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—— Abstract

Modern-day factories of the agricultural industry need to produce and distribute large amounts of
compound feed to handle the daily demands of livestock farming. As a highly-automated production
process is utilized to fulfill the large-scale requirements in this domain, finding efficient machine
schedules is a challenging task which requires the consideration of complex constraints and the
execution of optional cleaning jobs to prevent a contamination of the final products. Furthermore,
it is critical to minimize job tardiness in the schedule, since the truck routes which are used to
distribute the products to customers are sensitive to delays. Thus, there is a strong need for efficient
automated methods which are able to produce optimized schedules in this domain.

This paper formally introduces a novel real-life problem from this area and investigates constraint-
modeling techniques as well as a metaheuristic approach to efficiently solve practical scenarios. In
particular, we investigate two innovative constraint programming model variants as well as a mixed
integer quadratic programming formulation to model the contamination constraints which require
an efficient utilization of variables with a continuous domain. To tackle large-scale instances, we
additionally provide a local search approach based on simulated annealing that utilizes problem-
specific neighborhood operators.

We provide a set of new real-life problem instances that we use in an extensive experimental
evaluation of all proposed approaches. Computational results show that our models can be successfully
used together with state-of-the-art constraint solvers to provide several optimal results as well as
high-quality bounds for many real-life instances. Additionally, the proposed metaheuristic approach
could reach many optimal results and delivers the best upper bounds on many of the large practical
instances in our experiments.
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1 Introduction

In the modern agricultural industry large amounts of compound feed are produced and
distributed to fulfill the demands of livestock farming. A highly-automated production
environment is used to handle these large-scale requirements, where complex machinery
handles the mixing and processing of the numerous ingredients of the compound feed products.

Finding efficient production schedules is a challenging task as several problem-specific
constraints regarding contamination levels need to be fulfilled. Furthermore, job tardiness
is a critical minimization objective in this domain as trucks are needed to distribute the
compound feed products to many consumers and the associated routing is sensitive to delays
in production. Currently, human planners create the production schedules either manually
or basic greedy algorithms are used to produce solutions that often include a large number
of tardy jobs and can hardly fulfill all constraints. Therefore, there is a strong need for novel
efficient automated scheduling methods in this area.

In this paper we introduce a novel challenging real-life machine scheduling problem
originating from the agricultural industry. As a set of predetermined jobs has to be scheduled
on multiple machines where processing times depend on the predecessor job, the problem can
be categorized as a parallel machine scheduling problem with setup times (PMSP). Finding
efficient schedules for such problems is usually a challenging task and even early basic variants
were shown to be NP-hard [3]. Therefore, a plethora of heuristic as well as exact solution
approaches were proposed in the past and several surveys such as [4, 2] provide an overview
of the related literature.

However, as practical machine scheduling problems appear in many different variations
regarding the specified constraints and the objective function, complex large-scale applications
are still being investigated in the recent literature. For example, [14] recently proposed a
constraint programming (CP) approach to solve a resource-constrained PMSP which includes
precedence constraints and aims to minimize job completion time. In [9], another variant with
cyclical parallel machines originating from the agricultural industry was approached with
mathematical programming as well as an adaptive variable neighborhood based metaheuristic.
Another problem considering identical machine scheduling with tool requirements was recently
investigated in [6]. In their paper, the authors proposed a matheuristic approach that
combines a genetic algorithm together with mathematical programming to efficiently solve
practical large-scale instances. In [13], large instances of a bi-objective PMSP with resource
constraints during setups was tackled by introducing a novel iterated pareto greedy algorithm.
The complexity of another real-life PMSP with setup times and resources originating from
the manufacturing industry was analyzed in [5], and the authors proposed mixed integer
programming (MIP) models to efficiently solve instances which are based on industrial data.
Recently, exact and metaheuristic methods based on simulated annealing and MIP were
proposed for another unique PMSP variant from the industry [12].

The problem we investigate in this paper can be compared to previously studied PMSPs
as a set of given jobs with sequence-dependent processing times is scheduled to unrelated
parallel machines. However, in addition to traditional PMSP constraints, a set of unique
contamination level constraints needs to be fulfilled which further requires the consideration
of including optional cleaning jobs in the schedule. Modeling these contamination constraints
requires auxiliary variables with a continuous domain which makes it challenging to find
efficient CP formulations and to the best of our knowledge such constraints have not been
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investigated for PMSPs in the past. The objective function for the investigated problem
variant further includes a domain-specific variant of tardiness minimization, since due dates
are defined on tours which are associated to groups of jobs.

In addition to formally introducing a novel real-life PMSP, we provide a set of 19 real-life
benchmark instances that represent scenarios from the agricultural industry. As exact
approaches to the problem we propose a direct- and an interval variable based CP model
together with several programmed search strategies as well as a mixed integer quadratic
programming (MIQP) formulation that include novel modeling techniques regarding the
contamination constraints and cleaning jobs. Furthermore, we investigate a metaheuristic
approach using simulated annealing to efficiently solve large-scale real-life problem instances
which utilizes four problem specific neighborhood operators and uses randomly generated
initial solutions.

An extensive experimental evaluation of all proposed approaches using the real-life
benchmark instances shows that the CP approach is able to provide 9 optimal results and
further produces high-quality solutions for all instances. The metaheuristic approach we
propose further can reach 8 optimal results, similar upper bounds as obtained by the exact
methods for the majority of instances, and two overall best upper bounds.

The remainder of the paper is structured as follows: We provide the problem description
in Section 2, before we give the direct CP model in Section 3. Afterwards, a MIQP
formulation and an alternative CP model using interval variables are proposed in Sections 4
& 5. In Section 6, we then introduce a metaheuristic approach based on local search. The
experimental evaluation of all proposed approaches is discussed on Section 7. Finally, we
give concluding remarks at the end of the paper.

