Quantified CDCL with Universal Resolution

Friedrich Slivovsky &
TU Wien, Austria

—— Abstract
Quantified Conflict-Driven Clause Learning (QCDCL) solvers for QBF generate Q-resolution proofs.
Pivot variables in Q-resolution must be existentially quantified. Allowing resolution on universally
quantified variables leads to a more powerful proof system called QU-resolution, but so far, QBF
solvers have used QU-resolution only in very limited ways. We present a new version of QCDCL
that generates proofs in QU-resolution by leveraging propositional unit propagation. We detail how
conflict analysis must be adapted to handle universal variables assigned by propagation, and show
that the procedure is still sound and terminating. We further describe how dependency learning can
be incorporated in the algorithm to increase the flexibility of decision heuristics. Experiments with
crafted instances and benchmarks from recent QBF evaluations demonstrate the viability of the
resulting version of QCDCL.

2012 ACM Subject Classification Theory of computation — Automated reasoning

Keywords and phrases QBF, Q-Resolution, QU-Resolution, CDCL

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.24

Supplementary Material Software (Source Code): https://github.com/fslivovsky/miniQU
Funding Friedrich Slivovsky: Vienna Science and Technology Fund (WWTF) Grant ICT19-060.

Acknowledgements The author would like to thank the anonymous reviewers for their helpful

comments towards improving this paper.

1 Introduction

Sustained improvements in the performance of propositional satisfiability (SAT) solvers [16]
is enabling a growing number of applications in formal verification and other areas [5,10,44].
In some of these applications, SAT oracles are used to solve problems that are hard for
complexity classes beyond NP. Such problems presumably do not to have polynomial SAT
encodings, which can result in prohibitive space requirements. A potential solution lies in
the development of decision procedures for more succinct target logics such as Quantified
Boolean Formulas (QBF). Satisfiability testing of QBF’s is PSPACE-complete [40], and
many problems have natural QBF encodings [38]. While there has been progress in the
performance of QBF solvers, they have not reached the level of maturity seen in SAT solvers.
Where conflict-driven clause learning (CDCL) is clearly the dominant paradigm in SAT
solving, there are different approaches to QBF solving that appear to be orthogonal [29]. At
a high level, these fall into two classes. One class consists of solvers that use SAT oracles for
propositional reasoning and reduce QBF solving to a sequence of SAT calls on a propositional
abstraction [12,21-23,35,42]. The second class is comprised of solvers that seek to lift CDCL
from propositional reasoning to quantified CDCL (QCDCL) [27,33,46,47].! This work
reexamines a core component of QCDCL.

A key factor in the success of CDCL SAT solvers is an efficient implementation of unit
propagation (UP) [32]. The traditional analogue of unit propagation in QCDCL solvers
is quantified unit propagation (QUP), which combines UP and universal reduction, a proof

1 This classification is not exhaustive, and there are solvers that combine both aspects [31]. Moreover, pre-
processing is crucial for the performance of abstraction-based QBF solvers, and many QBF preprocessing
techniques are generalized from SAT [20].

© Friedrich Slivovsky;
37 licensed under Creative Commons License CC-BY 4.0

25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 24; pp. 24:1-24:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:fs@ac.tuwien.ac.at
https://orcid.org/0000-0003-1784-2346
https://doi.org/10.4230/LIPIcs.SAT.2022.24
https://github.com/fslivovsky/miniQU
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2

Quantified CDCL with Universal Resolution

rule that allows for an innermost universal variable to be removed from a clause [25]. QUP
leads to more propagation than UP, but it has certain drawbacks. First and foremost, it
complicates clause learning: applying a natural conflict analysis procedure results in clauses
that are (syntactically) tautological [46]. The fact that such clauses can be useful in proof
search is surprising, and it remained mysterious until the underlying proof system was
studied under the name of long-distance Q-resolution [2]. By now it is well understood
that tautological literals are syntactic placeholders for partial strategy functions [3,6,11,41].
Since long-distance Q-resolution is a stronger proof system than Q-resolution, QCDCL
with tautological learned clauses can solve certain classes of formulas that are otherwise
intractable, but experiments suggest that tautological clauses are less useful in common
benchmarks [15]. Tautologies can be eliminated from learned clauses by recursively resolving
out existential literals and applying universal reduction [19], but this can result in clause
learning taking exponential time [17]. So-called QPUP learning avoids this pathological
case, but still requires additional resolution steps to remove tautologies [30]. Another, albeit
minor, disadvantage of QUP is that it is more difficult to implement. In particular, in a
two-watched-literal-scheme [32] the watched literals cannot be treated independently if the
underlying variables have different quantifier types.

