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Abstract
Constraint programming (CP) is used widely for solving real-world problems. However, designing
these models require substantial expertise. In this paper, we tackle this problem by synthesizing
models automatically from past solutions. We introduce COUNT-CP, which uses simple grammars
and a generate-and-aggregate approach to learn expressive first-order constraints typically used in
CP as well as their parameters from data. The learned constraints generalize across instances over
different sizes and can be used to solve unseen instances – e.g., learning constraints from a 4 × 4
Sudoku to solve a 9 × 9 Sudoku or learning nurse staffing requirements across hospitals. COUNT-CP
is implemented using the CPMpy constraint programming and modelling environment to produce
constraints with nested mathematical expressions. The method is empirically evaluated on a set of
suitable benchmark problems and shows to learn accurate and compact models quickly.
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1 Introduction

Constraints play an important role in modelling many real-world decision problems. They are
used widely in fields like cryptography [13, 15], complexity theory [1] and automatic theorem
proving [14]. However, identifying the constraints of a problem and encoding them into a
mathematical model requires both domain knowledge and modelling expertise. This non-
trivial task is often the major bottleneck for the widespread application of constraint-based
methods and solvers.

Consider, for instance, the case of scheduling nurses in a hospital, where the aim is to
create a schedule for nurses every week. Modeling this problem requires domain knowledge to
identify relevant constraints, such as, every shift requires at least three nurses or nurses may
work at most five days a week. Next, these constraints have to be encoded as a mathematical
model, e.g., a Constraint Satisfaction Problem (CSP). The skills required to achieve both
these steps makes powerful techniques for efficiently solving such problems inaccessible to
people without a mathematical or computer science background.
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Constraint learning approaches aim to overcome this issue by instead learning constraint
models from past solutions [19]. In the example of nurse scheduling, this means learning
the constraint model from manually created past schedules. By automating the modeling
step, constraint learning makes constraint solving techniques more accessible and makes
the modeling process faster and cheaper. In the CP community there are a number of
existing approaches to learn constraints from solutions [10, 2, 4] and – in some cases – non-
solutions [17, 18]. A popular approach to learning constraint is the so called generate-and-test
approach [21]. The idea behind generate-and-test is to generate candidate constraints and
apply them to various subsets of the decision variables and test whether the constraint holds
in the training data.

Most of these approaches learn constraints at the level that a constraint solver accepts:
individual constraints, such as predicates with a fixed number of arguments. By listing
all possible predicates and their signature, different predicate/variable combinations can
be generated and tested. Learning more expressive constraints, however, often requires
generating prohibitively large combinations of predicates and makes constraint learning very
time-consuming. As a result several approaches design their constraint space instead as
a flat catalog of more expressive candidate constraints, learning global constraints [2] or
relational spreadsheet formulas [10]. By modeling constraints using an expressive, richer
language, rather than acquiring individual lower-level constraints, these approaches are able
to synthesize high quality models quickly. The key limitations are that only constraints from
these catalogs can be learned and that parameters can only be inferred using constraint-
specific parameter inference methods.

A recent approach (COUNT-OR [11]) to learning constraints for OR models, such as
nurse scheduling problems, offered an alternative: Using a simple grammar of aggregation
operators, different aggregation expressions are generated and applied to various slices of
matrices and in general tensors of decision variables. By simply computing the lower and
upper bounds of these expressions across all training examples, the method automatically
identifies relevant parameters from data and learns constraints quickly.

We built on this approach to design a constraint learner (COUNT-CP) that applies the
ideas of bounded expressions to learn CP constraints. First, we observe that constraint models
over finite domain integers usually consist of Boolean expressions and numeric expressions
with a comparison (e.g., x = y and x <= y). Because Boolean expressions in this context
can be seen as a special case of numeric expressions that are equal to 1, we can use suitable
bounded numeric expressions lb <= expr <= ub to express common types of constraints
(e.g., abs(x-y) <= 0 and x-y <= 0). Second, we observe that first-order constraints such
as each nurse works at most 5 days a week or global constraints such as alldifferent can
be decomposed into multiple bounded-expression constraints.

