
Learning MAX-SAT Models from Examples Using
Genetic Algorithms and Knowledge Compilation
Senne Berden #

Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Mohit Kumar #

Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Samuel Kolb #

Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Tias Guns #Ñ

Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Abstract
Many real-world problems can be effectively solved by means of combinatorial optimization. However,
appropriate models to give to a solver are not always available, and sometimes must be learned from
historical data. Although some research has been done in this area, the task of learning (weighted
partial) MAX-SAT models has not received much attention thus far, even though such models can be
used in many real-world applications. Furthermore, most existing work is limited to learning models
from non-contextual data, where instances are labeled as solutions and non-solutions, but without
any specification of the contexts in which those labels apply. A recent approach named hassle-sls
has addressed these limitations: it can jointly learn hard constraints and weighted soft constraints
from labeled contextual examples. However, it is hindered by long runtimes, as evaluating even a
single candidate MAX-SAT model requires solving as many models as there are contexts in the
training data, which quickly becomes highly expensive when the size of the model increases. In this
work, we address these runtime issues. To this end, we make two contributions. First, we propose a
faster model evaluation procedure that makes use of knowledge compilation. Second, we propose
a genetic algorithm named hassle-gen that decreases the number of evaluations needed to find
good models. We experimentally show that both contributions improve on the state of the art by
speeding up learning, which in turn allows higher-quality MAX-SAT models to be found within a
given learning time budget.

2012 ACM Subject Classification Computing methodologies → Machine learning

Keywords and phrases Machine learning, constraint learning, MAX-SAT

Digital Object Identifier 10.4230/LIPIcs.CP.2022.8

Supplementary Material Software (Source Code): https://github.com/ML-KULeuven/HASSLE-GEN
archived at swh:1:dir:6769420692514ea592885add6759177a0c221e8b

Funding This project was partially funded by the Research Foundation - Flanders (FWO) projects
G0G3220N and FWO-S007318N, as well as the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (Grant Nos. 101002802, CHAT-
Opt and 694980, SYNTH) and the “Agentschap Innoveren & Ondernemen” (VLAIO) as part of the
innovation mandate HBC.2021.0246. (S. Kolb).

Acknowledgements We would like to thank Luc De Raedt for his helpful comments.

1 Introduction

Many real-world problems can be effectively solved by means of combinatorial optimization.
With appropriate mathematical models, problems like planning [25], routing [20] and schedul-
ing [9] can be delegated to a highly-optimized solver that can quickly and automatically
yield one or more high-quality solutions. However, automatic solvers do not remove the need

© Senne Berden, Mohit Kumar, Samuel Kolb, and Tias Guns;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:senne.berden@kuleuven.be
https://orcid.org/0000-0002-6473-5757
mailto:mohitkr092@gmail.com
https://orcid.org/0000-0002-7202-1818
mailto:samuel.kolb@kuleuven.be
https://orcid.org/0000-0002-7803-2198
mailto:tias.guns@kuleuven.be
https://people.cs.kuleuven.be/~tias.guns/
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://github.com/ML-KULeuven/HASSLE-GEN
https://archive.softwareheritage.org/swh:1:dir:6769420692514ea592885add6759177a0c221e8b;origin=https://github.com/ML-KULeuven/HASSLE-GEN;visit=swh:1:snp:8c465dba87a56e093362b1b832290c3f07cf8b29;anchor=swh:1:rev:014dc50406ba1f4b45c666dbce7797feda551f5f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

for human effort altogether; they merely move it from the solving phase to the modeling
phase. Unfortunately, the manual construction of an appropriate model can be difficult for
several reasons. First, it requires both modeling and expert domain knowledge. Finding
people that possess both, or setting up a collaboration to marry both, is not a trivial issue.
Second, some optimization criteria and constraints might be hard to express explicitly for
a human modeler. Third, even with the criteria and constraints successfully modeled, the
potentially difficult task of weighting them by importance relative to each other remains, at
least for problems with multiple optimization criteria and problems that contain weighted
soft constraints. Finally, manual modeling can be a laborious process. It might require many
iterations of gradual refinement of the model, as well as a survey of the various stakeholders
to discover what is considered important and what constraints might apply. This arduous
model construction phase motivates another approach altogether: learning the model from
data, as opposed to manually constructing it.

This is the machine learning task we tackle in this work. Specifically, we focus on learning
MAX-SAT models, a type of mathematical model that can be used to represent many
interesting real-world problems [1, 9, 25, 26, 27]. The task involves jointly learning hard and
soft constraints – as well as appropriate weights for the latter – that best explain a set of
labeled contextual examples [16]. These examples are known solutions and non-solutions
to the considered problem. For instance, when learning a model for rostering nurses in a
hospital, historical rosters can be used as examples. The rosters would be labeled as positive
or negative depending on whether they were deemed suitable.

As alluded to above, the type of examples we consider are contextual; they come with
associated contexts. These contexts represent the states of affairs that the examples occurred
in. Let us examine their relevance. In the nurse rostering scenario, a roster in which
some nurses have to work several consecutive long shifts is likely not optimal in normal
circumstances, and thus not a solution. However, in the context of a pandemic taking place,
or many nurses being unavailable due to illness or other circumstances, such a roster might
be optimal and an appropriate solution to the rostering problem. Contexts are a useful way
of including this type of situational information in the example set, with the goal of learning
a model that can generalize across contexts. For any given context, such a model can then
be used to construct new solutions that are appropriate in that context. As will be discussed
in Section 2, learning from examples that are annotated with contexts is one of the things
that sets this work apart from most existing related work.

