
An Auditable Constraint Programming Solver
Stephan Gocht #

Lund University, Sweden
University of Copenhagen, Denmark

Ciaran McCreesh #

University of Glasgow, UK

Jakob Nordström #

University of Copenhagen, Denmark
Lund University, Sweden

Abstract
We describe the design and implementation of a new constraint programming solver that can produce
an auditable record of what problem was solved and how the solution was reached. As well as a
solution, this solver provides an independently verifiable proof log demonstrating that the solution is
correct. This proof log uses the VeriPB proof system, which is based upon cutting planes reasoning
with extension variables. We explain how this system can support global constraints, variables with
large domains, and reformulation, despite not natively understanding any of these concepts.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Discrete optimization

Keywords and phrases Constraint programming, proof logging, auditable solving

Digital Object Identifier 10.4230/LIPIcs.CP.2022.25

Supplementary Material Source code for the solver described in this paper can be found here:
Software (Source Code): https://doi.org/10.5281/zenodo.6514093

Funding Stephan Gocht: Supported by the Swedish Research Council grant 2016-00782.
Ciaran McCreesh: Supported by a Royal Academy of Engineering research fellowship.
Jakob Nordström: Supported by the Swedish Research Council grant 2016-00782 and the Independent
Research Fund Denmark grant 9040-00389B.

1 Why Trust a Constraint Programming Solver?

Proof logging is now a standard practice in the Boolean satisfiability (SAT) community:
alongside a solution, solvers are expected to produce a proof, in a standard format called
DRAT [19, 18, 33], that can be verified independently to ensure that the correct answer was
reached through legitimate reasoning. As well as reducing the number of bugs in solvers, this
has been vital for the social acceptability of computer-generated mathematical proofs [21].
These successes mean that proof logging is now being considered in other areas, including
mixed integer programming [9] and subgraph-finding algorithms [14, 13], and a similar
paradigm known as certifying algorithms exists for polynomial-time solvable problems [23].

We believe that a practical proof logging system would also be extremely useful for the
constraint programming (CP) community. In the 2021 MiniZinc challenge, at least 45 out
of 3,500 claimed solutions were incorrect (either through falsely claiming unsatisfiability
or optimality, or by providing infeasible “solutions”), and previous years saw similar rates.
Furthermore, this was not limited to one solver, one problem, or one global constraint.
Although this high error rate does not necessarily reflect what we might see in practice, it
strongly suggests that we should not be complacent. And even if we are completely convinced
that our solvers are correct, thanks to extensive testing using domain-specific methods [1, 12],

© Stephan Gocht, Ciaran McCreesh, and Jakob Nordström;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 25; pp. 25:1–25:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.gocht@cs.lth.se
https://orcid.org/0000-0002-5459-3134
mailto:ciaran.mccreesh@glasgow.ac.uk
https://orcid.org/0000-0002-6106-4871
mailto:jn@di.ku.dk
https://orcid.org/0000-0002-2700-4285
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.5281/zenodo.6514093
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 An Auditable Constraint Programming Solver

there are still benefits to be had from proof logging. When CP is used for life-affecting
decision-making, having a solver that can produce an independently verifiable record of
what the problem was and how it was solved would be much better for public confidence in
algorithms than saying “trust us, we tested it carefully”. In effect, we would be making the
solving process auditable, and removing the need for trust.

In some applications, compiling a CP model to SAT and re-using SAT proof logging might
be a viable approach for auditability. However, this is not a universal solution: even if the
loss of solving power from switching representations is not a problem, why should we trust
that a complex compilation process is correct? And what if we need to solve enumeration or
optimisation problems, neither of which are supported by DRAT? Nor is it practical to make
CP solvers output DRAT proofs, even for decision problems: attempts at expressing the
strong reasoning carried out by simple global constraints like all-different have introduced
intolerable overheads [28, 10], and DRAT does not seem well-suited even for the parity
reasoning done by some modern SAT solvers [15]. One alternative would be to introduce a
much stronger and more complex proof format, that is aware of the meaning of every global
constraint and every kind of propagation that could be performed [31] and every kind of
reformulation ever invented – but why should we trust such a complicated proof logging
system, and how would we even know that it is consistent? This is not a trivial concern:
even the relatively simple DRAT format has had issues in this respect [26].

This paper describes an alternative approach to proof logging which addresses all of these
problems. It uses an existing proof verifier, VeriPB, which was designed for pseudo-Boolean
models. VeriPB’s proof format uses cutting planes reasoning [5] and redundance-based
strengthening [15], which is only a small step up in complexity from the DRAT approach of
using Boolean models and extended resolution. However, this small change in underlying
proof system suddenly means that proof logging for many kinds of constraint becomes both
efficient and easy to implement, despite the system not having any explicit notion of global
constraints or even non-binary variables. Thanks to this, we have been able to implement
a new prototype constraint programming solver which can produce proof logs for all of
its reasoning, with support for global constraints like all-different, integer linear inequality
(including for variables with very large domains), table, minimum / maximum of an array,
element, and absolute value, as well as some simple automatic reformulation.

Our aim in this work is not to produce the world’s fastest solver, but rather to explore
the design decisions necessary to provide auditable solving when operating with diverse
constraints, and to explain how to understand and adopt proof logging technology. The main
differences between our solver and a basic conventional solver such as MiniCP [24] are:

The solver can describe the semantics of variables and each constraint in a low-level
format, which is discussed in Section 2.1. We give examples in Section 3. This is the only
part of the process that is not directly auditable: we discuss this further in Section 5.1.
Whenever the solver backtracks during search, it creates a proof step asserting that
its current sequence of guesses “obviously” (but verifiably) implies a contradiction, as
described in Section 2.3. When enumerating or optimising, solutions must also be logged.
Any piece of code that potentially removes a value from a variable’s domain (or instantiates
it, or changes its bounds) must be able to provide a justification that can be added
to the proof log. This justification can be “this is immediately obvious”, “use reverse
unit propagation” (Section 2.3), or occasionally, “use the following explicit proof steps”
(Section 2.2). In many ways this resembles lazy clause generation solvers [25], except
that justifications must be derived in a sound and verifiable manner, rather than being
introduced from nowhere. We give examples in Section 4.
Finally, some constraints make use of reformulations, which must also be justified;
examples are in Section 4.5.

S. Gocht, C. McCreesh, and J. Nordström 25:3

Together, these additions mean that if the solver ever produces an incorrect answer, this can
be detected – even if it is due to a compiler or hardware fault rather than a solver bug. Our
results demonstrate that proof logging for constraint programming is rapidly becoming a
technologically viable approach, and one that will be worth adopting in other solvers. We
conclude by outlining how we might realise this goal of auditable constraint solving.

2 The VeriPB Proof System

We begin with an overview of the relevant parts of the model and proof system used by
VeriPB.1 It is important to stress immediately that solvers do not need to understand or
implement this proof system (in the same way that most SAT solvers do not “know” that
they are searching for resolution proofs). Indeed, the prototype solver we describe later in
this paper produces proofs through templates, never manipulates proof steps directly, and
does not know enough about the VeriPB proof system to be able to verify its own proofs.

