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Abstract
In a recent line of work, Butti and Dalmau have shown that a fixed-template Constraint Satisfaction
Problem is solvable by a certain natural linear programming relaxation (equivalent to the basic
linear programming relaxation) if and only if it is solvable on a certain distributed network, and
this happens if and only if its set of Yes instances is closed under Weisfeiler-Leman equivalence. We
generalize this result to the much broader framework of fixed-template Promise Valued Constraint
Satisfaction Problems. Moreover, we show that two commonly used linear programming relaxations
are no longer equivalent in this broader framework.
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1 Introduction

The Constraint Satisfaction Problem (CSP) is the problem of deciding whether there is an
assignment of values from some domain A to a given set of variables, subject to constraints
on the combinations of values which can be assigned simultaneously to certain specified
subsets of variables; the allowed combinations of values are specified by relations on A.

Many important computational problems, including various versions of logical satisfiability,
graph coloring, and systems of equations, can be obtained by fixing a finite domain and
restricting the set of allowed relations [7, 13]. The restrictions can be specified by fixing a
relational structure A, called a template. The CSP over A is then the CSP restricted to
instances that use only relations in A. For example, if A consists of a single binary relation
RA ⊆ A2, an instance of the CSP over A is, e.g.,

R(x1, x2), R(x3, x1), R(x2, x4), R(x3, x3). (1)

The goal is to decide whether there exists an assignment h : {x1, x2, . . . } → A that satisfies
all the constraints, that is, (h(x1), h(x2)) ∈ RA, (h(x3), h(x1)) ∈ RA, etc. (see Section 2 for
formal definitions). For instance, if RA is the disequality relation ̸= on A, then the CSP
over A is essentially the Graph |A|-Coloring Problem.
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4:2 Weisfeiler-Leman Invariant Promise Valued CSPs

This paper deals with CSPs over fixed templates with finite domains. In particular, the
phrase “a CSP” in the following discussion means the CSP over some template.

The (finite-domain, fixed-template) CSP has been a very active research area in the last 20
years, fueled by the tight connection between the complexity of a CSP and the polymorphisms
of its template – these are multivariate functions on the domain that preserve all relations
in the template (see [2]). The highlight in the area is the dichotomy theorem [3, 27]: every
CSP is either solvable in polynomial time or NP-complete (assuming P is not NP); moreover,
the polynomial cases are characterized by means of polymorphisms. Other major results
include characterizations of applicability of fundamental algorithms, e.g., certain convex
relaxations (see [11, 24]).

A natural linear programming relaxation, which is central in this paper, can be obtained
by formulating a CSP instance as a feasibility problem for a zero-one integer program
and then relaxing the requirement that each variable p is in {0, 1} to p ∈ [0, 1]. In fact,
there are two widely used relaxations of this form, the Basic Linear Programming (BLP)
relaxation (see [14]) and a slightly stronger relaxation, which we denote by SA1 to highlight
its connection to the Sherali-Adams hierarchy [21] for CSPs (see [5]). The difference between
the two relaxations is only in how they address repeated variables in a constraint. It turns
out that both relaxations (correctly) decide the same CSPs [5] in the sense that, for any
template A, all instances of the CSP over A are decided by the SA1 relaxation if and only
if they are decided by BLP.1 Moreover, this happens if and only if the template admits
symmetric polymorphisms of all arities [16] (see also [1]).

The class of CSPs decided by BLP (SA1) has reappeared recently in [4], where it was
shown that it coincides with the class of CSPs which can be solved on a distributed network.
The distributed set-up here is based on the DCSP framework of Yooko et al. [26]; informally,
each constraint and each variable is controlled by an agent; the communication is only
between a constraint and a variable that participates in it; and the agents are anonymous,
they communicate in synchronous rounds, and they all run the same deterministic algorithm.

The papers [4, 5] contribute another interesting characterization, by means of an equival-
ence akin to the 1-dimensional Weisfeiler-Leman graph isomorphism test [17]. For two CSP
instances I, J we write I ≡1 J if, very roughly, they cannot be distinguished by considering
their local structure around variables (number and type of constraints they participate in,
number and type of constraints their adjacent variables participate in, and so on). Now the
equivalent conditions discussed above are also equivalent to the CSP being invariant under
≡1. Altogether, we have the following theorem, which witnesses the significance of this class
of CSPs.

▶ Theorem 1 ([4, 5, 16]). The following are equivalent for the CSP over a finite structure A.
(i) There exists a distributed algorithm that solves CSP(A). Moreover, in such a case,

there is a polynomial-time distributed algorithm that solves CSP(A).
(ii) If two instances of CSP(A) are ≡1-equivalent, then they are either both Yes instances

or both No instances.
(iii) SA1 decides CSP(A).
(iv) BLP decides CSP(A).
(v) A has symmetric polymorphisms of every arity.

Our main result generalizes Theorem 1 to a much broader setting, which we introduce next.

1 We remark that in the literature the difference between the two relaxations is sometimes neglected,
which occasionally leads to unjustified or slightly incorrect claims.
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1.1 Promise Valued CSP

The framework of Valued CSP (VCSP) generalizes CSP as follows. Instead of relations we
consider valued relations (also known as cost functions) – mappings that assign to tuples
rational or positive infinite costs. Returning to the example above, RA is now a mapping
from A2 to Q ∪ {∞} instead of a subset of A2. The objective of the search version of the
VCSP over A is to minimize a sum, e.g.,

R(x1, x2) + R(x3, x1) + R(x2, x4) + R(x3, x3), (2)

that is, to find an assignment h such that RA(h(x1), h(x2)) + RA(h(x3), h(x1)) + . . . is
minimal. In the decision version, which we consider in this paper, the instance is such a sum
together with a rational number τ and we aim to decide whether the minimum is at most τ .

Notice that (the decision version of) VCSP indeed generalizes CSP since relations can
be modelled by {0, ∞}-valued relations. On the other hand, MaxCSP – where the aim
is to maximize the number of satisfied constraints given a CSP instance – is exactly the
VCSP over {0, 1}-valued relational structures. The VCSP framework also includes many
problems of a mixed optimization and combinatorial nature, such as the Vertex Cover
Problem (see [14]). The VCSP area is also well developed; for instance, the approach via an
appropriate generalization of polymorphisms still works (see [14]), a dichotomy theorem is
available [10], and the equivalence of (iv) and (v) in Theorem 1 can be lifted as well [11].

