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Abstract
The development of practical approaches to efficiently reasoning over pseudo-Boolean constraints
has recently increasing attention as a natural generalization of Boolean satisfiability (SAT) solving.
Analogously, solvers for pseudo-Boolean optimization draw inspiration from techniques developed
for maximum satisfiability (MaxSAT) solving. Recently, the first practical solver lifting the implicit
hitting set (IHS) approach – one of the most efficient approaches in modern MaxSAT solving – to
the realm of PBO was developed, employing a PB solver as a core extractor together with an integer
programming solver as a hitting set solver. In this work, we make practical improvements to the
IHS approach to PBO. We propose the integration of solution-improving search to the PBO-IHS
approach, resulting in a hybrid approach to PBO which makes use of both types of search towards an
optimal solution. Furthermore, we explore the potential of different variants of core extraction within
PBO-IHS – including recent advances in PB core extraction, allowing for extracting more general
PB constraints compared to the at-least-one constraints typically relied on in IHS – in speeding up
PBO-IHS search. We show that the empirical efficiency of PBO-IHS – recently shown to outperform
other specialized PBO solvers – is further improved by the integration of these techniques.
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1 Introduction

Pseudo-Boolean (PB) constraints, i.e., linear inequalities over binary variables with integer
coefficients, offer a natural approach to modeling various types of NP-hard real-world
problems [5]. Viewed as natural generalizations of conjunctive normal form clauses, liftings
of conflict-driven CDCL search [34, 26] for deciding the satisfiability of a given set of PB
constraints have been developed [18]. This line of work is motivated further by the fact that
natively reasoning on the level of PB constraints allows for implementing proof systems that
are stronger than the resolution proof system underlying CDCL [18, 6, 33, 7]. Furthermore,
generalizing conflict-driven search to the realm of PB allows for PB solving under assumptions
and thereby the extraction of unsatisfiable cores (inconsistent assignments over literals of
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13:2 Improvements to the IHS Approach to PBO

interest) on the PB-level [14]. Practical approaches to unsatisfiable core extraction for sets
of pseudo-Boolean constraints allow for a variety of possible ways of going from deciding
satisfiability to pseudo-Boolean optimization (PBO) [6, 33, 4, 32]. In particular, recent
developments in lifting ideas from modern maximum satisfiability (MaxSAT) solving to PBO
– also known as 0-1 integer programming – have proven to yield effective solving approaches to
PBO as alternatives to classical integer programming solving techniques. As generalizations
of some of the most successful MaxSAT solving approaches, these recent developments include
both core-guided PBO solvers [14] and, most recent, instantiations of the so-called implicit
hitting set approach (IHS) in the realm of PBO [35].

In this work, we focus on the recently-proposed implicit hitting set approach to PBO,
implemented in the PBO-IHS solver [35]. The implicit hitting set approach is a relatively
generic solving paradigm that has seen successful practical instantiations in various settings
concerning finding optimal solutions to NP-hard optimization problems [11, 12, 23, 31, 22,
19, 30, 24]. The IHS approach is an iterative lower-bounding approach at heart, based on
accumulating unsatisfiable cores of a problem declaration (using an unsatisfiability core
extractor for the declaration language at hand) and finding hitting sets over the accumulated
set of unsatisfiable cores (typically using an integer programming solver), until ruling out a
most-recent optimal hitting set (using assumptions) yields a solution satisfying the rest of
the constraints. As shown in [35], the recent PBO-IHS solver implementing an IHS approach
to PBO has proven empirically effective, surpassing other specialized approaches to PBO
– including recent developments in core-guided PBO solving – in efficiency and at times
surpassing even the efficiency of commercial integer programming systems.

Motivated by these recent developments, in this work we study possibilities of further
improving the performance of PBO-IHS through integrating additional search techniques to
the solver. In particular, firstly, we propose the integration of solution-improving search to the
PBO-IHS approach, resulting in a hybrid approach to PBO making use of both types of search
towards an optimal solution. In itself, solution-improving search [4, 32, 13], also known as
model-improving search in the realm of MaxSAT [28, 2], is an upper-bounding approach that
finds better solutions using a decision oracle until the currently known best solution is proven
to be optimal. Integrating solution-improving search heuristically within the PBO-IHS search
loop gives a guarantee that the current upper bound solution is improved. The improved
bound can subsequently be made use of by IHS search techniques. Secondly, we explore
the potential of variants of core extraction within PBO-IHS for improving the efficiency of
PBO-IHS. Whereas the earlier version of PBO-IHS made use of MiniSat-style conflict analysis,
resulting in SAT-like unsatisfiable cores – specifically, at-least-one cardinality constraints –
we study the impact of making use of recent advances in PB core extraction which allow for
natively extracting unsatisfiable cores expressed as more general PB constraints [14], as well
as ways of making use of both types of cores. Furthermore, we study the impact of obtaining
multiple cores per search iteration through lightweight assumption shuffling on the runtime
efficiency of PBO-IHS. As an end-result, we provide a performance-boosted PBO-IHS solver
with state-of-the-art performance on a wide range of standard benchmarks.

2 Preliminaries

A binary variable x has the domain {0, 1}. A literal l over a variable x is either x or x ≡ (1−x),
in both cases the variable var(l) = x of l is x. A pseudo-Boolean (PB) constraint (or simply
constraint, for short) C is a 0-1 integer linear inequality

∑
i aili ≥ B over literals li, with the

bound B and each coefficient ai integer constants. The set of variables appearing in C is
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denoted by var(C). We assume w.l.o.g. that each constraint C is in normalized form, i.e.,
that each variable appearing in C is distinct and that the coefficients ai and bound B are
non-negative. An assignment τ : var(C)→ {0, 1} is extended to literals by τ(l) = 1− τ(l).
Such an assignment τ satisfies C (denoted by τ(C) = 1) if

∑
i aiτ(li) ≥ B and falsifies C

otherwise. When convenient we view an assignment τ over a set X of variables as the set of
literals τ = {x | x ∈ X ∧ τ(x) = 1} ∪ {x | x ∈ X ∧ τ(x) = 0}.