In this section we will primarily be talking about proofs of unsatisfiability. Both VeriPB
and our solver also support optimisation, enumeration, and satisfiable decision problems,
but the core of the proof system concerns unsatisfiability. The idea behind a proof is that
we start off with known facts, which come from the input model. Then, at each step in
the proof, we derive a new fact which is “obviously” a consequence of some combination of
previous facts. We finish by deriving a fact which is clearly a contradiction, which in turn
means it must be the case that the input is unsatisfiable.

2.1 Pseudo-Boolean Models
VeriPB takes as input a pseudo-Boolean model, which is a very restricted kind of constraint
programming model. A pseudo-Boolean model is defined by a set {xi} of {0, 1} integer
variables, and a set of integer linear inequalities

∑
i cixi ≥ n for integers ci and n. In

this paper we will use lowercase variable names to refer to pseudo-Boolean variables, and
uppercase variable names to refer to constraint programming variables. We will also write
some constraints using ≤ instead of ≥, and will write

∑
i cixi = n as shorthand for two

inequalities. We use the convention that x = 0 means false, and x = 1 means true; we write
x to mean 1 − x. Observe that Boolean satisfiability constraints in conjunctive normal form
(CNF) can easily be written as pseudo-Boolean constraints, because e.g. (x1 ∨x2 ∨x3) holds if
and only if (x1 + x2 + x3 ≥ 1). For clarity we will sometimes mix logical and pseudo-Boolean
notation, and write expressions like (x1 ∧ x2 ∧ x3) → (2x4 + 3x5 + −4x6 ≥ 7) rather than
the more cumbersome 11x1 + 11x2 + 11x3 + 2x4 + 3x5 + −4x6 ≥ 7.

There is a standard textual file format for pseudo-Boolean models, known as OPB [27].
VeriPB supports this format, with extensions: for example, it allows variables to have
descriptive names, which is convenient for readability, and can include implications to avoid
the need for solver authors to calculate appropriate coefficients manually.

2.2 Cutting Planes
Alongside an OPB file, VeriPB takes a proof log file that claims to show that the pseudo-
Boolean model is unsatisfiable, and checks the proof’s validity. This proof log is a text file,
which describes a sequence of steps using the cutting planes proof system [5]. In cutting

1 https://gitlab.com/MIAOresearch/VeriPB

CP 2022

https://gitlab.com/MIAOresearch/VeriPB

25:4 An Auditable Constraint Programming Solver

planes, we can add two constraints together, multiply a constraint by a non-negative integer
constant, and divide existing constraints by a positive integer constant (with rounding);
we may also assert that any literal is non-negative. The aim is to derive a constraint
saying that 0 ≥ 1, which serves as a contradiction. The cutting planes proof system is
complete for pseudo-Boolean models, in the same way that resolution is complete for Boolean
models. However, it is exponentially stronger than resolution: for example, resolution requires
exponential length proofs for all-different constraints, whereas cutting planes can justify
Hall set reasoning in (small) polynomial length [10]. For more details on the theoretical
background, see, e.g., the survey by Buss and Nordström [3].

2.3 Unit Propagation and Reverse Unit Propagation
For solver authors, working directly with cutting planes can be difficult, and would require
every part of a solver to keep careful track of every operation carried out. This difficulty can
be avoided through the use of reverse unit propagation (RUP) proof steps [16, 30, 10], which
are in effect shorthand for a sequence of cutting planes steps.

For CNF clauses, unit propagation means identifying any clause where all but one of its
literals has already been set the wrong way, and propagating the remaining literal to the
value that avoids violating the clause, repeating until either a contradiction is reached or no
further unit clauses exist. This notion generalises to pseudo-Boolean constraints, where unit
propagation means achieving integer bounds consistency [4]. A constraint C is said to be
RUP if asserting its negation leads to a contradiction via unit propagation; in such a case, it
is obviously permissible to introduce C as a new constraint without altering whether the
underlying model is satisfiable.

RUP steps in a Boolean setting form the core part of the DRAT proof format. This is
useful for solver authors because for a typical CDCL SAT solver, every learned clause is
RUP, and so writing a proof log requires only that a solver output every clause it learns in
turn. In our constraint programming setting, RUP clauses will similarly form the backbone
of the proofs we generate, with a RUP clause being written every time a solver backtracks.
However, we will also use explicit cutting planes steps where necessary, to justify complex
propagations. In one sense, RUP is purely a convenience for solver authors, in that with more
work, cutting planes steps could be used instead; however, this would require substantially
more book-keeping in the solver.

The following pieces of intuition may be helpful in what follows: a fact follows from unit
propagation if it is so immediately obvious that it is not worth stating. A fact follows from
reverse unit propagation if, once you have been told that it is a fact, it is obviously true (but
that it might not be immediately obvious if you are not told). In some ways this resembles
failed literal probing, or the difference between generalised arc consistency and singleton arc
consistency; this intuition may become clearer following the example in Section 4.1.

2.4 Extension Variables and Redundance-Based Strengthening
An extension variable is a new variable introduced as part of a proof. In VeriPB, extension
variables are supported using a rule called redundance-based strengthening (which, for readers
familiar with SAT proof logging, is the natural analogue of the RAT rule in DRAT) [15]. We
do not need the full power or definition of that rule for this paper. It suffices to say that,
for an arbitrary pseudo-Boolean constraint C and a new variable y that has not previously
appeared in the model or proof, we are allowed to introduce the reified constraints y ↔ C

at any point during the proof. As well as being extremely convenient for solver authors,
extension variables also give an exponential increase in reasoning power [3].

S. Gocht, C. McCreesh, and J. Nordström 25:5

2.5 Satisfiable Instances, Enumeration, Optimisation, and Deletions
For satisfiable decision problems, VeriPB supports solution checking by including a solution
in a proof log. Enumeration problems may also be verified this way: whenever a solution is
logged, VeriPB treats this as introducing a new constraint saying “but not this solution”,
and so a proof is effectively a proof by contradiction that there are no solutions other than
the ones listed. Optimisation is handled similarly, via an optional objective expression in the
OPB file. Finally, in practice it is important to delete constraints from the proof that will
not be re-used later on. This is straightforward, but will not be discussed in this paper.

3 Encoding Constraint Programming Models

In the previous section, we learned that if we wish to use VeriPB to verify constraint
programming proofs then we must provide two things: a pseudo-Boolean model in OPB
format, and a proof log. We now discuss how the first of these two steps may be generated
by a CP solver, looking first at how we turn CP variables into pseudo-Boolean variables, and
then at how we represent constraints. When compiling CP to a lower level format for solving,
selecting a good encoding involves considering propagation and consistency; in contrast, for
proof logging we need only something that is simple and reasonably compact.