The more recent framework of Promise CSP (PCSP) generalizes CSP in a different
direction. Here the relations are “crisp” but the template is a pair of structures (A, B) of the
same signature. Intuitively, RA is a “strict” form of R and RB is its “relaxed” form. The
PCSP over (A, B) is the problem of distinguishing instances solvable in A from those which
are not solvable in B. Note that the problem only makes sense if every instance solvable in
A is also solvable in B (this is equivalent to A being homomorphic to B). A well-known
family of PCSP examples is the problem of distinguishing k-colorable graphs from those that
are not even l-colorable for fixed l ≥ k; see [1] for further examples. A complete complexity
classification for PCSPs seems currently far away. Nevertheless, the algebraic approach via
polymorphism works, and the equivalence of (iv) and (v) in Theorem 1 also remains valid [1].

Finally, the Promise Valued CSP (PVCSP) combines both generalizations. A template is
a pair of valued structures of the same signature and the problem is, given a sum such as (2)
and a rational number τ , to distinguish sums whose minimum computed in A is at most τ

from those whose minimum in B is greater than τ . Again, the problem only makes sense if
the template satisfies certain properties. An exact characterization of when this happens,
Proposition 5, is one of the minor contributions of this paper.

We believe that the PVCSP is an extremely promising research direction for two reasons.
First, it is very broad: it includes, for example, all constant factor approximation problems
for MaxCSP (both the version where the aim is to approximately maximize the number
of satisfied constraints, see Example 2; and the version where the aim is to approximately
minimize the number of unsatisfied constraints). Second, the approach via generalized
polymorphisms, so successful in the above special cases, is still available [9] (the work is not
yet published). The only published work on PVCSP that we are aware of is [25] where the
authors, among other results, generalize (iv) ⇐⇒ (v) in Theorem 1 to the PVCSP setting
and even consider the more general infinite-domain case.

CP 2022
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1.2 Contributions
Our main result, Theorem 8, lifts the equivalence of (i), (ii), and (iii) in Theorem 1 to the
PVCSP framework.

The generalization of implication (i) ⇒ (ii) for connected input valued structures follows
easily from the nature of the message passing systems we deal with. General, possibly
disconnected input valued structures require an additional argument.2 For the implication
(ii) ⇒ (iii) we employ the approach of [5] and, in a sense, “decompose” a solution to the
SA1 relaxation of a PVCSP into three components. One component is a kind of morphism,
called here a dual fractional homomorphism, which appeared before in the context of VCSPs
with left-hand side (i.e., structural) restrictions [6].3 The decomposition theorem, stated as
Theorem 7, might be of independent interest. We also point out that our construction for this
decomposition is much simpler than the construction used in [5] for the less general setting.
The distributed algorithm that we design to prove (iii) ⇒ (i) is completely different from the
one used for the CSP in [4]. The original algorithm relied on a deep theorem from the algebraic
CSP theory [12] about the strength of a certain local propagation algorithm and designed
a distributed version of that algorithm. This approach is no longer applicable, even in the
(non-valued) PCSP setting. However, we show that a substantially more straightforward and
simple idea of directly computing an adjusted form of SA1 works even in the most general
PVCSP framework.

Surprisingly, the implication (iii) ⇒ (iv) is no longer true for PVCSPs: in Example 9 we
present a PVCSP template that is decided by SA1 but not decided by BLP. The converse
implication remains valid since SA1 is a stronger relaxation than BLP.

Recall that the equivalence of (iv) and (v) still holds for PVCSPs [25]; we give a
streamlined presentation of the proof using Proposition 5. We also mention, in Example 4,
some (P)(V)CSPs that satisfy these conditions, and thus also satisfy the equivalent statements
in the main result.

2 Preliminaries

For a tuple a ∈ Ak, let a[i] denote the ith entry of a. We say that a has a repetition if
there exist i ̸= j ∈ [k] such that a[i] = a[j]. We use double curly brackets {{. . . }} to denote
multisets. For a non-negative integer n, n · {{. . . }} stands for the multiset obtained by
multiplying the multiplicity of each element in the original multiset by n. Slightly abusing
the notation, the set and the multiset of entries of a tuple a is denoted by {a} and {{a}},
respectively.

We denote by Q≥0 the set of non-negative rational numbers and by Q∞ the set Q∪ {∞},
where ∞ is an additional symbol interpreted as a positive infinity. We set 0 · ∞ = 0 and
c · ∞ = ∞ for c > 0.

2.1 CSP and PCSP
We present the CSP and PCSP as homomorphism problems. The difference from the
presentation in the introduction is merely formal.

2 This subtle issue was not properly handled in [4]. The present paper thus also fills in a gap in the proof
of Theorem 1.

3 [6] uses the terminology “inverse fractional homomorphism”, however we feel that “dual” might better
fit the meaning of this concept.
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A signature σ is a finite collection of relation symbols, each with an associated arity. We
shall use ar(R) to denote the arity of a relation symbol R. Given a set A and a positive
integer k, a k-ary relation on A is a subset of Ak. A (relational) structure A in the signature
σ, or simply a σ-structure, consists of a finite set A called the universe of A, and a relation
RA on A of arity ar(R) for each R ∈ σ. Notice that the universe of every structure in this
paper is assumed to be finite. Two structures are similar if they have the same signature.

Let I, A be σ-structures. A homomorphism from I to A is a map h : I → A such that
for every R ∈ σ and every tuple v ∈ RI it holds that h(v) ∈ RA, where h is applied to v
component-wise. If there exists a homomorphism from I to A we say that I is homomorphic
to A.

For a relational σ-structure A, the CSP over A, denoted CSP(A), is the problem of
deciding whether an input σ-structure I is homomorphic to A. The structure A is also
referred to as a template in this context. The translation of the presented definition of
CSP(A) to the formalism used in the introduction is given by defining the set of constraints
CI as the set of formal expressions of the form R(v) where R ∈ σ and v ∈ RI.

Given two σ-structures A and B, the Promise CSP over (A, B), denoted PCSP(A, B),
is defined as follows: given a σ-structure I, output Yes if I is homomorphic to A, and output
No if I is not homomorphic to B.4 This problem makes sense iff the sets of Yes and No
instances are disjoint. It is easy to see that this happens exactly when A is homomorphic to
B. Such pairs of structures (A, B) are called PCSP templates.