The problem of learning MAX-SAT models from labeled contextual examples has recently
been addressed in [16]. This work laid the theoretical groundwork, showing that, given enough
training data and time, high-quality models can be learned. Subsequent work introduced
hassle-sls, a more efficient stochastic local search approach [17]. However, hassle-sls
still suffers from long runtimes, which stem from the particularly expensive candidate model
evaluation involved in learning. Faster learning is desirable, as it would allow for better
models to be learned in a given training time budget. To this end, we make two contributions:
1. We develop a novel knowledge-compilation-based evaluation procedure that significantly

speeds up MAX-SAT model evaluation when learning small to medium-sized models, or
when learning from a large set of examples. Because evaluation is the major bottleneck
in the search for good models, improving its efficiency speeds up learning considerably.

2. We develop a novel genetic algorithm named hassle-gen, whose crossover operator takes
much larger steps in the search space than hassle-sls, reducing the number of model
evaluations needed to find a good model. Because of this, hassle-gen learns high-quality
MAX-SAT models significantly faster than the state of the art.

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:3

2 Related Work

We focus specifically on learning weighted partial MAX-SAT models. This work is positioned
in the research field of constraint learning, because the unweighted and weighted clauses
in these models can respectively be seen as hard and weighted soft constraints. Here, we
provide an overview of some of the most relevant works in constraint learning. For a more
thorough overview, we refer the reader to [8].

Learning hard constraints. We start by discussing a few approaches that are aimed at
learning constraint satisfaction problems (CSPs). The first of these, named ConAcq.1, is
a version space algorithm that learns CSPs from examples labeled as solutions and non-
solutions [5]. The version space is represented implicitly as a propositional CNF formula
over variables that denote binary constraints. Complete variable assignments that satisfy
the formula then correspond to CSPs in the version space, i.e., CSPs that are consistent
with respect to the given labeled examples. This approach was followed by ConAcq.2 [6] and
QuAcq [4], two active learning approaches that learn more efficiently by respectively asking
the user complete and partial membership queries.

Some other approaches are instead focused on learning global constraints. For exam-
ple, [23] and [24] focus on learning the parameters of global constraints from a small pool of
positive examples. Similarly, Model Seeker is effective at learning global constraints from
positive examples provided in matrix-form [3]. In Model Seeker, fitting constraints are taken
from a catalogue of constraints and related metadata (e.g., information about implication
relations between constraints), and then subjected to several types of redundancy checks and
simplifications. This method has proven to be very effective, even in the presence of many
variables or only few examples.

Finally, GenetiCS is a method that learns constraints for mathematical programming
models from known feasible and infeasible examples [22]. The approach is related to the
one developed in this work in that it involves an evolutionary algorithm, but differs in that
it learns linear and polynomial (in)equalities represented as abstract syntax trees (ASTs),
rather than weighted partial MAX-SAT models. Additionally, GenetiCS does not learn from
contextual examples.

Learning soft constraints. Several methods that focus on learning an objective to be
optimized, in the form of weighted soft constraints, also exist. They can be categorized
into parameter learning and structure learning approaches. The former is merely aimed
at learning the weights of a given set of constraints. The latter also learns the constraints
themselves.

One relevant example is CLEO, an interactive method whose purpose is to learn the
weights of clauses occurring in MAX-SAT or MAX-SMT models [7]. Although the focus lies
on learning weights, the algorithm is asked to weight many more constraints than are desired
in the final model. However, a sparsity assumption is applied by including the minimization
of the weight vector’s 1-norm as one of the method’s objectives, leading to a lot of constraints
getting assigned a weight of zero. In this sense, the approach can be seen as a form of
structure learning.

Another approach with the purpose of learning soft constraints and their weights is
presented in [13]. In this work, a type of weighted MAX-SAT model is learned. These
MAX-SAT models are an extension to the ones we consider, in that the constraints are
function-free disjunctive first-order logic clauses, and thus are not limited to propositional

CP 2022

8:4 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

logic. Another difference with the work presented here is the input given: the method
requires examples of possible worlds as well as preference relations between these worlds to be
provided. It then uses inductive logic programming to learn a set of appropriate constraints,
which are subsequently weighted using preference learning techniques.

HASSLE. The approaches discussed above are focused on learning either hard constraints
or soft constraints. They differ significantly with our approach, in which both types of
constraints are being learned jointly. This joint learning is desirable in the setting we
consider, as will be discussed in Section 4. Another large difference is that none of the above
works are aimed at learning from contextual examples. However, it is a realistic assumption
that what one considers optimal depends on the context one is positioned in.

Although none of the methods discussed above is applicable to the presently considered
problem setting, two approaches that do try to solve this task already exist. The first
approach, called hassle-milp, was introduced in [16]. This work also proved that MAX-SAT
models are PAC-learnable, justifying empirical risk minimization. hassle-milp formulates
the learning task as a mixed-integer linear program (MILP), which can be solved by an
off-the-shelf solver. The main drawbacks of this method are that it is not optimized for
efficiency and that, unless a solver that offers anytime functionality is used, it either produces
a solution that has zero empirical error, or no solution at all.

The second approach, called hassle-sls, is a stochastic local search algorithm that
improves on hassle-milp by offering anytime functionality and by increasing efficiency [17].
It keeps track of a current model and iteratively constructs and evaluates a neighborhood of
minimally altered models, of which the best neighbor then replaces the current model. To
make the approach tractable, the neighborhood is constructed heuristically, keeping only
those models that show some promise of improving on the current model according to the
employed heuristic.

One large drawback of hassle-sls is its long runtime, which is exacerbated when the size
of the learning problem increases. The algorithm slows down significantly when the model
one aims to learn becomes larger, or when the number of distinct contexts occurring in the
training data increases. At the heart of this issue lies the high cost of model evaluation.
hassle-sls is particularly affected by this, because in every iteration, it evaluates an entire
neighborhood of MAX-SAT models before making only a minimal alteration to the current
model. In this paper, we alleviate the runtime issues in two ways. First, we make model
evaluation less expensive by making use of knowledge compilation. Second, we reduce the
number of evaluations needed to find a good model, by developing a novel search strategy
called hassle-gen.