A PB formula F = {C1, . . . , Cn} is a set of PB constraints. We denote by var(F ) the
set of variables appearing in the constraints of F . An assignment τ : var(F )→ {0, 1} is a
solution to F if it satisfies each constraints in F . We use τ(F ) = 1 to denote that τ is a
solution to F ; τ(F ) = 0 denotes that τ is not a solution to F .

An instance I = (F, O) of the pseudo-Boolean optimization problem (PBO) consists
of a PB formula F and an objective function O ≡

∑
i wili where each li is a literal over a

variable var(li) ∈ var(F ) and wi its non-negative integer coefficient. We will sometimes
abuse notation and treat O as either a set of literals or a set of coefficient-literal tuples,
i.e., write l ∈ O and (w, l) ∈ O to denote that O contains a literal l or the term wl.
The set of variables appearing in O is denoted by var(O). The value of O under an
assignment τ : var(O)→ {0, 1} is O(τ) =

∑
i wiτ(li). The set of solutions to I consists of

the assignments that are solutions to F . A solution τ is optimal if it minimizes O(τ) over all
solutions to I. The cost of the optimal solutions of I is denoted by O(I). The PBO problem
asks to find an optimal solution to a given PBO instance.

The algorithm for computing optimal solutions to PBO instances that we focus on makes
use of so-called core constraints and hitting sets. A constraint C is a core constraint of
a PBO instance I = (F, O) if (i) the variables of C consist only of variables in O (i.e.,
var(C) ⊂ var(O)) and (ii) all solutions of I satisfy C.

▶ Example 1. Consider the PBO instance I = (F, O) with F = {a1 + (1−x1) ≥ 1, a2 + (1−
x2) ≥ 1, x1 +x3 ≥ 1, x2 +(1−x3) ≥ 2} and O ≡ a1 +a2. The solution τ = {a1, a2, x1, x2, x3}
is an example of an optimal solution to I, and has cost O(τ) = O(I) = 2. The constraints
a1 + a2 ≥ 1 and a1 + a2 ≥ 2 are examples of core constraints of I. This can be seen by
verifying that no solution τs of F assigns τs(a1) = τs(a2) = 0.

Given a set C of core constraints of a PBO instance, we say that an assignment
γ : var(O) → {0, 1} that satisfies C is a hitting set of C. A hitting set γo is optimal if
O(γo) ≤ O(γ) holds for each hitting set γ of C. The term hitting set stems from an important
special case of core constraints, namely, those of form C =

∑
l ≥ 1. A set of such constraints

can be viewed as an instance of the classical hitting set problem: each such constraint is
satisfied by setting at least one of the literals in C to 1, thus hitting that constraint. The
PBO-IHS algorithm we focus on in this work makes use of the well-known fact that hitting
sets provide lower bounds on O(I), stated formally as follows.

▶ Proposition 2 (See e.g. [35]). Let γo, C and I be as above. Then O(γo) ≤ O(I).

3 The PBO-IHS Implicit Hitting Set Approach to PBO

In this work, we study ways of improving the performance of the recently-proposed PBO-IHS
implicit hitting set approach to pseudo-Boolean optimization [35].

Algorithm 1 details the PBO-IHS algorithm for computing an optimal solution to a PBO
instance I given as input. The algorithm works by iteratively refining an upper bound UB
and a lower bound LB on the optimal cost O(I) of I. The algorithm also maintains a
witness for the upper bound UB in the form of an assignment τbest for which O(τbest) = UB.
The search terminates when LB = UB at which point τbest is returned as a provably-optimal
solution.

SAT 2022
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Algorithm 1 The PBO-IHS algorithm for PBO.

1 PBO-IHS(I)
Input: A PBO instance I = (F, O)
Output: An optimal solution τ

2 (τbest , sat?)← PB-Solve(F );
3 if not sat? then
4 return "no feasible solutions";
5 UB ← O(τbest); LB ← 0;
6 C ← SeedConstraints(F, var(O));
7 while true do
8 (γ, opt?)← ComputeHittingSet(O, UB, C);
9 if opt? then LB ← O(γ);

10 if UB = LB then break ;
11 C ← C ∪ ReducedCostFixing(O, τbest , C);
12 C ← C ∪ ExtractCores(γ, UB, τbest , I);
13 if UB = LB then break;
14 return τbest

Min-Hs(O, C):
minimize:

∑
(w,l)∈O

w · l

subject to:

C ∀C ∈ C

l ∈ {0, 1} ∀(w, l) ∈ O

return:
{l | l set to 1 in opt. soln}∪
{l | l set to 0 in opt. soln}

Figure 1 IP for computing an
optimal hitting set over core con-
straints.

In more detail, when invoked on a PBO instance I = (F, O), a PB solver is invoked on F

(Line 2). If F is found to be unsatisfiable, there are no solutions to the PBO instance and
the search terminates (Line 4). If F is satisfiable, the PB solver returns a solution τbest of I.
The upper bound UB on O(I) is initialized to O(τbest) and the lower bound LB is initialized
to 0 (Line 5). The set C of so-far accumulated core constraints of I is initialized to consist
of all constraints C of F for which var(C) ⊂ var(O), i.e., all constraints that only contain
literals over variables in the objective function (Line 6; this is the so-called constraint seeding
step, for more see [35]).

The main search loop of PBO-IHS consists of Lines 7-13. Each iteration of the main
search loop starts with the computation of a hitting set over C (Line 8). In more detail, the
procedure ComputeHittingSet computes a hitting set γ of C that is either optimal or has
cost lower than the current upper bound UB. Such γ is computed by invoking an integer
programming solver on the integer program Min-Hs(O, C) (detailed in Figure 1) representing
the hitting set problem over C with O as the objective function. The integer programming
solver is ran until an incumbent solution is reached that is either optimal or has cost lower
than UB. The procedure returns the hitting set γ as well as a boolean opt? indicating
whether γ is an optimal hitting set of C. If γ is optimal, then O(γ) ≤ O(I) by Proposition 2.
Hence in this case the lower bound LB is updated (Line 9). If the upper and lower bounds
match, the search terminates at Line 10.