2 Problem Description

The main aim of the PMSP variant we investigate is to create efficient schedules on multiple
machines for a given set of jobs, where each job has to be scheduled on exactly one of its
eligible machines. Furthermore, release dates (i.e. earliest start times) are specified for each
job depending on the machine and the processing time of each job depends not only on the
machine but also on the previously scheduled job. As several steps regarding the mixing
of food products are performed within a job (each job produces a unique mix), there are
complex domain-specific rules that determine sequence-dependent processing times to fulfill
strict food requirements. Thus, we use sequence-dependent job times instead of setup times
to specify this problem.

To avoid contamination of the produced goods maximum contamination levels of sev-
eral contamination factors further must be respected whenever a job is started. Different
ingredients, which are associated with the contamination factors, are used to produce unique
food mixes in each job. Each ingredient causes a different contamination change regarding
the individual factors, while the contamination needs to stay below a maximum to keep the
food clean. The maximum level depends on the particular quantity and ingredient mix and
thus is specified per factor/job pair. Further, the contamination reduction varies for each
machine and factor, which is given as a reduction factor for each factor/machine pair.

The contamination levels are changed through the execution of the jobs, where each
job can affect them differently. For example, a particular job could lower the level of one
contamination factor and raise the level for another factor during its execution.

Additionally, optional cleaning jobs can be scheduled to reduce the contamination levels.
Cleaning jobs behave similarly to regular jobs as they flush machines using a dummy mix
and thereby update individual contamination levels. To fully reset all levels multiple cleaning
jobs might be needed. Thus, in contrast to regular jobs they are optional and can be
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scheduled more than once if necessary. In the agricultural industry usually predetermined
uniform lengths are used for the cleaning jobs, as it is challenging to give guarantees about
contamination changes on variable lengths.

Finally, the main aim of the problem we investigate is to minimize tour tardiness, where
each tour represents a truck route that is associated to a group of jobs that produce supplies
for that tour. The food mixes each job produces are loaded on trucks which start delivery
as soon as they are fully loaded, where food from a single job can be distributed on several
tours and to multiple customers within a tour. The tour planning involves product forecasts
and is not handled in our problem but predetermined in the input (a tour due date is the
latest time the truck should start delivery).

Thus, the end time of the last job in the schedule that is associated to that tour is
compared against the tour due date to calculate tour tardiness. The minimization objective
then aggregates the tardiness over all tours. Table 1 summarizes the formal parameters of
an instance to the investigated problem:

Table 1 Parameters for the parallel machine scheduling problem with contamination constraints.

Description Parameter

Set of non-cleaning jobs J*

Set of cleaning jobs S

Set of all jobs J=J"US

Set of tours T

Tours associated to each job jobTours; CT VYjeJ*
Set of Machines M

Processing time of job j after predecessor ¢ on machine m
Processing time of job ¢ on machine m at the start of the
schedule

Set of eligible machines per job

Tour due dates

Job release dates

Set of contamination factors

Maximum contamination per factor and job
Contamination volume per job

Initial contamination per machine

Contamination reduction multiplier per factor and machine
Bound on the scheduling horizon

Bound on the contamination level

Bound on the tardiness of a tour

pism ERT ViedJjcJmeM
bim ERT Vie JmeM

E;CM VvjeJ*
deeN VteT

rim €N VieJmeM
K

CP**eR" VkeK,jelJd

Crj €R" VieJkeK
Chm €ERT VkEeK meM
RFy ., €10,1] Vke K,meM
heN

u€RT

veN

To further illustrate the investigated problem, Figure 1 visualizes a schedule for a simple
toy example instance with jobs J1 — J6, a cleaning job C, and two machines M7, Ms. In
this example, J; is scheduled first on M; at time 0 and ends at time 2. Afterwards, Js is
executed before C' is scheduled at time 5. Finally, after a short break Jy is started at time 8.
Js4 cannot directly start after Js ends, as its release date is 8 in this example (7, pr, = 8).
Ja is scheduled first on My and starts at time 1, as 75, a7, = 1. After completion of Js, Js
starts just at time 4 since 7, a, = 4. Finally, Js is scheduled at time 6 and ends at time 9.

0 1 4 5 6 7 8 9 10 11 12

2 3
TS  EEle

Figure 1 An example schedule for 6 jobs and a cleaning job on two machines.
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Note that the jobs have processing times of 2 or 3 in the example, which are determined
by the corresponding predecessor job. Therefore, the job lengths could be different if the job
order was changed. The background colors of each job indicate the associated tours. In the
example, jobs with a dark gray color belong to tour 77, whereas light gray jobs belong to
tour Ty. C has a white background and is not associated to any tour (which is always the
case with cleaning jobs as they do not provide any demands), and J5 is actually associated
to both T7 and 1. Thus, production for T} is finished with the end of J5 at time 6 and tour

T, is completed at time 10. Let the tour due dates for this example be dp, =5 and dr, = 8.

Then 77 would be late by one time unit and T5 would be late by two units.

Figure 2 further illustrates the change in contamination levels on M; regarding two
contamination factors K = {kq, k2}. Both factors start at level 0 at time point 0 but get
raised through the execution of J; to 0.2 and 0.5. The execution of J3 actually lowers the level
of ko to 0.2, however, k; is raised to 1.5 by J3 as it causes a strong contamination regarding
that factor. C' then reduces contamination for both factors down to k1 = 0.2, ko = 0 so that
Jy can be scheduled, which again increases the contamination levels regarding both factors.

—_
(2]

—x—kl

- - kz

—_

<
[

Contamination M,

(=)

o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2 Contamination levels for factors k1 and k2 for the jobs scheduled on machine M; in the
example schedule shown in Figure 1.

3 Constraint Programming Formulation

In this section, we propose a direct CP formulation for the PMSP with contamination
constraints. The model serves as a formal specification of the problem, but can also be used
as an exact solution approach together with a CP solver.