3 Preliminaries

Weighted partial MAX-SAT. Let X = {X1, . . . , Xn} be a set of Boolean variables. An
assignment x – also referred to as an instance – is a mapping of each variable Xi ∈ X to
either true or false.

Let L = {Xi, Xi|Xi ∈ X} be the set of literals defined over X, where Xi is the negation
of Xi. A disjunctive clause C is a disjunction of literals from L. An assignment satisfies C

when it satisfies at least one of the literals occurring in C. A formula in conjunctive normal
form (CNF) F is a conjunction of clauses. An assignment satisfies F when it satisfies all
of the clauses occurring in F . A weighted clause (C, w) consists of a clause C and a weight
w, which we assume lies in [0, 1] without loss of generality. A weighted CNF formula is a
conjunction of weighted clauses.

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:5

A MAX-SAT problem is defined by a CNF formula F . An assignment is a solution to the
MAX-SAT problem when it satisfies the maximum number of clauses that can simultaneously
be satisfied in F . A partial MAX-SAT problem is defined by two CNF formulas, Fh and
Fs. An assignment is a solution when it satisfies Fh and satisfies the maximum number of
clauses that can simultaneously be satisfied in Fs while satisfying Fh. Finally, a weighted
partial MAX-SAT problem is defined by a CNF formula Fh and a weighted CNF formula
Fs. An assignment is a solution when it satisfies Fh and accumulates the maximum total
weight in satisfied weighted clauses that can be accumulated in Fs while satisfying Fh. The
clauses in Fh and the weighted clauses in Fs can respectively be seen hard and weighted soft
constraints. When an assignment is not a solution because it does not satisfy all the clauses
in Fh, it is called infeasible. When it does satisfy all clauses in Fh, but does not accumulate
the maximum attainable weight in satisfied soft constraints of Fs, it is called suboptimal.

For the sake of brevity, we from now on refer to weighted partial MAX-SAT simply as
MAX-SAT. Because this work aims to learn MAX-SAT problems from known solutions and
non-solutions, we will generally refer to a MAX-SAT problem as a MAX-SAT model. When
we speak of the MAX-SAT learning problem, we refer to the problem of learning MAX-SAT
models.

Contexts. As explained in Section 1, there is a strong motivation to think of a historical
labeled example as an instance that is known to be a solution or non-solution in a specific
context. As a context might represent a state of affairs, it often makes sense for it to be a
conjunction. Most generally, however, a context ϕ is simply a propositional formula over
Boolean variables.

An assignment is a solution to a MAX-SAT model consisting of hard constraints Fh and
weighted soft constraints Fs in a context ϕ if it satisfies Fh and ϕ, and accumulates the
maximum total weight in satisfied weighted clauses that can be accumulated in Fs while
satisfying Fh and ϕ. Thus, it is possible for an instance to be optimal in a particular context,
but suboptimal outside of that context.

4 Problem Statement

In this work, the goal is not to solve MAX-SAT problems, but to learn them from a set of
labeled, contextual examples. Specifically, such an example consists of:
1. A context ϕ

2. An assignment x that satisfies context ϕ

3. A Boolean label l, denoting whether assignment x is an optimal solution to the target
model in context ϕ or not

Note that the label “non-solution” does not specify whether the example is a non-solution
because it is infeasible or because it is suboptimal. We focus on this type of supervision,
because in real-world settings, the reason for the negative label is typically not available.
While this assumption on the input makes supervision easier to provide, it also gives rise
to a credit assignment problem: when a candidate model wrongly labels an example as a
solution, it is unclear whether the hard constraints or the soft constraints should be altered.
For this reason, both types of constraints should be learned jointly, rather than separately.
The learning task becomes:

▶ Definition 1 (MAX-SAT learning). Given Boolean variables X = {X1, . . . , Xn} and a set
of labeled contextual examples S = {(ϕi, xi, li)|i = 1, . . . , m}, find hard constraints Fh and
weighted soft constraints Fs that define a MAX-SAT model which can be used to obtain
high-quality instances in any context ϕ.

CP 2022

8:6 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Something not yet specified is what constitutes a high-quality instance. Intuitively, an
instance is good when it is feasible and close to optimal with respect to the ground-truth
model. The learned model’s ability to generate high-quality instances is reflected in its
infeasibility and average regret, which will be the primary performance measures in the
experimental evaluation. The infeasibility expresses what proportion of solutions to the
learned model are actually infeasible with respect to the ground-truth model. The regret
captures how good the learned model’s solutions are with respect to the ground-truth model’s
soft constraints. In section 7, we will discuss how exactly these measures are computed.

As the ground-truth model is not available, infeasibility and regret cannot be used during
learning. Instead, we aim to maximize the model’s training set accuracy, which is the
proportion of examples whose label correctly denotes how the example relates to the model.

5 Knowledge Compilation

When learning MAX-SAT models, the vast majority of the runtime is spent evaluating
candidate models. Let us consider in more detail why this is the case.

To fully evaluate a model’s training set accuracy, it has to be evaluated on all contextual
examples included in the training data. Checking whether an instance is feasible or infeasible
is relatively straightforward: one merely has to loop over at most all hard constraints of the
model, and check for each whether it is satisfied by the instance. Checking optimality, however,
requires knowing the maximum total weight that can be accumulated while satisfying the
hard constraints. Attaining this information requires solving the model, which is NP-hard
[18]. An additional complication is the fact that examples are accompanied by contexts,
which might affect the optimal total weight that can be accumulated. So, in order to correctly
evaluate a single candidate model, hassle-sls solves a separate MAX-SAT problem from
scratch for every distinct context occurring in the data (which can then be cached and reused
for all examples sharing that context). This causes model evaluation to be particularly slow,
which in turn significantly slows down learning.