In case the upper and lower bounds do not match at this point, the ReducedCostFixing
procedure is invoked in an attempt to fix the values of yet-not-fixed variables in I (and
thereby also in Min-Hs(O, C)) via the reduced cost fixing technique [9, 10, 27], similarly as
employed in the context of IHS for maximum satisfiability [1], based on the current bounds
information and so-called reduced costs obtained without extract overhead from the latest
IP solver invocation (Line 11). The iteration ends with a core extraction step through
ExtractCores (Line 12) using a PB solver to extract core constraints of I that are not
satisfied by the current γ. This step also provides a solution to I, which may improve on the
current upper bound UB. This is why the termination criterion is checked on Line 13 before
the next iteration.
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Algorithm 2 Extracting multiple core constraints from a single hitting set.

1 ExtractCores(γ, UB, τbest , I = (F, O))
2 Cn ← ∅; W ← {(x, w) | x = var(l) ∧ (l, w) ∈ O};
3 while true do
4 γA ← {l | l ∈ γ ∧W(l) > 0};
5 (sat?,K, τ)← PB-SolveUnderAssumptions

(
F, γA);

6 if (sat?) then
7 if O(τ) < UB then τbest ← τ ; UB ← O(τ);
8 return Cn;
9 else

10 Cn ← Cn ∪ K;
11 for C ∈ K do
12 wC = minx∈var(C){W(x)};
13 for x ∈ var(C) do W(x)←W(x)− wC ;

The ExtractCores subroutine is detailed as Algorithm 2. Given a hitting set γ over
C, the procedure iteratively invokes a PB solver on I under a set γa ⊂ γ of assumptions
(viewed here as a set of literals) via the procedure PB-SolveUnderAssumptions on Line 5.
This PB solver call provides either a set K of core constraints of I that are not satisfied by
γ, or a solution τ to I for which γa ⊂ τ . In the first case, the set of assumptions is refined
and the loop reiterated. In the latter case, the cost of the solution O(τ) is compared to the
current UB which is updated if needed. For refining the set of assumptions between solver
calls, the procedure makes use of weight-aware core extraction (WCE) originally proposed
in the context of core-guided MaxSAT solving [3]. WCE generalizes the so-called disjoint
cores technique – iteratively computing a set of variable-disjoint core constraints – by taking
into account the weights of literals. Initially, a temporary weight W(x) of each variable
x ∈ var(O) is initialized according to the coefficient of the corresponding literal in O. After
extracting a core constraint C, the weight of each variable x ∈ var(C) is lowered by the
minimum weight of each variable appearing in C. In the next iteration, the set of assumptions
is refined to contain the literals of non-negative temporary weights. Notice that on each
invocation of Line 13, the temporary weight of at least one variable is lowered to 0 or less.
As such, the size of the set γa of assumptions is decreased in each iteration, which implies
the termination of ExtractCores.

4 Improvements to PBO-IHS

With details on the PBO-IHS approach in place, in this section we detail further refinements
to the PBO-IHS algorithm. In particular, we propose the integration of solution-improving
search into the PBO-IHS main search loop, with the potential of obtaining further improved
upper bounds and thereby speeding up search. Furthermore, we consider alternative strategies
for extracting core constraints with a PB solver, including making use of recent developments
which allow for obtaining more general core constraints than the clausal (at-least-one
cardinality) constraints employed originally in PBO-IHS.

SAT 2022



13:6 Improvements to the IHS Approach to PBO

Algorithm 3 The PBO-IHS algorithm with integrated solution-improving search.

1 PBO-IHS+SIS(I)
Input: A PBO instance I
Output: An optimal solution τ

2 (τbest , sat?)← PB-Solve(I);
3 if not sat? then return “no feasible solutions”;
4 UB ← O(τbest); LB ← 0;
5 C ← SeedConstraints(I, C);
6 while true do
7 (γ, opt?)← ComputeHittingSet(O, UB, C);
8 if opt? then LB ← O(γ);
9 if UB = LB then break;

10 if Schedule-SIS() then SIS(UB, τbest , O, sis-bound);
11 if UB = LB then break;
12 C ← C ∪ ReducedCostFixing(O, UB, C);
13 C ← C ∪ ExtractCores(γ, UB, τbest , I);
14 if UB = LB then break;
15 return τbest

4.1 Integrating Solution-Improving Search into PBO-IHS

We start with the integration of solution-improving search into PBO-IHS. Solution-improving
search (SIS; also known as model-improving search) has shown to be an effective approach to
MaxSAT solving [28, 2], along with the core-guided and IHS approaches and has also been
applied in PBO [4, 32, 13]. Here we propose to integrate SIS into PBO-IHS, resulting in
essentially what can be considered an IHS-SIS hybrid for PBO.

Given a PBO instance I = (F, O) and a current upper bound UB on O(I), solution-
improving search invokes a PB solver on the instance F ∪ {

∑
(w,l)∈O w · l < UB}, querying

for a solution to I with better cost than UB. If the result is satisfiable, the solver provides a
solution τ for which O(τ) < UB. Thereby the current upper bound UB is improved. If the
result is unsatisfiable, O(I, τ) ≥ UB holds for all solutions τ of I, proving that O(I) = UB.
While SIS is a complete algorithm for PBO in the sense that it will eventually compute an
optimal solution if a PB solver is invoked iteratively under an increasingy strict UB, here a
main motivation for integrating SIS into PBO-IHS is that each iteration of SIS either finds
an optimal solution to I, or lowers the known upper bound on O(I). The improved bound
can then in turn be exploited by the other parts of the PBO-IHS algorithm.