Based on these observations, we suggest to learn bounded-expressions using a COUNT-OR
style approach which offers an obvious mechanism to infer the constants. COUNT-CP uses a
simple grammar to generate suitable nested mathematical expressions and computes their
lower and upper bounds. However, to produce expressive, first-order constraints, the learned
bounded-expression constraints are then grouped together over structured sets of variables
using simple grammars of foreach statements. This step also serves as an inductive bias in
selecting which constraints should make up the final learned model. As a result, COUNT-CP
is able to assemble first-order constraints, such as each nurse works at most 5 days a week and
global constraints such as alldifferent. COUNT-CP allows users to provide background
knowledge in the form of sets of variables that the user considers related – e.g., connected
edges in a graph or shared skill levels of nurses – and adds these sets to the grammar used
for grouping constraints.
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Our developments have been inspired by the PTHG-21 Holy Grail Challenge, which
contains variable-sized problem instances over the integer domain, and where a preliminary
version of our approach was the winning (and only) entry. In principle, first-order constraints
are independent of the instance size and can be used to solve different instances of unseen
sizes. However, the numeric constants fitted by approaches such as COUNT-OR may be
instance size dependent and would not apply to unseen instances. To resolve this issue, we
propose to fit a symbolic bound expression across training instances, using generic problem
features as well as semantic constants provided by a domain expert – e.g., minimal staffing
requirements of a hospital.
To summarize, the key contributions of this paper are:

Learning first-order bounded-expression constraints, which are expressive enough to
capture many complicated constraints and can be learned using a simple and fast
generate-and-aggregate procedure.
Defining the language bias for constraints using simple and simple-to-extend grammars
that are combined to learn intricate constraints.
Replacing constants in the learned constraints by symbolic expressions, which allows
learned model to generalise to different and unseen problem sizes.
Allowing users to provide background knowledge using a simple interaction protocol: sets
of related variables and semantic instance-level constants.
Providing an effective strategy for removing redundant constraints to improve the inter-
pretability and speed of learned models.

This paper is structured as follows: First, we review related work on constraint learning
(Section 2). Second, we present our constraint learning approach (COUNT-CP, Section 3)
by discussing its links to COUNT-OR, how it learns propositional constraints, first-order
constraints and how we filter out constraints to produce compact models. Third, we
empirically evaluate our approach on a set of suitable benchmark problems (Section 4).
Fourth, and finally we summarize our conclusions (Section 5).

2 Related Work

Learning constraints from a given set of feasible examples has a long history. The first
algorithm in this regard was given by Valiant [21], back in 1984. Given a set of feasible
examples, this algorithm learns Boolean formulas consistent with the given examples. To do
so, it enumerates all possible formulas upto a pre-defined complexity and keeps only those
which are satisfied by all feasible examples. This is essentially a generate-and-test approach,
where the algorithm generates all possible constraints and then tests whether they hold on
the given dataset. This approach was later extended to first order logic under the banner
of inductive logic programming [8]. Although important, these early works are limited to
Boolean variables and logical formulas.

More recent works, like the series of work by Bessiere et al [4, 5, 6] extend these approaches
to integer variables. For instance, Conacq [4] learns constraints, typically using the basic
comparison relations (=, <, ≤, ≥, >, ̸=). The relations considered is called the bias. It
basically searches for such constraints over every compatible subset of variables (called
scope, e.g. all pairs) and defines a lattice structure of the comparison relations, based
on the generalisation/specialisation relation between them. Feasible examples are used to
remove relations from the lattice. Infeasible examples only say that there has to exist one
constraint over all possible variable combinations that is violated; which is expressed as a
meta constraint. The authors use the concept of convergence to denote if a lattice for a
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pair of variables only contains a single relation; if not, the default action is to take the most
specific relation as constraints, e.g. in case of ≥, ≤ and =, = is taken. The concept of the
lattice comes from the version space algorithm where a lattice is defined over the whole
program space. When considering a separate lattice for every variable pair, arguably its
main purpose may be to identify which relations are redundant, e.g. subsumed by others.
None of these works can learn the bounds in the data, let alone symbolic bounds. This work
was later extended to learn generalized constraints [3], however, the assumption here was
that the user knows which variables are supposed to be grouped together. It was further
extended to detect the groups automatically in [7].

Another well known approach is ModelSeeker [2], which is also a generate-and-test
approach; it does not just consider basic comparison relations, but a subset of all global
constraints in the global constraint catalog. Furthermore, it does not search over all subsets
of variables, but instead has candidate generator expressions that uses the structure of the
decision variables (e.g. a list or matrix) to group the variables into meaningful subsets
(e.g. per row, per column, all pairs). It then generates and tests which constraints are
satisfied in each of the groups, over all positive instances. The use of “generators” matches
the programming style of “foreach s in ...: constraint(s)” that CP modellers often use. If
the constraint has additional parameters, then these need to be inferred separately using
custom rules for every constraint. However, ModelSeeker requires the constraint catalog to
be provided beforehand and does not learn symbolic parameters/bounds.

Finally the CPS [12] approach uses inductive logic programming (ILP) to find logic
programming rules of the form condition =⇒ constraint. The condition can be seen as a
generator too, for the learned logical rules have to be flattened into low level constraints for
every possible substitution of the condition.