3.1 Decision Variables

The direct CP model uses decision variables that represent the job predecessors and thereby
determines the complete job sequence on each machine:

Predecessors of regular jobs: z; € JUM Vj e J*

Cleaning job predecessors: z;, € JUM U{Ll} Vse S
A predecessor either is another job or a machine, in the latter case the associated job starts
the machine schedule. Cleaning jobs additionally can have their predecessor set to L in which
case they are not scheduled at all. Further, the following auxiliary variables are specified:

Machine assignment for each job: y; € M Vj e J*

Machine assignment for each cleaning job: y; € M U{Ll} Vje S

Start time of each job: start; e N Vje J

End time of each job: end; e N VjeJ

End time of each tour: end; € N Vt €T

Contamination level before each job: ¢, ; € RT Vke K,j € J

41:5
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These variables define the machine assignments for each job (if a cleaning job is not used its
machine assignment is 1) in addition to start- and end times for jobs and tours. Furthermore,
the contamination states before each job are captured by a set of contamination level variables.

3.2 Constraints

In the following we formally specify the constraints of the investigated problem (Note that
we implicitly make use of the element global constraint and constraint reification):

Job start times need to be greater than or equal to the job release date:

start; > iy, Vi€ J (1)
Tour end time variables should be greater than or equal to the associated job end times:

endy > end; Vj € J,t € jobTours; (2)
Jobs can only be assigned to eligible machines:

g €E; VjeJ* (3)

Channel predecessor variables with start- and end time variables:

—
e~
Ny

(z; € J) = (start; > ends; Aend; = start; + p(e,)j,(y;) NYi = Y(;)) Vi€J
(z; € M) = (start; > 0 Aend; = start; +bj ) Ayj =25) Vje€J (
(zj=1)= (start; =0Aend; =0Ny; =1) VjeSs

—
(=2 N
= I

All predecessor assignments need to be different (unless they are set to L):

() £ Ty VTG, =L Vi1, 52 € J where j1 # j2 (7)
Contamination levels must stay below the maximum values:

(ckj +Ckj) - (1 = RFy (y)) < Cii3® Vk € K,j € J where z; € J (8)
Contamination levels at the beginning must be greater or equal to the initial state:

Chj = CRayy Yk € K,j € J where z; € M 9)
Contamination levels are updated based on the job sequence:

Ck,j = RFky(yj) . (Ck,(zj) + Ck,(zj)) Vk € K,j € J where z; € J (10)

3.3 Objective Function

As in the practical application it is better to have several tours that are a bit late than
having a single tour that is late by a large amount of time, the tardiness of each tour is
squared in the objective function:

minimize Z max{0, end; — d;}* (11)
teT

4 Mixed Integer Quadratic Programming Model

In this section, we specify a MIQP formulation of the PMSP with contamination and can be
used as an exact solution approach with state-of-the-art MIQP solvers.
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4.1 Decision Variables

A set of Boolean decision variables is used to determine the job sequence on all machines by
capturing the job predecessors. Additionally, several auxiliary variables determine machine
assignments, start- and end times, contamination levels, and tour tardiness:

Boolean job predecessor variables that are set to 1 if and only if job 7 is a direct predecessor
of job j on machine m (w is a dummy job indicating the initial machine state):

Tijm €{0,1} Vi, je J(J =JUu{w}),meM (12)
Boolean machine assignment variables:

yim €{0,1} VieJmeM (13)
Start time of each job: start; € {0,...,h} VjeJ
End time of each job: end; € {0,...,h} VjeJ
End time of each tour: end; € {0,...,h} VteT

Contamination level before each job: ¢ ; € [0,u] Vke K,jeJ
Tour tardiness: tardiness; € {0,...,v} VteT

4.2 Constraints
The following list of linear constraints are used in the MIQP formulation:

Each job can be used as at most one predecessor:
> wim <1 VieJ (14)
jeI\{i},meM
Each machine can be used as at most one predecessor:
Zﬂ?o’j’m <1 VmeM (15)
JjedJ
Any job that is used as a predecessor also needs to have a single predecessor itself:
Z Ti,j,m = Z Tji,m VjiedJ (16)
meM,icJ'\{j} meM,ieJ'\{j}
If a job j has a predecessor ¢, ¢ must have another predecessor on the same machine:
Z Tk,im > Ti,j,m Vi e J,geJmeM (17)
keJN\{i}

If a job has a predecessor on a machine, it also needs to be assigned on the same machine:

Z Tijm = Yjim Vi€ JImeM (18)
ieJ\{j}

If a job is a predecessor on a machine, it also needs to be assigned on the same machine:

Z Tijm = Yim Vi€ JmeM (19)
jeJ\{i}

Each job can only be assigned to eligible machines:
S wm=1 Vi€, > ym<l ViES, Y ym=0 VjeJ (20)
meE; mekE; meM\E;

Each job needs a predecessor on an eligible machine (cleaning jobs may have one):

Z Tijm=1 VjeJ, Z zijm <1 VjeS, Z Tijm =0 VjEJ

i€J,mcE; i€J,mcE; ieJ,meM\E,
(21)
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Release dates have to be respected:

start; > rjm — (1 —yjm)-h VjeEJImeM (22)
Channel tour end times to the job end times:

end; > end; Vj e Jte jobTours; (23)

Channel job start- and end times with the job predecessors (this also prevents cyclic
predecessor assignments):

start; > end; — (1 — Z Tijm) (h+1) VieJ jeJ (24)
mekE;
end; > start; + Z (zi,5,m - Pjym,i) — (1 — Z Zijm) - (h+1) Vie J,jed (25)
mekE; mek;

Contamination levels must stay below the maximum values:

(chj+Cry) (1 — RFp ) <CR®+ (1= jm)  (14+u) VkeEK,icJ jeJmeE; (26)
Set initial contamination levels for jobs at the start of the schedule:

hy > Chm —(L—zojm) - (1+u) VkEK,j€JmeE; (27)
Set contamination levels in the sequence based on the job predecessor assignments:

Chj 2> RFiom - (Cryi +Cryi) — (1 —2ijm) - (14+u) VekeK,icJ jeJmeE; (28)
Channel the tour tardiness variables to tour end time variables:

tardinessy > endy — dy (29)

4.3 Objective Function

The objective function aims to minimize the sum of each squared tour tardiness:

minimize Z tardiness? (30)
teT

5 Alternative Constraint Programming Model using Interval Variables

In this section, we propose an alternative CP model that utilizes a widely used technique to
capture the scheduling aspects of the investigated problem with optional interval variables
and specialized global constraints [10, 11].