The solution we present is based on a novel representation of a MAX-SAT model
as an algebraic decision diagram (ADD). An ADD is an extension of a binary decision
diagram (BDD), in which the terminal nodes can be assigned real values, rather than just
true or false [2]. It is a rooted, directed, acyclic graph which consists of two types of nodes:
decision nodes and terminal nodes. A decision node is associated with a Boolean variable
and branches into two child nodes; one for each truth assignment to the variable. A terminal
node is associated with a real value.

Our ADD representation of a MAX-SAT model maps every infeasible instance onto a
terminal node with value 0 and every feasible instance onto a terminal node with as value
the sum of the weights of all satisfied soft constraints. A useful aspect of this representation
is that the optimal value (in the absence of a context) can very easily be discovered: one
simply has to loop through all terminals in order to find the highest one. This information is
required to determine whether an instance is a solution. An example of a MAX-SAT model
and its corresponding ADD representation is shown in Example 2.

▶ Example 2.
Consider the MAX-SAT model with hard constraints Fh = (a ∨ b) and soft constraints

Fs = (0.5 : b ∨ c) ∧ (0.7 : ¬c). This problem corresponds to the following ADD, in which
negative edges are represented as dashed lines and positive edges as solid lines:

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:7

a

b b

cc

0 1.2 0.5 0.7

Although the construction of the ADD is necessarily an expensive operation – as it
practically solves the NP-hard MAX-SAT problem – there are potential time benefits in
reusing the resulting ADD for context-specific inference. The main idea is that each candidate
model can be converted to an ADD once, after which the diagram can be reused to compute
the optimal attainable value for all separate contexts occurring in the training data. Contrast
this with the original approach, in which a brand new MAX-SAT problem has to be solved
for every model-context combination.

The evaluation procedure. The full knowledge-compilation-based evaluation procedure
is shown at a high level in Algorithm 1. It takes as input a MAX-SAT model and a set of
labeled contextual examples, and it produces as output the model’s accuracy on the set of
examples. To do this, it performs three steps. First, it constructs an ADD that represents
the model in the absence of any context. Next, it runs through all the contexts present in
the example set and, for each, uses the ADD constructed in step 1 to compute the optimal
value in that context. Finally, it runs through all examples and, for each, uses the ADD
constructed in step 1 to compute the value the example achieves. Each example’s value,
along with its associated context’s optimal value computed in step 2, can then be used to
label the example. Finally, the assigned label is compared with the example’s label in the
training data.

This description naturally raises the following two questions, which we answer in turn:
1. How to convert a MAX-SAT model to an ADD?
2. How to incorporate contexts in the inference done on the ADD?

Constructing the ADD. To transform a MAX-SAT model defined by hard constraints Fh

and soft constraints Fs to an ADD, we make use of the basic operators defined on BDDs
and ADDs. We do not go over the details of these operations here. For more information,
we refer the reader to chapter 6 of the book Logic in Computer Science [12].

The transformation procedure starts by constructing a separate BDD for each disjunctive
clause, irrespective of whether it is weighted or not. In each BDD that corresponds to a soft
constraint from Fs, the terminal that denotes true is then given the constraint’s associated
weight as value. This effectively casts the BDD to an ADD representing the weighted soft
constraint.

All the BDDs that represent hard constraints are then combined using the multiplication
operator. This results in a single BDD that represents the conjunction of all hard constraints.
Similarly, the ADDs representing soft constraints are combined using the addition operator.
This results in a single ADD in which every instance leads to a terminal that denotes the
total weight in satisfied soft constraints accumulated by that instance. However, this ADD
does not yet consider whether the instances are feasible or not.

CP 2022

8:8 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Algorithm 1 The evaluation procedure using knowledge compilation.
1: procedure Evaluate(model: a MAX-SAT model, examples: a set of labeled contextual

examples)
2: score← 0
3: ADDmodel ← convert model to ADD
4: contexts← set of all separate contexts occuring in examples

5: for each context in contexts do
6: Compute best value of ADDmodel in context

7: Cache this best value
8: for each example in examples do
9: instance, context, label← the instance, context and label of example

10: best-value← retrieve optimal value in context from cache
11: value← compute value of instance in ADDmodel

12: if value = best-value then
13: assigned-label← solution
14: else
15: assigned-label← non-solution
16: if label = assigned-label then
17: score← score + 1
18: score← score

Length(examples)
19: return score

Finally, the BDD representing the hard constraints and the ADD representing the soft
constraints are multiplied. The effect of this is that the terminals of all feasible paths of the
ADD representing the soft constraints are multiplied by 1, while the terminals of infeasible
paths are multiplied by 0. In turn, all feasible paths still end up in the same terminal node
as before, while infeasible paths are redirected to a terminal with value 0. For compactness,
the resulting diagram is then reduced to a reduced ordered BDD [12]. The resulting diagram
represents the entire MAX-SAT model.

Context-specific inference. Once a candidate model has been transformed into an ADD,
we want to be able to quickly infer the optimal value attainable in a specific context ϕ.

A straightforward way of doing this involves multiplying the ADD that represents the
MAX-SAT model with a BDD that represents ϕ, and doing inference on the resulting diagram.
However, we have found that this generally takes too long and does not shorten overall model
evaluation time. Similarly, performing restrict operations on the model’s ADD representation
in accordance with ϕ is not fast enough.

Instead, we go through the entire ADD, starting from the root node, and ignoring branches
that violate ϕ. The maximum terminal value reached this way is the best attainable value
achievable in ϕ.

This process is straightforward when ϕ is a conjunction of literals, as one simply has
to ignore branches that violate one of the literals in ϕ. Luckily, this is arguably the most
common scenario, as a context typically represents a state of affairs, which is most naturally
represented using a conjunction.

When ϕ is a disjunction, or more generally a DNF formula, one can repeat the process
above for each conjunctive clause in ϕ. The maximum terminal value reached for any of the
conjunctive clauses is then the maximum attainable value in ϕ as a whole.