2.2 PVCSP
We formalize PVCSPs in a similar way to PCSPs. The difference from the presentation in
the introduction is slightly more substantial, as we shall briefly discuss later.

A k-ary valued relation on A is a function R : Ak → Q∞. A valued σ-structure A consists
of a finite universe A, together with a valued relation RA of arity ar(R) on A for each R ∈ σ.
Valued structures are sometimes referred to as general-valued in the literature [11, 24] to
emphasize that relations in A may take non-finite values. A σ-structure A is said to be
non-negative finite-valued if for every R ∈ σ, the range of RA is contained in Q≥0.

Let I, A be valued σ-structures, where I is non-negative finite-valued. The value of a
map h : I → A for (I, A), and the optimum value for (I, A) are given by

Val(I, A, h) =
∑
R∈σ

∑
v∈Iar(R)

RI(v)RA(h(v)), Opt(I, A) = min
h:I→A

Val(I, A, h).

For two valued σ-structures A and B, the Promise Valued CSP over (A, B) [9, 25], denoted
PVCSP(A, B), is defined as follows: given a pair (I, τ), where I is a non-negative finite-
valued σ-structure and τ ∈ Q is a threshold, output Yes if Opt(I, A) ≤ τ , and output No if
Opt(I, B) > τ . We call (A, B) a PVCSP template if the sets of Yes and No instances are
disjoint. We show in Proposition 5 that this least restrictive meaningful requirement on a
PVCSP template coincides with the choice taken in [25].

Notice that the values of R have a different intended meaning in the template valued
structures A, B and in the input valued structure I. For the template, RA(a) and RB(b)
should be understood as the cost of a and b: we wish an assignment h to map tuples of
variables to tuples of domain elements that are as cheap as possible (and, in fact, RA or RB

4 We do not impose any requirements on the algorithm in the case that I is neither a Yes instance nor a
No instance. Alternatively, we are promised that the input is a Yes instance or a No instance.

CP 2022



4:6 Weisfeiler-Leman Invariant Promise Valued CSPs

is often referred to as a cost function). On the other hand, RI(v) is the weight of the tuple
of variables v: we need to be more concerned about heavy tuples of variables, while we may
ignore the tuples of zero weight (recall that 0 · ∞ = 0). As an example, observe that the
PCSP over a pair of structures (A′, B′) is essentially the same problem as the PVCSP over
the pair of {0, ∞}-valued structures (A, B), where tuples in the latter template are given
zero cost iff they belong to the corresponding relations in the former template; while to an
instance I′ of the PCSP corresponds a non-negative finite-valued structure I where the cost
of a tuple is zero iff the tuple does not belong to the corresponding relation in I′ (and costs of
the remaining tuples are arbitrary positive rationals), together with any threshold τ ∈ Q≥0.

For a PVCSP input valued σ-structure I we define the set of constraints CI as the set of
formal expressions of the form R(v) where R ∈ σ, v ∈ Iar(R), and RI(v) > 0; the value RI(v)
is the weight of the constraint. This almost translates the presented definition of PVCSP
to the version from the introduction: weights of constraints can be emulated by repeating
constraints in (2) (and modifying the threshold τ if necessary). However, the repetition can
cause an exponential blow up of the instance size. Nevertheless, this difference between the
two formalisms is inessential for our purposes.

We say that a valued relation RI has no repetitions if RI(v) = 0 whenever v has a
repetition. Similarly, we say that an input valued structure I has no repetitions if none of its
valued relations has a repetition.

▶ Example 2. As mentioned in the introduction, the PVCSP framework can be used to
model constant factor approximation problems for MaxCSP. More concretely, suppose that
we want to find a c-approximation for CSP(A) for some (non-valued) σ-structure A and some
c < 1. One can model this problem as PVCSP(A′, B′) where A′ = B′ = A and for all R ∈ σ

and a ∈ Aar(R), RA′(a) = −1 if a ∈ RA and RA′(a) = 0 otherwise; and RB′(a) = 1
c RA′(a).

Given an instance I of CSP(A) and a parameter 0 < β ≤ 1, we turn it into an instance
(I′, −βm) of PVCSP(A′, B′) in a natural way, where I′ is a 0-1 valued structure and m is
the number of constraints in I′. Then, Opt(I′, A′) ≤ −βm if a β-fraction of all constraints of
I can be satisfied in A, and Opt(I′, B′) > −βm if not even a cβ-fraction of the constraints
of I can be satisfied in A.

2.3 Linear programming relaxations
Given two valued σ-structures I and A where I is non-negative finite-valued, the systems
of inequalities BLP(I, A) and SA1(I, A) contain a variable pv(a) for every v ∈ I and every
a ∈ A, and a variable pR(v)(a) for every R(v) ∈ CI and every a ∈ Aar(R). BLP(I, A) is the
following linear program.

OptBLP(I, A) := min
∑

R(v)∈CI

∑
a∈Aar(R)

pR(v)(a)RI(v)RA(a)

subject to:

pR(v)(a) ≥ 0 R(v) ∈ CI, a ∈ Aar(R)∑
a∈A

pv(a) = 1 v ∈ I

pv(a) =
∑

a∈Aar(R),a[i]=a

pR(v)(a) a ∈ A, R(v) ∈ CI, i ∈ [ar(R)] s.t. v[i] = v

pR(v)(a) = 0 R(v) ∈ CI, a ∈ Aar(R) s.t. RA(a) = ∞

(⋆)

(3)

(4)

(5)

(6)
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As for the program SA1(I, A), the objective function, denoted OptSA1
(I, A), is given by

the same objective function as in BLP(I, A). The variables are subject to all the constraints
in BLP(I, A), but in addition, they are also subject to the following constraint.

pR(v)(a) = 0 R(v) ∈ CI, a ∈ Aar(R)

∃i, j ∈ [ar(R)] such that v[i] = v[j] and a[i] ̸= a[j]
(7)

Notice that in general OptBLP(I, A) ≤ OptSA1
(I, A). Moreover, in the particular case where

I has no repetitions, BLP and SA1 are the same linear program and so OptBLP(I, A) =
OptSA1

(I, A).
For a linear program L ∈ {BLP, SA1} we say that L(I, A) is feasible if there exists a

rational solution to the system L(I, A). Notice that then (⋆) makes sense since RA(a) = ∞
implies pR(v) = 0 and 0 · ∞ = 0 (formally, one should skip these summands in (⋆)). If the
linear program is infeasible, then we set OptL(I, A) = ∞.