In this paper, we propose a modified version of QCDCL that uses propositional unit
propagation instead of QUP. It not only avoids the disadvantages of QUP described above, but,
by propagating variables regardless of their associated quantifier, is able to generate resolution
proofs in which both existentially and universally quantified variables appear as pivots. That
is, its underlying proof system is QU-resolution, which is known to be exponentially separated
from both Q-resolution [17] and long-distance Q-resolution [4]. Conflict analysis must be
adjusted to deal with existentially quantified variables propagated by terms, but is simplified
in that tautological clauses are no longer a concern. We implemented our new version of
QCDCL on top of MINISAT [14] and performed an experimental analysis. Our prototype
demonstrated non-trivial use of QU-resolution by quickly solving formulas from the KBKF
family [25], which is known to be hard for Q-resolution [8,25], and the KBKF-LD family,
which is hard for long-distance Q-resolution [4]. Further experiments on benchmark instances
from recent QBF evaluations [34] demonstrate the potential of using propositional unit
propagation with QCDCL.

The remainder of this paper is structured as follows. Section 2 covers standard concepts
and definitions used in the rest of the paper. In Section 3, we review the QCDCL algorithm.
Section 4 details how it can be modified to use propositional unit propagation and generate
QU-resolution proofs. In Section 5, we present an experimental evaluation of a prototype
implementation. We conclude in Section 6 with a discussion of our findings.

Related Work

We briefly discuss prior applications of QU-resolution and propositional unit propagation in
search-based QBF solving. If the matrix of a QBF is propositionally unsatisfiable, then so
is the QBF. This kind of ezistential abstraction was used to improve backtracking search
algorithms [37]. If a SAT solver finds that the set of clauses at a node of the search tree
is unsatisfiable, the node can be pruned. Otherwise, a satisfying assignment can guide
decisions in the subtree. Existential abstraction was similarly integrated into QCDCL as a
proof rule for deriving new clauses [31]. In this context, it was observed that the resolution
derivation generated by the SAT solver is a QU-resolution derivation. It was even shown
that the addition of existential abstraction to Q-resolution results in a proof system that
simulates QU-resolution [31]. In both these approaches, the existential abstraction changes

F. Slivovsky

at every node in the search tree, and calling the SAT solver each time may result in a
significant overhead. QU-resolution can also be used to simulate failed literal detection for
QBF [17,18,28]. A version of QCDCL with propositional unit propagation was recently shown
to simulate Q-resolution [7]. That work relies on a model of QCDCL as a (non-deterministic)
proof system, and unit propagation is restricted to existentially quantified variables.

2 Preliminaries

We assume a countably infinite set of propositional variables. A literal is a variable = or a
negated variable —x. A clause is a finite disjunction (V) of literals, and a term is a finite
conjunction (A) of literals. Clause are tautological and terms contradictory if they contain a
variable and its negation. We sometimes consider clauses and terms as sets of literals. A
CNF (conjunctive normal form) formula is a finite conjunction of non-tautological clauses,
and a DNF (disjunctive normal form) formula is a finite disjunction of non-contradictory
terms. An (truth) assignment of a set X of variables is a mapping 7 : X — {0, 1} of variables
to truth values. We extend assignments to mappings of literals to truth values by setting
7(—z) ;=1 —7(x). A literal ¢ is satisfied by the assignment 7 if 7(¢) = 1, and falsified if
7(¢) = 0. A clause is satisfied if one of its literals is satisfied, and falsified if all of its literals
are falsified. Similarly, a term is falsified if one of its literals is falsified, and satisfied if each
of its literals is satisfied. A CNF formula is satisfied if all of its clauses are satisfied, and
falsified if one of its clauses is falsified. A DNF formula is satisfied if one of its terms is
satisfied, and falsified if all of its terms are falsified.