Algorithm 3 details PBO-IHS+SIS, the PBO-IHS algorithm with integrated solution-
improving search. The necessary changes to the base algorithm are highlighted in blue. After
computing a hitting set and potentially updating the current lower bound, Algorithm 3
makes a heuristic decision using Schedule-SIS on whether to enter into a solution-improving
search phase at this stage (Line 10). When entering the solution-improving search phase,
SIS is employed until either an optimal solution for I is found or a resource-limit sis-bound
allocated to SIS at this iteration is exceeded. (We study the impact of different resource limits
and heuristic choices for Schedule-SIS in the empirical part of this work.) The procedure
SIS updates the upper bound and the best known model τbest if it finds an improved solution.
Underlining the benefits of SIS, note that even if a SIS invocation is not able to prove the
optimality of a solution computed (i.e., even though SIS would find an optimal solution, the
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next unsatisfiable PB solver call querying for an even better solution, could be terminated
early due to the resource-limit), it may still be able to provide a solution that turns out to be
optimal by simply afterwards checking that the cost of the best solution obtained from SIS
matches the current lower bound maintained by PBO-IHS that is obtained though hitting
set computation. This will allow PBO-IHS integrated with SIS to terminate on Line 11.

4.2 Extracting Core Constraints
In addition to the integration of SIS into PBO-IHS, we explore potential improvements to
core extraction in PBO-IHS. After reviewing the PB-SolveUnderAssumptions algorithm
used in the original version of PBO-IHS [35], we consider an alternative, more general strategy
for extracting core constraints with a conflict-driven PB solver supporting assumptions [18],
which allows for extracting more general core constraints. Furthermore, we consider a
lightweight approach to extracting multiple cores via a single PB solver call using what we
refer to as assumption shuffling.

4.2.1 Conflict-Driven PB Solving
For understanding the similarities and differences between the core extraction approaches
we consider, we start with an overview of the so-called conflict-driven constraint learning
paradigm for pseudo-Boolean solving. For a more detailed description of conflict-driven PB
search, we refer the reader to [18].

Given a formula F and a set γ of assumptions (viewed as a set of literals) the goal of
a conflict-driven PB-solver is to compute an extension τ ⊃ γ that is a solution to F or –
more central to our discussion – to prove that no such extension exists. During search, a
conflict-driven PB solver maintains a working formula F w ⊃ F (initialized to F ), and an
ordered sequence (a trail) ρ of literals such that the first |γ| literals of ρ are the literals in γ

in some order. We say that a literal l is assigned to 1 by ρ if l ∈ ρ and to 0 if l ∈ ρ, and
otherwise that l is unassigned by ρ. The PB solver attempts to extend ρ into a solution to
F by alternating between decision and propagation steps, much alike CDCL SAT solvers.
A propagation step consists of extending ρ with a literal l for which there is a constraint
C ∈ F w that, informally speaking, would be falsified by ρ if it was extended with l instead.
We say such l is propagated and its reason reason(l) is the constraint C. If no literals
can be propagated, the trail is instead extended by heuristically selecting a literal l that is
unassigned by ρ. Such l is called a decision literal.

The decision and propagation steps continue until the current trail ρ either (a) constitutes
a solution to F w ⊃ F or (b) falsifies some constraint D ∈ F w. In case (a) ρ is a solution to F

under the assumptions γ. In case (b) the algorithm next performs conflict analysis to learn a
new constraint C ′ that is falsified by the current trail, but satisfied by any solutions of F .
The new constraint is added to F w before backjumping i.e., removing enough literals from
the trail for C ′ not to be falsified anymore. If conflict analysis learns a constraint Cconfl

and the search backjumps to a trail containing only assumptions and propagated literals
which still falsify the constraint, the search terminates since then there are no solutions of F

that extend γ. At this point core constraints of the PB-instance at hand can be extracted by
performing conflict analysis on Cconfl. The following subsections detail different strategies
for doing so.

We note that this description of the conflict driven paradigm in PB is somewhat simplified.
Actual implementations of such solvers make use of the fact that a PB constraint can be
falsified already before all literals in it are assigned. This requires some non-trivial alterations
to conflict analysis in order to guarantee that invariants required for correctness hold.

SAT 2022
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4.2.2 Clausal Cores
Consider a call to PB-SolveUnderAssumptions made during Algorithm 2 under which the PB
solver is invoked on the constraints F of a PBO instance I = (F, O) under a set γ ⊂ lit(O)
of assumptions. If γ cannot be extended to a solution to F , the solver learns a conflict PB
constraint Cconfl that is falsified by the assumptions γ and any literals propagated by them.
The method for extracting core constraints employed in [35] proceeds by – starting from
κ = lit(Cconfl) – iteratively exchanging each propagated literal l ∈ κ by the negations of
the literals in the reason for l, i.e., lit(reason(l)) \ {l}. As Cconfl is falsified, the negation
of each literal in Cconfl is either an assumption or a propagated literal. The procedure stops
when only assumption literals remain. At that point var(κ) ⊂ var(γ) ⊂ var(O) and the
constraint

∑
l∈κ l ≥ 1 is satisfied by all solutions of I. Thus it is a core constraint of I. The

core
∑

l∈κ l ≥ 1 extract is always an at-least-one constraints and hence, similar to cores in
SAT, can be expressed as a single CNF clause. We refer to this approach to core constraint
extraction as Clausal-Cores.

4.2.3 More General PB Cores
The second – and more general – method of extracting cores works by directly reasoning on
the PB constraints, and is earlier implemented in a core-guided PBO solver [14]. However,
it should be noted that in the context of core-guided search, the more general PB core
constraints obtained are still rounded to obtain an at-least-k cardinality constraint for some
k ∈ N. In contrast, here we will employ the more general cores as generalized hitting set
constraints in the context of PBO-IHS.