The LP constraints (3)–(5) ensure that, for each R(v) ∈ CI, the values of pR(v)(a) form
a probability distribution on Aar(R) (which is additionally consistent with pv(a)’s). The
inner sum in (⋆) is equal to the expected “cost” of the constraint R(v) with weight RI(v)
when v is evaluated according to this distribution. From this observation it is apparent that
OptL(I, A) ≤ Opt(I, A). We say that L decides PVCSP(A, B) if, for every input structure I,
we have Opt(I, B) ≤ OptL(I, A). Note that in such a case the algorithm for PVCSP(A, B)
that answers Yes iff OptL(I, A) ≤ τ (where τ is the input threshold) is correct, so the
definition makes sense.5

2.4 Polymorphisms
An n-ary polymorphism of a pair of similar structures (A, B) is an n-ary operation f : An → B

such that for every relation symbol R in the signature of A and B, the coordinate-wise
application of f to any list of n tuples from RA results in a tuple in RB. Note that a
unary polymorphism of (A, B) is just a homomorphism from A to B. An n-ary operation
f : An → B is said to be symmetric if for every a1, . . . , an ∈ A and every permutation ρ on
[n] we have that f(a1, . . . , an) = f(aρ(1), . . . , aρ(n)).

An n-ary fractional polymorphism [25] of two valued σ-structures (A, B) is a probability
distribution ω on the set BAn := {f : An → B} such that for every R ∈ σ and every list of
n tuples a1, . . . , an ∈ Aar(R) we have that

∑
f∈BAn

ω(f)RB(f(a1, . . . , an)) ≤ 1
n

n∑
i=1

RA(ai)

where f is applied to a1, . . . , an ∈ Aar(R) component-wise.6
The support of ω is the set of functions f : An → B such that ω(f) > 0. We say that ω

is symmetric if every operation in its support if symmetric.

5 We remark that in [5], the feasibility of the program SA1(I, A) was alternatively phrased as the existence
of a “fractional homomorphism” from I to A, to stress that the linear system SA1(I, A) is a (fractional)
relaxation of homomorphism in the same way as the equivalence relation ≡1 defined below is a relaxation
of isomorphism. Nonetheless, in this paper we avoid this terminology as it clashes with the notion of
fractional homomorphism defined in Section 3 as a unary fractional polymorphism.

6 We use here a simpler concept than fractional polymorphism as defined in [25], which will be sufficient
for our purposes.

CP 2022



4:8 Weisfeiler-Leman Invariant Promise Valued CSPs

The following theorem was proved in [25]; we provide a somewhat streamlined argument
in the spirit of [1] in Section 3.

▶ Theorem 3. Let (A, B) be a promise valued template of signature σ. Then the following
are equivalent.
(iv) BLP decides PVCSP(A, B);
(v) (A, B) has symmetric fractional polymorphisms of every arity.

▶ Example 4. A CSP that can be decided by BLP is e.g. the Horn-3-Sat, where the
template has domain {true, false} and two relations defined by ¬x ∨ ¬y ∨ ¬z and ¬x ∨ ¬y ∨ z.
A well-known class of templates with BLP-decidable VCSPs are those that contain only
submodular valued relations (see [14]). Finally, the 2-approximation of the Vertex Cover
problem [14] is a PVCSP decidable by BLP. In all the mentioned examples, it is not hard to
find symmetric (fractional) polymorphisms of every arity.

2.5 Graph of an input, iterated degree, distributed model
We represent an input σ-structure I to a PVCSP as a labeled bipartite graph GI, also known
as the factor graph of I in the non-valued setting [8]. This representation allows us to define
iterated degrees of variables and constraints as well as our distributed model.

GI has one vertex for each constraint R(v) ∈ CI, labeled (R, q) where q = RI(v) (> 0),
and one vertex for each variable, with empty label. Vertex v ∈ I is adjacent to a vertex
R(v) ∈ CI if v ∈ {v}; the edge is labeled S = {i : v[i] = v}. The label of a vertex x is
denoted ℓx, the label of an edge {x, y} is denoted ℓ{x,y}.

We call I connected if GI is. Similarly, we say that I′ is a connected component of I if
GI′ is a connected component of GI.

The kth iterated degree of a vertex x, where x is a variable or a constraint, is defined
inductively by δI

0(x) = ℓx, and δI
k+1(x) = {{(ℓ{x,y}, δI

k(y)) | y is adjacent to x in GI}}. The
iterated degree of a vertex x is defined as δI(x) = (δI

0(x), δI
1(x), δI

2(x), . . .). For vertices x

and y we write x ≡1 y if they have the same iterated degrees. Note that the iterated
degrees are analogues of colors in the 1-dimensional Weisfeiler-Leman color refinement
algorithm [17] for graph isomorphism test. The iterated degree sequence of I is defined as
δ(I) = {{δI(x) | x ∈ I ∪ CI}}; for two σ-structures I, J, we write I ≡1 J if they have the same
iterated degrees sequence.7 Notice that in order to prove that I ≡1 J it is sufficient to show
that {{δI(x) | x ∈ I}} = {{δJ(x) | x ∈ J}}.

The computational model for solving PVCSP(A, B) on a distributed network is as follows.
An input valued structure I is represented as a bipartite message passing network designed as
GI: we have an agent α(x) for every vertex x ∈ I ∪CI and the communication channels exactly
correspond to edges in GI and have the same labels. Every agent in the network knows
only the template, the threshold, the number of variables (|I|), the number of constraints
(|CI|), and the labels of their controlled variable and of the adjacent channels. The agents are
anonymous, they all run the same deterministic algorithm, and the communication proceeds
in synchronous rounds. For a more detailed discussion on the distributed set-up, we refer the
reader to [4].