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:9

As an optimization, we perform a precomputation before any example or context is
considered, which involves finding and storing all paths leading to the terminal node with
the maximum value in the ADD representing the MAX-SAT model. A quick computation
can then be made for every context occurring in the training data to determine whether it
violates all of the paths leading to said terminal node. If any of these paths is not violated,
one knows immediately that the optimal value in the context is the same as the one in the
absence of a context, which has been precomputed. In the other case, the procedure detailed
above is used.

6 The Genetic Algorithm

As discussed above, the bottleneck in hassle-sls is the evaluation of MAX-SAT models,
because it involves solving MAX-SAT problems, which is NP-hard. In every iteration of
hassle-sls, an entire neighborhood – which frequently consists of several dozen models –
is evaluated, before the best neighbor is identified and a minimal alteration to the current
model is made. This is the crux of the problem: many expensive candidate model evaluations
lead only to a minimal step in the search space.

For this reason, we develop an alternative search strategy in the form of a genetic
algorithm, which we call hassle-gen. Genetic algorithms form a class of population-based
metaheuristic optimization approaches that are loosely inspired by biological evolution
[10, 11, 21]. They aim to solve optimization problems by evolving a population of candidate
solutions, also referred to as individuals. They generally consist primarily of genetic selection,
mutation and crossover operators. An overview of hassle-gen is given in Algorithm 2. In
what follows, we discuss its components in detail.

Algorithm 2 HASSLE-GEN, a genetic algorithm for learning MAX-SAT models from examples.
1: procedure HASSLE-GEN(examples: a set of labeled contextual examples, k: the

total number of constraints to learn, q: the population size, pc: the crossover probability,
[pm1, pm2, pm3]: the mutation probabilities, g: the maximum number of generations, t:
the cutoff time)

2: Randomly initialize a population of models containing k constraints
3: Evaluate population

4: while generation < g ∧ runtime < t do
5: new-population← empty population
6: while new-population not of size q do
7: parent1, parent2 ← Crowding-parent-selection(population)
8: if Random() < pc then
9: ind← Clause-Crossover(parent1, parent2, examples)

10: else
11: ind← either parent1 or parent2, selected at random
12: ind← Hardness-mutation(ind, pm1)
13: ind← Weight-mutation(ind, pm2)
14: ind← Literal-mutation(ind, pm3, examples)
15: surv1, surv2 ← Crowding-survivor-selection(ind, parent1, parent2)

▷ Includes evaluation of ind

16: Add surv1 and surv2 to new-population

17: population← new-population

18: return best individual in population

CP 2022

8:10 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Selection. Selection consists of two components: parent selection and survivor selection.
The former is concerned with determining which individuals of the current population to
subject to the mutation and crossover operations. The latter is concerned with determining
which individuals to keep in the next generation’s population and which to discard. Good
selection strikes an appropriate balance between exploitation of useful information present in
the current population and exploration of new regions of the search space.

Both hassle-gen’s parent and survivor selection are determined by its use of a variation of
the deterministic crowding scheme [19], which we employ because it is effective at maintaining
population diversity, which in turn benefits the search.

Parent selection is straightforward in deterministic crowding: in every generation, each
individual is selected to be a parent exactly once. Because hassle-gen’s crossover operator
only produces a single offspring, this means that in every generation, every individual gives
rise to exactly one offspring, together with another parent individual.

Deterministic crowding’s survivor selection requires a distance metric d between individuals
to be defined. It uses this metric in the following way. Say parents p1 and p2 gave rise to
offspring o. Then, by the time survivors have to be selected, a matching is made. Parent
p1 is matched to o only if d(p1, o) < d(p2, o); otherwise, parent p2 is matched to o. The
offspring and matched closest parent then compete, wherein only the individual with the
highest fitness makes it to the next generation. The other parent automatically survives.
Here, the fitness of a MAX-SAT model is simply its training set accuracy.

A first consequence of this scheme is that the average fitness of the population never
decreases, because a parent never gets replaced by a worse individual. Second, the best
individual is automatically kept in the next generation, unless this individual has produced
an even better offspring. Finally, and most importantly, there is a strong emphasis on
maintaining the initial population’s diversity. This is true because an offspring is typically
quite similar to its parents, with one of which it has to compete for survival, and because the
matching procedure sets up offspring-parent competitions in such a way that the distance
between the competitors is minimized. Having new individuals compete for survival with
similar old individuals is how diversity is maintained, because this prevents any specific
genetic information from quickly taking over the entire population.

What remains to be answered is how the distance metric d is instantiated. We opt for
a metric that captures the semantic distance between MAX-SAT models, rather than a
syntactic distance. The metric makes use of the notion of an accuracy bit vector.

▶ Definition 3 (Accuracy bit vector). Given a list of examples S, a MAX-SAT model M has
an associated accuracy bit vector v, which has as many entries as S has examples. For each
index i, the entry at index i in v is 1 iff M accurately labels the example at index i in S, and
0 otherwise.

▶ Definition 4 (Semantic distance). Let S be a list of m examples and let M1 and M2 be
two MAX-SAT models with respective accuracy bit vectors v1 and v2. Let their number of
correctly labeled examples be s1 and s2, respectively. Finally, let dH be the Hamming distance
between v1 and v2. Then, the semantic distance dSem between M1 and M2 is

dSem = dH − L

U − L
, where L = |s1 − s2| and U = m− |s1 + s2 −m|

This semantic distance metric considers the Hamming distance of the accuracy bit vectors,
relative to a lower and upper bound. If we were to simply use the Hamming distance itself,
we would give inherent preference to matching highly accurate or highly inaccurate models.