As alrady mentioned in Section 2 the practical application uses sequence-dependent
processing times instead of setup times in its input parameters. However, in the interval
based model we want to utilize efficient scheduling global constraints that only accept
setup-time based input. Thus, we transform the sequence-dependent processing times into
equivalent shorter processing and appropriate setup times in a preprocessing phase for this
formulation (by taking the overall minimum processing time and calculating setup times
based on the differences regarding each job predecessor).

We specify the following additional input parameters needed by this formulation:

Setup time between two jobs on each machine: s,,;; € N Vme M,ie J jeJ

Processing time (not sequence-dependent) of each job (w has a processing time of 0):

pi €N VjelJ

Minimum release time: m; = min{r;,,|m € M} Vje J

Contamination volume for unused job positions is 0: Cr o =0 Vk € K

Acceptable difference for floating point comparison: € € R™

All jobs associated to a tour: tourJobs, = {j € J|t € jobTours;}
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5.1 Decision Variables

We use optional interval variables which formally are decision variables whose domain values
are a convex interval: {L} U {[s,e)|s,e € Z,s < e}, where s and e are the start- and end
times of the interval and L is a special value indicating that the interval is not scheduled
at all. The start- and end times of such a variable var can be accessed via functions
startO f(var), endO f(var), and the function presenceO f(var) returns true if and only if
an optional interval is scheduled. Furthermore, several global constraints can be defined
on interval variables. For example the alternative(var, V) global constraint ensures that
exactly one of the interval variables in the set V must have identical start- and end times
to the interval variable var. We specify interval variables (optional interval variables) with
the notation intervalVar(p, [I,b]) (optIntervalVar(p,[l,b])), where p denotes the processing
time and [l, b] specifies the time period in which the interval may be scheduled.

In addition to the interval variables, we make use of sequence variables which capture a
permutation over a given set of interval variables and thereby express the sequence of all
present interval variables. Thus, a sequence variable 7 can be used with global constraints
such as noOverlap(w), which ensures that all intervals in the sequence do not interfere
temporally. Furthermore, sequence variables can serve as arguments for functions such
as first(m,var) and typeO f Prev(w,var, —1), where first(m,var) ensures that the interval
variable var is scheduled first in sequence 7 and typeO f Prev(rw, var, —1) returns the job id
which is the predecessor of interval var in sequence 7 or -1 if var is scheduled at the start of
the sequence. The following decision variables are used in the interval variable based model:

Interval variables for jobs and optional interval variables for cleaning jobs:

z; : intervalVar(p;, [m;,h]) Vj € J", xs:optlntervalVar(ps,[ms,h]) Vs€ S (31)
Optional interval variables that model machine assignments for each job:
LMy, ; : optIntervalVar(py, [rj,m,h]) Vi€ J ,meM (32)

A sequence variable for each machine:
Tm : seq({xmm,jlj € J'},J) ¥Yme M (33)

These interval variables are sufficient to determine the full schedule. However, to model
the contamination levels we further need sets of auxiliary variables that capture the pos-
itions of jobs as well as auxiliary variables with a continuous domain that determine the
contamination levels in the sequence. As we designed the interval based model for the use
with CPoptimizer [11], which does not support floating point variables but only dynamic
floating point expressions, we cannot rely on the recursive formulation of the contamination
level constraints that was used for the models proposed in sections 3 & 4. Instead, we
introduce additional auxiliary variables to represent all possible job positions which can be
used together with floating point dynamic expressions for the contamination constraints:

Variables storing the job positions (0 is used if the job is not scheduled on that machine):

JjobPosm ; € {0,...,]J]} YmeM,jeJ (34)
Variables storing the job scheduled at each position (0 is used if no job is scheduled):
jobAty; € {0}UJ Yme M,je{l,...,|J[} (35)

Variables storing the job predecessors (0 if the job is not scheduled on the machine, -1 if
it has no predecessor):

prevm; € {—-1,0yUJ" VYme M,jeJ (36)
Dynamic expressions representing the contamination levels before each job position:
kim0 = Choms  Chymyi = RFqm - (Chom,(i—1) + Cr,(jobAt,.)) YVke€ K,me Mie{l,...,|[J]}
(37)

Dynamic expressions representing the contamination volume at each position:
CUk,m,i = (Ck,m,i—l + Ck,(jobAtm,i)) . (1 — RFkym) Vee K,me M,i € {1, ceey |J‘} (38)
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5.2 Constraints

The following set of constraints are specified for the interval variable based model:

Release dates must be respected for each present job interval:

presenceOf(xmm ;) = (startOf(xmm,j) — S, (prev,, ;),j = Tim) Vi€ J,m e M (39)
Each job can only be scheduled on one machine:

alternative(x;, {zmm,jlm € M}) VjeJ (40)
The dummy job w is scheduled as the first job on all machines:

first(7m, £Mm,w) A presenceOf(zmm, ) VYm € M (41)
All jobs in a machine sequence must not overlap (considering also the setup times):

noOverlap(mm, {sm,i ;)i € J',j € J}) ¥Yme M (42)
Maximum contamination levels must not be violated:

CVk,myi < C’,??;‘obmmyi) —e Vke K,me M,ie{l,...,|J|} (43)
Jobs cannot be scheduled on ineligible machines:

—presenceOf(zmm, ;) Vi€ Jme M\ E; (44)
Channel job interval variables to job predecessor variables:

prevm,; = typeOfPrev(mm, &mm,j,—1) Ym e M,j € J (45)
Channel job predecessor variables to sequence position variables:

(prevm,; = w) < (jobPosm,; =1) Yme M,j€J (
(prevm,; =0) < (jobPosm,; =0) VYme M,j e J (47
(prevm,; =1i) = (jobPosm,i = jobP0sm j —1) ¥Ym € M,i,j € J (
(jobPoSm,i = jobP0Sm,j — 1 A jobP0Sm i # 0) = (prevm,; =14) Vm € M,i,j € J (

Channel sequence position variables to job position variables:

(jobPosm,i = j) < (jobAtm,; =1) Yme M,ie Jje{l,...,|J|} (50)

5.3 Objective Function

The objective function minimizes the squared tour tardiness of all tours:

minimize Z max({0} U {endOf(x;) — d¢|Vj € tourJobs:})* (51)

teT

6 Metaheuristic Approach

In this section, we propose a local search approach using simulated annealing for the PMSP
with contamination constraints. First, we describe the solution representation, the used
cost function, and the generation of initial solutions. Then, we explain the generation of
neighborhood solutions and further describe how a simulated annealing based acceptance
function is utilized.

