CNF Encodings of Binary Constraint Trees

Ruiwei Wang &

School of Computing, National University of Singapore, Singapore

Roland H. C. Yap &

School of Computing, National University of Singapore, Singapore

—— Abstract

Ordered Multi-valued Decision Diagrams (MDDs) have been shown to be useful to represent finite
domain functions/relations. For example, various constraints can be modelled with MDD constraints.
Recently, a new representation called Binary Constraint Tree (BCT), which is a (special) tree
structure binary Constraint Satisfaction Problem, has been proposed to encode MDDs and shown
to outperform existing MDD constraint propagators in Constraint Programming solvers. BCT is
a compact representation, and it can be exponentially smaller than MDD for representing some
constraints. Here, we also show that BCT is compact for representing non-deterministic finite state
automaton (NFA) constraints. In this paper, we investigate how to encode BCT into CNF form,
making it suitable for SAT solvers. We present and investigate five BCT CNF encodings. We
compare the propagation strength of the BCT CNF encodings and experimentally evaluate the
encodings on a range of existing benchmarks. We also compare with seven existing CNF encodings
of MDD constraints. Experimental results show that the CNF encodings of BCT constraints can
outperform those of MDD constraints on various benchmarks.

2012 ACM Subject Classification Computing methodologies — Artificial intelligence; Software and
its engineering — Constraint and logic languages

Keywords and phrases BCT, CNF, MDD, NFA / MDD constraint, propagation strength

Digital Object Identifier 10.4230/LIPIcs.CP.2022.40

Funding This work was supported in part by the National Research Foundation Singapore under its
AT Singapore Programme [AISG-RP-2018-005] and grant T1 251RES2024.

1 Introduction

Ordered Multi-valued Decision Diagram (MDD) [39] is a compact representation which can
be used to encode finite domain functions/relations. Many constraints can be encoded into
compact MDD constraints, such as the regular constraints [32], table constraints [10], among
and sequence constraints [22]. MDD constraints are also useful to model problems requiring
specific constraints which are not readily modelled with existing known constraints [11, 21].
In Constraint Programming (CP) solvers, MDD constraints can be directly handled with
MDD Generalized Arc Consistency (GAC) propagators, e.g. the MDDc [10], MDD4R [31],
CD [42] and CD"® [43] propagators. Alternatively, MDD constraints can also be solved by
SAT solvers by encoding MDD constraints into CNF form [1]. In this way, SAT solvers can
directly handle the constraints which can be modelled with MDDs constraints[2, 3, 5].

Binary constraint is also a general representation for constraints. Any non-binary
constraint can be transformed into binary constraints through binary encodings such as dual
encoding [13], hidden variable encoding [37], double encoding [40] and bipartite encoding [47].
Recently, binary encodings with specialized Arc Consistency (AC) propagators [46, 47] has
been shown to outperform the GAC propagators of non-binary table constraints [28, 45, 15, 50].
Similar to MDDs, the binary constraints can also be encoded into CNF with different
CNF encodings, such as the log encoding [23, 44, 41], direct encoding [44] and support
encoding [24, 19].
? Ruiwei Wang and Boland H. C. Yz.ip;

37 icensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 40; pp. 40:1-40:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ruiwei@comp.nus.edu.sg
mailto:ryap@comp.nus.edu.sg
https://doi.org/10.4230/LIPIcs.CP.2022.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2

CNF Encodings of Binary Constraint Trees

Recently, a new representation called Binary Constraint Tree (BCT) [48], which is a
set of binary constraints with tree structures (a special binary CSP), has been proposed
to encode MDDs. BCT is a compact representation, and it can be exponentially smaller
than MDD. In this paper, we also show that non-deterministic finite state automaton (NFA)
constraints [33, 9] can be transformed into BCT constraints without exponential blow up but
not MDD constraints. Furthermore, a GAC propagator of BCT constraints [48] has been
shown to outperform the state-of-the-art MDD GAC propagators. The results in [48] show
that BCT has great potential for encoding and reducing MDDs.

In this paper, we investigate how to encode BCT constraints into CNF instances and apply
them in SAT solvers. We investigate five CNF encodings of BCT constraints, including the log
encoding, direct encoding, support encoding and two new transformations: partial support
encoding and minimal support encoding. We tailor three well-known CNF encodings of binary
constraints, i.e. the log, direct and support encodings, to handle BCT constraints. In addition,
we introduce the partial support encoding and minimal support encoding by eliminating
clauses and Boolean variables from the support encoding of BCT constraints. Then we
analyze the strength of unit propagation on these 5 CNF encodings of BCT constraints. The
support encoding of BCT constraints, which implements propagation completeness [6], can
have a greater propagation strength than the other CNF encodings. The partial support
encoding and minimal support encoding are more compact than the support encoding but
their propagation strength is weaker than the support encoding. The log encoding and
direct encoding, which do not implement weak consistency, have the weakest propagation
strength. We also compare the five CNF encodings of BCT constraints and seven existing
MDD encodings [1] using the Kissat SAT solver [17] on a range of existing benchmarks. Our
experimental results show that the CNF encodings of BCT constraints can outperform MDD
CNF encodings.

The paper is organized as follows. Section 2 provides the preliminaries. Section 3
shows that BCT can be exponentially smaller than MDD on representing NFA constraints.
Sections 4 and 5 respectively introduce CNF encodings of binary constraints and BCT
constraints. Experimental results are given in Section 6, and Section 7 concludes.

2 Preliminaries

A CSP P is a pair (X, C) where X is a set of variables, D(x) is the domain of a variable z, and
C' is a set of constraints. A variable is a Boolean variable if D(x) = {true, false}. A literal
of a variable x is a variable value pair (z,a). A tuple over a set of variables {z;,, Zi,, ..., %;.}
is denoted by a set of literals {(x;,,a1), (Tiy,a2), ..., (i, ,a,)}. Each constraint ¢ has a
constraint scope scp(c) € X and a relation rel(c) defined by a set of tuples over scp(c). The
arity of ¢ is the number of variables in its scope, i.e. |scp(c)|. A constraint ¢ is a binary
constraint if |scp(c)| = 2. A constraint ¢ over Boolean variables {x;,, -+ ,x;_} is a clause if it
is a disjunction of a set ¢l of literals {(z;,,a1),- -, (zi,,a,)} such that a; € {true, false} for
1< j <, so rel(c) consists of the tuples over sep(c) including at least a literal in ¢l. A CSP
is called a binary CSP if it only includes binary constraints. A binary CSP is normalized if
all constraints have different scopes. A CSP (X, C) is called a Conjunctive Normal Form
(CNF) if all variables in X are Boolean variables and all constraints in C' are clauses.
Given any set of variables V' and a tuple 7, we use 7[V] = {(x,a) € 7|z € V'} to denote a
subset of 7, while T[V] = {7[V]|r € T} is the projection of tuples T on V. In addition, P|,
denotes a subproblem ({z'|x € X},C) of P = (X, C) generated by assigning a tuple 7 where
D(2') = D(x) if 7 does not include any literal of z, otherwise D(z’) = {(x,a) € 7|a € D(z)}.

R. Wang and R.H.C. Yap

Note that F|, = F if 7 = (. A tuple 7 is an assignment if a € D(z) for all (z,a) € 7.
An assignment 7 over X is a solution of P if 7[sep(c)] € rel(c) for all constraints ¢ € C.
sol(X,C) (or sol(P)) denotes all solutions of P. A CSP (X, C) is satisfiable if Sol(X, C) # 0,
otherwise it is unsatisfiable.

A support of a value a € D(x) on a constraint ¢ is a tuple 7 € rel(c) such that (z,a) € 7
and b € D(y) for all (y,b) € 7. A variable x € scp(c) is Generalized Arc Consistent (GAC)
on c if a has a support on ¢ for all a € D(z). ¢ is GAC if all variables in scp(c) are GAC on
c. A CSP (X,(C) is GAC if every constraint in C' is GAC. For binary CSPs, GAC is also
called Arc Consistency (AC). For any CNF F, GAC is also called unit propagation, where
UP(F) is used to denote a CNF generated from F' by removing all variable values which are
not GAC on F. If UP(F) includes any empty variable domain, F' is unsatisfiable.