3.1 Variables
The most straightforward way of encoding an integer variable X with domain ℓ . . . u is to
create u − ℓ + 1 pseudo-Boolean variables x=i, where x=i is true if and only if X = i, together
with supporting constraints saying that

∑
x=i = 1. Such an approach was used for proof

logging the all-different constraint by Elffers et al. [10]. However, this is impractical for
variables with large domains that are only involved in bounds-consistent constraints such
as integer linear inequalities. Instead, we define a binary encoding. Let h be the least
strictly positive number such that 2h−1 ≥ max(1, |u|, |ℓ|). Then we introduce variables xbi

for i ∈ 0 . . . h − 1, and, if ℓ < 0, we additionally introduce an xneg variable to give us a two’s
complement style representation. The two constraints ℓ ≤ −2hxneg +

∑h−1
i=0 2ixbi ≤ u then

define the meaning and bounds of these variables (with the leading sum term omitted if
ℓ ≥ 0). For example, if we have a constraint programming variable A with domain {−3 . . . 9},
we would define

−32aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 + 16ab4 ≥ −3 and
32aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 + −16ab4 ≥ −9.

Although compact, experienced modellers know that such an encoding often leads to extremely
poor propagation. This is a problem if the encoding is to be used for solving, but for proof
logging this is not an issue because the encoding only restricts how we write a proof, not how
a solution is reached. However, when expressing constraints or propagation, it is often useful
to be able to use variables x=i and x≥i for selected values of i. If these variables are used
when the constraints appear in the pseudo-Boolean model, we can define them immediately.
We have found the most convenient way of expressing these variables to be

x≥i ↔ −2hxneg +
h−1∑
i=0

xbi ≥ i

and similarly for x≥i+1. Additionally, we constrain that x≥i+1 → x≥i, and force x≥i to be true
or false respectively if i defines a lower or upper bound. We then define x=i ↔ x≥i ∧ x≥i+1.

CP 2022

25:6 An Auditable Constraint Programming Solver

However, what if these values are only used for branching or propagation, such as when
dealing with linear inequalities (discussed below)? The whole point of using a binary encoding
was to avoid having to define variables for values that never appear in a constraint or a
proof. Fortunately, it is possible to introduce these additional variables as extension variables
with the same defining constraints, so long as it is done in exactly the order described
above. In such a case, we also introduce the RUP constraints x≥i → x≥j and x≥h → x≥i for
the closest two values h and j that already have equality variables, if they exist. Finally,
when propagating certain constraints such as all-different, it is also convenient to have an
at-least-one constraint

∑u
i=ℓ x=i ≥ 1. If all the x=i variables are defined, then this constraint

can also be introduced via RUP as needed, and does not need to be defined in the model.
This can make the pseudo-Boolean model much more manageable: for example, for the
implementation of the “cake” problem discussed in Section 5, our solver introduces a total of
one hundred x=i or x≥i variables in the proof, rather than defining several hundred thousand
of them in the OPB file.

Note finally that the details of this encoding are largely irrelevant to most constraints. In
particular, it is possible for the part of a solver that deals with proof logging to treat 0/1
variables separately with almost no impact on the rest of its code.

3.2 Constraints
Next, we must represent every constraint in pseudo-Boolean form. This topic is relatively
well-understood, because pseudo-Boolean constraints are a superset of CNF – and again, it
is not necessary to find a good encoding, only a simple and correct one. We now give some
examples that illustrate general concepts.

Integer linear inequalities. Integer linear inequalities can easily be expressed in pseudo-
Boolean form by adding multiples of the bit encodings together. For example, suppose we
have the CP constraint 2A+3B +4C ≤ 42, where each of the variables has domain {−3 . . . 9}.
This would be translated into

−64aneg + 2ab0 + 4ab1 + 8ab2 + 16ab3 + 32ab4

+ − 96bneg + 3bb0 + 6bb1 + 12bb2 + 24bb3 + 48bb4

+ − 128cneg + 4cb0 + 8cb1 + 16cb2 + 32cb3 + 64cb4 >= 42.

We may use a pair of such constraints to define equality and sum constraints. If we were
solving using these constraints, we would get very weak propagation, but we will explain
why this does not matter in the following section.

Not equals. Not equals constraints can be expressed using two half-reified linear inequalities:
we introduce a Boolean flag f , and define the constraints f → (A−B > 0) and f → (B −A >

0). These can be expressed in pseudo-Boolean form as integer linear inequalities with the
addition of a suitably large coefficient on the negation of the flag to handle the implication.
A similar encoding can be used for the absolute value constraint.

All-different. All-different can be expressed by a set of at-most-one constraints, such as
a=2 + b=2 + c=2 ≤ 1, or by a clique of not-equals constraints. Again, solving using either
kind of constraint would give weaker propagation than the usual GAC all-different constraint,
but this is not a concern for proof logging.

S. Gocht, C. McCreesh, and J. Nordström 25:7

Table constraints. Table constraints can be expressed in terms of an auxiliary vari-
able, which selects which tuple is matched. For example, given the tuple sequence
[(1, 2, 3), (1, 3, 4), (2, 2, 5)] applied as a table constraint to the variables [A, B, C], we could
express this by adding an auxiliary variable T ∈ {0 . . . 2} (called the tuple selector variable),
and using implication constraints t=0 → (a=1 ∧ b=2 ∧ c=3) etc.

Element constraints. Element constraints come in a variety of forms. For example, consider
a 2D element from constants constraint, which says that a variable V takes the [I, J]th entry
in a two dimensional m × n array A of constants. This shows up in various places, such as
the MiniCP quadratic assignment problem benchmark discussed in Section 5 (where solvers
are expected to achieve generalised arc consistency on the two index variables, and bounds
consistency on the assigned variable) [24]. The only constraints we will define are the unary
constraints i≥0, i≥m, j≥0 and j≥n, and then (i=x ∧j=y) → v=A[x,y] for each array entry. Such
constraints, on their own, obviously do not enforce the desired consistency levels, but they
have the advantage of being simple. This technique also generalises. For example, if the array
A is not constant then the implication constraints can become half-reified equalities instead –
and this in turn makes it easy to define array minimum and array maximum constraints.

Other constraints. Other constraints are usually similarly easy to express. The critical
point is that encodings need only be correct, not good, and so if we know how to express the
constraint at all in CNF or as integer linear inequalities then that is sufficient. Similarly,
if a constraint easily fits in a table, then it can be handled that way. Combined with the
ability to use auxiliary variables, even constraints like “forms a connected subgraph” are
manageable [13].

4 Proofs for Search and Propagation

The core of a proof for an unsatisfiable constraint satisfaction problem is a description of the
solver’s search tree. This is expressed as a RUP statement for every backtrack, and ends
with a contradiction when we backtrack from the root node. The idea is that whenever the
constraint solver backtracks, it should be “obvious” that the sequence of guesses made leads
to a dead end, and is thus a RUP clause. Gocht et al. [13] provide a worked example of this
process in a branch and bound setting for a clique algorithm.

In order to make this process work with global constraints, we will need to include
additional proof statements to justify non-obvious propagations (in the same way that Gocht
et al. had to justify the clique algorithm’s bounds). The core invariant we use is that at every
backtrack, any variable-value deletion that is known to the CP solver (and thus part of the
decision to backtrack) must be visible to the proof verifier either through unit propagation,
or through reverse unit propagation of the backtrack clause. This section elaborates on what
this means for various global constraints.