Starting from C = Cconfl, the approach applies the so-called generalized resolution
rule [21, 15] in the realm on PB on each propagated literal l ∈ lit(C) and its reason reason(l)
in order to obtain a new constraint D that is satisfied by any assignment that satisfies both C

and reason(l) and does not contain the literal l. The process then sets C = D and continues
until C does not contain propagated literals. At this point, var(C) ⊂ var(γ) ⊂ var(O) and
C is satisfied by all solutions of I. Thus C is a core constraint of the PBO instance at hand.
As this approach to extracting core constraints can result in general PB constraints, we refer
to it as PB-Cores.

▶ Example 3. Consider the PBO instance I from Example 1 and let γ = {a1, a2}. Assume
that the PB solver is invoked on I under the assumptions γ. The assumptions propagate x1
and x2 and (e.g.) x3. The trail ⟨a1, a2, x1, x2, x3⟩ falsifies the constraint x2 + x3 ≥ 2 so the
solver enters conflict analysis and learns for example the constraint C = x1 + x2 ≥ 2. After
backtracking, the assumptions {a1, a2} propagate x1 with the reason reason(x1) = a1+x1 ≥ 1
and x2 with the reason reason(x2) = a2 + x2 ≥ 1. The trail ⟨a1, a2, x1, x2⟩ falsifies C so the
search terminates and returns UNSAT.

The Clausal-Cores core extraction method now initializes κ = lit(C) = {x1, x2}. It
then iteratively processes both literals in κ, first replacing x1 by a1 and then x2 by a2. At
this point κ = {a1, a2} contains only assumptions, so the core constraint a1 + a2 ≥ 1 is
learned.

In contrast, the PB-Cores core extraction method initially resolves C with reason(x1)
on x1 to obtain C ′ = a1 + x2 ≥ 2. Then it resolves C ′ with reason(x2) on x2 in order to
obtain the stronger core constraint a1 + a2 ≥ 2.

Note that PB-Cores core extraction method is indeed a generalization of Clausal-Cores:
Clausal-Cores can be viewed as a special case of PB-Cores that treats every PB constraint
in the inference (resolution) steps as a clause, an idea which has been explored for general
PB solving already in [4].
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4.2.4 More Cores via Assumption Shuffling
Assumption shuffling allows for extracting multiple core constraints after the final conflict
analysis performed by Clausal-Cores and PB-Cores. The intuition underlying assumption
shuffling is that the final constraint Cconfl learned by the PB solver might be falsified by
(the literals propagated by) several different subsets of the current assumptions γ. The
specific core constraint obtained during conflict analysis depends then on which constraints
are marked as reasons for the propagated literals. This in turn depends on the order in which
the assumption literals are added to the trail. As such, an inexpensive way of attempting
to learn more than one core constraint is to permute the order in which assumptions are
added to the trail and reperforming the final conflict analysis step (either with PB-Cores
or Clausal-Cores). Since the PB solver has already learned a constraint Cconfl that is
falsified by the assumptions regardless of which order they are added to the trail, each
permutation and core constraint extraction can be done in polynomial time. Essentially
this is a lightweight way of extracting potentially multiple core constraints per PB-solver
call within PBO-IHS, and thereby also potentially tightening the hitting set instance more
quickly. We call this technique assumption shuffling.

▶ Example 4. Assume that the PB solver is invoked under the assumptions γ = {a1, a2, a3}
and the solver learns the constraints {a1+x ≥ 1, a2+x ≥ 1, a3+y ≥ 1} and Cconfl ≡ x+y ≥ 1.

The constraint is falsified both by γ1 = {a1, a3}, and γ2 = {a2, a3} as both propagate the
literals {x, y}. Propagating γ1 (i.e. a1 before a2) obtains the core constraint a1 + a3 ≥ 1
regardless of the core extraction method used. In contrast, propagating γ2 (a2 before a1)
obtains the core constraint a2 + a3 ≥ 1.

5 Empirical Evaluation

To evaluate the ideas and techniques described in the previous section, we implemented them
into the original version of PBO-IHS. In this section we report on an extensive empirical
evaluation of the impact of these techniques on the efficiency of PBO-IHS.

The experiments were run on computing nodes with 8-core Intel Xeon E5-2670 2.6-GHz
CPUs and 64-GB RAM under a per-instance 3600-second time and 16-GB memory limit.

5.1 Implementation
The PBO-IHS solver is implemented in Python, using Roundingsat version 2 [18] (commit
1476bf0bcd) as the PB solver and IBM ILOG CPLEX version 12.8 via its C++ API for
hitting set computation. The open-source implementation and empirical data are available
available at https://bitbucket.org/coreo-group/pbo-ihs-solver/. We implemented
solution-improving search into PBO-IHS using a separate instantiation of the PB solver
RoundingSAT. This is due to the fact that, as we observed in preliminary experimentation,
the upper-bounding constraints enforced for solution-improving search can cause unnecessary
runtime overheads in core extraction if the same PB solver instantiation would be used for
both the core extraction and SIS steps.

The Clausal-Cores strategy for extracting cores, employed originally in PBO-IHS, is
implemented by extending Roundingsat to include an analyzeFinal function similar to the
one implemented in MiniSat-like SAT solvers [16, 17]. We implemented the PB-Cores core
extraction strategy into PBO-IHS by using the core extraction implementation from [14],
with the modification that we disabled the final rounding step applied in [14] to obtain a
cardinality constraint (necessary for employing the core in the core-guided PBO setting [14]).
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In the evaluation, we consider the following variants of PBO-IHS.
PBO-IHS:CLAUSAL: the original PBO-IHS implementation, as presented in [35] (using the
Clausal-Cores core extraction strategy).
PBO-IHS:CLAUSAL+SIS: PBO-IHS:CLAUSAL with integrated solution-improving search.
PBO-IHS:PB: PBO-IHS:CLAUSAL using PB-Cores instead of Clausal-Cores as the core
constraint extraction strategy.
PBO-IHS:PB+SIS: PBO-IHS:PB with integrated solution-improving search.
PBO-IHS:CLAUSAL&PB: PBO-IHS:CLAUSAL using both Clausal-Cores and PB-Cores core
constraint extraction step strategies (with separate WCE steps for each strategies).
PBO-IHS:CLAUSAL&PB+SIS: PBO-IHS:CLAUSAL&PB with integrated solution-improving
search.