2.1 CNF encoding and unit propagation strength

A CNF encoding of a CSP P = (X, () is a CNF which is equisatisfiable with P, i.e. the CNF
is satisfiable iff P is satisfiable. Typically, a CNF encoding consists of a variable encoding
(VE) and a constraint encoding (CE) where VE encodes the variables in X as a set ¢ of
Boolean variables and each constraint ¢ in C' corresponds to a constraint (Boolean function)
¢ over the Boolean variables, while CE encodes the constraint ¢¢ as a CNF F¢ over Boolean
variables Y such that sep(¢©) CY and sol(F°)[scp()] = rel(p©). There have been many
VEs which can be used to transform finite domain variables into Boolean variables, such as
direct encoding and log encoding [44] . In addition, there are also various CEs for encoding
constraints, e.g. many CNF encodings of MDD constraints [1]. A way to analyze a CE is
evaluating the strength of unit propagation on the encoded constraint F¢. We will use the
following four levels to classify the strength of unit propagation on encoding F*:

F¢ implements weak consistency if for any tuple 7 over scp(¢°) such that F°|, is unsatis-
fiable, some variable domains in UP(F¢|,) are empty.

F¢ implements domain consistency if for any tuple 7 over a subset of scp(p©) and a literal
(v,a) in UP(F*€|;) such that v € sep(¢°) and all variable domains in UP(F°|,) are not
empty, there is at least a solution of F°|, including (v, a).

F¢ implements unit refutation completeness [14, 1, 25, 26] if for any tuple 7 over a subset
of Y such that F°|, is unsatisfiable, some variable domains in UP(F*°|;) are empty.

F¢ implements propagation completeness [6, 1, 25, 26] if for any tuple 7 over a subset of
Y and a literal [in UP(F°|;) such that all variable domains in UP(F*|,) are not empty,
there is at least a solution of F°|. including I.

In this classification, propagation completeness is the strongest level, unit refutation com-
pleteness is incomparable with domain consistency, and weak consistency is the weakest level.
Note that the definition of weak/domain consistency is defined for evaluating the strength of
unit propagation and will be used in the rest of this paper.

» Example 1. Assume the CNF F°is ({z,y, 2}, {zVy, ~yVz, 2V -z}) and the scope scp(p®)
is {x,y}. (=, false) is the only literal in F'¢ which cannot be extended to a solution of F°.
(z, false) is in UP(F°), so F¢ does not implement propagation completeness. Then x is
in scp(¢©), thus, F¢ also does not implement domain consistency. For any tuple T over a
subset of {z,y, z}, if F°|; is unsatisfiable, UP(F*°|;) has empty variable domains. So F*
implements unit refutation completeness and weak consistency.

40:3

CP 2022

40:4

CNF Encodings of Binary Constraint Trees

(a) NFA: nodes and edges respectively (b) BCT: nodes and (c) MDD: dotted (dashed and solid)
denote states and transitions. edges are variables lines denote the value 1 (2 and 3).
and constraints.

Figure 1 Different representations of a constraint over 3 variables {z1, z2,z3}.

3 BCT versus MDD on representing NFA constraints

Binary Constraint Tree (BCT) is a compact representation which can be exponentially
smaller than Ordered Multi-valued Decision Diagram (MDD). In this section, we show that
any NFA constraint can be encoded as a BCT constraint without exponential blow up, where
NFA may be exponentially smaller than the corresponding MDD.

A non-deterministic finite state automaton (NFA) is a quintuple (@, >, A, qo, Q¢) con-
sisting of a finite set @ of states, a finite set »_ of input symbols, a transition function
A Qx> — 29 an initial state ¢y € @Q, and a set Q; C @Q of accepting states, where
there is a transition in the NFA from a state ¢; € Q) to a state g; €) via a symbol a €)
if ¢; € A(gj,a). A string a;...a, is accepted by the NFA if there is a sequence of states,
805 81, -+ S, such that: sop = qo, s; € Q and s;41 € A(s;,a;41) for 0 <i<r,and s, € Q. A
NFA constraint c¢ is a pair (G, O) such that O is an ordering over scp(c), G is a NFA and
rel(c) is the set of tuples {(O1,a1), ..., (Or,a,)} over sep(c) such that the string a;...a, is
accepted by the NFA [33, 9].

» Example 2. Consider the constraint \/[_, \/j_;, (z; = ;) over r variables {z1, ..., 2}

with variable domain {1,..,7}, which expresses the negation of an alldifferent constraint [35].
The size of the negation of the MDDs (Ordered Multi-valued Decision Diagrams) representing
alldifferent constraints is exponential in r [4].

We can use a NFA ({qo, ..., @r+1}, {1, .-, 7}, A, go, {gr+1}) to model the constraint such
that A(qo,1) = {q0, ¢}, A7) = {GisGr+1}s Al@r41,7) = {gr+1} and A(g;,i) = {g;} for
1<i<randj=#0,i,r+ 1. Figure la gives a NFA for r = 3, and Figure 1c is a MDD
modelling the NFA,| where every subset of the domain corresponds to a node in the MDD.

» Definition 3 (BCT and BCT constraint [48]). A Binary Constraint Tree (BCT) is a
normalized binary CSP whose constraint graph is a tree. A BCT constraint ¢ is a pair (V, P)
such that P = (X,C) is a BCT, scp(c) =V, V C X and rel(c) = sol(X,C)[V], where the
variables in scp(c) and X \ scp(c) are respectively called the original and hidden wvariables.

We recap BCT, see [48] for more details. BCT is viewed as a single non-binary constraint,
the BCT constraint, modelled as a binary CSP with hidden variables. Given the tree structure
of the BCT, AC on the BCT can achieve GAC on the BCT constraint. It has been shown

R. Wang and R.H.C. Yap

in [48] that any MDD constraint can be encoded into a BCT constraint with the same size as
the MDD. A BCT can be further optimized with the reduction rules given in [48]. After the
reduction, BCT constraints can be much smaller than the corresponding MDD constraints.

3.1 Direct tree binary encoding

For any NFA constraint ¢* over r variables, we can encode the states and transitions of the
NFA into a sequence of hidden variables, and then representing the NFA constraint ¢* as a
BCT over the hidden variables such that every tuple in the constraint relation denotes a
sequence of r transitions from the initial state to an accepting state in the NFA. The details
of the encoding are given in Definition 4.

» Definition 4. A direct tree binary encoding (DTBE) of a NFA constraint ¢* = (G, O) is a
BCT dtbe(c*)= (Y U H U sep(c*), {¢§, ¢, ¢, ..., c0, c¥, c¥T}) where
r=|sep(c®)] and G = (Q,>., A, qo,Qt) and Y = {y1,...,yr+1} and H = {hy, ..., hy-};
sep(c?) = {04, hi}, sep(c?™) = {yir1, hi} and sep(cl) = {yi, hi};
D(y1) ={a}, D(yr4+1) = Q1 and D(y;) = Q for2<i <r;
D(h;) is the set of transitions in G for 1 <i <r;

rel(c!) = {{(hi, tr), (yi, b)}|tr € D(h;), tr is a transition from b};
rel(¢) = {{(hi,tr), (Os, s)}Htr € D(h;), s is the symbol of the transition tr};
rel (/1) = {{(hi, tr), (i1, b) }tr € D(h;), tr is a transition to b}.

We remark that we use the term DTBE for NFA constraints in the same way as the
DTBE encoding of MDD in [48], we refer to [48] for more details. Figure 1b shows the
constraint graph of a DTBE for a NFA constraint (G, O), where G is given in Figure la
and O is the variable order x; < zo < x3. The states and transitions in the NFA are
respectively encoded as the hidden variables y1,--- ,y4 and hq,--- , hg, where the states
and transitions are encoded as hidden variable values, i.e. D(y1) = {qo}, D(y2) = D(y3) =
{90,91,G2,93,494}, D(ya) = {qa} and the domain of hq, ho, hs is the set of all transitions
{(gi,a,q)|lg; € Agi,a),0 < i <4,1<a <3} inthe NFA. Then binary constraints are
used to combine transitions with symbols and states. The binary constraint relations can
be constructed based on Definition 4. For example, rel(c!) = {{(y1,q0), (h1, (q0,a,))}]i €
{0,a},a € {1,2,3}}, Tel(cllH—) = {{(y2:4i), (1, (g0, a,4:))}|i € {0,a},a € {1,2,3}}, rel(c])
= {{(z1,0a), (h1, (g0, 0a,4:))}i € {0,a},a € {1,2,3}}. In addition, the reduction rules given
in [48] can also be directly used to reduce the DTBE encodings of NFA constraints.

» Theorem 5. BCT can be exponentially smaller than MDD on representing NFA constraints.