A quantified Boolean formula (QBF) in prenex CNF form is a pair ® = Q.¢, consisting
of a (quantifier) prefix Q and a CNF formula ¢, called the matriz of ®. The quantifier prefix
is a sequence Q17 ...Qnx,, where the z; are pairwise different variables and Q; € {V,3}.
A variable z; is ezistential if Q; = 3, and universal if Q; = V. We assume that QBF’s are
closed, that is, each variable occurring in ¢ also occurs in the quantifier prefix. The prefix
induces an ordering on its variables as x; < x; if ¢ < j. When x; < x; we say that x; is outer
to x; and x; is inner to x;. The quantifiers induce a sequence X1, ..., X; of sets of variables,
called quantifier blocks, appearing in maximal, contiguous subsequences Q;x; ... Q) x; such
that Qr = @Q; for each ¢ < k < j. The truth value V(®) of a QBF ® = Q.p can be inductively
defined as follows. If ® contains no variables then V(®) = 0 if ¢ contains the empty clause,
and V(®) = 1 otherwise. When Q = Q127 ... Qnx, with n > 1, we distinguish two cases. If
Q1 =V, then V(®) =1 if V(P[-x1]) = 1 and V(P[z1]) = 1, and V(P) = 0 otherwise. Here,
®[¢] denotes the QBF Q'.¢[¢] where Q' = Qaz5...Qnx, and @[f] is obtained from ¢ by
removing each clause that contains ¢ and removing z; from all remaining clauses. If @1 = 3,
we let V(@) = 1 if V(®[-x1]) = 1 or V(P[z1]) = 1, and V(P) = 0 otherwise. A QBF & is
true (or satisfiable) if V(®) = 1, otherwise it is false (or unsatisfiable).

Q-Resolution

We consider several variants of the Q-resolution proof system [25]. Derivations in these
systems are sequences of clauses where each clause is derived by an axiom or from clauses
appearing earlier in the sequence using one of the proof rules. A refutation is derivation
of the empty clause. The proof rules of QU-resolution [17] are shown in Figure 1. The
original Q-resolution proof system is obtained by restricting pivot variables z in the resolution
rule to existential variables. Q-resolution is sound and (refutationally) complete, that is,
a QBF has a Q-resolution refutation if, and only if, it is false [25], and the same holds for
QU-resolution [17].

24:3

SAT 2022

24:4 Quantified CDCL with Universal Resolution

5 (Axiom) CVu/-u

C

In the axiom rule, C is a clause from the matrix. Universal reduction (V-reduction)
allows the removal of a universal variable u or its negation —u if w is inner to each

(V-Reduction)

variable occurring in C.

CiVzx -z V Cy
C1UCs

(Resolution)

The resolvent clause C; U Cy must be non-tautological.

Figure 1 The rules of QU-resolution [17].

In Q-resolution and QU-resolution, resolvents must be non-tautological. This requirement
can be slightly relaxed so that tautological clauses can be derived in certain cases. This leads
to so-called long-distance Q-resolution (LDQ-resolution) [2].

3 Quantified CDCL

In this section, we describe a generic version of quantified CDCL following the original
presentation [46,47]. Pseudocode is shown in Listing 1. QCDCL is a backtracking search

Listing 1 Schematic QCDCL algorithm.

1 def QCDCLQ):

2 while True:

3 conflict = propagate()

4 if conflict is not None:

5 # Propagation falsified a clause or satisfied a term.
6 learnt, backtrack_level = analyze(conflict)

7 if learnt.empty():

8 return learnt.isTerm()

9 else:

10 backtrack(backtrack_level)

1 attach(learnt)

12 else:

13 # No conflict, branch on an unassigned variable.
14 decide()

algorithm that maintains a sequence of literals, called the trail, which induces a partial
assignment of the input variables. The trail is empty initially and extended during search
by unit propagation and decisions. Unit propagation identifies a clause that simplifies to a
unit clause (¢) under the current trail assignment and appends £ to the trail. By default,
this includes the application of universal reduction [13,46]. We refer to this combination as
quantified unit propagation (QUP) to distinguish it from propositional unit propagation (UP).
Propagating a unit clause may lead to further unit clauses that must be propagated, and this
process is repeated until no unit clauses remain or a clause simplifies to the empty clause. In
the former case, the algorithm proceeds with a decision, which takes an unassigned variable x

F. Slivovsky

Listing 2 QCDCL conflict analysis with long-distance Q-resolution.