4.1 RUP Justifications and Table Constraints
Achieving generalised arc consistency for table constraints involves two kinds of inference:
detecting when a tuple becomes infeasible, and detecting when a variable’s value is no longer
supported by any feasible tuple. There are several different propagation algorithms for
performing this inference [29, 22, 7, 20, 32], but from a proof logging perspective it does not
matter how the inference is performed, only what is inferred.

CP 2022

25:8 An Auditable Constraint Programming Solver

A tuple becoming infeasible requires no justification. Recall that tuples are defined with
constraints like t=0 → (a=1 ∧ b=2 ∧ c=3). If, for example, A loses the value 1 from its domain,
this constraint will unit propagate, setting t=0 to false. This also holds when assignments are
guessed: by the core invariant, asserting through RUP that the guessed assignments imply
false will propagate the value loss, which in turn propagates the tuple becoming infeasible.

In contrast, suppose we have only two tuples supporting A = 1, and these are both made
infeasible by other variables, so a solver infers A ̸= 1. Let G be the set of equality variables
corresponding to our current set of guessed assignments (for example, {b=2, c=5}). Then
the assignment a=1 does not follow by unit propagation in the proof under the assertion of
∧G, which means it must be justified in some way. Fortunately, this is very simple, and we
need only give a small hint to the proof verifier: we claim that ∧G → a=1 will be a RUP
constraint. Indeed, its negation is (∧G) ∧ a=1. Now consider each tuple t supporting a=1 in
turn. There must be some constraint derived that, under ∧G, falsifies a different variable in
this tuple, which in turn forces the tuple selector variable to not equal t. Additionally, we
know that A must take at most one value, and so for each i ̸= 1, a=i will propagate to false;
this in turn propagates every other tuple selector variable to false. Finally, we know that
the tuple selector variable must take at least one value, but we have ruled out every value it
could take, giving the desired contradiction.

Putting these facts together, the only proof logging needed for a table constraint is to
log one RUP step whenever a variable loses a value due to lack of support. Intuitively,
infeasibility of tuples is so obvious that we need not mention it. In contrast, loss of support is
not immediately obvious to detect, but if we tell the proof verifier that it has in fact occurred
then it is easy to check that we are telling the truth.

4.2 Explicit Justifications and Integer Linear Inequalities

Some constraints require more work. Elffers et al. [10] have already shown how both
propagation and failure detection for the all-different constraint can be justified using cutting
planes proofs. Their approach works in our setting, with one caveat: they require at-least-one
constraints for certain CP variables, which we do not have in our model. However, recall
that these constraints can be introduced using RUP where needed.

Integer linear inequalities are a similar case. Suppose we have a constraint 2A+3B+4C ≤
42, with all three variables non-negative. In a typical CP solver, this constraint will achieve
integer bounds consistency [17, 4]. As an example, suppose we know that under some set of
guessed assignments G that A ≥ 5 and C ≥ 3, then a CP solver will infer that ∧G → B ≤ 6.
We can derive this fact in a proof as follows. By assumption, we either have or can introduce
RUP constraints that ∧G → a≥5 and ∧G → c≥3. This in turn means we either have or can
introduce RUP constraints for the binary representation, saying that ∧G →

∑h−1
i=0 2iabi ≥ 5

and ∧G →
∑h′−1

i=0 2icbi ≥ 3 for appropriate values of h and h′. Now using cutting planes
steps, we can multiply the first of these by 2 and the second by 4 (their coefficients in the
original linear inequality), add both to the constraint defining the linear inequality, and
divide the result by the coefficient of B, 3. It can be verified that the resulting mess is
now sufficient to make ∧G → b≥7 a RUP constraint. It is also routine to prove that this
example generalises to arbitrary integer linear inequalities (although negative variables and /
or coefficients require several awkward case by case analyses).

S. Gocht, C. McCreesh, and J. Nordström 25:9

4.3 Element Constraints
Recall the special case of a two-dimensional element from constants constraint, where a
variable V takes the [I, J]th entry in a two dimensional m × n array A of constants. In the
interests of having a simple pseudo-Boolean encoding, we defined this using (i=x ∧ j=y) →
v=A[x,y] constraints. However, we wish for our solver to achieve generalised arc consistency
on I and J , and bounds consistency on V . One way to proof log this reasoning is as follows.
As a one-time operation at the start of search, we will use extension variables to turn this
into a one-dimensional element constraint. We will introduce m × n new variables sk, each
of which is true if and only if a different i=x ∧ j=y holds. We will then build an at-least-one
constraint over the sk variables via a sequence of O(m × n) RUP steps, as follows. For each
value x for the first index variable I, we are going to derive via RUP that

∑
k sk + i=x ≥ 1.

For this to hold, we first derive via RUP that for each value y for the second index variable
J , that

∑
k sk + i=x + j=y ≥ 1. The desired at-least-one constraint now follows via RUP; in

effect, we have performed an exhaustive backtracking search over the pair of variables I and
J under the assertion that the desired at-least-one constraint does not hold, and shown that
no solution satisfying I and J exists. From this point forwards, we are effectively dealing
with a one-dimensional element constraint.

(Of course, one could ask why we convert from two dimensions to one dimension in the
proof, and not in the model when we define the element constraint. We could certainly do
things this way. However, our point here is to demonstrate that we don’t have to handle
model reformulations by changing the model: instead, we can use the most straightforward
low-level model imaginable, and then prove that our reformulations are valid as part of the
proof. We will explore this further below.)

We can also view our new encoding as being like a table constraint, but where the tuple
selector variable is channeled to the two index variables. If we wished to achieve generalised
arc consistency on the assigned variable V , we would simply reuse the inference techniques
discussed in Section 4.1. However, this would require introducing a pseudo-Boolean equality
variable v=n for each value in V ’s domain. This is potentially not what is desired, if the
range of the constants is large and V is only otherwise used in a bounds-consistent manner.
Therefore, instead of justifying that V does not take each value no longer present in feasible
parts of A in turn, we would like to assert a bounds change using a v≥n variable. This
does not immediately follow by RUP on its own, although it will if we repeat the iteration
technique used in creating the index variable, but iterating only over feasible array entries.

A downside to this approach is that it produces a proof containing O(m × n) steps to
justify each bounds propagation. As Michel et al. [24] explain, by storing the array in a
sorted manner, it is possible for a propagator to avoid looking at most array entries most of
the time, and so have better than O(m × n) performance in the typical case. We suspect
that this algorithm can be replicated in a proof efficiently, if we are prepared to establish a
set of ordering constraints at the start of the proof.

Finally, an observant reader might have noticed that deletions on the one-dimensional
array index will not unit propagate backwards to I and J . In fact, these deletions are RUP.