The proof of Theorem 5 (also Lemma 10 and Propositions 11, 13, 14, 16) can be found in the
Appendix. Theorem 5 shows that there exists a family of NFA constraints (Example 2) for

which the BCT representation (DTBE) is exponentially smaller than the MDD representation.

For example, give the NFA constraint in Example 2 with » = 15, the BCT representation (after
reduction) has 2K values and 6K tuples which is much smaller than the MDD representation
having 33K nodes and 491K edges.

4 CNF encodings for binary constraints

In this section, we introduce three well-known CNF encodings, i.e. log encoding [23, 44, 41],
direct encoding [44] and support encoding [24, 19], which are used to transform any binary
CSP (X, C) into CNF. These CNF encodings represent each variable z in X as a set of
Boolean variables such that every value in D(x) corresponds to exactly one tuple over the

40:5

CP 2022

40:6

CNF Encodings of Binary Constraint Trees

variables. In addition, for each binary constraint ¢ € C| the encodings use clauses to represent
the tuples 7 over scp(c) such that 7 ¢ rel(c) (or 7 € rel(c)). These CNF encodings can be
directly used to encode BCT constraints, since any BCT is also a binary CSP.

4.1 Log encoding

Every variable € X is represented as k = [log,(d)]| Boolean variables V* = {v{, ..., v},
where d = |D(z)|. Let T be the set of the first d assignments over B* in the lexicographic
order. Every value a in D(x) corresponds to a tuple 7, in T. In addition, if |D(z)| is not a
power of two, the assignments over V¥ which are not in T’ can be excluded by adding the
following clause [41] for each literal (v?, false) in the d* (last) tuple 7 in T

f@WH V-V foF) V—wf where f(v]

- {1};” if (vf, false) € T

—vf if (vf,true) € T

For each constraint ¢ € C' and an assignment {(z,a), (y,b)} over sep(c), if the tuple is not in
rel(c), then the following clause is added to exclude the tuple

(V. opve Vo)

(v§,true)€Ta Uy (v§,false)€TaU,

» Example 6. The log encoding of the binary CSP P = ({x1, 2, x3, 24}, {z1 + 23 < 5,23 =
3Vxy = 3,29+ x4 < 5}), where variable domains are {1, 2,3}, consists of 8 Boolean variables
{7t v5", 072,052, vT®, vy, vi*, v3* } and 10 clauses:

-7tV -yt —07? V w52 —07? V —wy? -7tV -t

T T xrs3 xrs3 To xTo Tq xTa T3 T3 T4 T4
0y Vg Vot Vo, 01" Vgt Vgt Vo, v Vug® Vuri® Vv,

T3 xr3 T4 T T3 xrs3 T4 T T3 xr3 T4 Tq
V17V wy? Vot Vv, V17 Vuy® Vot Vg V17V wy? Vot V oy

4.2 Direct encoding

Every variable 2 € X is represented as d Boolean variable B* = {v{ |a; € D(z)}, where
D(x) = {a1, - ,aq}. In addition, an exactly-one constraint over B* is introduced to
guarantee that if a variable in B® is assigned with true, then the other variables in B* are
assigned with false. The exactly-one constraint is encoded with ladder encoding [20] which

includes d — 1 additional Boolean variables A* = {w{,--- ,wj_,} and a set of EO(z) clauses:
g,V owy Vg, Vwy Vg, V mwg_q W,V Wy
x x x x x x x x x -
{wiy V—owi, vy, Vwi Vv -wi o, —vg Vow, —vg Vawp]2 <i <d -1}

The latter encoding implements propagation completeness [6, 25]. The clauses in EO(z)
can guarantee that every value a; in D(x) corresponds to exactly one solution #(x,a;) of
the CNF (B* U A%, EO(x)), where t(x,a;) = { (v}, false)|b € D(x),b # a;} U {(v] ,true)} U
{(wf,true)|[1 < j < i} U{(w}, false)|i < j < d}. Then for each ¢ € C' and an assignment
7 = {(x,a:), (y,b;)} over scp(c) such that 7 ¢ rel(c), the clause ~v7 Vv —\vi/j is added.

R. Wang and R.H.C. Yap

» Example 7. The direct encoding of the binary CSP given in Example 6 includes 20 Boolean
variables and the following clauses:

{—;? V=wi?, 017 Vw?, v7 Vowsy? —wsg? Vg’ |1 < j < 4}
{w]? V ~wsy? ,v5" V wy’ V —wi? —wy? Vo mwy? sy Vw1 < j < 4}

—wzt Vows? o0g? Voowst oot Voot - Vot —03d Voot gt Vo —wg

4.3 Support encoding

Every variable x € X is represented as d Boolean variable B* = {v{ |a; € D(z)}, where
D(x) ={a1, -+ ,aq}, and an exactly-one constraint over B* is used to make sure that each
value in D(x) corresponds to exactly one tuple over B*. The exactly-one constraint is
encoded with (A U B*,EO(x)), i.e. ladder encoding. In addition, for each value a € D(z)
and a constraint ¢ € C such that sep(c) = {z,y}, a clause cl(x, a, c) is added where

c(z,a,c) =-v2V(\/ vY)
{(z,a),(y,b)}Erel(c) \bED(y)

By using the clauses cl(z,c) = {cl(z,a,c)|c € C,z € scp(c),a € D(x)}, unit propagation on
the support encoding of a binary CSP can achieve AC on the binary CSP [19].

5 CNF encoding for BCT constraints

For any BCT constraint (V, P), the CNF encodings of binary constraints can be directly
used to encode the BCT constraint, because the BCT P is a binary CSP. In addition, binary
constraints are special cases of BCT constraints, i.e. every binary constraint is a BCT
constraint without any hidden variables. When comparing the unit propagation, there is a
subtlety, the strength of unit propagation on the CNF encodings of BCT constraints can be
different from that for binary constraints. In this section, we will discuss the strength of unit
propagation when using the log, direct and support encodings to encode BCT constraints
as CNF. Afterwards, we will propose two further CNF encodings of BCT constraints by
eliminating Boolean variables and clauses from the support encoding of the constraints.

5.1 Encodings from binary constraints

The log encoding of binary constraints implements weak consistency but we highlight that

it does not do so for BCT constraints, since BCT constraints can include hidden variables.

Assume P is the binary CSP given in Example 6 and F' is the log encoding of the BCT
constraint ({z1, 22}, P). Then F does not implement weak consistency. For example, the
tuple 7={(v{*, true), (vy', false), (v]?,true), (v5?, false)} is not included by any solution

of F, i.e. F|, is unsatisfiable but UP(F|;) does not include any empty variable domain.

Therefore, the log encoding of BCT constraints does not implement weak consistency.

» Proposition 8. Log encoding of BCT constraints does not implement weak consistency.

Similarly, the direct encoding of BCT constraints also does not implement weak consistency.

For example, the tuple T={(v3*, true), (v3?,true)} is not included by any solution of the
direct encoding F (given in Example 7) of the BCT constraint ({z1,z2}, P), i.e. F|, is
unsatisfiable, but UP(F|;) does not include any empty variable domain.

40:7

CP 2022

40:8

CNF Encodings of Binary Constraint Trees

» Proposition 9. Direct encoding of BCT constraints does not implement weak consistency.

Unit propagation on the support encoding of a binary CSP can achieve AC on the binary
CSP. Further, the constraint graph of a BCT is a tree. Hence, unit propagation on the
support encoding of a BCT constraint can achieve GAC on the BCT constraint. For any
BCT (X, C), we can set a variable z € X as the root and construct a tree order O over X
such that O1 = z, where O is a tree order if for any 7 > 1 and O; € X, there is exactly one
constraint ¢ € C such that scp(c) = {0;,0;} and i < j. In addition, we use T to denote a
set of clauses [J{cl(O;, ¢)|c € C,scp(c) ={0;,0;},i < j} with respect to a tree order O.

» Lemma 10. Given a BCT P = (X,C) and a tree order O over X, if a literal (v$*, true)
is included in UP(F') and all variable domains in UP(F') are not empty, there is 7 € sol(P)
such that (O1,a) € T and (vf,true) is included in F for all (z,b) € T, where F = (A,C4)|
and B* C A for allz € X and T? C C4 and 7' is a tuple over a subset of A.

We now show the support encoding of BCT constraints implements propagation completeness.