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:11

Mutation. A mutation operator takes a single individual as input. Usually, it only makes a
small modification to the individual, in order to slightly redirect the search or to introduce
new genetic information that can then be recombined by crossover operators.

hassle-gen contains three mutation operators, which are all applied to any selected
parent. The first operator, named hardness mutation, loops over all of the individual’s con-
straints and, independently for each constraint, with probability pm1, changes the constraint
from a hard to a soft constraint or vice versa.

The second operator, named weight mutation, loops over all of the individual’s weighted
soft constraints, and independently for each constraint, with probability pm2, replaces the
constraint’s weight by a weight sampled uniformly at random from (0, 1].

Finally, literal mutation is responsible for altering the occurrences of variables in clauses.
This operator differs in nature from the first two in that it is more informed; it considers
the training data. It takes effect with probability pm3. It starts by randomly selecting one
constraint of the individual being mutated. This constraint is the only one to be affected
by the mutation. The operator then constructs a neighborhood around this constraint,
consisting of all other constraints that differ in only a single variable occurrence (i.e., a
single literal appears, disappears or changes its sign), excluding all constraints that already
occur in the model. Finally, the operator uses a heuristic way of evaluating all neighboring
constraints, and mutates the selected constraint into the best neighboring one. The heuristic
evaluation of constraints is based on the notion of coverage, where constraints with higher
coverage are better according to the heuristic.

▶ Definition 5 (Covering). A constraint c is said to cover an example e consisting of instance
i and label l if and only if:

l is “solution” and i satisfies c
l is “non-solution” and i does not satisfy c.

▶ Definition 6 (Coverage bit vector). Given a list of examples S, a constraint c has an
associated coverage bit vector v, which has as many entries as S has examples. For each
index i, the entry at index i in v is 1 iff c covers the example at index i in S, and 0 otherwise.
The sum of all of v’s entries is called c’s coverage.

Note that a constraint’s coverage is only a heuristic measure of its usefulness, as it
disregards the weights of soft constraints and the existence of contexts. Still, in preliminary
experiments, we found that the use of this heuristic leads to a much more effective operator
than one that simply alters literals at random.

Crossover. A crossover operator recombines information from multiple individuals, generally
two. The motivation is that by combining individuals that are fit for different reasons, new
individuals can be obtained that combine the strengths of both parents.

hassle-gen contains one crossover operator, which we call constraint crossover. It
takes two parents as input and produces a single offspring. Unlike the mutation operators,
constraint crossover keeps the constraints themselves intact, but rearranges which constraints
co-occur. It is through this mechanism that hassle-gen is able to take larger steps in the
search space than hassle-sls. Like literal mutation, constraint crossover is an informed
operator and considers the training data. This allows it to bias its steps towards directions
that are likely to improve the model’s training set accuracy.

For any pair of parents, constraint crossover takes effect with probability pc. Given two
parents, each containing k constraints, it selects k constraints that are combined in the single
offspring. It does not do so blindly, but considers combinations of the constraints’ coverage
bit vectors.

CP 2022

8:12 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

▶ Definition 7 (Combining coverage bit vectors). Let S be a list of examples, and let c1 and
c2 be constraints with respective associated coverage bit vectors v1 and v2. The coverage bit
vector v of conjunction c1 ∧ c2 is attained by performing:

a pairwise AND operation on v1 and v2 for all examples in S labeled “solution”
a pairwise OR operation on v1 and v2 for all examples in S labeled “non-solution”

The sum of all of v’s entries is called the coverage of c1 ∧ c2.

One option would be to choose the k constraints taken from the two parents which lead
to the largest coverage when combined. However, identifying these constraints involves
computing the coverage of

(2k
k

)
combinations.

Instead, we opt for a sequential selection of constraints that works as follows. First, the
constraint with the highest coverage is selected and copied into the offspring. Then follows a
repeated selection of the constraint that leads to the highest coverage when combined with
the already selected constraints, until k constraints have been selected.

7 Experimental Evaluation

In this section, we thoroughly investigate the following research questions.

Q1 Does the knowledge-compilation-based model evaluation procedure speed up the evalua-
tion of candidate MAX-SAT models?

Q2 When given the same amount of time, is hassle-gen able to learn higher-quality
MAX-SAT models than hassle-sls?

Datasets. Each synthetic ground-truth model with kh hard constraints and ks soft con-
straints over n variables is generated such that none of its clauses is entailed by any
combination of the other clauses in the model. For each disjunctive clause, the number of
literals is chosen uniformly at random from [1, 5]. The literals themselves are also selected
randomly. For ks of the generated clauses, a weight is sampled uniformly from (0, 1].

For each generated ground-truth model, a dataset is constructed in two phases. First,
a set of conjunctive contexts of n/2 literals is generated such that each included context
actually affects the maximum attainable value in the ground-truth model. Then, for each
context, a specified number of infeasible, suboptimal and solution instances are generated.
Infeasible and suboptimal instances are acquired simply by generating random instances that
satisfy the context until the desired number of infeasible and suboptimal ones are found. To
generate solution instances, a solver is used. To prevent overly similar solution instances, 10
times as many solutions as required are generated for every context, after which the desired
amount are sampled at random.

Performance measures. To answer Q1, we consider the relative increase in the number
of evaluations hassle-sls makes per second when using the novel evaluation procedure
compared to when using the original procedure. For example, a speed-up factor of 3.4 would
mean that hassle-sls was able to perform 3.4 times as many evaluations with the new
evaluation procedure than with the original procedure in the given cutoff time.

To answer Q2, we compute the learned model’s score, infeasibility and average regret.
A model’s score is simply its training set accuracy, which was used as training objective.
The other two metrics assess the quality of the learned model’s solutions with respect to the
ground-truth model that was used to generate the training data.