Our proposed approach does not go as far as ModelSeeker in considering a bias of
a wide range of generic to very specialized global constraints. We do go beyond simple
comparison relations between pairs of variables, by considering a comparison relation on
a mathematical expression over variables. We use a grammar to generate the possible
mathematical expressions. This captures the basic comparison relations, but also captures
linear (unweighted) expressions and the use of constants such as in x + y ≥ 2. This approach
of mathematical expressions turned into constraints by identifying bounds on them, also
generalizes well to the use of generator expressions.

A recent approach used for learning hard constraints given a set of feasible and infeasible
examples is to encode the learning problem itself as a mathematical model [10, 17]. For
instance, Pawlak et al. [17] learn constraints with linear, quadratic and trigonometric terms
by encoding the learning as a MILP. The hard constraints of this MILP ensure that each
example is correctly classified by the learnt model, while the objective tries to minimise the
complexity of the learnt model. This ensures that the learnt model is concise and easily
readable. This work was later extended to work with positive only training instances [16],
where the idea is to fit a Gaussian mixture model on the given set of feasible points and use
this model to sample infeasible points, the learning strategy then uses both feasible and the
sampled infeasible instances to learn a model. The main drawback of these methods is that
they do not learn symbolic expressions, and thus can not generalise to unseen problem sizes.

3 Learning constraints using COUNT-CP

3.1 Background on COUNT-OR
Our approach for learning constraints is inspired by COUNT-OR [11], a constraint learning
approach for acquiring personnel rostering constraints from example schedules. Instead of
generating and testing a set of possible constraints, COUNT-OR instead generates a set of
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expressions that capture useful quantities in the data by applying aggregates to various slices
of matrices and tensors. We use the term tensor for a multi-dimensional matrix, basically a
matrix is a 2D tensor and a tensor can have more than 2 dimensions.

▶ Example 1. Consider a Boolean matrix of nurses (rows) and days (columns) that encodes
whether a given nurse works on a given day (1) or not (0). Summing over values in a row of
such a weekly schedule expresses the number of working days for a nurse.

By comparing the values of these expressions across different example schedules, COUNT-
OR finds upper and lower bounds for every expression. Together, these bounds and expressions
can be translated to constraints. For example, if the number of working days of nurse i in
the example schedules is always between 0 and 5, COUNT-OR produces a constraint

0 <= sum(X[i, :]) <= 5

COUNT-OR also compares values across tensor slices, e.g., comparing working days for
different nurses, to find generalized constraints, such as

foreach i: 0 <= sum(X[i, :]) <= 6

These generalized constraints can then be applied to schedules with different numbers of
nurses.

We will adopt a similar strategy for learning CP models, however, we use specialized
grammars to generating different types of expressions and to find slices that can be used for
generalized constraints. Given the conceptual similarity to COUNT-OR, we call our approach
COUNT-CP. First, we will explain how COUNT-CP generates propositional expressions for
fixed problem sizes, that is, individual constraints that involve specific subsets of variables
(their scope) and a relation between those variables. Second, we describe how to group these
propositional expressions to find generalized constraints that can also be carried over to
unknown problem sizes.

3.2 Learning propositional constraints
In this work, we consider the case of learning constraints of the following form:

lb <= expr <= ub

where expr is a mathematical expression over variables, such as X[i] + X[j], or an aggregate
expression over a group of variables, such as sum(X[:]). To learn these constraints, we
defined a grammar that captures expressions frequently occurring in CP problems, and a
mechanism to find suitable lower and upper bounds.

Our approach is different from current constraint learning approach in that our bias, the
set of possible constraints that can be learned, is not determined by a fixed set of constraints
(whose parameters might have to be infererd later). Rather, our bias consists of mathematical
expressions on the one hand, and bound-constraints on these expressions on the other hand.

Expression grammar

To construct our grammar, we look at unary, binary and aggregate expressions that can be
expressed in CP modelling languages such as MiniZinc and CPMpy. We consider the unary
identity expression, the binary expressions addition, subtraction and absolute difference, and
the aggregate sum expression.

Observe how this grammar does not include the “traditional” constraint biases x != y,
x <= y, x < y, etc. The reason is that we have constraints that subsume those, namely
abs(x - y) >= 1, x - y <= 0 and x - y <= -1, respectively. Hence, our constraint bias
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– inequalities over the expression grammar – can learn those traditional constraints. But
it can also learn other constraints, like abs(x - y) > 2, as the bounds are automatically
determined and not sequentially tested based on a predetermined list.

One of the few unary/binary constraints it can not learn is x != c, for some constant c
which lies between (exclusive) the lower and upperbound of x. We believe it will be very
rare that a constraint model intentionally excludes one individual value, without that value
being specified as the “input data” (more on this later). Hence, it is not part of our bias.

The bias also does not include n-ary global constraints such as alldifferent() or
increasing(), however, these have decompositions into binary constraints, meaning that
we can learn the decomposed versions. In Subsection 3.3 we will see how to group these
decomposed constraints into generalized constraints that recreate such global constraints.