We note that a local search approach based on simulated annealing that partly use
similar neighborhoods for another PMSP variant was proposed in [12]. However, we further
introduce two additional neighborhood operators to deal with the unique properties of the
problem proposed in this paper.
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6.1 Solution Representation, Cost Function & Initial Solutions

We represent candidate solutions by using arrays storing the sequence of job ids assigned to
each machine. The length of each array is set to the maximum number of all jobs, and empty
positions in the arrays are aligned to the end and set to a null value. Any candidate solution
ensures that regular jobs are scheduled exactly once on any machine, cleaning jobs however
are optional. The value of the objective function for a given candidate solution is determined
by calculating the earliest possible start time for each job in the sequence (i.e. either directly
after the predecessor ends or at the release date). However, as candidate solutions may also
cause constraint violations, we additionally include the number of violations V' in the cost
function cost(S) that is used to evaluate a candidate solution S:

cost(S) = Zmax{o, endy —di Y2 +V - M (52)
teT

The cost function adds the number of constraint violations V' multiplied by a given factor
M to the objective function, where M is set to a large value so that a single hard constraint
violation becomes incomparingly more expensive than any objective value. We determine
the value V' by counting the number of contamination level violations together with the
number of eligible machine violations. Thereby, each job scheduled on an ineligible machine
is counted as a violation and the number of contamination level violations is calculated by
checking if the maximum contamination level is exceeded for each job position and factor.

To randomly construct initial solutions, we shuffle the list of jobs and then simply assign
one job after the other to a randomly selected eligible machine. Note that this construction
procedure may produce infeasible solutions as contamination level constraints may appear,
however, local search usually can quickly repair infeasible solutions.

6.2 Search Neighborhoods

We use four different neighborhood operators for local search:

1. Swap jobs: This operator selects two jobs in the schedule and simply swaps their
positions, where the jobs can be on the same machine or on different machines.

2. Shift job: A job is moved to another position in the schedule. Potential targets are any
position between consecutive jobs as well as the start and end of any machine schedule.

3. Insert cleaning job: Inserts a single cleaning job into any position of the schedule.

Similar as with the shift job neighborhood, the target position can be between any pair

of consecutive scheduled jobs, or at the start/end of a machine schedule.
4. Remove cleaning job: Removes a single cleaning job that is currently scheduled.
Regarding the swap jobs and shift job operators, we additionally consider block swap and
block shift versions where the main idea is to swap or shift blocks of up to k consecutively
scheduled jobs at once, where k is a parameter given to the algorithm. For example, if kK =3
the swap job neighborhood would not only consider swapping two single jobs, but could
potentially swap two blocks of consecutively scheduled jobs with block lengths of two or
three. Similarly, a block shift neighborhood move could shift blocks of jobs to a new position
in the schedule. The intuition behind these block moves is that short job sequences that work
well regarding job processing times and contamination levels can be moved at once to find
improving neighboring solutions without the need of performing solution quality worsening
intermediate steps.

When dealing with large-scale real-life instance, exploring the complete neighborhood can
quickly become computationally expensive. Thus, in the proposed metaheuristic we do not
explore the full neighborhood, but instead randomly select a single move out of the complete
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neighborhood in each iteration. Thereby, we select a single random move per iteration in 2
steps: First, we randomly select one of the neighborhoods. Then, we uniformly sample a
single move from the chosen neighborhood.

6.3 Neighborhood Move Acceptance

After a single random move is selected, we evaluate the change to the current solution’s
quality that would be caused by the move. Based on the result we then decide whether the
move should be applied to the current solution. We use a move acceptance function based
on simulated annealing [8] which ensures that a cost-improving move is always accepted,
whereas a non-cost-improving move is only accepted with probability p that depends on the
change in solution quality as well as the current temperature value 7. Equation 53 shows
how probability p is calculated based on the costs of the current solution S and the candidate
solution S* which has bigger costs than S.

—(cost(S™) — cost(S)))
T

Regarding the temperature 7', we set the initial temperature T;,;; and the final tem-
perature T't;nq by user defined parameters. The cooling rate, which determines how fast
the temperature is lowered after each search iteration, is determined dynamically after each
iteration in our approach. Thus, the actual cooling rate which is applied for the next iteration
is calculated by looking at the average runtime per move and the remaining time budget.
Thereby, we set the cooling rate to a value that ensures that the temperature converges to
the final temperature value Tfinq; at the end of the runtime, assuming the current average
runtime per iteration.

p = exp( (53)

7 Experimental Evaluation

In this section, we present the results from an extensive evaluation of all proposed approaches
on realistic problem instances from the industry. First, we describe our experimental
environment and the benchmark instances. Afterwards, we present and discuss the detailed
computational results.