We say that a distributed algorithm solves an instance (I, τ) of PVCSP(A, B) if the
algorithm terminates and the terminating state of every process is Yes if (I, τ) is a Yes
instance of PVCSP(A, B), and No if (I, τ) is a No instance of PVCSP(A, B). We say

7 The degree sequence is often defined to be a list. However, when looking at iterated degree it is
common [18, 19] and more practical to use multisets instead of lists, while maintaining the terminology
sequence to highlight that we are dealing with a generalisation of the classical concept of degree sequence.
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that a distributed algorithm solves PVCSP(A, B) if it solves every connected instance of
PVCSP(A, B) (note here that it makes little sense to run a distributed algorithm on a
disconnected network).

3 Fractional homomorphisms and SA1

We start by stating the characterization of PVCSP templates in terms of fractional homo-
morphisms. The result will also be useful in the proof of Theorem 3.

A fractional homomorphism [22, 25] from A to B is a unary fractional polymorphism of
(A, B), or equivalently, a probability distribution µ over BA such that for every R ∈ σ and
every a ∈ Aar(R) we have that∑

f∈BA

µ(f)RB(f(a)) ≤ RA(a). (8)

If there exists a fractional homomorphism from A to B, we say that A is fractionally
homomorphic to B and we write A →f B.

The implication (1) ⇒ (2) in the following proposition is a well-known and easy calcula-
tion (see e.g. [22]). The converse implication appears to be new, although the proof technique
via Farkas’ Lemma [20] is standard in the VCSP area.

▶ Proposition 5. For any two valued σ-structures A and B, the following are equivalent.
1. There exists a fractional homomorphism from A to B.
2. For all non-negative finite-valued σ-structures I, Opt(I, B) ≤ Opt(I, A).

Proof. (1) ⇒ (2) Let µ be a fractional homomorphism from A to B, let g : I → A be such
that Opt(I, A) = Val(I, A, g), and let f ∈ BA be some map that minimizes Val(I, B, f ◦ g).
Then

Opt(I, B) ≤ Val(I, B, f ◦ g) ≤
∑

f ′∈BA

µ(f ′) Val(I, B, f ′ ◦ g)

=
∑
R∈σ

∑
v∈Iar(R)

RI(v)
∑

f ′∈BA

µ(f ′)RB(f ′ ◦ g(v))

≤
∑
R∈σ

∑
v∈Iar(R)

RI(v)RA(g(v)) = Val(I, A, g) = Opt(I, A).

(2) ⇒ (1). The idea for this proof is to assume that there is no fractional homomorphism
from A to B, formulate this fact as infeasibility of a system of linear inequalities, and then
use a version of Farkas’ Lemma to find I with Opt(I, B) > Opt(I, A).

The existence of a fractional homomorphism from A to B can be reformulated as the
following system of linear inequalities, where there is a rational-valued variable µf for every
f ∈ BA.

variables: µf for all f ∈ BA

constraints:
∑

f∈BA

µf RB(f(a)) ≤ RA(a) for all R ∈ σ and a ∈ Aar(R)

∑
f∈BA

µf ≥ 1

µf ≥ 0 for all f ∈ BA.

(9)
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If there is no fractional homomorphism from A to B, this system is infeasible.
We now deal with infinite coefficients. Define BA

<∞ = {f ∈ BA : ∀R ∈ σ, ∀a ∈
Aar(R), RA(a) < ∞ implies RB(f(a)) < ∞}. Now consider the new linear system ob-
tained from the above by first removing all the inequalities in (9) where RA(a) = ∞ (since
these inequalities are always satisfied), and second, by removing the variable µf for all
f ∈ BA \ BA

<∞ and changing (9) so that the sums run over BA
<∞ only (since we need to have

µf = 0 for f ∈ BA \ BA
<∞ in any feasible solution). Clearly, the system of linear inequalities

resulting from this procedure remains infeasible and does not contain infinite coefficients.
This system of linear inequalities can be rewritten in matrix form as M f ≤ a subject

to f ≥ 0, where f ∈ QBA
<∞

≥ is the vector of unknowns, and M is a real-valued matrix. By
Farkas’ Lemma, the system of inequalities MT y ≥ 0 subject to aT y < 0 and y ≥ 0 is feasible.
Explicitly, the latter system is the following.

variables: y, xR,a for every R ∈ σ and a ∈ Aar(R) with RA(a) < ∞

constraints:
∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aRB(f(a)) ≥ y for all f ∈ BA
<∞

∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aRA(a) < y

xR,a ≥ 0 for all R ∈ σ, a ∈ Aar(R)

y ≥ 0.

(10)

Eliminating y, and adding trivially satisfied constraints to (10) for all f ∈ BA \ BA
<∞, we

get that the following system is feasible.

variables: xR,a for every R ∈ σ and a ∈ Aar(R) with RA(a) < ∞

constraints:
∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aRB(f(a)) >
∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aRA(a) for all f ∈ BA

xR,a ≥ 0 for all R ∈ σ, a ∈ Aar(R)

(11)

Let xR,a for R ∈ σ, a ∈ Ar be a feasible solution to (11), and consider the structure I
with domain I = A and relations given by RI(a) = xR,a for a ∈ Aar(R) with RA(a) < ∞
and RI(a) = 0 whenever RA(a) = ∞. Notice that I is non-negative finite-valued, that the
right-hand side in the first inequality is equal to Val(I, A, id), (where id denotes the identity
function) and that the left-hand side is equal to Val(I, B, f). Therefore Opt(I, B) > Opt(I, A),
as required. ◀

Sketch of proof of Theorem 3. For an integer m ≥ 1, let LPm(A) be the structure whose
universe consists of A-multisets of size m and whose valued relations are defined by the
following formula where R ∈ σ and s1, . . . , sr are from the universe.

RLPm(A)(s1, . . . , sr) := 1
m

min
t1,...,tr∈Am

{{ti}}=si

m∑
i=1

RA(t1[i], . . . , tr[i]).

Variants of such structures have been defined in the literature both for (P)CSP [16, 1] and
for VCSP [22, 25]. These papers also explicitly or implicitly observe the following properties.
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1. OptBLP(I, A) = minm≥1 Opt(I, LPm(A)) for all non-negative finite-valued I.
2. For all m ≥ 1, LPm(A) →f B if and only if (A, B) has an m-ary symmetric fractional

polymorphism.