All variants employ assumption shuffling for extracting several cores at each iteration.
The default parameters used are the following: assumptions are shuffled 5 times (to obtain 5
cores); the resource-limit parameter resource-bound for SIS per main search loop iteration
was enforced as the time limit of at most 30 seconds; and as an implementation of the
Schedule-SIS heuristic for triggering SIS (recall Algorithm 3), we trigger SIS whenever the
lower bound LB has not improved during the last 5 main search loop iterations. We will
separately provide empirical evidence on the impact of the parameter, showing that these
default choices appear to be suitable for good overall performance.

5.2 Competing Approaches
A comprehensive empirical evaluation of the original version of PBO-IHS was presented
in [35] using the same empirical setup and computing hardware as used for the experiments
reported here. The earlier empirical evaluations showed that PBO-IHS outperforms other
competing specialized approaches to PBO (including Open-WBO [25], Sat4J [4], NaPS [32],
Roundingsat (RS) [18], RS/lp [13] and RS/oll, also known as HYBRID [14]) and also that
PBO-IHS provides complementary performance when compared with CPLEX [8]. We refer
the reader to [35] for more details.

Since the closest competitor among the specialized PBO solvers in terms of runtime
performance was shown to be RS/lp [13], we also report on its performance for reference here.
RS/lp is an implementation of (pure) solution-improving search that periodically invokes a
linear programming (LP) solver on the LP relaxation of the instance being solved. The LP
calls are used for deriving more conflicts withing the conflict-driven procedure implemented
in RoundingSAT. (For example, if there are no feasible solutions to the LP relaxation of the
instance under the current partial assignment, then there will not be any feasible solutions
to the PB instance either.)

5.3 Benchmarks
We use the same set of benchmarks as in the work reporting on the original version of
PBO-IHS [35]. In particular, we use all benchmarks from Pseudo-Boolean Competition 2016
[29] (as the most recent instantiation of the competition) and all 0-1 integer programs from
the MIPLIB 2017 library [20] and earlier MIPLIB releases, filtering out all unsatisfiable
benchmarks, benchmarks without objective functions and benchmarks with very large (≥ 264)
coefficients. The filtered set contains 8456 benchmarks from the Pseudo-Boolean competition
and 252 benchmarks from MIPLIB, respectively. A breakdown of the full benchmark set into
domains is detailed as part of Table 1. Furthermore, following the approach of used in [35],
due to the fact that the number of benchmarks per domain included in the benchmark set
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Figure 2 Effect of solution improving search and different core extraction strategies on the
sampled (left) and full (right) benchmark sets.

varies significantly depending on the domain, we sampled at random (without repetition)
from each problem domain 30 instances (or all of the instances from the domain, if the
domain included less that 30 instances) for the experiments. The sampled benchmark set
contains in total 1786 benchmarks. Unless explicitly stated otherwise, the results reported
on in this section are with respect to the sampled benchmark set. This allows us to present
e.g. so-called runtime distributions over all benchmarks without fear of any single benchmark
domain dominating the results and conclusions drawn. We note that, as shown in [35], the
empirical results can be expected to be robust with respect to different random samplings.

5.4 Results: Impact of SIS and Core Extraction Strategies
We first consider the impact of SIS and different core extraction strategies on the runtime
performance of PBO-IHS, using default parameters. Figure 2 (left: sampled benchmark set,
right: full set) shows the number of benchmarks solved (y-axis) under different per-instance
time limits (x-axis) for the different variants of PBO-IHS. Focusing on the sampled benchmark
set, we observe that the integration of SIS has a clear performance boosting effect on PBO-IHS.
This holds regardless of the choice of core extraction strategy. PBO-IHS:PB+SIS solves the
greatest number of instances among the variations. Compared to the integration of SIS, the
different core extraction strategies result in – perhaps even surprisingly – similar performance,
suggesting that the more general core constraints do not appear to be significantly beneficial
for overall performance when considering a balanced sample of benchmarks from all domains.

There are, however, benchmark domains on which the core extraction strategies have a
significant impact. In particular, as shown in Figure 2 right for the full set of benchmarks,
dominated by few domains of significant size, PBO-IHS:PB+SIS using the PB-Cores strategy
and SIS significantly outperforms the other PBO-IHS variants (and also surpassing RS/lp –
which PBO-IHS regardless of the variant outperforms on the balanced set of benchmarks).
Table 1 provides a more detailed breakdown of these results per benchmark domain and offers
an explanation for the good performance of PBO-IHS:PB+SIS: the PB-Cores core extraction
strategy and SIS together significantly improve performance in particular on the BA and
NG domains, two of the three largest domains in terms of number of benchmarks. As
employing PB-Cores does not result in noticeably worse performance that Clausal-Cores on
any problem domain, PB-Cores is the preferred core constraint extraction strategy (note also
that the combination of the two strategies appears to consistently lead to weaker performance
then either of the individual strategies – likely due to the overhead involved in applying
both).
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Table 1 Comparison of specialized PBO solver per benchmark domain: number of solved instances
(#) and cumulative runtimes over solved instances in seconds (cum.)