7.1 Experimental Environment

All experiments were run on a computing cluster with 10 identical nodes, each having 24 cores,
an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz and 252 GB RAM. To evaluate the MIQP
model we used Cplex 20.1 [1] and Gurobi 9.5 [7], whereas we used CPoptimizer 20.1 [11] to
evaluate the CP models. As CPoptimizer does not support floating point variables, we had
to adapt the direct model from Section 3 so that it uses dynamic expressions to capture the
contamination levels for each job position. We did this by using similar modeling techniques
regarding the contamination constraints as in Section 5, with the only difference that the
auxiliary job position variables were channeled to the predecessor variables from the direct
model instead of the interval variables. For CPoptimizer we set the relative optimality gap
to 1077, besides that we used default parameters for all solvers, but restricted them to
single-threaded solving. Further, we used reasonable values based on the size of the real-life
instances for the model parameters h,u,v and €. The local search parameters were set based
on manual tuning trials: k = 4, T = 10'2, and Topg = 1074

All approaches were given a time limit of 1 hour per instance. As the metaheuristic
approach utilizes a randomly created initial solution as well as randomly generated moves,
we conducted 10 repeated experimental runs per instance with the local search approach and
present the mean costs in the final results.
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Table 2 The upper bounds for each instance achieved by the proposed methods.

Inst. CP direct CP interval MIQP Gurobi MIQP Cplex LS

I1 403617 403617 406472 445837 403617
12 394696 394696 412688 394696 394696
13 25702 25702 30250 27702 25702
14 2305 2305 2393 3573 2305
I5 39193760 33707 44530 52907 33707
16 136288 136288 143421 157525 136288
17 245418700 959455 18291650 24524154 959455
I8 6571216 20816 5375830 23556806 20816
19 4901583 97586 15987063 97586
110 106274 32417279 106274
111 10539330 2434331 2384267.3
112 324562700 696805 135383618 697368.6
113 440502600 1020957 1020957
114 910107 407439 3098941 1826389 407439
115 7178927 1454166 121659015 51971121 1454166
116 1144669 773924 29362144 776526
117 581404 22263532 17479750 581404
I18 33251 19796349 188558145 33251
I19 1082993 6697489 259614

We gathered 19 problem instances that directly represent real-life scheduling scenarios
from our industry partners to evaluate the proposed methods on realistic problems. All
instances together with the detailed results are available for download at https://doi.org/
10.5281/zenodo.6797397. Detailed size parameters of the instances can further be found
in Appendix A.

We further experimented with different programmed search strategies in early experiments.

For the final experimental results presented in this section we used the solver’s default search
strategy with the direct CP model and selected a search strategy that assigns values to the 7
sequence variables first for the interval based model, as these strategies performed best in the
early experiments. Detailed information about the search strategies and related experiments
are given in Appendix B.

Based on feedback from the reviewers we additionally experimented with another variant
of the MIQP model that uses smaller big Ms in constraints 22, 25, and 27. Although the best
dual bound found within 1 hour of runtime could be slightly improved for most instances,
the best upper bound found with MIQP heuristics was better without these changes for the

majority of instances. Thus, we decided to not include these changes in our final experiments.

7.2 Computational Results

A summary of the best upper bounds produced by all evaluated approaches is given in
Table 2. The table shows the best upper bounds produced by the direct- and interval variable
based CP models with CPoptimizer (CP direct/CP interval), the best upper bounds reached
by the MIQP model with Gurobi (MIQP Gurobi) and Cplex (MIQP Cplex), as well as the
mean cost results achieved over 10 runs with local search (LS). Overall best upper bounds
per instance are formatted in bold face, and empty cells denote that no solution could be
found within the runtime.

We see in Table 2 that the interval variable based CP model was the overall best
performing exact method as it provided best solutions for 17 instances. Only instance 19
could not be solved, whereas the direct CP model and Gurobi could find a solution within
the runtime. Local search also achieved best upper bounds in 17 cases, only for instances 11
and 16 the mean cost results were not on par with the CP approach. However, regarding
instances 11 and 19 the metaheuristic achieved improved results over the exact methods.
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Table 3 The lower bounds for each instance achieved by exact methods.

Inst. CP direct CP interval MIQP Gurobi MIQP Cplex

I1 369489 403617 389058 388824
12 98575 295211 246813 229617
13 9377 25702 17273 15845
14 1370 2305 1936 1521
I5 14885 24086 21284 21284
16 72197 136288 87066 82979
17 306161 707234 487155 322028
I8 11601 20816 10517 11008
19 72097 97586 91988 62341
110 35145 80015 31561 324
111 90555 412877 277498 220423
112 491242 604160 577154 534484
113 634342 1020957 842490 802717
114 276676 407439 338875 330226
115 764585 1268739 1192610 1169638
116 412942 773924 600003 434803
117 352486 528173 461746 448509
118 20449 32662 28694 28694
119 223730 224186 232434 224946

The metaheuristic actually found solutions of similar quality over all 10 runs for all instances
except for instances 11/12 where the solution costs were 2383478/2391371 in the best case
and 696805/702441 in the worst case.

Table 3 further displays the best lower bounds achieved with exact methods. Columns 2-6
show from left to right: Lower bounds achieved with the direct CP model (CP direct), the
interval variable model (CP interval), and the MIQP model with Gurobi and Cplex (MIQP
Gurobi/MIQP Cplex). We see that the interval variable model produced the best lower
bounds for instances 1-18, whereas Gurobi achieved the best lower bound for instance 19.

Finally, Table 4 summarizes the overall best lower bounds (LB) and upper bounds achieved
by any of the exact methods (Exact) and compares it to the best upper bound achieved over
all 10 runs by local search (LS). Further, the table includes the duality gap between the
lower bound and the best upper bound in percentage (Gap), as well as the time in seconds
required until the best upper bound was found by the exact and local search methods (Time
(Exact) and Time (LS)). We see in the results that instances 1,3,4,6,8,9,13,14, and 16 could
be solved to optimality by exact methods. Surprisingly, the metaheuristic approach produced
cost equivalent or improved results compared to exact methods for most instances, as only
for instance 16 a better solution was achieved with CP. This indicates that the proposed
metaheuristic approach can efficiently escape local optima and thereby reach high-quality
results for real-life instances. However, CP based methods also produced equal or better
results for 17 instances and were necessary to guarantee optimal solutions. Additionally, we
see in the results that exact methods using CP can find high-quality solutions quickly as
for several instances the best bound was achieved within 60 seconds of runtime. However,
for some instances the best solution was found later during the search process. The best
results with local search were mostly found after about half of the given runtime budget
was consumed. This is an expected result, given that the used simulated annealing scheme
dynamically determines the cooling scheme so that the final temperature is reached at the
end of the runtime.