Also currently not included are tertiary constraints, such as x + y = z or, equivalently,
bounds on x + y - z for arbitrary triples. We leave it open whether these constructs are
commonly used, and how to best manage the large number of candidates.

This simple grammar already allowed us to learn a varied set of constraints. However, for
more complicated problems, the grammar can trivially be extended with additional unary
(e.g., X[i]*X[i], mod(X[i], 2)), binary or n-ary operators. This increased expressiveness
would, however, incur an additional computational cost during learning.

Learning algorithm

Our learning algorithm learns from a set of positive examples T , i.e., given true solutions. For
the propositional learner, which learns individual constraints on specific subsets of variables,
we expect all examples to have the same size and hence the same number of decision variables.
Every positive example consists of a set of tensors which contain assignments to a given set of
decision variables. For the sake of exposition we limit our discussion in this paper to at most
two dimensional tensors (lists and matrices) and use lists for illustration whenever possible.

▶ Example 2. Consider the problem of graph coloring: Given a list of nodes, assign a color
to every node such that nodes that share an edge are assigned different colors. This problem
can be encoded using a list of n integer decision variables X – one per node – whose values
corresponds to colors. Positive examples would be assignments to X that satisfy the graph
coloring constraints. For an instance with 5 nodes and edges 1−2, 1−3, 2−4, 3−5, examples
could be assignments t1 = [1, 2, 3, 1, 1] and t2 [1, 2, 2, 1, 1].

To turn an expression into a constraint, COUNT-CP first generates all expressions in
its grammar and computes their result for different decision variables. Unary expressions
are simply applied to every single decision variable X[i]. Binary expressions are applied to
every possible pair of decision variables (X[i], X[j]). In general, for n-ary expressions,
all tuples of n variables are generated. We use lexicographical ordering to ensure pairs are
not enumerated multiple times to avoid redundant constraints. For asymmetric expressions
this optimization cannot be used as the position of variables are important. However,
substraction is a special case because it holds that lb <= a - b <= ub can be rewritten as
-ub <= b - a <= -lb which simply results in different bounds being learned.

Aggregates are applied to logical groups of variables, such as individual rows and columns of
matrices or user provided groupings (see partitions in Subsection 3.3). For every expression e

and set of variables V , COUNT-CP then computes the minimum and maximum result
across all training examples. We represent these local lower- and upper-bounds as tuples
⟨e, V, lb, ub⟩, where – denoting the values of variables V in example t as V t:

lb = min{e(V t) | t ∈ T} ub = max{e(V t) | t ∈ T} (1)
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It follows that, by design, the constraints learned by COUNT-CP are always satisfied by
all training examples. In a sense, our approach learns the convex hull of all mathematical
expressions that can be expressed by the grammar.

▶ Example 3. Let us apply this approach to the graph coloring example. For the binary
expression abs(X[i] - X[j]), COUNT-CP would compute the result of the expression for
every pair in every example and then compute the bounds for every pair across the examples:

Pair t1 t2 lb ub Pair t1 t2 lb ub
X[1], X[2] 1 1 1 1 X[2], X[4] 1 1 1 1
X[1], X[3] 2 1 1 2 X[2], X[5] 1 1 1 1
X[1], X[4] 0 0 0 0 X[3], X[4] 2 1 1 2
X[1], X[5] 0 0 0 0 X[3], X[5] 2 1 1 2
X[2], X[3] 1 0 0 1 X[4], X[5] 0 0 0 0

For all pairs of nodes with an edge between them, COUNT-CP will learn a constraint
abs(X[i] - X[j]) >= 1, i.e., the nodes must have different colors.

3.3 Learning first-order constraints
Until now we have focused on learning propositional constraints for individual instances
of a problem type. These local constraints can capture constraints over specific subsets of
variables, however, these constraints cannot be used to find solutions for instances of different
sizes (and hence different numbers of variables) and are prone to overfitting the training
examples. Our goal is to address these shortcomings by learning first-order constraints that
are independent of the instance size. That is, constraints of the form foreach V in ...:
lb <= expr(V) <= ub This will allow us to learn constraints from, e.g., a 4 × 4 Sudoku and
use these constraints to solve a 9 × 9 Sudoku. Additionally, we can find constraints, e.g., that
the number of working days of nurses is at most 5, by generalizing across different nurses in
a single example, even if some nurses always worked fewer days in the training examples.

Grouping constraints

The propositional constraint learning approach can learn constraints such as alldifferent
by learning individual constraints abs(X[i] - X[j]) >= 1 between each pair of decision
variables. However, these local pairwise constraints are hardcoded for individual pairs of
variables, and will not generalize to instances of different sizes that, for example, have more
or less decision variables.

To overcome this limitation and learn constraints that are independent of the problem
size, we find index groups, groups of decision variables or pairs of variables, that share a
constraint. The concept is akin to the concept of generator expressions in ModelSeeker [2].