4.4 Not Equals
At this point, it should be clear how the not equals constraint can be handled: when one
variable A is instantiated to a value v, it follows using RUP that the other variable B cannot
also be v since the flag f would have to be both true and false to allow f → (A − B > 0) and
f → (B − A > 0) to hold simultaneously. However, there is another alternative, which we

CP 2022

25:10 An Auditable Constraint Programming Solver

will see is more efficient in some scenarios. Instead of deriving under a sequence of guesses
G that ∧G ∨ a=v → b=v, we could simply introduce the RUP constraint a=v + b=v ≥ 1,
independently of the guesses. Propagation of the not equals constraint for v would then
follow by simple unit propagation.

4.5 Autotabulation and Other Reformulations

Linear equality constraints can be defined and propagated as two linear inequalities. However,
sometimes a solver may wish to achieve generalised arc consistency on a linear equality.
This is NP-hard, but is still a good idea sometimes for small variables – for example, if
2X + 2Y + Z = 7 then Z must be odd, but this will not be inferred from the inequalities.
One way a solver might handle such constraints is by automatically turning the two linear
inequalities into a table constraint. An implementation of this process might, of course, be
buggy, and so we would like to prove that this tabulation is valid, rather than simply defining
the table constraint in the pseudo-Boolean model. This is indeed possible, using a more
advanced form of the kind of argument previously used to turn a 2D element constraint into
a 1D element constraint.

Let us start by finding the set of solutions to the constraint. For each solution, we
introduce an extension variable ts which is true if and only if that solution is selected, in the
same way as for a table constraint. We also introduce an extension variable g which is true if
and only if at least one of these ts variables is true. Next we perform and log a backtracking
search to find all of the solutions to the constraint, except that we use g as an additional
guessed assignment at every stage. At the end of the search, we have a proof that g must be
true, which in turn gives us an at-least-one constraint over the ts variables. We have now
created all the constraints we need to define a table constraint.

We expect that similar techniques will be useful for many other kinds of reformulation
as well, re-emphasising our ability to prove more than just the core solving process. One
modelling technique that likely cannot easily be handled this way is symmetry breaking
constraints. However, Bogaerts et al. [2] show that a slight extension to the VeriPB proof
system would make this possible: this raises the intriguing possibility of taking a symmetry
breaking lex or ordering constraint that is defined in a high level model, omitting it from the
pseudo-Boolean model, and then efficiently proving that the constraint is in fact valid.

5 An Implementation

We have implemented a basic constraint programming solver which supports proof logging
(see supplementary material). Our solver generally follows a conventional design, similar to
MiniCP [24], although we have chosen for novelty reasons to make use of some modern C++
features like lambdas and variant types instead of a pure object-oriented design. We were
not aiming for sheer speed, and so our solver does not include optimisations like multiple
propagation queues, backtrackable variables, stateful or support-tracking propagators, or
special handling of binary variables. The solver supports only integer variables, and imple-
ments the absolute value, all different, comparison (with half and full reification), element,
linear equality and inequality, minimum and maximum, and table constraints. We include
example programs implementing four of the five MiniCP benchmarks (a quadratic assignment
problem, n-queens, magic series, and magic square; the TSP example is not included because

S. Gocht, C. McCreesh, and J. Nordström 25:11

we do not yet have a circuit constraint), as well as the MiniZinc cake optimisation problem2,
the classic “send more money” and Crystal Maze problems, the world’s hardest Sudoku
puzzle3, and an odd-even sum problem using an auto-tabulated GAC sum constraint.

Throughout the development process, we have not tried particularly hard to produce a
solver which is free from bugs. Instead, our goal is to produce a solver that will not produce
undetectable incorrect outputs. The rest of this section describes the key aspects of the solver
design that involve proof logging, discusses what we have learned from using the VeriPB
system in a constraint programming setting, and evaluates its performance.

5.1 Constraint Compilation, or Why Trust the OPB File?
To create the OPB file, we use a single pass approach, outputting definitions as soon as
variables and constraints are generated. Variables are handled centrally, whilst each constraint
is responsible for providing its own pseudo-Boolean encoding. OPB creation is done purely
using text, and the solver stores only the model line numbers for certain constraints – it does
not explicitly store any pseudo-Boolean information.

An obvious difficulty with our proposed process is that this compilation from a CP model
to an OPB model is not verified. This is somewhat offset by the deliberate use of extremely
simple encodings, but one must ask: “why are the authors so sure that they have designed
and implemented the encoding correctly, particularly for fiddly global constraints?”. The
answer to this question is that we are not sure at all, and so we rely upon a special test system,
as follows. For a given constraint, we generate many different possible input domains for its
variables. For each set of inputs, we use a small generate-and-test program that provides
the full set of solutions to the constraint, making no use of the constraint programming
solver or any clever logic or programming. (This can be moderately slow, for example for
the element constraint.) We then use the constraint solver to solve the problem consisting
of just that constraint on those inputs, and verify that the set of solutions found this way
is identical. Finally, we verify the proof produced by this solving process: because this is
an enumeration problem, this verifies that the OPB file also has exactly the same set of
solutions (and additionally that the propagator found them all legitimately, although this is
not the main point of the test).

This process is not perfect, but it does severely reduce the scope for errors: for example, it
immediately flagged a typo where a reified greater than or equal constraint had accidentally
been implemented as a reified greater than constraint, and a bug when the index constraint
for an element constraint contained only out-of-range values.

5.2 Producing the Proofs
Recall that to produce a proof, we need to log our backtracking search, and certain variable-
value eliminations. In the design of our solver, we opted for a careful separation of the notion
of a variable and its current state: the former we represent as a handle, whilst the latter is
stored separately in a central location to allow for easy backtracking. It was therefore natural
to force every modification to a variable’s values to go through a common set of functions,
and to make these functions take a mandatory argument that can be either “no justification
needed”, “output a RUP statement for this”, or “call the following piece of code to produce
an explicit set of proof steps”. Making this argument mandatory forces constraint authors to
think explicitly about justifications, and avoids the potential for illicit modifications to be
hiding in places where they can not easily be found by inspecting a proof log.

2 https://www.minizinc.org/doc-2.5.5/en/modelling.html#an-arithmetic-optimisation-example
3 https://abcnews.go.com/blogs/headlines/2012/06/can-you-solve-the-hardest-ever-sudoku

CP 2022

https://www.minizinc.org/doc-2.5.5/en/modelling.html#an-arithmetic-optimisation-example
https://abcnews.go.com/blogs/headlines/2012/06/can-you-solve-the-hardest-ever-sudoku

25:12 An Auditable Constraint Programming Solver

For backtracking search, we treat guessing on a branching variable to be a special kind of
inference. Outputting the proof log then simply consists of tracing the search as backtracks
are performed. Again, at no point was it necessary to manipulate pseudo-Boolean constraints
or proof steps as anything other than simple strings created using a template.