We further compared the best schedules produced by the proposed methods with schedules
created by human planners that currently utilize a construction heuristic to generate solutions
for the same set of real-life instances in the industry. For proprietary reasons we cannot provide
detailed results and additional information about the used heuristic, but our approaches
could successfully improve the quality of the schedules and thereby reduce the number of
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Table 4 The overall best lower bounds and best results achieved with exact and heuristic methods.

Inst LB Gap Exact Time (Exact) LS Time (LS)
I1 403617 0.00 403617 65 403617 1365.27
I2 295211  25.21 394696 45.22 394696 1555.05
13 25702 0.00 25702 43.08 25702 1233.50
14 2305 0.00 2305 54.95 2305 1394.50
15 24086  28.54 33707 55.58 33707 1515.24
16 136288 0.00 136288 47.19 136288 1544.77
17 707234 26.29 959455 1142.8 959455 1445.58
I8 20816 0.00 20816 70.33 20816 1462.24
19 97586 0.00 97586 128.54 97586 1577.79
110 80027  24.70 106274 859.68 106274 1745.08
I11 412877  82.68 2434331 1225.75 2383478 1548.49
112 604160  13.30 696805 428.97 696805 1505.05
113 1020957 0.00 1020957 70.28 1020957 1484.74
114 407439 0.00 407439 617.8 407439 1729.00
115 1268739 12.75 1454166 2035.72 1454166 1615.52
116 773924 0.00 773924 284.15 776526 1615.68
117 528173 9.16 581404 228.03 581404 1607.26
118 32662 1.77 33251 281.08 33251 1366.23
119 232434  10.47 1082993 3600 259614 1446.79

delayed tours up to roughly 10%. Reducing delayed tours indicates a decent improvement as
tour delays lead to large costs in practice. Furthermore, as the instances are not easy and
the manual planning is done by experienced planners, a 10% reduction can be considered as
a good enhancement.

8 Conclusion

In this work, we introduced a novel real-life PMSP from the agricultural industry and
provided a set of challenging real-life instances that we gathered from industrial partners.

We proposed a direct- and an interval variable based CP approach as well as a MIQP
approach and thereby considered alternative modeling techniques to efficiently capture
unique aspects such as contamination constraints, optional cleaning jobs, and a tour tardiness
objective. Furthermore, we investigated a metaheuristic based on local search and simulated
annealing using problem specific neighborhood operators to approach large-scale instances.

An extensive experimental evaluation with the introduced real-life problem instances
shows that the CP approach using the interval variable based model was the overall best
performing exact method as it provided 9 optimal results and high-quality upper bounds for
most instances. Additionally, the metaheuristic could provide solutions to all instances and
thereby improved results of exact methods for two large-scale instances.

An interesting subject of future work could be to hybridize the proposed exact and
metaheuristic techniques within a large-neighborhood search based approach.

—— References

1 IBM ILOG CPLEX Optimization Studio 20.1.0. User’s manual for cplex, November 2021.
URL: https://www.ibm.com/docs/en/icos/20.1.07topic=cplex-users-manual.

2 Ali Allahverdi. The third comprehensive survey on scheduling problems with setup times/costs.

European Journal of Operational Research, 246(2):345-378, October 2015.

3 Ali Allahverdi, Jatinder N. D Gupta, and Tariq Aldowaisan. A review of scheduling research
involving setup considerations. Omega, 27(2):219-239, April 1999.

4 Ali Allahverdi, C. T. Ng, T. C. E. Cheng, and Mikhail Y. Kovalyov. A survey of scheduling
problems with setup times or costs. European Journal of Operational Research, 187(3):985-1032,
June 2008.

41:15

CP 2022


https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual

41:16

Solving Parallel Machine Scheduling with Contamination Constraints

5 Abdoul Bitar, Stéphane Dauzeére-Péres, and Claude Yugma. Unrelated parallel machine
scheduling with new criteria: Complexity and models. Computers € Operations Research,
132:105291, August 2021.

6 Quang-Vinh Dang, Thijs van Diessen, Tugce Martagan, and Ivo Adan. A matheuristic for
parallel machine scheduling with tool replacements. European Journal of Operational Research,
291(2):640-660, June 2021.

7 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL: https://www.
gurobi.com.

8 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science,
220(4598):671-680, May 1983.

9  Chuleeporn Kusoncum, Kanchana Sethanan, Rapeepan Pitakaso, and Richard F. Hartl.
Heuristics with novel approaches for cyclical multiple parallel machine scheduling in sugarcane
unloading systems. International Journal of Production Research, 59(8):2479-2497, April 2021.

10 Philippe Laborie. IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three
Problems. In Willem-Jan van Hoeve and John N. Hooker, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture
Notes in Computer Science, pages 148-162, Berlin, Heidelberg, 2009. Springer.

11  Philippe Laborie, Jérome Rogerie, Paul Shaw, and Petr Vilim. IBM ILOG CP optimizer for
scheduling. Constraints, 23(2):210-250, April 2018.

12 Maximilian Moser, Nysret Musliu, Andrea Schaerf, and Felix Winter. Exact and metaheuristic
approaches for unrelated parallel machine scheduling. Journal of Scheduling, December 2021.

13 Juan C. Yepes-Borrero, Federico Perea, Rubén Ruiz, and Fulgencia Villa. Bi-objective parallel
machine scheduling with additional resources during setups. European Journal of Operational
Research, 292(2):443-455, July 2021.

14 Pinar Yunusoglu and Seyda Topaloglu Yildiz. Constraint programming approach for multi-
resource-constrained unrelated parallel machine scheduling problem with sequence-dependent
setup times. International Journal of Production Research, 0(0):1-18, February 2021.