In this setting, for example, alldifferent can be encoded as:
foreach pairs (x[i], x[j]) in X:

abs(x[i] - x[j]) >= 1

For a given expression e, e.g., absolute difference, and the set of learned local constraints C

COUNT-CP uses a sequence grammar to generate sequences, i.e., sets V of decision variables
to group over. For example, the sequence all pairs generates all pairs of decision variables.
Next, COUNT-CP aggregates all the lower- and upper-bounds that had been found for local
constraints to obtain a grouped or first order constraint ⟨e, V, lb, ub⟩, where:
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lb = min{l | V ∈ V ∧ ⟨e, V, l, u⟩ ∈ C} (2)
ub = max{u | V ∈ V ∧ ⟨e, V, l, u⟩ ∈ C} (3)

Our COUNT-CP implementation includes the following sequences: all) all individual
unary variables; all pairs) all pairs of variables; and full) a singleton set with all variables.
These sequences are used for unary, binary and aggregate expressions, respectively. The
implementation can easily be extended with additional sequences, such as, variables with
even indices, sequential pairs of variables, etc.

Partitioning groups

An alldifferent constraint will not usually be applied to all possible variables. A common
pattern, instead, is that the variables are partitioned into groups with an alldifferent over
each group. This pattern is used both by COUNT-OR, as well as the constraint learning
system ModelSeeker [2]. For example, consider the example of Sudoku where the decision
variables are arranged in a matrix. In this case the variables can be partitioned into rows,
columns or blocks and within each partition the variables will be alldifferent.

COUNT-CP follows this pattern, too, and first considers different ways to partition the
decision variables before searching for sequences and corresponding bounds within each
partition. By default, COUNT-CP considers arbitrary slices of tensors as partitions. In
the case of matrices this would be rows, columns as well as the entire matrix. Additionally,
COUNT-CP allows users to provide custom partitions. Custom partitions are a powerful
way for users to interact with the system and provide high-level background knowledge, such
as blocks for Sudoku or edges of a graph coloring problem.

For an expression e, a partition P and a sequence s, COUNT-CP iterates over all
partitions p ∈ P and generates sets of indices by applying the sequence to obtain sets of
indices Vp = s(p). Using the tuples ⟨e, V, lb, ub⟩ found in the grouping step, it aggregates
the bounds across partitions to obtain tuples ⟨e, P, s, lb, ub⟩, where:

lb = min{l | p ∈ P ∧ ⟨e, s(p), l, u⟩ ∈ C} (4)
ub = max{u | p ∈ P ∧ ⟨e, s(p), l, u⟩ ∈ C} (5)

The combination of partitions, sequences and bounded expressions allow us to learn com-
plicated sets of first-order constraints, e.g., that the variables in columns are alldifferent
or that each of the sums over rows never exceed an upper bound.

▶ Example 4. Building on the graph coloring problem introduced above, a user can provide
a custom partition Pedges for each instance that corresponds to the edge E of the graph used
in an instance: Pedges = {{X[i], X[j]} | (X[i], X[j]) ∈ E}.

foreach group in P_edges:
foreach (X[i], X[j]) in pairs(group):

abs(X[i] - X[j]) >= 1

3.4 Symbolic expressions for bounds
So far, we talked about grouping constraints using partitions and sequence generators. In
some cases, e.g., the column-wise all different, this grouping step is enough to learn first-order
constraints that can be applied to instances of any size. However, in some cases the lower-
and upper-bounds depend on the particular instance.



M. Kumar, S. Kolb, and T. Guns 29:9

▶ Example 5. Reconsider the nurse scheduling example. When learning across schedules
from different hospitals, the minimal staffing requirement, i.e., how many nurses have to work
each day might differ and are an instance (hospital) dependent constant. Simply learning
the smallest minimal staffing requirement across all hospitals will produce poor results.

To address this issue, COUNT-CP attempts to express bounds using symbolic expressions.
These symbolic expressions can use computed features, e.g., the number of rows and columns,
or custom features that the user provides for every instance, e.g., the minimal staffing
requirements for hospitals. To keep the discussion clear, we focus on finding a symbolic
expression for the upper-bound of a single first-order constraint ⟨e, P, s, lbi, ubi⟩ across
instances i. The steps are repeated for each constraint and are analogous for lower-bounds.