clausal cores (CP21) clausal cores + SIS PB cores PB cores + SIS PB & clausal cores RS/lp
Domain (#instances) # cum. # cum. # cum. # cum. # cum. # cum.
10orplus/9orless (156) 156 23670 156 6125 156 6378 156 6275 156 18616 154 55344
caixa (24) 24 64 24 32 24 33 24 33 24 42 24 70
rand.*list (118) 118 2296 118 1200 118 1222 118 1220 118 1803 118 692
area_* (59) 51 11784 50 6513 55 8661 55 11487 56 7874 54 16176
trarea_ac (18) 18 7751 18 2508 18 2524 18 2701 18 2550 16 3722
aries-da_nrp (70) 32 10413 34 19124 31 7600 33 8244 31 5712 43 15442
BA (1440) 20 30038 124 159568 78 79760 406 533565 52 72832 588 472938
NG (960) 0 0 0 0 8 18261 74 130170 1 1791 48 115499
MANETs (150) 25 21152 26 31446 20 10110 21 13585 25 21192 40 23547
BioRepair (30) 30 262 30 222 30 207 30 213 30 240 30 3258
Metro (30) 27 12595 29 11116 22 21867 28 2078 23 14373 30 1795
ShiftDesign (30) 9 9060 9 1850 17 15996 17 16370 9 9751 18 12824
Timetabling (30) 28 8768 27 6960 26 2820 27 10265 28 5981 23 15419
EmployeeScheduling (14) 0 0 0 0 0 0 0 0 0 0 0 0
golomb-rulers (34) 12 4212 12 4965 12 5149 12 5010 12 4608 12 1216
bsg (60) 5 16 10 607 6 1470 10 838 7 709 10 465
mis/mds (120) 57 15335 55 10350 54 5223 54 7646 54 8732 45 3853
course-ass (6) 1 6 3 29 2 9 3 14 1 1 3 33
decomp (10) 0 0 0 0 0 0 0 0 0 0 0 0
data (68) 11 2163 14 1423 11 1136 16 1133 12 2884 13 4044
dt-problems (60) 60 113 60 34 60 35 60 34 60 70 60 2
domset (15) 0 0 0 0 0 0 0 0 0 0 0 0
factor (186) 186 342 186 166 186 122 186 118 186 202 186 2
factor-mod-B (225) 225 344 225 173 225 166 225 199 225 251 225 60
fctp (35) 12 499 12 651 12 648 12 646 12 649 5 940
featureSubscription (20) 20 303 20 329 20 289 20 792 20 239 20 8106
frbXX-XX-opb (40) 6 11343 6 9032 6 9025 6 9024 6 8986 0 0
flexray (9) 4 50 4 90 4 87 4 88 4 90 4 393
fome (3) 0 0 0 0 0 0 0 0 0 0 0 0
graca (100) 84 40593 77 49457 76 21482 72 55416 84 26730 31 21769
haplotype (8) 7 4023 8 2212 6 1486 8 5529 6 602 8 2385
garden (7) 6 76 6 48 6 47 6 48 6 50 5 1
hw32/hw64/hw128 (27) 10 12063 9 10233 7 3134 7 3102 7 3210 8 3470
jXXopt (2040) 1579 64191 1579 75181 1575 59765 1575 58216 1574 55900 1589 51821
keeloq_tasca (4) 4 54 4 57 4 78 4 26 4 63 4 33
kullmann (7) 3 3016 3 2942 3 2933 3 2926 3 2909 1 2
lion9-single-obj (1513) 1487 120526 1489 133582 1487 108929 1488 134095 1486 89779 1412 113829
logic-synthesis (74) 71 708 71 665 71 650 71 650 71 669 61 11647
miplib/neos (79) 38 10631 40 10323 39 9868 41 13818 41 10596 37 8377
miplib/other (405) 156 38501 166 88369 156 51454 163 59089 159 45063 147 36264
unibo (36) 8 5342 10 9219 9 5596 10 8154 9 5573 3 228
market-split (20) 1 1167 1 3600 0 0 0 0 0 0 4 342
opb/graphpart (31) 24 5211 25 8550 24 4657 24 6924 24 5121 12 435
opb/autocorr_bern (43) 8 2089 9 5053 9 5048 9 5056 9 5047 4 3594
opb/sporttournament (22) 11 3121 11 1240 11 1238 11 1597 11 1307 4 23
opb/edgecross (19) 12 3984 12 2591 12 2581 12 2809 12 4333 6 2899
opb/pb (8) 0 0 0 0 0 0 0 0 0 0 0 0
opb/faclay (10) 1 960 1 3278 1 3273 1 3268 1 3248 0 0
opb/other (6) 1 2 1 0 1 1 1 1 1 1 1 0
primes/aim (48) 46 234 46 194 46 188 46 189 46 200 48 4
primes/jnh (16) 16 53 16 40 16 37 16 37 16 42 16 19
primes/ii (41) 34 5230 33 1582 33 1657 33 1573 33 1577 23 6874
primes/par (30) 20 422 20 266 20 265 20 265 20 269 20 15
primes/other (13) 5 938 5 1089 5 1088 5 1085 5 1078 6 452
routing (15) 15 26 15 12 15 12 15 12 15 18 15 7
radar (12) 12 77 12 85 12 64 12 63 12 65 6 71
synthesis-ptl-cmos (10) 10 16 10 7 10 7 10 7 10 9 9 135
testset (6) 6 8 6 4 6 4 6 3 6 5 6 0
ttp (8) 2 10 2 6 2 20 2 3 2 15 2 0
vtxcov (15) 0 0 0 0 0 0 0 0 0 0 0 0
wnq (15) 0 0 0 0 0 0 0 0 0 0 0 0

Total: 8708 4814 495850 4939 684400 4863 484356 5286 1125708 4843 453657 5257 1020531
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Table 2 Effect of different SIS-related parameters on the number of solved instances.

Number of solved instances
# seeds full benchmark set

Parameter value ≥ 5 ≥ 1 ≥ 10

no SIS (baseline) 892 903 888 4860

resource-bound (s) 10 923 930 918 5242
30 929 936 925 5282
60 923 928 913 5276
90 923 927 915 5274
180 919 923 909 5247

#iter 5 929 936 925 5282
10 926 933 921 5240
25 922 929 916 5167
50 916 925 913 5081

bound LB 929 936 925 5282
UB 927 935 923 5274
LB&UB 924 932 920 5285

We also observe synergetic benefits of employing both PB-Cores and SIS on specific
domains: employing SIS together with PB-Cores increases the number of benchmarks solved
in the NG domain by 66, while employing SIS together with Clausal-Cores does not increase
the number of solved instances. In the BA domain, SIS increases the number of solved
benchmarks by 328 when using PB-Cores, compared to 104 when using Clausal-Cores.