The proof can be now finished using Proposition 5. For (iv) ⇒ (v) suppose that (A, B)
does not have a symmetric polymorphism of some arity m. Then, there is no fractional
homomorphism from LPm(A) to B. It follows from Proposition 5 that there exists some
structure I such that Opt(I, B) > Opt(I, LPm(A)) ≥ OptBLP(I, A). Hence, BLP does
not decide PVCSP(A, B). On the other hand, for (v) ⇒ (iv), assume that (A, B) has
symmetric fractional polymorphisms of every arity. Let m ≥ 1 be such that Opt(I, LPm(A))
is minimal. We know that LPm(A) is fractionally homomorphic to B and therefore for
all finite-valued structures I, Opt(I, B) ≤ Opt(I, LPm(A)) = OptBLP(I, A). Hence, BLP
decides PVCSP(A, B). ◀

The decomposition theorem mentioned in the introduction uses a concept that is “dual”
to fractional homomorphism, as suggested by the following Proposition 6. Here we only
present the proof of the implication that is needed for the decomposition theorem. The proof
of the other implication uses techniques similar to the ones deployed in Proposition 5, and
we refer the reader to [6] for the details.

We define a dual fractional homomorphism from I to J (I →df J) to be a probability
distribution η over JI such that for every R ∈ σ and every u ∈ Jar(R) we have that

RJ(u) ≥
∑

f∈JI

η(f)
∑

v∈Iar(R)

u=f(v)

RI(v). (12)

▶ Proposition 6. For any two non-negative finite-valued σ-structures I and J, the following
are equivalent.
1. There exists a dual fractional homomorphism from I to J.
2. For all valued σ-structures A, Opt(I, A) ≤ Opt(J, A).

Proof. (1) ⇒ (2). Let η be a dual fractional homomorphism from I to J, and g : J → A be
such that Opt(J, A) = Val(J, A, g). Then

Opt(J,A) =
∑
R∈σ

∑
u∈Jar(R)

RJ(u)RA(g(u))

≥
∑
R∈σ

∑
u∈Jar(R)

∑
f∈JI

η(f)
∑

v∈Iar(R)

u=f(v)

RI(v)RA(g ◦ f(v)) =
∑

f∈JI

η(f) Val(I, A, g ◦ f),

which implies that there exists some function f ′ : I → J such that Val(I, A, g ◦ f ′) ≤
Opt(J, A), hence Opt(I, A) ≤ Opt(J, A) as required. Notice that this holds regardless of
whether A is finite-valued or general-valued. ◀

4 The decomposition theorem

In this section we state and prove the decomposition theorem. This provides a connection
between the combinatorial and the LP-based characterizations of the class of PVCSP
templates that are the subject of our main result, and thus is a fundamental step in
the proof of Theorem 8, namely the implication (ii) ⇒ (iii). We refer to [5] for a more
detailed discussion about (a weaker form of) this result.
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▶ Theorem 7. Let I, A be a pair of similar valued structures, where I is non-negative and
finite-valued. Then there exist non-negative finite-valued structures Y1, Y2 such that

1. I →df Y1,

2. Y1 ≡1 Y2, and

3. Opt(Y2, A) ≤ OptSA1
(I, A).

Proof. If SA1(I, A) is not feasible, then we can take Y1 = Y2 = I, and the statement follows
trivially, so from now on we shall assume that SA1(I, A) is feasible. Let pv(a), pR(v)(a) form
an optimal solution of SA1(I, A) and let m > 0 be an integer such that all the values mpv(a)
and mpR(v)(a) are integers. Note that these integers are non-negative by (3) and (5).

We define the universe of both valued structures Y1 and Y2 as Y1 = Y2 = [m] × I.
The valued structure Y1 is simply a “scaled disjoint union” of m copies of I: we set
RY1((k, v[1]), (k, v[2]), . . . , (k, v[ar(R)])) = 1/m · RI(v) for every k ∈ [m], v ∈ Iar(R), and
the weight of the remaining tuples is set to 0. Observe that I →df Y1 by the dual fractional
homomorphism given by the uniform distribution over fk, k ∈ [m], where fk : I → Y1 is
defined by fk(v) = (k, v) for all v ∈ I. Also notice that the iterated degree of each (k, v)
is obtained from the iterated degree of v by scaling down each constraint label (R, q) to
(R, q/m).

The structure Y2 is a “twisted” version of Y1 (the construction is a version of the twisted
product from [15]). For every v ∈ I, fix a tuple pv ∈ Am in which a ∈ A appears exactly
mpv(a) times – note that this is possible since the mpv(a) sum up to m by (4). We define
h : Y2 → A by h(k, v) = pv[k] for all k ∈ [m] and v ∈ I. The structure Y2 is constructed
so that the value of h for (Y2, A) is OptSA1

(I, A), as follows. For every R(v) ∈ CI, denote
r = ar(R), and consider an m × r matrix Q that has, for each a ∈ Ar, exactly mpR(v)(a)
rows equal to a. Note that the ith column contains a ∈ A exactly mpv[i](a) times by (5), in
other words, the multiset of elements of this columns is equal to {{pv[i]}}; in particular, Q

indeed has m rows. Moreover, if v[i] = v[j], then the columns i and j are identical by (7). It
follows that there are permutations ρ1, . . . , ρr : [m] → [m] such that

for every k ∈ [m], the kth row of Q is equal to (pv[1][ρ1(k)], pv[2][ρ2(k)], . . . , pv[r][ρr(k)]);

for every i, j ∈ [r], if v[i] = v[j] then ρi = ρj .
We set RY2((ρ1(k), v[1]), (ρ2(k), v[2]), . . . , (ρr(k), v[r])) = 1/m · RI(v) for every k ∈ [m].
After running through all R(v) ∈ CI we set the remaining weights to 0. The weights of those
tuples that correspond to R(v) were selected so that their contribution to Val(Y2, A, h) is
equal to the inner sum in the SA1 objective function (⋆); therefore, the total value of h is
equal to OptSA1

(I, A). It follows that Opt(Y2, A) ≤ OptSA1
(I, A). Moreover, the iterated

degree of a pair (k, v) in Y2 is the same as in Y1 (note here that the second item above
guarantees that repeated entries are handled correctly). It follows that Y1 ≡1 Y2, and the
proof is concluded. ◀

The dual fractional homomorphism I →df Y1, the equivalence Y1 ≡1 Y2, and assignments
Y2 → A that witness that Opt(Y2, A) ≤ OptSA1

(I, A) from the proof of Theorem 7 can all
be naturally associated with rational matrices (of dimensions I × Y1, Y1 × Y2, and Y2 × A,
respectively). It can be calculated that the product of these matrices is a matrix associated
to a solution to the SA1(I, A) linear program. This is why we regard Theorem 7 as a
decomposition theorem.
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5 Main result

We are ready to prove the main result. The appropriate generalization of invariance under ≡1
(item (ii) in Theorem 1) is that if I ≡1 J and τ ∈ Q, then it cannot happen that (I, τ) is a
Yes-instance while (J, τ) is a No-instance. Item (ii) in the following theorem is a reformulation
of this requirement.