COUNT-CP aims to find a simple, univariate symbolic expression of the form f +b, where
f is a computed feature, a custom feature or 0, and b is a fixed offset. Given m candidate
features fj the goal is to find the feature and offset that minimize the error across all instances.
By denoting the value of feature fj in instance i as f i

j and using a binary indicator variable αj

to select a feature, we can express the error Ei of a single instance as:

Ei =
m∑

j=1
αjf i

j + b − ubi (6)

Finding the best symbolic expression now corresponds to finding the assignment to the
indicator variables αj and offset b that minimizes the overall error: sum(|Ei|). COUNT-CP
imposes an additional constraint that the symbolic bound must be an upper bound of the
learned bounds. In other words, Ei cannot be negative. This ensures that learned constraints
will be satisfied by every training example. We can now write the optimization problem as:

min
αj

∑
i

Ei s.t.
∑

j

αj = 1 ∧ αj ∈ {0, 1} ∧ ∀i : Ei ≥ 0 (7)

In practice, this problem can be solved easily by computing the optimal offset bj and
resulting error Eij for each feature fj and picking the index j∗ with the smallest error:

bj = max{ubi − f i
j | i} (8)

Eij = f i
j + bj − ubi (9)

j∗ = argminjEij (10)

The resulting expression will then be: fj∗ + bj∗ . Since COUNT-CP also includes the
constant 0 as a feature, it will still return a numeric bound for expressions that do not depend
on a symbolic feature. In fact, in these cases the fitted expression will simply be maxi ubi,
the aggregation operation we have already applied for aggregating bounds across examples,
sequences and partitions.

▶ Example 6. For the nurse scheduling example, given a custom feature minimal-staffing-
requirement (msr), COUNT-CP can now learn that the sum of every column (=nurses working
on a day) is lower bounded by the msr leading to foreach column: sum(column) >= msr.

This approach can be applied on any of the lb or ub of the tuples ⟨e, ·, lb, ub⟩ found.
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3.5 Filtering constraints

Filtering out useless constraints

By computing bounds over expressions, COUNT-CP ensures that learned constraints are
always satisfied by training examples. However, by computing bounds over every expression,
partition and sequence, COUNT-CP will always find valid lower- and upper-bounds. This
can cause COUNT-CP to return many constraints which are true by default or trivially
entailed by another constraint.

First, let us have a look at trivial constraints. As an example of a constraint that is
true by default, consider x[i] + x[j] <= c, where c is the sum of the maximal values
of the domains of variables x[i] and x[j]. COUNT-CP filters out trivial constraints by
detecting them during the propositional learning step. Whenever COUNT-CP learns a local
constraint ⟨e, V, lb, ub⟩, it also computes the minimal and maximal values of the expression e

for the variables V and their domains: l = min e(V ), u = max e(V ). If lb = l (or ub = b)
the bound is marked as trivial and the corresponding constraint, as well as any first-order
constraint that includes that bound, is removed.

Second, let us consider trivial entailment. Consider two constraints: 1) for each
column, the absolute difference of every pair of variables in the column in at least 1
(⟨abs, columns, all pairs, 1, _⟩); and 2) for the entire matrix, the absolute difference of
every pair of variables in the matrix in at least 1 (⟨abs, all, all pairs, 1, _⟩). Because the
pairs of variables in the first constraint is a subset of the pairs of variables in the second
constraint, the first constraint is entailed by the second one, unless it has a stricter bound.

Consider two first-order constraints c1 = ⟨e, P1, s1, l, u⟩ and c2 = ⟨e, P2, s2, l, u⟩ with
shared bounds (in practice entailment is computed for upper and lower bounds separately).
If both constraints share the same partition P = P1 = P2 but one of the sequences is a
subset of the other sequence: ∀p ∈ P : s1(p) ⊂ s2(p), then c1 is entailed by c2. Since
the sequence grammar is fixed, entailment between sequences can easily be computed in
an offline step before learning. More generally, c1 is entailed by c2 if the union of sets of
indices from c1 is a subset of the union of sets of indices from c2 (as in the example above):⋃

p∈P1
s1(p) ⊂

⋃
p∈P2

s2(p). Because we allow users to provide custom partitions, the more
general entailment cannot be fully pre-computed. COUNT-CP uses these entailment checks
to filter out entailed constraints.

Because first-order constraints are made up of many local constraints, filtering out first-
order constraints can drastically reduce the number of local constraints. This decreases the
time it takes to solve a learned model and find new solutions, without affecting the quality
of the model.

Filtering out overly restrictive constraints

COUNT-CP learns constraints that are satisfied by all training examples. However, there
is a risk that the learned constraints exclude valid unseen solutions. Ideally, unconstrained
expressions are detected by the trivial constraint detection step. However, given few training
instances, COUNT-CP might find spurious constraints and produce bounds for unconstrained
expressions. This may lead to the incorrect rejection of valid solutions.

Unfortunately, this problem is much more pertinent when learning constraints across
instances and extrapolating to unseen instances. An incorrect, loose bound for an uncon-
strained expression might reject a few unseen solutions of the same size, however, it may reject
large amounts of solutions for larger, unseen instances. COUNT-CP attempts to alleviate
this issue by monitoring the errors Ei computed during the symbolic bound computation. If
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Table 1 List of problems used in the experiments along with the background knowledge provided
as the user input to COUNT-CP.