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:13

A learned model M ’s infeasibility expresses what proportion of solutions of M are actually
infeasible with respect to the ground-truth model M∗. It can be measured exactly by use
of model counting (MC), i.e., counting the number of solutions to a propositional formula.
However, the MAX-SAT models we consider are not just propositional formulas; they also
contain weighted soft constraints. For this reason, we require a propositional formula
expressing the solutions to the MAX-SAT model. Let M be a MAX-SAT model with hard
constraints Fh. Say that x̂ is a solution to the model which realizes a value of v̂ in satisfied
soft constraints. We can then find each subset of soft constraints Si for which the associated
weights sum up to v̂. Using this, a propositional formula θM expressing the solutions of M

can be attained as:

θM = Fh ∧ (
∨
Si

∧
θs∈Si

θs)

This formula expresses that an instance is a solution to the model if it satisfies the hard
constraints and satisfies one of the subsets of soft constraints that realizes the optimal value.
With F ∗

h denoting the hard constraints of ground-truth model M∗, the infeasibility of M

can be computed as:

infM∗(M) = MC(θM ∧ ¬F ∗
h)

MC(θM)

The average regret of a learned model M with respect to a ground-truth model M∗

expresses how good the solutions of M are with respect to the soft constraints of M∗. We
compute average regret using only solutions to M that are feasible in M∗. Hence, infeasibility
and regret should be considered together to get a complete picture of a model’s quality. We
generate up to 1000 such feasible instances. For each such instance x, let v∗ be the value it
realizes with respect to M∗’s soft constraints, and let v̂∗ be M∗’s optimal value. The regret
of x is then simply (v̂∗ − v∗)/v̂∗. The average regret of M with respect to M∗ is then the
average regret over the considered instances. The regret is computed in the global context,
i.e., outside of any particular context. Thus, achieving low regret requires good generalization
across contexts, as the model is evaluated in the global context, but is trained using only
contextual data in which the contexts actually matter (i.e., affect the optimal attainable
value of the ground-truth model).

Results. To answer Q1, we run hassle-sls with a cutoff time of 60 seconds on learning
problems of various sizes. We consider sizes similar to the ones considered in [16] and [17]. By
default we use learning problems with 10 variables, 8 hard constraints and 8 soft constraints
in the ground-truth model and 100 contexts with 1 infeasible, 1 suboptimal and 2 solution
examples per context in the dataset. We change each of these properties in turn, while
keeping the others at their default values. When increasing the number of total constraints
of the ground-truth model, half are hard constraints and half are soft constraints. When
increasing the number of examples per context, half are solutions, a quarter are infeasible
and a quarter are suboptimal. For each learning problem size, we vary the randomization
seed to create 15 different learning problems, over which we average the results.

As shown in Figure 1, the novel ADD-based model evaluation procedure gives rise to a
significant speed-up for all learning problem sizes considered. It should be noted that, as the
number of variables or the number of constraints increases, the relative speed-up decreases.
This is caused by the ADD representation growing in size as the size of the MAX-SAT
model increases. On the other hand, when larger training sets are considered, the ADD

CP 2022

8:14 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Figure 1 The speed-up in model evaluation realized by using the knowledge-compilation-based
model evaluation procedure decreases as the number of variables or the number of constraints in the
model increases. On the other hand, the speed-up increases as the example set grows larger.

representation can be reused to a higher degree, increasing the relative speed-up. We can
conclude that the knowledge-compilation-based evaluation procedure is most useful when
learning relatively small MAX-SAT models, or when learning from large training datasets.
This answers Q1.

To answer Q2, we again vary several aspects of the learning problem in turn, but
consider slightly larger learning problems. This time, by default we use 16 variables, 16
hard constraints and 16 soft constraints in the ground-truth model and 100 contexts with
1 infeasible, 1 suboptimal and 2 solution instances per context in the dataset. Again, 15
different randomization seeds are used for each learning problem size. We run hassle-sls
and hassle-gen– both using the knowledge-compilation-based evaluation procedure – on
each learning problem using a cutoff time of 150 seconds. hassle-gen was run with a
population size of 20, pc = 0.5, pm1 = 0.05, pm2 = 0.05 and pm3 = 1, which were determined
in a coarse grid search on a separate set of learning problems.

As the first row of Figure 2 shows, hassle-gen consistently achieves a higher score than
hassle-sls across many learning problem instances with varying properties. Furthermore,
when the size of the considered models increases, the difference between the scores achieved
by the search methods grows larger. This can be explained by the fact that hassle-sls only
makes a minimal alteration to the current model in every iteration: it changes at most a
single literal, the hardness or the weight of a single constraint. These alterations become
increasingly inconsequential when considering larger models, resulting in exponentially larger
search spaces. By contrast, hassle-gen’s constraint crossover allows for much larger steps
in the search space, and because it considers the training data, these steps tend to go into
an improving direction.

The second and third rows of Figure 2 show how the higher score achieved by hassle-gen
in turn translates into lower infeasibility and regret. This shows that the models learned
by hassle-gen do not merely achieve a higher training set accuracy than those learned by
hassle-sls, but that the solutions they generate are also of a higher quality with respect to
the ground-truth model. This answers Q2.

8 Conclusion

We have made two contributions aimed at alleviating the runtime issues of the state-of-the-art
technique for learning MAX-SAT models from labeled contextual examples. First, to speed
up model evaluation, we proposed a knowledge-compilation-based evaluation procedure.
Our experiments showed this procedure to be most useful when learning relatively small

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:15

Figure 2 When given the same cutoff time, hassle-gen consistently learns models with a higher
score (i.e., training set accuracy) than hassle-sls. This in turn translates into lower infeasibility
and lower regret, which means that the models learned by hassle-gen can be used to generate
higher-quality solutions than those learned by hassle-sls.

MAX-SAT models or when learning from a large set of training data. Second, to reduce
the amount of evaluations required to find a good model, we proposed a genetic algorithm
named hassle-gen. In the experiments, hassle-gen consistently beat the state of the
art on learning problems of various sizes: when given the same amount of training time, it
learned models that can be used to generate higher-quality solutions.