▶ Theorem 8. Let (A, B) be a promise valued template of signature σ. Then the following
are equivalent.

(i) There exists a distributed algorithm that solves PVCSP(A, B). Moreover, in such a
case, there is a polynomial-time distributed algorithm that solves PVCSP(A, B).

(ii) For all finite-valued σ-structures I, J, if I ≡1 J then Opt(J, B) ≤ Opt(I, A).
(iii) SA1 decides PVCSP(A, B).

Proof. (i) ⇒ (ii). From the nature of the distributed model, it follows that agents with
the same iterated degree will be in the same state at any time during the execution of any
distributed algorithm. Therefore, if (i) holds and I ≡1 J are connected, then a terminating
distributed algorithm will report the same decision when run on input (I, τ) or (J, τ) (see
Proposition 2.2 and Corollary 2.3 in [4]), so by setting τ = Opt(I, A) we obtain that (ii)
holds for all connected I, J. We now show how (ii) in its full generality follows from (ii)
restricted to connected I and J.

Let us call two finite-valued σ-structures I and J weakly congruent if |J | · δ(I) = |I| · δ(J).
We claim that Opt(J, B)/|J | ≤ Opt(I, A)/|I| whenever I and J are weakly congruent and
connected. The claim clearly holds when |I| = 1 or |J | = 1, so assume |I|, |J | ≥ 2. For
any positive integer k, we define connected finite-valued σ-structures I′(k) and I(k) (and
similarly J′(k), J(k)) as follows. Let I = {v0, v1, . . . , v|I|−1} and let the universe of I′(k) be
{0, 1, . . . , k − 1} × I. Let η be the probability distribution over the mappings I → I(k)

assigning probability 1/2k to each of the 2k mappings fj , f ′
j , j ∈ {0, 1, . . . , k − 1}, where

fj(vi) = (j, vi) and f ′
j(vi) = (i + j mod k, vi) for each vi ∈ I. We define the weights in

I′(k) in the unique way so that (12) holds for η with equality instead of inequality. Then η

is a dual fractional homomorphism from I to I′(k), and the probability distribution which
assigns probability 1 to the projection onto I is a dual fractional homomorphism in the
opposite direction. By Proposition 6, Opt(I, C) = Opt(I′(k), C) for any valued σ-structure
C. Finally, let I(k) be the valued σ-structure obtained from I′(k) by multiplying weights by
2k; clearly, Opt(I(k), C) = 2k Opt(I′(k), C) for any C. It follows from the construction that
I(k) is connected. Moreover, if k is large enough (k ≥ |I| suffices), then the iterated degree of
(j, vi) in I(k) is obtained from the iterated degree of vi in I by multiplying all the variable
multisets in each of the elements of δI(vi) by 2 (in each inductive step in the definition
of iterated degree). It follows that, for all k′, the valued structures J(k′|I|) and I(k′|J|) are
connected and, when k′ is large enough, have the same iterated degree. By item (ii) for
connected valued structures, we get Opt(J(k′|I|), B) ≤ Opt(I(k′|J|), A) and the claim follows
using the equalities above and rearranging.

Before finishing the proof, notice a simple consequence of the definition of iterated degrees.
For a “variable vertex” x of GI, a label S, and a “constraint vertex” y such that x and y

are adjacent in GI, denote x[S, y] = {y′ | δ(y′) = δ(y), ℓ{x,y′} = S}. Observe that if there
exists an edge between x and y labeled S, then {x′[S, y] | δ(x′) = δ(x)} is a collection of
mutually disjoint sets of equal size, which cover {y′ | δ(y) = δ(y′)}; and, moreover, the same
claim holds when x′ and y′ are restricted to the connected component containing x (or y).
It follows that for a component I′ of I and a component J′ of J, where I ≡1 J, either the
iterated degrees δ(I′) and δ(J′) are disjoint, or I′ and J′ are weakly congruent.
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This observations allows us to finish the proof as follows. Let I and J be finite-valued
σ-structures such that I ≡1 J and let n = |I| = |J |. Then there are sequences (I1, . . . , In) and
(J1, . . . , Jn) such that the first (resp., second) sequence contains each connected component
I′ of I (resp., J′ of J) exactly |I ′| times (resp., |J ′| times), and Ii and Ji are weakly congruent
for every i ∈ [n]. From the claim above, we get Opt(Ji, B)/|Ji| ≤ Opt(Ii, A)/|Ii| for every
i ∈ [n]. Summing up these inequalities and observing that Opt(I, A) is equal to the sum of
Opt(I′, A) over all connected components I′ of I (and similarly for J), item (ii) now follows.

(ii) ⇒ (iii). We need to show that for every non-negative finite-valued σ-structure I,
Opt(I, B) ≤ OptSA1

(I, A). Let Y1, Y2 be the structures obtained from Theorem 7, i.e.,
Y1 ≡1 Y2, Opt(Y2, A) ≤ OptSA1

(I, A), and there is a dual fractional homomorphism from
I to Y1. Then, by (ii) we have that Opt(Y1, B) ≤ OptSA1

(I, A), and by Proposition 6,
Opt(I, B) ≤ OptSA1

(I, A) too, as required.
(iii) ⇒ (i). From Theorem 3.2 in [4] (adapted to the valued setting), if OptSA1

(I, A) < ∞,
then there is a solution to the linear program that assigns the same value to every class of
variables and constraints of I that have the same iterated degree.8 This allows us to reduce
the linear program as follows. Let I/≡1 and CI/≡1 denote the sets of equivalence classes of
variables and constraints, respectively, under the equivalence ≡1. The new linear program,
denoted SA1