5.3 Identifying Solver Bugs
Our experience has been that once the core solver is working and producing proofs for simple
problems, it is somewhat more common to have bugs in the proof-producing code for new
propagators than in the propagators themselves. Usually these bugs are extremely easy to
fix, because VeriPB immediately flags the faulty line of the proof, and our solver can include
a comment line immediately above any proof line saying exactly where in its source code that
line originated. Similarly, propagator bugs are usually obvious from proof logs. For example,
when we first implemented propagation for linear inequalities, we did not yet have a full
proof logging setup for variables with large domains. We therefore used a VeriPB feature
which allows for unchecked assertions to be included in the proof log (subject to an angry
warning being issued at the end of the verification process) so that the remainder of the
proofs could be verified. However, our implementation contained a bug, because one of the
authors did not realise they did not understand the rules for rounding and integer division
when both a variable and its coefficient are negative. Throughout conventional testing on
the remainder of the solver, we never saw a single wrong answer being produced by this bug
– but as soon as proof logging was implemented, we were told the exact line of code in our
solver that was incorrect, even though correct sets of solutions were still being produced. Of
course, one could claim that better testing would have identified this, but this relies upon
the tester having intimate knowledge of how the propagator works and remembering that
integer division of negative numbers could be a source of errors.

It can sometimes be harder to understand the problem when faulty proofs arise from
insufficient justifications. For example, for the absolute value constraint, one of the authors
had originally lazily assumed that its propagations would follow by a single RUP step in the
same way as for not equals – and indeed this is often but not quite always the case. (This
experience has left us extremely envious of the skills of authors of lazy clause generation
solvers, who are able to write similar propagators without the benefit of machine verification.)
This can lead to a proof verification error that only occurs several propagation steps later
than the actual bug: the verifier always tells us if something is wrong, but does not always
make it trivial to figure out where. However, because our solver forces all propagations to go
through a central function call, it is easy to change the way proof logs are written so that all
propagations are checked, including those which would usually be implicit.

5.4 Performance and Overheads
Having discussed the design and implementation of proof logging, we now talk about actually
using it. This section answers two questions: “does proof logging work at all?”, and “how
expensive is proof logging in practice when used on large problems?”.

To answer the second question, we must first establish whether our solver is “fast enough”
that its results are likely representative of what would be seen if proof logging were introduced
into a mature solver. For MiniCP, Michel et al. [24] include five benchmarks that are designed
to test solver speed: they specify an exact search order, and propagation strength for global
constraints, so that every solver is producing the same search tree for a fair speed comparison.
Their aim was not to have the best model or search for a problem, but rather to benchmark

S. Gocht, C. McCreesh, and J. Nordström 25:13

Table 1 Experimental results from our anonymous solver on six different problem instances. The
first four problems are from the MiniCP benchmark suite and have a fixed model, search order, and
propagation strength, to allow for a fair comparison between solvers. The final two problems are
relatively simple, but use further global constraints that are not supported in MiniCP.

QAP: a quadratic assignment optimisation problem with linear inequalities, not equal constraints,
a 2D element constraint, and large variables.
Runtimes: MiniCP: 16.9s OscaR: 7.1s Choco: 11.3s

Anon: 5.6s logging: 149.5s VeriPB: 232,655.1s
Statistics: propagators: 355 recursions: 125,805 inferences: 4,521,801

OPB size: 6.4MBytes log size: 19GBytes
RUP steps: 39,170,568 RPN steps: 413,295 red steps: 101,394

Magic Series: finding the only magic series of length 300, and proving it is unique. Uses linear
equality and reified equality constraints.
Runtimes: MiniCP: 29.6s OscaR: 8.8s Choco: 29.8s

Anon: 8.2s logging: 425.2s VeriPB: est. 39 days
Statistics: propagators: 90,301 recursions: 1,193 inferences: 15,584,073

OPB size: 108MBytes log size: 12GBytes
RUP steps: 7,923,342 RPN steps: 342,401 red steps: 358,800

Magic Square: finding the first 10,000 magic squares of size 5. Uses sum, not equal, and less
than constraints.
Runtimes: MiniCP: 61.1s OscaR: 32.3s Choco: 32.9s

Anon: 31.0s logging: 1894.1s VeriPB: 108,772.8s
Statistics: propagators: 315 recursions: 6,042,079 inferences: 92,891,165

OPB size: 145KBytes log size: 100GBytes
RUP steps: 141,528,806 RPN steps: 70,946,952 red steps: 2,550

Queens: finding the first solution to the 88 queens problem. Uses not equals constraints.
Runtimes: MiniCP: 876.2s OscaR: 477.8s Choco: 438.8s

Anon: 410.0s logging: 3450.5s VeriPB: 60,643.7s
Statistics: propagators: 11,484 recursions: 49,339,390 inferences: 535,852,330

OPB size: 8.9M log size: 104GBytes
RUP steps: 50,130,687 RPN steps: 0 red steps: 31,152

Crystal Maze on the usual 8-vertex graph, all solutions. Uses GAC all-different, absolute
value, and sum constraints.
Runtimes: Anon: 0.01s logging: 0.13s VeriPB: 6.3s
Statistics: propagators: 35 recursions: 259 inferences: 8,737

OPB size: 60K log size: 2.6MBytes
RUP steps: 32,903 RPN steps: 6,685 red steps: 1,496

With autotabulation and GAC propagation on the sum constraints:
Runtimes: Anon: 0.01s logging: 0.06s VeriPB: 3.9s
Statistics: propagators: 52 recursions: 139 inferences: 2,601

OPB size: 60K log size: 2.0MBytes
RUP steps: 29,467 RPN steps: 102 red steps: 2,958

Sudoku on Arto Inkala’s “world’s hardest Sudoku puzzle”, all solutions. Uses GAC all-different
and equals constraints.
Runtimes: Anon: 0.03s logging: 0.05s VeriPB: 0.52s
Statistics: propagators: 48 recursions: 103 inferences: 1,388

OPB size: 320K log size: 484KBytes
RUP steps: 4,561 RPN steps: 460 red steps: 0

CP 2022

25:14 An Auditable Constraint Programming Solver

solvers performing the same well-defined task. We support enough global constraints (linear
inequalities, sum, not equals, reified equals, a special element constraint, and less than) to
implement four of these five benchmarks; we do not yet support the circuit global constraint
for the fifth. In the first four rows of Table 1 we present computational results from a machine
with dual Intel Xeon E5-2697A v4 CPUs, 512GBytes RAM, and a pair of solid state drives
in a RAID 0 configuration, running Ubuntu 20.04.3 LTS, and benchmarking against the
versions of the other solvers included in the supplementary material provided by Michel et al.
In each case our solver is faster than the fastest of MiniCP, OscaR, and Choco, although
sometimes only by a few percent. We therefore believe that the results that follow cannot be
said to be unfairly optimistic due to the use of a slow solver.

Table 1 also shows runtimes for running our solver with proof logging enabled, together
with statistics showing the size of the OPB models and VeriPB proof logs produced, and
the number of RUP steps, groups of cutting planes steps (VeriPB works with sequences of
cutting planes steps in reverse Polish notation, RPN, rather than one step per line), and
redundance-based strengthening steps (red; two such steps are used to introduce an extension
variable). On the four MiniCP benchmarks we see a slowdown of between 8.4 and 61.1 from
proof logging. This should not be particularly surprising: without proof logging, our solver is
making between eight hundred thousand and three million successful inferences per second,
and the proof logs to justify these inferences range from ten to over a hundred GBytes in
size. Furthermore, our implementation of proof logging is deliberately pessimal. We make
use of C++ text output streams for file writing, which are notoriously inefficient. We write
comments for most proof log lines generated, we make use of expressive variable names
(which require several string concatenation operations and a hash table lookup for each
variable written out), and proof lines are manipulated as strings for ease of implementation;
all of these decisions are extremely helpful for exploratory research, but not for performance.
Finally, these MiniCP benchmarks make use of only relatively simple and extremely fast
propagators, which is where proof logging is most expensive. We therefore consider these
performance results to be close to a worst case scenario, and would not be surprised if the
overheads could be cut by at least a factor of five for some problems if implemented in a
production solver that aimed purely for performance rather than for research and teaching.