Problem User Input
Custom partitions Semantic constants

Sudoku Blocks of variables –
Magic Square – –
N-Queens Diagonals –
Graph Coloring Edges of the graph –
Nurse Rostering – Staffing requirements

the errors exceed a given threshold, COUNT-CP opts to reject the bound and produce no
constraint instead.

In theory, this type of filtering can occur at every step where different bounds are
aggregated – over training examples, over sequences, across partitions – however, since
bounds naturally vary, a lot of training data is required to avoid rejecting valid bounds.

4 Experiments

In this section, we empirically answer the following research questions:
Q1 How well does COUNT-CP perform on instances used during training?
Q2 Do models learned by COUNT-CP generalize to unseen instances?
Q3 How does the performance change with the size of the training set?
Q4 How fast is COUNT-CP and how does the run-time scale with the number of training

examples?
Q5 How effective is the filtering step in COUNT-CP?

To answer these questions, we use COUNT-CP to learn models for a set of benchmark
problems and evaluate its performance according to different metrics. The code is available
online1 and uses the CPMpy modeling library [9]. The benchmark problems (see Table 1)
consist of problems selected from CSPLib2, which is a library of test problems for constraint
solvers, and an adapted nurse scheduling problem used to evaluate COUNT-OR [11]. The
language bias used in COUNT-CP is not expressive enough to model all the CSBLib problems,
therefore, we selected problems that COUNT-CP should be able to learn successfully. We
hope these experiments will showcase the capabilities of our approach and the viability of
our architecture across different problem domains. The language bias of our approach can
be extended to cover more complicated constraints by adding building blocks to the various
grammars at the cost of increasing the run-time. We leave the exercise of crafting biases to
cover larger benchmarks to future work.

Performance measures

The performance of the learned models are measured in terms of Precision and Recall.
Precision tells us what percentage of the learned feasible region is actually feasible in the
target model, while recall tells us what percentage of the target feasible region is captured
by the learned model. Ideally, having high precision is more desirable, as it ensures that the
solutions generated using learned model have higher chances of being feasible, while high
recall means we can generate many feasible solutions.

1 https://github.com/ML-KULeuven/COUNT-CP
2 https://www.csplib.org/
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Table 2 Performance of COUNT-CP across different problems and different training sizes. The
results are shown only for training instances.

Training Size 1 5 10
Precision Recall Precision Recall Precision Recall

Sudoku 100% 100% 100% 100% 100% 100%
Magic Square 100% 100% 100% 100% 100% 100%
N-Queens 100% 100% 100% 100% 100% 100%
Graph Coloring 100% 57.5% 100% 100% 100% 100%
Nurse Rostering 100% 15.5% 100% 100% 100% 100%

Calculating these performance measures is not trivial. We sample 100 solutions from the
learned model and compute how many satisfy the target model – this gives us precision. The
recall is computed by instead sampling 100 solutions from the target model and computing
how many satisfy the learned model. Sampling uniformly from the feasible region of a
model is extremely hard [20], however, the CPMPy constraint modeling framework3 allows
us to instruct the constraint solver to find solutions close to a given starting point. By
generating each of the 100 solutions using different random starting points, we try to obtain
a representative sample, which provides better estimates of the true precision and recall.

Setup

For each problem, we include two different training instances to learn from and another
unseen test instance to evaluate the performance on unseen instances. Problems instances
are instantiations of problems to a specific size or setting. For example, for the Sudoku
problem, the training instances are of size 4 × 4 and 9 × 9, while the test instance is of size
16 × 16. For nurse rostering, different instances correspond to different hospitals, which have
different staffing requirements and numbers of nurses.

For every problem instance, e.g., a 9 × 9 Sudoku, we use a set of training examples –
solutions of the problem instance – to learn from. Specifically, we learn from 1, 5 or 10
examples per instance. The performance is then evaluated using the sampling procedure
described above.

Q1. How well does COUNT-CP perform on instances used during training?

To answer Q1, we report the precision and recall on the training instances (see Table 2).
Using just a single training example per instance, COUNT-CP already learns models that
have 100% precision. For two of the problems, a single example is not enough to obtain 100%
recall. However, when given 5 training examples, COUNT-CP achieves 100% recall for all
benchmark problems.

Q2. Do models learned by COUNT-CP generalize to unseen instances?

By measuring the precision and recall of models learned by COUNT-CP for unseen test
instances (see Table 3), we can observe that the performance is similar to the performance seen
on training instances: Learning from just one example per training instance, our approach
obtains 100% precision – even for unseen instances – and given 5 examples, COUNT-CP
achieves 100% recall, as well.