≡(I, A), contains one variable p[v](a) for every class [v] ∈ I/≡1 and one variable
p[R(v)](a) for every class [R(v)] ∈ CI/≡1. The variables of the new program SA1

≡(I, A) are
subject to the same constraints as in SA1(I, A), except they use the new reduced set of
variables. The new objective function is

OptSA1
≡(I, A) := min

∑
[R(v)]∈CI/≡1

k[R(v)]
∑

a∈Aar(R)

p[R(v)](a)RI(v)RA(a), (13)

where k[R(v)] = |[R(v)]| is the number of constraints equivalent to R(v). By the above dis-
cussion, we have OptSA1

≡(I, A) = OptSA1
(I, A). Therefore, since SA1 decides PVCSP(A, B),

so does SA1
≡. (We remark here that two input structures with the same iterated degree have

the same reduced SA1
≡ up to renaming of variables; this can be used e.g. to show that (iii)

implies (ii).)
In order to show that (iii) implies (i), assume that I is a connected input structure. We

show that every agent in the distributed network can obtain the reduced linear program of
SA1

≡ via a polynomial-time distributed algorithm. As SA1
≡ decides PVCSP(A, B), this will

conclude the proof.
The agents can calculate their iterated degree (or, rather, a finite and effectively com-

putable representation thereof) in polynomial time using a simple distributed version of the
color refinement algorithm. Each agent α(x), x ∈ I ∪ CI can then use the representation
of the iterated degree as an identifier, see [4, Lemma 4.8.] for a more detailed discussion.
Every agent can obtain sufficient information from its neighbours to compute the equations
in (4), (5), (6) and (7) that constrain its relevant LP variables of the reduced system (and
use the identifiers to name the LP variables), and can subsequently broadcast these along
the network. We are left to show that every agent can also compute the objective function
of SA1

≡(I, A). In fact, it is sufficient that every agent α(R(v)) computes the summand
of OptSA1

≡(I, A) that corresponds to [R(v)] and then broadcasts it in order to obtain the
complete objective function. The only nontrivial piece of information to compute is the value
of the coefficients k[R(v)].

8 We remark here that this theorem also has a substantially simpler proof – it is enough to observe that
averaging over variables and constraints with the same iterated degrees does not increase the objective
function.
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By the observation made in the proof of (i) ⇒ (ii), for each R(v) ∈ CI, a participating
variable v ∈ {v}, and S = ℓ{v,R(v)}, the coefficient k[R(v)] is equal to the number of S-labeled
edges from v into members of [R(v)] (denoted v[S, R(v)] above) multiplied by the size of [v].
The former value can be computed by α(v), so α(v) can compute the ratio k[R(v1)] : k[R(v2)]
for any two constraints R(v1), R(v2) that v participates in. After broadcasting all these
ratios, each agent can compute the ratios between any two k[R(v)] and, since the sum of these
coefficients is |CI| (which is known to the agents), they can compute the coefficients. ◀

Clearly, the implication (iv) ⇒ (iii) in Theorem 1 remains true for PVCSP (so the equivalent
statements in Theorem 8 are satisfied in, e.g., the PVCSPs in Example 4). The following
example shows that, unlike for PCSPs, the converse implication does not hold in general: we
provide an example of a PVCSP template that is decided by SA1 but not by BLP.

▶ Example 9. Let A, B be σ-structures where σ contains a single binary relation symbol R.
Let A = B = {0, 1}, RA(a, a) = RB(a, a) = 3 for a ∈ {0, 1}, and RA(a, b) = 2, RB(a, b) = 0
for a ≠ b ∈ {0, 1}. The probability distribution which assigns probability 1 to the identity
function is a fractional homomorphism, and so (A, B) is a PVCSP template.

We claim that BLP does not decide PVCSP(A, B). Indeed, let I be the PVCSP input
structure given by I = {v} and RI(v, v) = 1. Then, there is a feasible solution to BLP(I, A)
given by pv(a) = 1/2 for a ∈ {0, 1} and pR(v,v)(a, a) = 0, pR(v,v)(a, b) = 1/2 for a ̸= b ∈ {0, 1}.
This solution witnesses that OptBLP(I, A) ≤ 2, however, it is easy to see that Opt(I, B) = 3
and so BLP does not decide PVCSP(A, B).

On the other hand, we show that Opt(I, B) ≤ OptSA1
(I, A) for any input valued structure

I. Let Vl(I) =
∑

v∈I RI(v, v) and Ve(I) =
∑

u̸=v RI(u, v) be the total weight of the constraints
in I with and without repetitions, respectively. We choose an assignment h : I → B at
random: each h(v) is chosen independently and uniformly (both 0 and 1 with probability
1/2). The expected value of Val(I, B, h) is 3Vl(I) + 3/2Ve(I), which implies that Opt(I, B) ≤
3Vl(I) + 3/2Ve(I). As for SA1, we know that any feasible solution must have p(v,v)(a, b) = 0
whenever a ̸= b. Therefore, we get

OptSA1
(I, A) = min

[ ∑
v∈I

∑
a∈A

pR(v,v)(a, a)RI(v, v)RA(a, a)+

∑
u̸=v∈I

∑
a,b∈A

pR(u,v)(a, b)RI(u, v)RA(a, b)
]

≥ 3Vl(I) + 2Ve(I) > Opt(I, B).

6 Conclusion

We have shown that solvability of a PVCSP by the SA1 relaxation is equivalent to invariance
under the Weisfeiler-Leman-like equivalence ≡1, and also to solvability in a natural distributed
model. The distributed algorithm for the narrower CSP setting from [4] worked also for
the search version of the problem, but this is unfortunately not the case for the algorithm
presented in this paper. Is there an algorithm solving the search version of PVCSP(A, B)
whenever the PVCSP is solvable by SA1? Note that in the search version an instance consists
only of I and the goal is to find an assignment h : I → B such that Val(I, B, h) ≤ Opt(I, A).

Another open problem emerges from Example 9 which shows that BLP and SA1 are not
equivalent for PVCSPs. It follows from [5] that BLP and SA1 are equivalent for PCSPs
and from [23] that they are also equivalent for finite-valued VCSPs. Are these relaxations
equivalent for general-valued VCSPs?
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