» Proposition 11. The support encoding F = (AU B,T U E) of BCT constraints (V, P)
implements propagation completeness, where P is a BCT (X,C) and A = | A* and
B =,ex B* and T = {cl(z,c)|c € C,x € scp(c)} and E = J,cx EO(x).

zeX

5.2 Partial support encoding

We now introduce a new CNF encoding of BCT constraints, called partial support encoding,
by eliminating clauses from the support encoding of the BCT constraints. Give any BCT
P = (X,C) and variables V' C X, the partial support encoding of the BCT constraint (V, P)
isa CNF F = (AYUBY UBY TUEV), where AV = U,ev A” and BY = U,ev B* and
BH = Unex\v B" and T = {cl(x,c,a)|c € C,z € scp(c),a € D(z)} and EV =, .\ EO(x).
Partial support encoding has the same Boolean variables and clauses as the support encoding
of (V, P), except that the clauses in EO(h) and the Boolean variables in A" are removed
from the support encoding of (V, P) for any hidden variables h in X \ V.

For each solution 7 of P, we can construct a solution of F', e.g. (U, a)e, t(z,a)) U
{(WZ,true)|(z,a) € 7} U {(v%, false)|(x,a) ¢ T,a € D(z)}. Conversely, every solution 7
of F corresponds to at least one solution of P (see Lemma 10), since variable domains
in UP(F|;) are not empty. However, the strength of unit propagation on the partial
support encoding is weaker than that on the support encoding for BCT constraints. Partial
supporting encoding implements domain consistency and unit refutation completeness but
not propagation completeness.

For the partial support encoding F' of a BCT ({z1, 2}, P) where P is the binary CSP
(BCT) given in Example 6, the literal (v5%, false) cannot be extended to any solution of the
CNF F|; but (v3°%, false) is in UP(F|;), where 7 = {(v3*, false), (v1?, false), (v3®, false),
(v3', false)} is a tuple over the Boolean variables 7 = {v3*, v7®, v3%, v5'}. Therefore, partial
support encoding of BCT constraint does not implement propagation completeness.

» Proposition 12. Partial support encoding for BCT constraints does not implement propaga-
tion completeness.

Partial support encoding implements unit refutation completeness (based on Lemma 10),
thus, it also implements weak consistency.

» Proposition 13. The partial support encoding F = (AY UBY UB? T UEY) of a BCT
constraint (V, P) implements unit refutation completeness where P = (X, C).

R. Wang and R.H.C. Yap

In addition, from Lemma 10, we can also get that partial support encoding implements
domain consistency.

» Proposition 14. The partial support encoding F = (AY UBY UBH T UEY) of a BCT
constraint (V, P) implements domain consistency where P = (X, C).

5.3 Minimal support encoding

We now give a more compact CNF encoding of BCT constraints called minimal support
encoding. Give any BCT P = (X, C) and variables V C X, the minimal support encoding
of the BCT constraint (V, P) with respect to a tree order O over X is a CNF F = (AV U
BY UBH T UEY), where P = (X,C) and AV = U,ev A” and BY = Uzev B and
B = Unex\v B" and EV =J, ¢ EO(z) and Oy € V. Minimal support encoding has the
same Boolean variables as the partial support encoding but the minimal support encoding
does not include the clauses cl(O;, ¢) for any binary constraint ¢ € C' between 2 variables
0;,0; € X such that 7 < j.

The strength of unit propagation on minimal support encoding is weaker than that on
partial support encoding. For the minimal support encoding F of a BCT ({1, 2}, P) with
respect to a tree order x1 < x3 < x4 < 2 and a tuple 7 = {(v3*,true)} where P is the
binary CSP given in Example 6, the literal (v3*,true) cannot be extended to a solution of
the CNF F|; but (v3*,true) is included in UP(F|,). So the minimal support encoding does
not implement domain consistency and propagation completeness.

» Proposition 15. Minimal support encoding for BCT constraints does not implement domain
consistency and propagation completeness.

In addition, the minimal support encoding is stronger than the log and direct encodings
for BCT constraints. From Lemma 10, we can get that the minimal support encoding
implements unit refutation completeness and weak consistency.

» Proposition 16. The minimal support encoding F' of a BCT constraint (V, P) with respect
to a tree order O implements unit refutation completeness where v = 01 and P = (X, C).

Table 1 summarizes the strength of unit propagation on all five CNF encoding of BCT
constraints. The support encoding of BCT constraints, which implements propagation
completeness, is the strongest encoding. Then the partial support encoding implementing
domain consistency is stronger than the log, direct and minimal support encodings. In
addition, the log and direct encodings of BCT constraints are weaker than the minimal
support encoding, since the log and direct encodings of BCT constraints do not implement
weak consistency.

Table 1 Strength of Unit Propagation on various encodings of BCT constraints. The label v'(X)
denotes that the CNF encodings (does not) implement a unit propagation strength level.

Log | Direct | Minimal Support | Partial Support | Support
Weak consistency X X v v v
Domain consistency X X X v v
Unit refutation completeness X X v v v
Propagation completeness X X X X v

40:9

CP 2022

40:10

CNF Encodings of Binary Constraint Trees

6 Experiments

We evaluate our five CNF encodings of BCT constraints, i.e. the log encoding, direct
encoding, support encoding, PS (partial support) encoding and MS (minimal support)
encoding, with seven existing CNF encodings [1] of MDD constraints, i.e. the Min (minimal),
GMin (GenMiniSAT), Tes (Tseitin), BaP (Basic path), LevP (level path), NNFP (NNF path)
and ComP (complete path) encodings. We employ the Kissat SAT solver [17] in default
configuration to solve the resulting CNF. We also test a BCT GAC propagator [48] in the
Abscon solver [29],! where the Abscon solver uses the binary branching MAC and geometric
restart strategy?, lexical value heuristic and five choices of variable heuristics (Lexical, DDeg
[38], WDeg [7], Activity [30] and Impact [34]). We highlight the Abscon results are to
compare CNF encodings with a SAT solver with a GAC propagator in a CP solver.

Experiments were run on a 3.20GHz Intel i7-8700 machine. Solving time is limited to 10
minutes per instance and memory to 12G. We tested the encodings with existing benchmarks
also used by other papers [18, 9], and instances from the 2019 XCSP competition® and
Minizinc challenge 2021.4

Tables 2, 3, 4 and 5 show the average solving times (in seconds) of the CNF encodings
and the Abscon solver, and if there are some instances which cannot be solved in 10 minutes,
then the tables give the number of unsolvable instances, i.e. the number of time-out or
memory-out instances. The “Inst.” and “# I” columns respectively give the names of different
instance series and the numbers of CSP instances used. The “# Sol” row shows the total
number of instances solved in 10 minutes. The best results of all methods are in bold, and
the underlined results are the best results of the CNF encodings. The “Itime” row is the
average initialization time (in seconds) of different methods and includes the encoding times.
In addition, the “Itime” row also shows the number of memory-out instances if the CNF
encoding runs out of memory during initialization. For different benchmarks, the Abscon
solver results use the best variable heuristic from the 5 heuristics.

Figures 2a, 3a, 4a and 5a compare the performance profiles [16] of the methods VB-BCT,
VB-MDD and VB-Abscon, where VB-BCT and VB-MDD respectively denote the virtual
best CNF encoding of BCT constraints and MDD constraints respectively. VB-Abscon is
the Abscon solver using the virtual best variable heuristic. The y-axis is the percentage of
instances solved and the x-axis is the ratio of the solving time of a method to the virtual best
method (time ratio). In the figures, we remove (i) the trivial instances which can be solved
by all methods (VB-BCT, VB-MDD, and VB-Abscon) in 2 seconds and (ii) the instances
which cannot be solved by any method in 10 minutes. Figures 2b, 3b, 4b and 5b use scatter
plots to compare the solving times of various CNF encodings. In the figures, each dot denotes
a CSP instance of a series, and the dot shapes correspond to instance series. In order to use
logarithmic scales, the time on the x/y-axis is set as (1 + solving time). Figures 2c, 3c, 4c
and 5c¢ compare the number of clauses of different CNF encodings given by the x and y-axis.

! We have used the CP BCT propagator from [48] implemented in Abscon.