Returning to the first question, we were able to verify the entire proofs for three of the
four MiniCP problems; based upon the first ten percent of the proof for the remaining magic
series problem, VeriPB estimates it will take 39 days to verify. We were able to verify entire
proofs for smaller instances of the magic series problem. We have also produced and verified
proofs for a range of other problems that make heavier use of global constraints – we show
two of these in the bottom of Table 1, and other example problems and per-constraint tests
are included in our supplementary material. Considering these results, and all the bugs that
have been identified during development, we are comfortable in claiming that proof logging
can be effective in practice. Although it may not (yet) scale practically to some of the more
challenging combinatorial benchmark instances, it is already able to handle moderately sized
problems involving several different global constraints, large variables, and reformulation.

6 Conclusion and Future Work

Proof logging gives us a way to trust outputs, not solvers. Trusting solvers seem to be a long
way from being a practical reality for for constraint programming: even relatively simple
propagators like all different have resisted attempts at formally verified implementation [8]
even without the extensive optimisations used by modern solvers [11]. In contrast, we have

S. Gocht, C. McCreesh, and J. Nordström 25:15

shown that, with the right proof format, it is relatively easy to add proof logging to a wide
variety of propagators, without requiring the proof verifier to understand anything about
constraint programming – and this does not stand in the way of propagator optimisations
such as greediness and incrementality.

There is still a lot of work to do before proof logging can be used by everyone all of the
time. Firstly, there are many more global constraints and propagators to consider. Most of
these will be straightforward, and will re-use existing strategies for proof logging in familiar
ways. However, some will not be, and it is an open question as to whether cutting planes
with extension variables give a sufficiently strong system to provide practical proof logging in
every situation. We expect that recent work in proof logging for symmetry and dominance
relations [2] might be necessary to justify certain propagators, as well as for reformulations
involving symmetries, and would be interested in a deeper investigation into the relationship
between constraint programming propagators and proof systems (with the caveat that “this
system polynomially simulates natural deduction and so it can do everything” is not a helpful
answer unless the polynomial is of very low order and with small constants).

Secondly, we must think about performance. Using formatted text output and string
lookups to produce proof logs is useful for development and exploratory purposes, but for a
production solver a better approach is probably needed. Verification performance is also a
concern, although we have many reasons to be optimistic that this will improve. For example,
very small changes to how proofs are written can give a huge improvement to verification
times. We discussed two different ways of proof logging the not equals constraint, one of
which involved justifying every propagation subject to the current guessed assignments, and
the other which produced new clauses to assist unit propagation. On the MiniCP queens
benchmark, using the former would have produced a 1.1TByte proof log that would take an
estimated 138 days to verify, rather than a 100GByte proof that could be verified in under
a day. If we are prepared to put slightly more cleverness into a solver, and abandon the
gratuitous use of RUP steps in favour of a little more logic, we expect that proof sizes for
some other constraints can be reduced by a similar factor.

An automated tool that performs proof minimisation would also be useful in this respect.
Although potentially expensive to run, this would be very useful for auditability where proofs
are to be stored, shared, and potentially verified more than once by different people. Such
a tool could also provide annotations that would make RUP steps much quicker to verify –
such an approach is already used for formally verified verifiers for DRAT, which actually
verify a simplified format called LRAT [6].

On the other hand, relatively slow verification is not a fatal flaw. Proof logging is
very good at catching solver bugs that will not be detected by conventional testing, even
on relatively small instances. Because the same logic and code paths in a solver can be
used whether or not proof logging is enabled, it is a useful feature to support even if it is
not enabled all of the time. And, of course, many useful problems with serious real-world
consequences derive most of their difficulty from the variety of constraints involved, rather
than from being close to the limit of what we can solve computationally.

And thirdly, although we have a reasonably good solution for being confident in our
translation from a constraint programming model into OPB, we have not discussed the
further difficulty of verifying compilation from high level languages like Essence or MiniZinc.
Perhaps it would be worth investigating techniques from formally-verified compilers to help
with this translation.

CP 2022

25:16 An Auditable Constraint Programming Solver

References
1 Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Meta-

morphic testing of constraint solvers. In John N. Hooker, editor, Principles and Practice of
Constraint Programming - 24th International Conference, CP 2018, Lille, France, August
27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science, pages 727–736.
Springer, 2018. doi:10.1007/978-3-319-98334-9_46.

2 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry
and dominance breaking for combinatorial optimisation. In Thirty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2022, 2022.

3 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

4 Chiu Wo Choi, Warwick Harvey, J. H. M. Lee, and Peter J. Stuckey. Finite domain bounds
consistency revisited. In AI 2006: Advances in Artificial Intelligence, 19th Australian Joint
Conference on Artificial Intelligence, Hobart, Australia, December 4-8, 2006, Proceedings, pages
49–58, 2006. doi:10.1007/11941439_9.

5 William J. Cook, Collette R. Coullard, and György Turán. On the complexity of cutting-
plane proofs. Discrete Applied Mathematics, 18(1):25–38, 1987. doi:10.1016/0166-218X(87)
90039-4.

6 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-
Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor, Automated Deduction
- CADE 26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden,
August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages
220–236. Springer, 2017. doi:10.1007/978-3-319-63046-5_14.

7 Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume Perez, Laurent Perron,
Jean-Charles Régin, and Pierre Schaus. Compact-table: Efficiently filtering table constraints
with reversible sparse bit-sets. In Michel Rueher, editor, Principles and Practice of Constraint
Programming - 22nd International Conference, CP 2016, Toulouse, France, September 5-9,
2016, Proceedings, volume 9892 of Lecture Notes in Computer Science, pages 207–223. Springer,
2016. doi:10.1007/978-3-319-44953-1_14.

8 Catherine Dubois. Formally verified constraints solvers: a guided tour. CICM. Invited talk,
2020.

9 Leon Eifler and Ambros M. Gleixner. A computational status update for exact rational mixed
integer programming. In Mohit Singh and David P. Williamson, editors, Integer Programming
and Combinatorial Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA,
USA, May 19-21, 2021, Proceedings, volume 12707 of Lecture Notes in Computer Science,
pages 163–177. Springer, 2021. doi:10.1007/978-3-030-73879-2_12.

10 Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differ-
ences using pseudo-Boolean reasoning. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 1486–1494. AAAI
Press, 2020. URL: https://aaai.org/ojs/index.php/AAAI/article/view/5507.

