Gauthier and G. Ribière. Experiments in mixed-integer linear programming using
pseudo-costs. Mathematical Programming, 12, 1977. doi:10.1007/BF01593767.

11 R. Gentzel, L. Michel, and W.-J. van Hoeve. Haddock: A language and architecture for
decision diagram compilation. In Principles and Practice of Constraint Programming. CP
2020, volume 12333 of Lecture Notes in Computer Science, pages 531–547. Springer, Cham,
2020.

12 X. Gillard, P. Schaus, and Coppé. Ddo, a Generic and Efficient Framework for MDD-Based
Optimization. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2020.

13 Gilles Pesant Gilles, Claude Guy Quimper, and Alessandro Zanarini. Counting-based search:
Branching heuristics for constraint satisfaction problems. Journal of Artificial Intelligence
Research, 43, 2012. doi:10.1613/jair.3463.

14 T. Hadžić, J. N. Hooker, B. O’Sullivan, and P. Tiedemann. Approximate compilation of
constraints into multivalued decision diagrams. In P. J. Stuckey, editor, Principles and Practice
of Constraint Programming (CP 2008), volume 5202 of Lecture Notes in Computer Science,
pages 448–462. Springer, 2008.

15 R M Haralick and G L Elliot. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14:263–313, 1980.

https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1016/J.EJOR.2020.07.063
http://www.cril.univ-artois.fr/~lecoutre/research/publications/2004/CPW2004.ps
http://www.cril.univ-artois.fr/~lecoutre/research/publications/2004/CPW2004.ps
https://doi.org/10.1007/BF01593767
https://doi.org/10.1613/jair.3463

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:17

16 S. Hoda, W.-J. van Hoeve, and J. N. Hooker. A Systematic Approach to MDD-Based Constraint
Programming. In Proceedings of CP, volume 6308 of LNCS, pages 266–280. Springer, 2010.

17 R. M. Keller. Formal Verification of Parallel Programs. Communications of the ACM,
19(7):371–384, 1976.

18 M. Lagerkvist and C. Schulte. Propagator groups. In Ian Gent, editor, Fifteenth International
Conference on Principles and Practice of Constraint Programming, Lisbon, Portugal, volume
5732 of Lecture Notes in Computer Science, pages 524–538. Springer-Verlag, 2009.

19 Laurent Michel, Pierre Schaus, Pascal Van Hentenryck. MiniCP: A lightweight solver for
constraint programming, 2018. Available from https://minicp.bitbucket.io.

20 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based
branching heuristic for sat solvers. In Theory and Applications of Satisfiability Testing - SAT
2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume
9710, 2016. doi:10.1007/978-3-319-40970-2_9.

21 Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box constraint
programming solvers. In Nicolas Beldiceanu, Narendra Jussien, and Éric Pinson, editors,
Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation
Problems, volume 7298 of Lecture Notes in Computer Science, pages 228–243. Springer Berlin
Heidelberg, 2012. doi:10.1007/978-3-642-29828-8_15.

22 Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient sat solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM, 2001.
doi:10.1145/378239.379017.

23 Philippe Refalo. Impact-based search strategies for constraint programming. In Mark Wallace,
editor, CP, volume 3258 of Lecture Notes in Computer Science, pages 557–571. Springer,
2004. URL: http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=
0302-9743{&}volume=3258{&}spage=557.

24 Meinolf Sellmann, Thorsten Gellermann, and Robert Wright. Cost-based filtering for shorter
path constraints. Constraints, 12, 2007. doi:10.1007/s10601-006-9006-4.

25 Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based search for
optimal multi-agent pathfinding. Artificial Intelligence, 219, 2015. doi:10.1016/j.artint.
2014.11.006.

CP 2022

https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1145/378239.379017
http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=3258{&}spage=557
http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=3258{&}spage=557
https://doi.org/10.1007/s10601-006-9006-4
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.artint.2014.11.006

	1 Introduction
	2 Motivating Example
	3 Background
	4 Decision Diagram Refinement
	4.1 State Selection with Y
	4.2 Candidate Selection with Q and W
	4.3 Composing Heuristics
	4.3.1 Direct Composition
	4.3.2 Portfolio Composition
	4.3.3 Refinement Portfolio Options
	4.3.4 Refinement Portfolio with Constraint Ranking

	5 Layer Processing
	5.1 Reboot Distance
	5.2 Maximum Refinement Iterations

	6 Empirical Evaluation
	7 Conclusion