2 The initial cutoff = 10 and p = 1.1. For each restart, cutoff is the allowed number of failed assignments
and cutoff increases by (cutoff x p) after restart.

http://www.cril.univ-artois.fr/XCSP19/

https://www.minizinc.org/challenge.html

AW

http://www.cril.univ-artois.fr/XCSP19/
https://www.minizinc.org/challenge.html

R. Wang and R.H.C. Yap

6.1 Benchmark Series 1: NFA

We use the 6 NFA series which are also used in [9]. These NFA benchmarks are modelled with
NFA constraints. The NFA constraints can be transformed into BCT constraints and also
MDD constraints. The direct tree binary encoding introduced in Section 3 are used to encode
NFA constraints as BCT constraints, and then the BCT constraints are further reduced with
the reduction rules proposed in [48]. In addition, the automaton library dk.brics.automaton®
is used to minimize and transform any NFA into a DFA, where the DFA is directly expanded
into the corresponding (quasi-reduced [1]) MDD.

Table 2 NFA benchmarks.

BCT MDD Abscon
Inst. |#]I| Log |Direct/Support| PS | MS | Min |{GMin| Tes | BaP |LevP NNFP|ComP|(DDeg)
NFA-5014| 1 out [166.42| 11.62 |7.76|4.86| 7.91 |2 out |3 out |102.18/126.79/109.96(107.57| 1.21
NFA-36[18(16 out(10 out| 61.69 |30.40[19.53| 1 out (15 out|{1l5 out|l1 out|l1 out|{l1 out|l3 out| 4.98
NFA-34(13|89.63 |14.57| 2.20 |1.38|1.25| 1.78 |16.56|24.90|19.59|25.25|19.16 | 21.17| 0.54
NFA-54/15(15 out|14 out| 179.23 [91.95/69.11| 2 out {15 out|15 out|15 out{15 out|15 out|l5 out| 11.62
NFA-57/15(14 out|10 out| 1 out [55.42[27.07| 1 out |13 out|15 out|{10 out({l1 out|11 out(12 out| 6.40
NFA-60[15(14 out|6 out | 30.13 |16.80[10.13|25.79 12 out|{15 out| 2 out |3 out | 3 out |2 out| 2.50

#Sol 90| 30 50 89 90 | 90 | 86 33 27 52 50 50 48 90
Itime (90| 0.51 | 0.38 | 0.25 |0.23]0.23[290.65[292.62/297.76| 2 out | 6 out |12 out|13 out| 2.10

Table 2 shows the average result of the NFA instances. The NFA constraints used in the
instances are much smaller than the corresponding MDDs, and the resulting encodings of BCT
constraints also fit in memory. However, for MDDs being larger, the MDD CNF encodings
BaP, LevP, NNFP and ComP run out of memory (memory-out). For these encodings, there
are 2, 6, 12 and 13 memory-out NFA instances in the NFA-54 series, respectively. We
remark that if an CNF encoding becomes too large for an instance, it simply cannot be
used. The average initialization time of encoding MDD constraints are much larger than
that of encoding BCT constraints, e.g. the Itime of Min is 290 seconds but that of MS is less
than 1 second. The CNF encodings of BCT constraints are much faster than those of MDD
constraints. The MS and PS encodings can solve all 90 NFA instances in 10 minutes but

the best CNF encoding of MDD constraints, i.e. the Min encoding, only solves 86 instances.

The best result for this series is the Abscon propagator with the DDeg variable heuristic.
Figure 2a shows that the best overall result for the NFA instances is the VB-Abscon
propagator followed by the CNF encodings where VB-BCT overall outperforms VB-MDD on
solving the NFA instances. The MS encoding is more compact than the Min encoding, where
Min has the best CNF encoding result of MDD constraints for these NFA benchmarks. For
example, the number of clauses in MS can be up to 400 times less than that in Min (Figure

1c gives the overall comparison). Correspondingly, MS has potential to be faster than Min.

Figure 1b shows that MS is faster than Min on almost all tested NFA instances.

6.2 Benchmark Series 2: Pentominoes

We use all 192 Pentominoes instances from the the pentominoes generator website. Some
of the Pentominoes instances were also used in the Minizinc challenge 2021. The instances
are separated into 4 series, P-5, P-10, P-15 and P-20, where P-k denotes the instances using

5 http://www.brics.dk/automaton/
5 https://github.com/zayenz/minizinc-pentominoes-generator

40:11

CP 2022

http://www.brics.dk/automaton/
https://github.com/zayenz/minizinc-pentominoes-generator

40:12

CNF Encodings of Binary Constraint Trees

100 2 f5asa 226 [NFasa - | N
20 28 LINFA-36 - NFA-36 x
1 NFA-50 NFA-50
@ o 27 Hnra-sa 1 2241 \rasa 1
3 70 026 [{NFA-57 ol wo22 || NFAS7
E :g 255 | [NFA-60 o . & $2 H NFA-60 o i
al o x|
E 40 G2 AN . B2z | .
° 230 0% o i
30+ o ° x
20% B-Abscon + 220 / x 8 4 218} g
VB-BCT x 1 ASEERS x ° =
104 VB-MDD x| 2 [/% 1 16
3 L 216 |]
0 1 1 1 T T T T T 2 TN S— 1 1 L L L L 1 TR 1 1 1
20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 216 218 220 222 224 226
Time Ratio MDD-Min MDD-Min
(a) Virtual best comparison. (b) BCT-MS vs MDD-Min. (c) The number of clauses.

Figure 2 NFA benchmarks.

a k x k board. The constraints used in these benchmarks are represented with regular
expressions (see [27] for more details). We use the dk.brics.automaton library to encode
any regular expression into a DFA, and then directly expand the DFA into a MDD. The
enocoding from [48] is used to transform any MDD constraint into a BCT constraint.

Table 3 Pentominoes benchmarks.

BCT MDD Abscon
Inst. |#I| Log |Direct/Supportf PS | MS | Min |GMin| Tes | BaP |LevP [NNFP|ComP| (Lex.)
IP-5 48| 0.27 |<0.01]| <0.01 |[<0.01<0.01] 0.05 | 0.01 | 0.06 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02
p-10 |48 (154.70/ 32.04| 0.60 | 0.76 | 3.62 |72.86| 4.94 |31.65|32.08|17.73|19.42|18.28| 9.95
IP-15 |48 [36 out|24 out|{16 out |20 out|20 out24 out|24 out24 out24 out[24 out|24 out[28 out| 20 out
IP-20 |48 44 out|24 out| 16 out [16 out|16 out24 out[20 out{32 outi36 out|36 out|24 out28 out|12 out

#S501|192| 112 | 144 | 160 | 156 | 156 | 144 | 148 | 136 | 132 | 132 | 144 | 136 | 160
[time192(4.37 | 3.94 | 3.39 | 3.38 | 3.36 | 1.23 | 1.52 | 2.20 | 2.48 | 2.62 | 2.56 | 2.73 | 5.43

Table 3 gives the average result of the Pentominoes instances. The BCT support, PS
and MS CNF encodings significantly outperform the MDD CNF encodings. The support
encoding is faster or solves more instances than the other CNF encodings on all 4 series. For
the MDD CNF encodings, GMin has the best overall result, but the support encoding of
BCT constraints can solve 12 more instances than GMin. In addition, the CNF encodings of
BCT constraints can be competitive with the Abscon solver. The support encoding gives the
best performance on 3 out of 4 Pentominoes series.

T T T T T T

100 — T 29

—
Pen-5 +

226 | ‘P _‘5 T 1
20 e 28 Ll pen-10 x 4 pe:?m x
80 . 27 1 Pe:-;: A 224 | pen-15 4
§ 70 7 1:26 L 4 §-222 L 20 4
& 60 -
2 50 1 22 1 3220 1
< 40 w'24 N | o 18 e
=1 - . 218 | |
30} 1 By {8 -
204 \VB-Abscon + || 22| § 216 | i
VB-BCT x 1 o #
105 VB-MDD x [{ 2°[<« | il 2141 1
0 1 TN s S S — 20 T L T TR SR B | L+ I I I I I
2021222324 2526 27 28 29 20 21 22 23 24 25 26 27 28 29 214 216 218 220 222 224 22
Time Ratio MDD-GMin MDD-GMin
(a) Virtual best comparison. (b) BCT-Support vs MDD-GMin. (c) The number of clauses.

Figure 3 Pentominoes benchmarks.

R. Wang and R.H.C. Yap

Figure 3a shows the overall result on Pentominoes. VB-BCT is the best on more than
40% instances, and it can solve 5% more instances than VB-Abscon. Different CNF encodings
of BCT constraints solve different instances, thus, VB-BCT can solve more instances than
VB-Abscon. From Figure 3c, we can see that the number of clauses of GMin can be much
more (up to 20 times more) than that of the support encoding. In addition, GMin is also
slower than the support encoding on almost all instances (see Figure 3b).