11 Ian P. Gent, Ian Miguel, and Peter Nightingale. Generalised arc consistency for the alldifferent
constraint: An empirical survey. Artif. Intell., 172(18):1973–2000, 2008. doi:10.1016/j.
artint.2008.10.006.

12 Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of con-
straints. In Thomas Schiex and Simon de Givry, editors, Principles and Practice of Constraint
Programming - 25th International Conference, CP 2019, Stamford, CT, USA, September 30
- October 4, 2019, Proceedings, volume 11802 of Lecture Notes in Computer Science, pages
565–582. Springer, 2019. doi:10.1007/978-3-030-30048-7_33.

https://doi.org/10.1007/978-3-319-98334-9_46
https://doi.org/10.1007/11941439_9
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-44953-1_14
https://doi.org/10.1007/978-3-030-73879-2_12
https://aaai.org/ojs/index.php/AAAI/article/view/5507
https://doi.org/10.1016/j.artint.2008.10.006
https://doi.org/10.1016/j.artint.2008.10.006
https://doi.org/10.1007/978-3-030-30048-7_33

S. Gocht, C. McCreesh, and J. Nordström 25:17

13 Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and
James Trimble. Certifying solvers for clique and maximum common (connected) subgraph
problems. In Helmut Simonis, editor, Principles and Practice of Constraint Programming -
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020,
Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,
2020. doi:10.1007/978-3-030-58475-7_20.

14 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets
cutting planes: Solving with certified solutions. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
1134–1140. ijcai.org, 2020. doi:10.24963/ijcai.2020/158.

15 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 3768–3777. AAAI Press, 2021. URL: https://ojs.aaai.
org/index.php/AAAI/article/view/16494.

16 Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Design, Automation and Test in Europe Conference (DATE), pages 10886–10891.
IEEE Computer Society, 2003.

17 Warwick Harvey and Joachim Schimpf. Bounds consistency techniques for long linear con-
straints. In Proceedings of TRICS: Techniques foR Implementing Constraint programming
Systems, pages 39–46, 2002.

18 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs.
In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October
20-23, 2013, pages 181–188. IEEE, 2013. URL: http://ieeexplore.ieee.org/document/
6679408/.

19 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with exten-
ded resolution. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th
International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.
Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer,
2013. doi:10.1007/978-3-642-38574-2_24.

20 Linnea Ingmar and Christian Schulte. Making compact-table compact. In John N. Hooker,
editor, Principles and Practice of Constraint Programming - 24th International Conference,
CP 2018, Lille, France, August 27-31, 2018, Proceedings, volume 11008 of Lecture Notes in
Computer Science, pages 210–218. Springer, 2018. doi:10.1007/978-3-319-98334-9_14.

21 Evelyn Lamb. Two-hundred-terabyte maths proof is largest ever. Nature, 545:17–18, 2016.
22 Christophe Lecoutre. STR2: optimized simple tabular reduction for table constraints. Con-

straints An Int. J., 16(4):341–371, 2011. doi:10.1007/s10601-011-9107-6.
23 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying al-

gorithms. Comput. Sci. Rev., 5(2):119–161, 2011. doi:10.1016/j.cosrev.2010.09.009.
24 Laurent D. Michel, Pierre Schaus, and Pascal Van Hentenryck. MiniCP: a lightweight

solver for constraint programming. Math. Program. Comput., 13(1):133–184, 2021. doi:
10.1007/s12532-020-00190-7.

25 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation = lazy clause generation.
In Christian Bessiere, editor, Principles and Practice of Constraint Programming - CP 2007,
13th International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Pro-
ceedings, volume 4741 of Lecture Notes in Computer Science, pages 544–558. Springer, 2007.
doi:10.1007/978-3-540-74970-7_39.

26 Adrian Rebola-Pardo and Luís Cruz-Filipe. Complete and efficient DRAT proof checking. In
Nikolaj Bjørner and Arie Gurfinkel, editors, 2018 Formal Methods in Computer Aided Design,
FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, pages 1–9. IEEE, 2018.
doi:10.23919/FMCAD.2018.8602993.

CP 2022

https://doi.org/10.1007/978-3-030-58475-7_20
https://doi.org/10.24963/ijcai.2020/158
https://ojs.aaai.org/index.php/AAAI/article/view/16494
https://ojs.aaai.org/index.php/AAAI/article/view/16494
http://ieeexplore.ieee.org/document/6679408/
http://ieeexplore.ieee.org/document/6679408/
https://doi.org/10.1007/978-3-642-38574-2_24
https://doi.org/10.1007/978-3-319-98334-9_14
https://doi.org/10.1007/s10601-011-9107-6
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/978-3-540-74970-7_39
https://doi.org/10.23919/FMCAD.2018.8602993

25:18 An Auditable Constraint Programming Solver

27 Olivier Roussel and Vasco M. Manquinho. Input/output format and solver requirements for
the competitions of pseudo-Boolean solvers. Revision 2324. Available at http://www.cril.
univ-artois.fr/PB16/format.pdf, January 2016.

28 Peter J. Stuckey. Certifying optimality in constraint programming, February 2019. Talk at
KTH Royal Institute of Technology.

29 Julian R. Ullmann. Partition search for non-binary constraint satisfaction. Inf. Sci.,
177(18):3639–3678, 2007. doi:10.1016/j.ins.2007.03.030.

30 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th
International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2008.
http://isaim2008.unl.edu/index.php?page=proceedings.

31 Michael Veksler and Ofer Strichman. A proof-producing CSP solver. In Maria Fox and David
Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010. URL: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1754.

32 Hélène Verhaeghe. The extensional constraint. PhD thesis, Catholic University of Louvain,
Louvain-la-Neuve, Belgium, 2021. URL: http://hdl.handle.net/2078.1/252859.

33 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory
and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,
2014. doi:10.1007/978-3-319-09284-3_31.

http://www.cril.univ-artois.fr/PB16/format.pdf
http://www.cril.univ-artois.fr/PB16/format.pdf
https://doi.org/10.1016/j.ins.2007.03.030
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1754
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1754
http://hdl.handle.net/2078.1/252859
https://doi.org/10.1007/978-3-319-09284-3_31

	1 Why Trust a Constraint Programming Solver?
	2 The VeriPB Proof System
	2.1 Pseudo-Boolean Models
	2.2 Cutting Planes
	2.3 Unit Propagation and Reverse Unit Propagation
	2.4 Extension Variables and Redundance-Based Strengthening
	2.5 Satisfiable Instances, Enumeration, Optimisation, and Deletions

	3 Encoding Constraint Programming Models
	3.1 Variables
	3.2 Constraints

	4 Proofs for Search and Propagation
	4.1 RUP Justifications and Table Constraints
	4.2 Explicit Justifications and Integer Linear Inequalities
	4.3 Element Constraints
	4.4 Not Equals
	4.5 Autotabulation and Other Reformulations

	5 An Implementation
	5.1 Constraint Compilation, or Why Trust the OPB File?
	5.2 Producing the Proofs
	5.3 Identifying Solver Bugs
	5.4 Performance and Overheads

	6 Conclusion and Future Work