3 https://github.com/CPMpy/cpmpy

https://github.com/CPMpy/cpmpy
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Table 3 Performance of COUNT-CP across different problems and different training sizes. The
results are shown only for test instances.

Training Size 1 5 10
Precision Recall Precision Recall Precision Recall

Sudoku 100% 100% 100% 100% 100% 100%
Magic Square 100% 100% 100% 100% 100% 100%
N-Queens 100% 100% 100% 100% 100% 100%
Graph Coloring 100% 61% 100% 100% 100% 100%
Nurse Rostering 100% 18% 100% 100% 100% 100%

In this paper, we argued for the need to introduce symbolic bounds in constraints in order
for them to be able to generalize to unseen instances. We evaluate this claim qualitatively
by comparing the scores obtained by COUNT-CP on the Nurse Rostering problem with a
modified version that simply keeps numeric bounds. As expected, we see that the learned
model cannot generalize well to unseen instances with different staffing requirements (see
Table 4).

Table 4 Comparison of COUNT-CP against a naive version which learns numerical bounds
instead of symbolic expressions.

Training Size 1 5 10
Precision Recall Precision Recall Precision Recall

COUNT-CP 100% 18% 100% 100% 100% 100%
Naive version 0% 100% 0% 100% 0% 100%

Q3. How does the performance change with the size of the training set?

The change in performance across different training sizes is shown in Table 2 and Table 3.
When we use more training examples, COUNT-CP learns less tight bounds, which in turn
would lead to improved recall, and that is exactly what we observe in the results as well. In
most cases we learn perfect model with just one example, and in cases where this is not the
case (last two rows in both tables), the performance improves as the size of the training set
increases.

Table 5 COUNT-CP learns all problems in less than a minute except nurse rostering where it
takes close to 5 minutes.

Problem Time Taken (in seconds)
Sudoku 2.5
Magic Square 58.3
N-Queens 8.5
Graph Coloring 22.6
Nurse Rostering 328.3

CP 2022
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Figure 1 The learning time of COUNT-CP remains consistent when increasing the number of
training examples.
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Figure 2 Filtering step in COUNT-CP leads to more than 96% reduction in the total number of
learned constraints.

Q4. How fast is COUNT-CP and how does the run-time scale with the number of
training examples?

COUNT-CP learns most problems in a less than a minute, except for the Nurse Rostering
problem, for which it requires close to 5 minutes (see Table 5). Considering the time taken
by experts to model a problem and the fact that once learnt, these models can be used to
solve problems of different sizes, we can characterize our learning time as lightning fast in
comparison. The run-time depends mainly on the number of decision variables and since
COUNT-CP enumerates all pairs of variables, the run-time increases quadratically with the
number of decision variables. Here, again, the ability to learn models from small instances
and apply them to much larger instances makes COUNT-CP useful in practice.

COUNT-CP scales linearly with the number of training examples, however, by evaluating
candidate expressions efficiently using vectorized operations, the impact of the number of
training instances is negligible in most cases (see Figure 1). This, again, is good news, as it
allows the user to provide large number of training examples to learn more accurate models,
while avoiding long learning times.

Q5. How effective is the filtering step in COUNT-CP?

In Subsection 3.5, we discussed the importance of filtering out useless and overly restrictive
constraints. Unnecessary constraints make the learned models less interpretable and slower
to solve. Filtering out these constraints, however, has a cost: It significantly increases the
learning time by adding overhead for every single local constraint learned.

To answer Q5 and evaluate the effectiveness of the filtering step, we compare the total
number of possible constraints produced by COUNT-CP with the constraints included
in the learned model after the filtering step. Our experiments show that COUNT-CP is
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able to drastically reduce the number of constraints it outputs (see Figure 2). On average,
COUNT-CP filters out 96.7% of the constraints, significantly improving the interpretability
and solving time of learned models.

5 Conclusion

In this paper, we presented the novel constraint learner COUNT-CP, which uses simple
grammars and a generate-and-aggregate approach to generate mathematical expressions,
compute their bounds across training examples and group the learned constraints to obtain
first-order constraints that can generalize to unseen instances. A symbolic expression fitting
step is used to obtain symbolic bounds for expressions, making them instance-independent.
Additionally, COUNT-CP uses an effective filtering step to remove useless and spurious
constraints. We empirically evaluated our approach on a set of suitable benchmark problems.
This evaluation showed that, indeed, COUNT-CP is able to learn compact, high quality
models quickly. The learned models achieve high precision and recall, even when only trained
on a handful of examples. Because the learned models contain first-order constraints and
support bound expressions, these results also hold true for unseen instances. Finally, our
simple interaction protocol allows users to provide relevant background knowledge without
requiring any specialized knowledge about the underlying constraint language. We believe
that the COUNT-CP architecture is a promising approach to constraint learning that can be
further tuned to learn a wide range of constraint problems.
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