6.3 Benchmark Series 3: Nurse scheduling

We use four different models of the nurse scheduling problem, namely, N-1, N-2, N-3 and N-4.

The nurse scheduling problems come from [8, 18, 48], where nurses are assigned with a day
shift, evening shift, night shift or day off for each day. The models have a cardinality [36]
constraint per shift and a regular constraint per nurse. The cardinality constraints are used
to guarantee that there are enough nurses to meet a demand of each shift. Each model has
its own regular constraints as follows:
In N-1, the model uses regular constraints to restrict that for each 7 days, a nurse work 1
or 2 night shifts, 1 or 2 evening shifts, 1 to 5 day shifts and 2 to 5 days off.
In N-2, a nurse works 1 or 2 night shifts every 7 days, and 1 or 2 days off every 5 days.
In N-3, a nurse works 1 or 2 night shifts every 9 days, and 2 or 3 days off every 7 days.

In N-4, a nurse works 1 or 2 night shifts every 11 days, and 3 or 4 days off every 9 days.

All models restrict that a nurse can only work a second shift after 12 hours of the first. The
cardinality and regular constraints are encoded as MDD constraints, and then the MDD
constraints are transformed into BCT constraints. For each model, we use 50 instances from
the N30 series” where the number of nurses of an instance is set to the maximum number of
the nurse demand for a day.

Table 4 Nurse scheduling benchmarks.

BCT MDD Abscon
Inst. |#I| Log |Direct|Support| PS | MS | Min [GMin| Tes | BaP |LevP [INNFP|ComP| (Act.)
N-1 |50|1 out|12.88| 0.30 | 0.49 |3.10|2 out| 0.50 |0.84| 1.09 | 1.29 | 0.77 | 0.64 | 7 out
N-2 |50(11.34| 1.86 | 0.44 | 0.80 [0.84 |1 out| 0.48 [0.63| 2.95 | 0.83 | 0.71 | 0.72 |14 out
N-3 |50|2 out |2 out| 1 out |1 out|2 out|4 out|2 out|3 out|l out|l out|1l out|l out|13 out
N-4 |50 |50 out|10 out| 3 out |2 out|5 out|5 out|4 out|5 out|4 out |2 out| 3 out |2 out|15 out

#S01200] 147 | 188 196 | 197 | 193 | 188 | 194 | 192 | 195 | 197 | 196 | 197 | 151
Itime|200| 2.44 | 1.76 | 0.57 | 0.56 {0.56|0.45| 0.47 |0.47| 0.49 | 0.52 | 0.50 | 0.51 | 0.82

Table 4 shows that CNF encodings can overall outperform the Abscon solver for the nurse
scheduling instances. The Abscon solver only solves 151/200 instances within timeout but
the CNF encodings can solve 197/200 instances. In our detailed results, the CNF encodings
of BCT constraints are faster than the CNF encodings of MDD constraints on most instances.
For example, the PS encoding is faster than each CNF encoding of MDD constraints on most
nurse scheduling instances.

From Figure 4a, we see that VB-BCT is the fastest method on more than 80% instances.
VB-BCT can solve 20% more instances than VB-Abscon. The CNF encodings of BCT
constraints have better performance than those of MDD constraints. For example, the
number of clauses of the PS encoding is around 4 times less than that of the ComP encoding

7 https://www.projectmanagement.ugent.be/nsp.php

40:13

CP 2022

https://www.projectmanagement.ugent.be/nsp.php

40:14

CNF Encodings of Binary Constraint Trees

N
©
T
N
N
N

s N1 -
2 ™ T 221 N-Z x i
27 L i N-3

26 220 | N-4 4

w2 h J
85| i ‘!.I_'219 L i
Ez4 o . Ezm L ,

g 23 7 217

VB-Abscon + 22| N-1 +] I)
VB-BCT x || « F° N-2 216 | i

VB-MDD x [21 gl N3
0 L L L 1 1 1 20 A‘l T N-‘l‘ 215 1 il 1 1 1 I=
20 22 2:-. 26 Rzi_ 210 212 2021 22 %43D2|; (2:5 26Pz7 28 29 215716 21;[2):11)8 <2:19 2P20 22122

ime Ratio -Com -Com
(a) Virtual best comparison. (b) BCT-PS vs MDD-ComP. (c) The number of clauses.

Figure 4 Nurse scheduling benchmarks.

(shown in Figure 4c), and the PS encoding can be faster than ComP on more than 85%
instances (see Figure 4b), where ComP is the best CNF encoding of MDD constraints for
the nurse scheduling instances.

6.4 Benchmark Series 4: XCSP

We use five instance series from the XCSP website® as they are BDD /MDD instances: bdd-15,
bdd-18, mdd-p5 (MDD-half), mdd-p7 (MDD-0.7) and mdd-p9 (MDD-0.9). Some of these
instances were also used in the 2019 XCSP competition. The instances bdd-15 and bdd-18
are introduced in [12], and then the instances mdd-p5, mdd-p7 and mdd-p9 are introduced
in [10, 49], where mdd-pk is a MDD with sharing probability % (see [10, 49] for more details).

Table 5 XCSP benchmarks.

BCT MDD IAbscon|
Inst. # | Log [Direct{Supportf PS | MS | Min |{GMin| Tes | BaP |LevP NNFP/ComP| (Act.)
bdd-15 |35 (35 out[222.99 106.44 |67.67|33.05(192.29/152.37/16 out22 out29 out28 out|33 out| 2.42
bdd-18 |35 409.58129.94] 79.64 |68.77(22.86[332.11126 out[29 out22 out{30 out]25 out|31 out| 0.77
mdd-p5| 25 [22 out23 out| 13 out (14 out|l3 out| 1 out {14 out(l6 out|17 out{l7 out{19 out(l7 out| 73.06
mdd-p7] 9 [95.46 [68.41| 24.73 |20.38|23.28| 6.82 [21.98(44.68|50.12(55.29|39.54|39.58 | 1.82
mdd-p9/10| 2.16 | 0.59 | 0.19 | 0.11 | 0.35 | 0.18 | 0.27 | 0.73 | 1.08 | 0.76 | 0.48 | 0.46 | 0.06

#Sol (114 57 91 101 100 | 101 | 113 | 74 53 53 38 42 33 114
Itime [114] 3.96 | 2.69 | 1.72 | 1.64 | 1.62 | 1.79 | 2.21 | 2.61 | 2.89 | 3.03 | 3.30 | 3.43 | 2.09

Table 5 shows that the Abscon solver using the Activity heuristic is the fastest overall
for these instances. The Abscon solver can solve all instances while the CNF encodings are
time-out on some instances. The CNF encodings of BCT and MDD constraints perform
better on different instances. On the bdd-15, bdd-18 and mdd-p9 series, the PS encoding is
faster than the CNF encodings of MDD constraints while Min is the best CNF encoding on
the mdd-p5 and mdd-p7 series.

Figure 5a shows that VB-Abscon and VB-BCT is the best method on around 90% and
10% instances, respectively. In addition, VB-BCT can be faster than VB-MDD on more
than 80% instances. Figure 5b shows the differences between instances, PS is faster than
Min on almost all instances in the bdd-15 and bdd-18 series but the opposite happens on the

8 http://xcsp.org

http://xcsp.org

R. Wang and R.H.C. Yap

100 29 — — — e e R 224 I I
BDD-15 + 15 -
90 28 lIBDD-18 x g :gg-i: x
80+ 27 _MDD-pS £ WX 222 HMDD-p5 4
270+ MDD-p7 3. MDD-p7
26 |IMDD-p9 - |, AT 20 | [MDD-po x
260+ &25 R 9220+ 1
S50 ! [o XA 0
§40] Ez4 L] Ezls L i
30 423) 1
20 VB-Abscon + 22| | 216 1
VB-BCT x A
10 VB-MDD x [21 P 214} .
0 L I I - - 20 | L T R N N | | | | | |
20 22 24T26 '2!8 tglo 212214 2021 22 2;%;2:4.26 27 28 29 214 216M%1; p%zo 222 22
ime Ratio -Min -Min
(a) Virtual best comparison. (b) BCT-MS vs MDD-Min. (c) The number of clauses.

Figure 5 XCSP benchmarks.

mdd-p5 and mdd-p7 instances, where Min is the best CNF encoding of MDD constraints for
these instances. From Figure 5¢, we can see that the number of clauses of the PS encoding
can be 2-5 times less than that of Min on the bdd-15 and bdd-18 series.