A Benchmark Instances

Table 5 summarizes the features of the 19 problem instances that directly represent real-life
scheduling scenarios from our industry partners. The table displays in each row the instance
id (I1-119), the number of jobs (]J|) , the number of machines (|M|), the number of tours
(IT]), and the number of contamination factors (|K|). Furthermore, Table 5 also includes the
number of variables and constraints used in the direct CP model (Vars/Cons), the interval
based model (I.Vars/I.Cons), and the MIQP model (M.Vars/M.Cons). We see that the
MIQP formulation in general uses more variables but less constraints than the CP models.
Further, the interval based model uses slightly more variables and constraints compared to
the direct CP model.

B Programmed Search Strategies

We evaluated several search strategies for the direct- and interval variable based CP models
together with CPoptimizer. These search strategies are based on variable- and value selection
heuristics, which determine the order of the explored variables and the value assignments.
This can play a critical role in reducing the search space that needs to be enumerated by the
CP solver. As the search strategies define heuristics only on a subset of all variables, the
solver’s default strategy is used after all mentioned variables were fixed. Furthermore, ties
are broken lexicographically. Table 6 describes the search strategies used with the direct-
and interval variable based models.
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Table 5 Size parameters of the real-life benchmark instances.

Inst. |J| |M| |T| |K| Vars Cons I.Vars I.Cons M.Vars M.Cons
I1 26 2 41 58 874 5267470 897 5268554 183289 43798
12 16 2 371 58 824 5267209 840 5267828 110164 28379
I3 15 2 37 58 819 5267184 833 5267761 76058 26854
14 18 2 34 58 834 5267264 846 5267965 68021 31473
I5 28 2 42 58 884 5267522 907 5268710 199545 47099
I6 21 2 43 58 849 5267341 869 5268178 152501 36753
17 76 2 76 58 1124 5268762 1174 5273691 764573 132270
I8 67 2 T8 58 1079 5268529 1128 5272594 658176 115596
19 7 2 82 58 1129 5268790 1181 5273814 808008 135722
110 94 2 82 58 1214 5269230 1274 5276173 1097447 171276
I11 61 2 74 58 1049 5268380 1096 5271881 590600 104791
112 78 2 90 58 1134 5268816 1200 5273945 884457 137331
I13 67 2 92 58 1079 5268535 1141 5272580 706558 114135
114 68 2 8 58 1084 5268557 1131 5272703 653867 116774
I15 63 2 90 58 1059 5268428 1115 5272113 647114 107794
I16 65 2 69 58 1069 5268478 1119 5272341 640025 111787
I17 66 2 70 58 1074 5268506 1121 5272460 630976 112971
I18 65 2 73 58 1069 5268481 1121 5272351 645552 111137
119 60 2 7 58 1044 5268350 1099 5271769 607280 101845

Table 7 summarizes the results on the 19 instances for all evaluated search strategies
with the direct- and interval variable based CP models. Each row shows results for a single
search strategy, where Columns 1-5 display from left to right: The model and search strategy
(Search), the number of optimal solutions achieved (O), the number of solutions achieved
(S), the number of best upper bounds achieved when compared with other strategies using
the same model (B), and the number of provided optimality proofs.

The results displayed in Table 7 show that the direct model could find solutions for 16
instances with the solver’s default search strategy, whereas other strategies could solve less
problem instances, even though direct-searchl could find more optimal solutions and best
upper bounds. No search strategy was able to prove an optimum with the direct model
(lower bounds achieved with the interval model were used to determine how many optimal
solutions were found with the direct formulation). As direct-default could solve the most
instances, we only present detailed results achieved by this strategy with the direct model in
Section 7.

We further see in the results shown in Table 7 that the interval variable based model could
successfully solve 18 instances with several search strategies, whereas the solver’s default
strategy could solve 13 instances. The search strategies interval-search3 and interval-search7
produced the overall best results as they could find 9 optimal solutions, achieved the best
upper bounds for 18 instances, and provided 8 optimality proofs. Actually, they achieved

the exact same upper bounds, and produced different lower bounds only for two instances.

Both search types fix sequence variables first, which indicates that this was the most efficient
strategy in our experiments. In Section 7 whenever we refer to the best results produced with
the interval variable based model we mean results achieved by the interval-search3 strategy,
only for the best lower bounds presented in Table 3 we combined the best bounds achieved
with interval-search3 and interval-search?.
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Table 6 Search strategies for the direct- and interval variable based CP models.

Search Strategy

Description

direct-default
direct-search1

direct-search2

direct-searchd
direct-searchy
direct-searchb
direct-search6
direct-search?

Uses the solver’s default search strategy for the direct model.
Starts with the assignment of all x decision variables. Variables with the

smallest values in their domains are selected first and a minimum value first

strategy is used for value selection.
As direct-searchl, but uses a smallest domain size variable selection heuristic

instead of the smallest domain value strategy.

As direct-searchl, but operates on the start instead of the x variables.

As direct-search2, but operates on the start instead of the x variables.

As direct-searchl, but operates on the endT our instead of the x variables.
As direct-searchl1, but operates on the end instead of the x variables.

As direct-search2, but operates on the end instead of the x variables.

interval-default
interval-searchl

interval-search?2
interval-search3

interval-search/
interval-searchd
interval-search6
interval-search7

Uses the solver’s default search strategy for the interval variable model.
Assigns values to the xm interval variables first. Each interval chooses a
presence status first and then assigns a start- and end time. Interval variables
with a small start- and end date are fixed first.

As interval-search1, but operates on the x instead of the xm variables.
Assigns values to the m sequence variables first. Thereby, the full order of
intervals associated to the sequences and the presence status of each interval
are fixed before start- and end times are assigned in a later search phase.

As interval-searchl1, but operates on the xc instead of the xm variables.
Starts with interval-search3 and then continues with interval-searchi.

Starts with interval-search3 and then continues with interval-search?2.

Starts with interval-search8 and then continues with interval-search.

Table 7 Summarized results produced with different programmed search strategies.

Search

@)
os]

Search

direct-default

direct-searchl
direct-search2
direct-search3
direct-search4
direct-search5
direct-search6
direct-search?7

interval-direct

interval-searchl
interval-search2
interval-search3
interval-search4
interval-searchb
interval-search6
interval-search7
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