5.5 Results: Impact of SIS Parameters
Next, we consider the impact of the parameters involved in scheduling SIS: how often to
invoke solution improving search (Schedule-SIS of Algorithm 3), and the time limit enforced
on SIS per iteration (the resource-bound parameter of Algorithm 3).

For an in-depth investigation, we used 10 different random samplings of the full benchmark
set (as described in Section 5.3). We report the number of benchmarks solved in at least 1
(virtual best performance), 5 (median number of solved instances), and 10 (i.e., all) of the
sampled benchmark sets.

For the time limit enforced on SIS invocations, we considered 10, 30, 60, 90, 180 seconds,
keeping the default parameter for when to schedule SIS. For scheduling SIS, recall that the
default SIS trigger is that the search stagnated in terms of non-improving lower bound LB for
5 main search loop iterations. Here we consider two alternative stagnation criteria: (i) UB
(instead of LB) does not improve, and (ii) neither UB nor LB improves for 5 iterations. We
also consider varying the number of iterations after which to trigger SIS if bounds-information
is stagnated, considering as the iteration-threshold the values 10, 25, and 50 in addition to
the default value 5. For the experiments, we varied individually the time limit, stagnation
criterion and iteration-threshold, keeping the other parameters in the default values.

The results are shown in Table 2. For the resource-bound parameter, we observe that
enforcing a 30-second bound on the individual SIS calls results in the largest number of
instances solved. The number of solved benchmark decreases when the time limit is increased.
This suggests that it is indeed important to limit the runtime resources allocated to SIS. For
the number of iterations allowed before triggeting SIS at stagnation (#iter in the table), we
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Figure 3 Runtime division between solution improving search (SIS), hitting set computation
(MCHS) and core extraction for PBO-IHS:PB+SIS (left) and PBO-IHS:CLAUSAL+SIS (right).

clearly observe that detecting stagnation early and employing SIS for improving the current
upper bound is beneficial for overall performance. Finally, for the stagnation criterion (bound
in the table), we observe that best-performance is indeed achieved when solely using LB for
detecting stagnation; this is inline with the intuition that the base PBO-IHS algorithm (as a
pure IHS approach) is mainly a lower-bound based algorithm, which SIS can improve on by
providing tighter upper bound information.

5.6 Results: Runtime Division among Core Extraction, MCHS and SIS
Next we consider how the overall runtimes of PBO-IHS with integrated SIS divide among the
three main phases of PBO-IHS, namely, core extraction, hitting set computation (MCHS),
and SIS. Figure 3 shows a distribution of the percentage of runtimes spent in the three phases
for PBO-IHS:PB+SIS (left) and PBO-IHS:CLAUSAL+SIS (right) over the sampled benchmark
set. The benchmarks are sorted by increasing fraction of the total time spent in SIS by
PBO-IHS:PB+SIS, i.e., when using the PB-Cores core extraction strategy.

First, we observe the two plots are very similar, suggesting that the choice of the core
extraction strategy does not influence the runtime distributions significantly. That said,
using Clausal-Cores appears to somewhat increase the percentage of time spent on core
extraction on instances on which PBO-IHS:PB+SIS spends a noticeable fraction of the runtime
in SIS. Second, we observe that time spent in SIS is significant for only a minority of the
benchmarks, suggesting that the base PBO-IHS algorithm does not stagnate significantly on
a majority of the instances. However, the earlier discussed runtime comparison suggests that
SIS does have a significant positive impact on instances it consumes a greater percentage of
the overall runtime. Thirdly, we observe that the percentage of runtime spent in hitting set
computation varies significantly between different instances.

5.7 Results: Impact of Assumption Shuffling
Finally, we evaluate the impact of assumption shuffling as a lightweight way of obtaining
several cores on the runtime performance of PBO-IHS:PB+SIS. For this experiment, we varied
the number of shuffles between 1 (no shuffling), 5 (default), 10, and 20. As seen from Figure 4
assumption shuffling improves on the number of solved instances, regardless of the choice
between the number of shuffles (5, 10, or 20). The number of shuffles appears less significant
in terms of the number of solved instances. However, it appears that a smaller number of
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Figure 4 The effect of varying the number of assumption shuffles in each core extraction call

over the sampled (left) and full (right) benchmark set.

shuffles may be enough and even better than a greater number; we suspect that this has to
do with the fact that, as the number of shuffles is increased, the size of the minimum-cost
hitting set instance becomes larger faster. This effect is especially noticeable over the full
benchmark set (shown in the right side Figure 4) where 20 shuffles leads to noticeably fewer
solved instances.

6 Conclusions

A first instantiation PBO-IHS of the implicit hitting set approach in the context of pseudo-
Boolean optimization was recently developed and shown to outperform earlier specialized PBO
solvers. In this work we studied ways of further improving the overall runtime performance
of PBO-IHS. In particular, we propose the integration of solution-improving search (SIS) to
PBO-IHS, essentially obtaining a hybrid IHS-SIS approach to PBO, and showed that this
hybrid pushes the empirical performance of PBO-IHS significantly further. We also studied
the impact of different core constraint extraction strategies as a central part of IHS search,
including the employments of recent advances in PB core extraction, which allows for making
use of more general core constraints, resulting in solving a generalized form of the hitting set
problem within PBO-IHS. In addition to SIS, the refined core extraction strategies proved to
provide performance-improvements in particular benchmark domains. We also extensively
evaluated the runtime impact of different parameters involved in the integration of SIS and
core extraction. All in all, the new version of PBO-IHS resulting from this work can be
considered a competitive exact solver for PBO.
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