We summarize experiments on all four benchmark series. While there is some initialization
and encoding time for all methods, this is overall less significant than the solving time (there
are many timeouts for some methods). The initialization time becomes significant when the
encoding becomes large, e.g. in the NFA instances, the encoding cost becomes significant
in the MDD CNF encodings with some being memory-out. Overall across all four problem
series, BCT CNF encodings generally outperform MDD CNF encodings. As with the MDD
CNF encoding experiments in [1] where they found performance was mixed between CNF
encodings and their propagator comparison, we also find that for some problems the BCT
CNF encoding is the best while for other problems the BCT propagator in Abscon is the best.
Still BCT CNF encoding is overall competitive or best for many instances and increases the
flexibility and choices in solving of BCT (and NFA/MDD) constraints.

7 Conclusion

Binary Constraint Tree (BCT) is more compact than Ordered Multi-valued Decision Diagram
(MDD). We show that BCT can be exponentially smaller than MDD when representing NFA
constraints. We investigate CNF encodings on BCT constraints which allow solving of BCT
constraints with SAT solvers. At the same time, we show this can improve CNF encodings of
MDD constraints. We tailor three well-known CNF encodings of binary constraints, i.e. the
log encoding, direct encoding and support encoding, to encode BCT constraints. Then we
propose two new CNF encodings, partial support encoding and minimal support encoding,
which give smaller CNF encodings of BCT constraints. We study and compare the strength of
unit propagation on these five CNF encodings of BCT constraints. Our experimental results
study our CNF encodings of BCT constraints and also compare with seven existing CNF
encodings of MDD constraints on a range of existing benchmarks. Experimental results show
that the CNF encodings of BCT constraints can outperform those of MDD constraints. Our
results show that solving of BCT constraints as well as NFA/MDD constraints is promising
on SAT solvers.

40:15

CP 2022

40:16

CNF Encodings of Binary Constraint Trees

—— References

1

10

11

12

13

14

15

16

17

18

Ignasi Abio, Graeme Gange, Valentin Mayer-Eichberger, and Peter J Stuckey. On CNF
encodings of decision diagrams. In International Conference on AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, pages 1-17. Springer, 2016.
Ignasi Abio, Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-Carbonell, and Valentin
Mayer-Eichberger. A new look at BDDs for pseudo-boolean constraints. Journal of Artificial
Intelligence Research, 45:443—-480, 2012.

Ignasi Abio and Peter J Stuckey. Encoding linear constraints into SAT. In International
Conference on Principles and Practice of Constraint Programming, pages 75-91. Springer,
2014.

Jérome Amilhastre, Hélene Fargier, Alexandre Niveau, and Cédric Pralet. Compiling CSPs: A
complexity map of (non-deterministic) multivalued decision diagrams. International Journal
on Artificial Intelligence Tools, 23(04):1460015, 2014.

Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. Compact MDDs for pseudo-
boolean constraints with at-most-one relations in resource-constrained scheduling problems.
In International Joint Conference on Artificial Intelligence, pages 555-562, 2017.

Lucas Bordeaux and Joao Marques-Silva. Knowledge compilation with empowerment. In
International Conference on Current Trends in Theory and Practice of Computer Science,
pages 612—-624. Springer, 2012.

Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting sys-
tematic search by weighting constraints. In European Conference on Artificial Intelligence,
2004.

Sebastian Brand, Nina Narodytska, Claude-Guy Quimper, Peter Stuckey, and Toby Walsh.
Encodings of the Sequence constraint. In International conference on principles and practice
of constraint programming, pages 210-224. Springer, 2007.

Kenil C.K. Cheng, Wei Xia, and Roland H.C. Yap. Space-time tradeoffs for the regular
constraint. In International Conference on Principles and Practice of Constraint Programming,
pages 223-237. Springer, 2012.

Kenil C.K. Cheng and Roland H. C. Yap. An MDD-based generalized arc consistency
algorithm for positive and negative table constraints and some global constraints. Constraints,
15(2):265-304, 2010.

Kenil C.K. Cheng and Roland H.C. Yap. Applying ad-hoc global constraints with the case
constraint to still-life. Constraints, 11(2-3):91-114, 2006.

Kenil C.K. Cheng and Roland H.C. Yap. Maintaining generalized arc consistency on ad-hoc
n-ary boolean constraints. In 17th European Conference on Artificial Intelligence, pages 7882,
2006.

Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial Intelligence,
38(3):353-366, 1989.

Alvaro Del Val. Tractable databases: How to make propositional unit resolution complete
through compilation. In International Conference on Principles of Knowledge Representation
and Reasoning, pages 551-561. Elsevier, 1994.

Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume Perez, Laurent Perron,
Jean-Charles Régin, and Pierre Schaus. Compact-Table: efficiently filtering table constraints
with reversible sparse bit-sets. In International Conference on Principles and Practice of
Constraint Programming, pages 207-223, 2016.

Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201-213, 2002.

Armin Biere Katalin Fazekas Mathias Fleury and Maximilian Heisinger. CaDiCaL, KISSAT,
PARACOOBA, PLINGELING and TREENGELING entering the SAT competition 2020.
SAT COMPETITION, 2020:50, 2020.

Graeme Gange, Peter J Stuckey, and Radoslaw Szymanek. MDD propagators with explanation.
Constraints, 16(4):407, 2011.

R. Wang and R.H.C. Yap

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Tan P Gent. Arc consistency in SAT. In European Conference on Artificial Intelligence, pages
121-125, 2002.

Tan P Gent and Peter Nightingale. A new encoding of AllDifferent into SAT. In International
Workshop on Modelling and Reformulating Constraint Satisfaction, pages 95—110, 2004.
Rebecca Gentzel, Laurent Michel, and Willem Jan van Hoeve. Haddock: A language and
architecture for decision diagram compilation. In nternational Conference on Principles and
Practice of Constraint Programming, pages 531-547. Springer, 2020.

Willem-Jan van Hoeve, Gilles Pesant, Louis-Martin Rousseau, and Ashish Sabharwal. Re-
visiting the sequence constraint. In International conference on principles and practice of
constraint programming, pages 620—-634. Springer, 2006.

Kazuo Iwama and Shuichi Miyazaki. SAT-variable complexity of hard combinatorial problems.
In IFIP World Computer Congress, 1994.

Simon Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence, 45(3):275-286, 1990.

Petr Kucera and Petr Savicky. Propagation complete encodings of smooth DNNF theories.
CoRR, abs/1909.06673, 2019. arXiv:1909.06673.

Petr Kucera and Petr Savicky. Bounds on the size of PC and URC formulas. Journal of
Artificial Intelligence Research, 69:1395-1420, 2020.

Mikael Zayenz Lagerkvist. Techniques for efficient constraint propagation. PhD thesis, KTH,
2008.

Christophe Lecoutre. STR2: optimized simple tabular reduction for table constraints. Con-
straints, 16(4):341-371, 2011.

Sylvain Merchez, Christophe Lecoutre, and Frédéric Boussemart. Abscon: A prototype to solve
CSPs with abstraction. In International Conference on Principles and Practice of Constraint
Programming, pages 730-744. Springer, 2001.

Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box constraint
programming solvers. In International Conference on Integration of Artificial Intelligence and
Operations Research Techniques in Constraint Programming, 2012.

Guillaume Perez and Jean-Charles Régin. Improving GAC-4 for table and MDD constraints.
In International Conference on Principles and Practice of Constraint Programming, pages
606-621. Springer, 2014.

Gilles Pesant. A regular language membership constraint for finite sequences of variables. In
International conference on principles and practice of constraint programming, pages 482—495.
Springer, 2004.

Claude-Guy Quimper and Toby Walsh. Global grammar constraints. In International
conference on principles and practice of constraint programming, pages 751-755, 2006.
Philippe Refalo. Impact-based search strategies for constraint programming. In International
Conference on Principles and Practice of Constraint Programming, 2004.

Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In National
Conference on Artificial Intelligence, 1994.

Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. National
Conference on Artificial Intelligence, pages 209-215, 1996.

Francesca Rossi, Charles J. Petrie, and Vasant Dhar. On the equivalence of constraint
satisfaction problems. In Furopean Conference on Artificial Intelligence, pages 550-556, 1990.
Barbara M Smith and Stuart A Grant. Trying harder to fail first. In European Conference on
Artificial Intelligence, 1998.