One possible direction for future work is to try to speed up model evaluation even
further. In our proposed evaluation procedure, an ADD representing the MAX-SAT model
is computed in its entirety, to then be used for context-specific inference. However, some
parts of the ADD might not be relevant in any context occurring in the training data, and
thus do not strictly have to be computed. A “lazy” decision diagram construction procedure
could exploit this fact and lead to even faster evaluation.

Another possible direction is to focus on learning different types of models from examples.
One possible extension is to learn maximum satisfiability modulo theories (MAX-SMT)
models, where constraints are not limited to disjunctive clauses over binary variables, but
can be first-order logic formulas with respect to one or more background theories. Some work
has already been done on learning SMT models from examples [14], but learning MAX-SMT
models from contextual examples has thus far not been explored. Another possible extension
is to learn mixed-integer linear programs (MILP) from contextual data. To this end, recent
work [15] has proposed a search strategy that can be seen as a hybrid between stochastic
local search and stochastic gradient descent. However, the approach suffers from runtime
issues, suggesting that the ideas we proposed here might be of use.

CP 2022

8:16 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

References
1 Roberto Asín Achá and Robert Nieuwenhuis. Curriculum-based course timetabling with SAT

and MaxSAT. Annals of Operations Research, 218(1):71–91, 2014.
2 R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo

Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. Formal Methods
in System Design, 10(2):171–206, 1997.

3 Nicolas Beldiceanu and Helmut Simonis. A model seeker: Extracting global constraint models
from positive examples. In International Conference on Principles and Practice of Constraint
Programming, pages 141–157. Springer, 2012.

4 Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Nina
Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint acquisition via partial queries.
In Twenty-Third International Joint Conference on Artificial Intelligence, 2013.

5 Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. A SAT-based
version space algorithm for acquiring constraint satisfaction problems. In European Conference
on Machine Learning, pages 23–34. Springer, 2005.

6 Christian Bessiere, Remi Coletta, Barry O’Sullivan, Mathias Paulin, et al. Query-driven
constraint acquisition. In IJCAI, volume 7, pages 50–55, 2007.

7 Paolo Campigotto, Roberto Battiti, and Andrea Passerini. Learning modulo theories for
preference elicitation in hybrid domains. CoRR, abs/1508.04261, 2015. arXiv:1508.04261.

8 Luc De Raedt, Andrea Passerini, and Stefano Teso. Learning constraints from examples. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

9 Emir Demirović, Nysret Musliu, and Felix Winter. Modeling and solving staff scheduling with
partial weighted maxSAT. Annals of Operations Research, 275(1):79–99, 2019.

10 Agoston E Eiben and James E Smith. Introduction to evolutionary computing, volume 53.
Springer, 2003.

11 David Edward Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Pub. Co., 1989.

12 Michael Huth and Mark Ryan. Logic in computer science: Modelling and reasoning about
systems. Cambridge University Press, 2004.

13 Samuel Kolb. Learning constraints and optimization criteria. In Workshops at the Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

14 Samuel Kolb, Stefano Teso, Andrea Passerini, and Luc De Raedt. Learning SMT(LRA)
constraints using SMT solvers. In IJCAI, volume 18, pages 2333–2340, 2018.

15 Mohit Kumar, Samuel Kolb, Luc De Raedt, and Stefano Teso. Learning mixed-integer linear
programs from contextual examples, 2021. arXiv:2107.07136.

16 Mohit Kumar, Samuel Kolb, Stefano Teso, and Luc De Raedt. Learning MAX-SAT from
contextual examples for combinatorial optimisation. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(04):4493–4500, April 2020. doi:10.1609/aaai.v34i04.5877.

17 Mohit Kumar, Samuel Kolb, Stefano Teso, and Luc De Raedt. Learning MAX-SAT from
contextual examples for combinatorial optimisation, 2022. arXiv:2202.03888.

18 Chu Min Li and Felip Manya. MaxSAT, hard and soft constraints. In Handbook of satisfiability,
pages 613–631. IOS Press, 2009.

19 Samir W Mahfoud et al. Crowding and preselection revisited. In PPSN, volume 2, pages
27–36. Citeseer, 1992.

20 Patrick Mills and Edward Tsang. Guided local search for solving sat and weighted max-sat
problems. Journal of Automated Reasoning, 24(1):205–223, 2000.

21 Melanie Mitchell. An introduction to genetic algorithms. MIT Press, 1998.
22 Tomasz P Pawlak and Krzysztof Krawiec. Synthesis of mathematical programming constraints

with genetic programming. In European Conference on Genetic Programming, pages 178–193.
Springer, 2017.

http://arxiv.org/abs/1508.04261
http://arxiv.org/abs/2107.07136
https://doi.org/10.1609/aaai.v34i04.5877
http://arxiv.org/abs/2202.03888

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:17

23 Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
parameters for the sequence constraint from solutions. In International Conference on Principles
and Practice of Constraint Programming, pages 405–420. Springer, 2016.

24 Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
the parameters of global constraints using branch-and-bound. In International Conference on
Principles and Practice of Constraint Programming, pages 512–528. Springer, 2017.

25 Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sattar. Partial weighted
MaxSAT for optimal planning. In Pacific Rim International Conference on Artificial Intelli-
gence, pages 231–243. Springer, 2010.

26 Sean Safarpour, Hratch Mangassarian, Andreas Veneris, Mark H Liffiton, and Karem A
Sakallah. Improved design debugging using maximum satisfiability. In Formal Methods in
Computer Aided Design (FMCAD’07), pages 13–19. IEEE, 2007.

27 Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples
using weighted MAX-SAT. Artificial Intelligence, 171(2-3):107–143, 2007.

CP 2022

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Statement
	5 Knowledge Compilation
	6 The Genetic Algorithm
	7 Experimental Evaluation
	8 Conclusion