Arvind Srinivasan, Timothy Ham, Sharad Malik, and Robert K Brayton. Algorithms for
discrete function manipulation. In IEEE/ACM International Conference on Computer-Aided
Design, pages 92-95, 1990.

Kostas Stergiou and Toby Walsh. Encodings of non-binary constraint satisfaction problems.
In AAAI Conference on Artificial Intelligence, pages 163-168, 1999.

40:17

CP 2022

http://arxiv.org/abs/1909.06673

40:18

CNF Encodings of Binary Constraint Trees

41 Allen Van Gelder. Another look at graph coloring via propositional satisfiability. Discrete
Applied Mathematics, 156(2):230-243, 2008.

42 Hélene Verhaeghe, Christophe Lecoutre, and Pierre Schaus. Compact-MDD: Efficiently
filtering (s)MDD constraints with reversible sparse bit-sets. In International Joint Conference
on Artificial Intelligence, pages 1383-1389, 2018.

43 Héléne Verhaeghe, Christophe Lecoutre, and Pierre Schaus. Extending Compact-Diagram
to basic smart multi-valued variable diagrams. In International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research, pages 581-598.
Springer, 2019.

44 Toby Walsh. SAT v CSP. In International Conference on Principles and Practice of Constraint
Programming, pages 441-456, 2000.

45 Ruiwei Wang, Wei Xia, Roland H. C. Yap, and Zhanshan Li. Optimizing simple tabular
reduction with a bitwise representation. In International Joint Conference on Artificial
Intelligence, pages 787-795, 2016.

46 Ruiwei Wang and Roland H. C. Yap. Arc consistency revisited. In International Conference
on Integration of Constraint Programming, Artificial Intelligence, and Operations Research,
pages 599-615, 2019.

47 Ruiwei Wang and Roland H. C. Yap. Bipartite encoding: A new binary encoding for solving
non-binary csps. In International Joint Conference on Artificial Intelligence, pages 1184-1191,
2020.

48 Ruiwei Wang and Roland H. C. Yap. Encoding multi-valued decision diagram constraints as
binary constraint trees. In AAAI Conference on Artificial Intelligence, 2022.

49 Wei Xia and Roland H. C. Yap. Optimizing STR algorithms with tuple compression. In
International Conference on Principles and Practice of Constraint Programming, pages 724-732,
2013.

50 Roland H. C. Yap, Wei Xia, and Ruiwei Wang. Generalized arc consistency algorithms for table
constraints: A summary of algorithmic ideas. In AAAI Conference on Artificial Intelligence,
pages 13590-13597, 2020.

A Appendix: Proofs

» Theorem 5. BCT can be exponentially smaller than MDD on representing NFA constraints.

Proof. The DTBE of a r arity NFA constraints has 3r 4 1 variables and 3r binary constraints.
The hidden variable domains include at most max(sn,tn) values, where sn and tn are the
number of states and transitions in the NFA. In addition, each binary constraint relation has
tn tuples. So the size of the DTBE is polynomial in that of the NFA constraint.

The size of the negation of the MDDs (Ordered Multi-valued Decision Diagrams) rep-
resenting alldifferent constraints is exponential in r [4]. Therefore, the number of nodes in
a MDD representing the family of NFA constraints given in Example 2 is exponential in r,
where 7 is constraint arity and the NFA has r + 1 states and 4r + r2 transitions. So BCT
can be exponentially smaller than MDD on representing NFA constraints. |

» Lemma 10. Given a BCT P = (X, C) and a tree order O over X, if a literal (vS*, true)
is included in UP(F) and all variable domains in UP(F) are not empty, there is T € sol(P)
such that (O1,a) € T and (v¥,true) is included in F for all (z,b) € 7, where F = (A,C4)|
and B* C A for all x € X and T® C C4 and 7' is a tuple over a subset of A.

Proof. For any ¢ € C where sep(c) = {0;,0;} and i < j, if a literal (v0,true) is included
in UP(F), there must be a literal (vboj,true) in UP(F) such that {(O;,a),(0;,b)} € rel(c),
otherwise unit propagation with the clause cl(O;, a,c) can remove (v9%, true) from UP(F).

Note that the clause cl(O;,a,c) encodes the implication: if vl?j = false for all tuple
{(04,a),(0;,b)} € rel(c), then v9i = false.

R. Wang and R.H.C. Yap

So we can construct a series of tuples {71, ..., 7, } such that n = | X| and 7, = {(O1,1)}
and by = a and for j > 1, 7; = 7,1 U {(O;,b;)} and (vboj"'?True) is included in UP(F) and
{(bi, 05), (bj,0;)} € rel(c), where c is the only constraint in C such that scp(c) = {O;,0;}
and ¢ < j. The tuple 7, is a solution of P and (O1,a) € 7. <

» Proposition 11. The support encoding F' = (AU B,T U E) of BCT constraints (V, P)
implements propagation completeness, where P is a BCT (X,C) and A = |J,.x A” and

B =U,ex B* and T = {cl(z,c)|c € C,x € scp(c)} and E =, x EO(x).

Proof. Assume F7™ = UP(F|,) and all variable domains in F7 are not empty where 7 is a
tuple over a subset of AU B. The ladder encoding implements completeness propagation,
therefore, for any « € X, if F” includes a literal [of a variable in A* U B, then there is a
tuple t(x, a) such that F7 includes t(z,a) and t(x, a) € sol(A* U B*, EO(z)) and | € t(z,a)
and (vZ,true) € t(z,a). We can set x as root and construct a tree order O over X such that
01 = x, thus, there is a solution of P including (x,a) which corresponds to a solution of F|,
including [(based on Lemma 10). So F' implements propagation completeness. |

» Proposition 13. The partial support encoding F = (AV UBY UB" TUEY) of a BCT
constraint (V, P) implements unit refutation completeness where P = (X, C).

Proof. Let x € X and F™ = UP(F|,) where 7 is a tuple over a subset of AV U BY U B¥.

If all variable domains in F7 are not empty, there is a € D(z) such that (vZ,true) is
in F7, otherwise unit propagation with EO(z) can remove all values of the variables in
A% U B?, since the ladder encoding implements propagation completeness and every tuple in
sol(A® U B, EO(x)) includes at least a value true of a variable in B*. Therefore, there is a
solution of P including (z,a) which corresponds to a solution of F|; including (vZ,true) by
setting x as root (based on Lemma 10). So F' implements unit refutation completeness. <«

» Proposition 14. The partial support encoding F = (AV UBY UB? TUEY) of a BCT
constraint (V, P) implements domain consistency where P = (X, C).

Proof. Let # € V and F™ = UP(F|,) where 7 is a tuple over a subset of AY U BY and all
variable domains in F'™ are not empty. If a literal [of a variable in A* U B® is included in
F7, there is a value a € D(x) such that [€ t(z,a) and (vZ,true) € t(x,a) and (v, true) is
included in F7 (since ladder encoding implements propagation completeness). So there is a
solution of P including (x, a) which corresponds to a solution of F|, including ! (Lemma 10 by
setting x as root). Hence, the partial support encoding implements domain consistency. <

» Proposition 16. The minimal support encoding F of a BCT constraint (V, P) with respect
to a tree order O implements unit refutation completeness where x = O1 and P = (X, C).

Proof. Let ™ = UP(F|,) where 7 is a tuple over a subset of AV UBY U B If all variable
domains in F'™ are not empty, there is a € D(z) such that (v?,¢rue) is in F7, otherwise
unit propagation with FO(z) can remove all values of the variables in A* U B?, since ladder
encoding implements propagation completeness and every tuple in sol(A* U B*, EO(x))
includes at least a value true. Therefore, there is a solution of P including (x,a) which
corresponds to a solution of F'|; including (vZ, true) based on Lemma 10 (where x is set as
root). So F' implements unit refutation completeness. |

40:19

CP 2022

	1 Introduction
	2 Preliminaries
	2.1 CNF encoding and unit propagation strength

	3 BCT versus MDD on representing NFA constraints
	3.1 Direct tree binary encoding

	4 CNF encodings for binary constraints
	4.1 Log encoding
	4.2 Direct encoding
	4.3 Support encoding

	5 CNF encoding for BCT constraints
	5.1 Encodings from binary constraints
	5.2 Partial support encoding
	5.3 Minimal support encoding

	6 Experiments
	6.1 Benchmark Series 1: NFA
	6.2 Benchmark Series 2: Pentominoes
	6.3 Benchmark Series 3: Nurse scheduling
	6.4 Benchmark Series 4: XCSP

	7 Conclusion
	A Appendix: Proofs