1 def analyze(C):

2 while not C.empty() and not isAsserting(C):

3 1 = lastPropagatedExistential(C)

4 D = reason(l)

5 C = resolveAndReduce(C, D, 1)

6 backtrack_level = secondHighestDecisionLevel(C)
7 return C, backtrack_level

and appends one of the literals x, -z to the trail. In propositional CDCL, this can be any
unassigned variable. In QCDCL, decision variables are typically chosen from the leftmost
quantifier block of the prefix (after applying the trail assignment), but there are techniques
that allow for more flexibility [27,33]. The alternation of decisions and unit propagation
partitions the trail into decision levels. Decision level 0 consists of literals assigned by unit
propagation before any decision has been made, and each decision increases the decision
level by one.

A conflict occurs when unit propagation finds a falsified clause. Conflict analysis, which
we will describe in more detail below, takes a conflict as a starting point to derive a new
learnt clause using Q-resolution or long-distance Q-resolution (or, as we will later see, QU-
resolution). If the learnt clause is empty, QCDCL has found a refutation and the input
QBF is false. Otherwise, all literals with decision level greater than a certain backtrack level
returned by conflict analysis are removed from the trail, and the learnt clause is added to
the formula.

So far, we have only considered clauses from (or derived from) a CNF representation of
the matrix. QCDCL simultaneously operates on terms from a DNF representation of the
matrix in a completely dual manner. Unit propagation includes the (falsifying) assignment
of universal literals occurring in unit terms, and if a term is satisfied, conflict analysis derives
a new learnt term. When the matrix of a QBF is given in CNF, the terms in the DNF
representation may be derived by model generation [19] or simply by Tseitin transformation
of the negated matrix [24]. We will ignore these details and simply assume that the matrix
is given as both CNF and DNF such that every complete assignment either falsifies a clause
or satisfies a term. Further, to simplify the presentation, we will typically only describe
algorithms for the clausal representation of the matrix (for terms, the roles of existential and
universal variables are switched).

Listing 2 shows pseudocode for the conflict analysis routine in QCDCL with QUP and long-
distance Q-resolution (cf. [15]). Starting from a clause C' that was falsified by propagation,
it derives a clause that is either empty or asserting. In the case of QUP, a clause is asserting
if it contains a unique existential variable (the asserting variable) at the maximum decision
level among existential variables in the clause, and any universal variable appearing in the
clause that is outer to the asserting variable belongs to a lower decision level. Furthermore,
the decision level of the asserting variable must be greater than 0 (if it is 0 the empty clause
can be derived). An asserting clause becomes a unit clause (with respect to QUP) after
backtracking to the second highest decision level present in the clause (or 0 if there is no
such decision level) and propagates the asserting variable.

The conflict clause C' itself cannot be asserting, as otherwise the asserting variable would
have been propagated at a lower decision level. Until it arrives at an asserting clause (or
the empty clause), conflict analysis repeatedly derives a new clause as follows. It finds the

24:5

SAT 2022

24:6

Quantified CDCL with Universal Resolution

existential literal ¢ € C that was last falsified by propagation, then resolves C' with the
clause D that was the reason for propagating —¢, and applies universal reduction to the
resolvent. The reason clause is such that it simplified to the unit clause (—¢) under a partial
trail assignment.

This always leads to an empty or asserting clause, because eventually, any existential
variables remaining in the derived clause must have been assigned by a decision. In particular,
the innermost variable must be an existential decision variable e. If the clause would contain
a universal variable u that is unassigned or assigned at a higher decision level, then the
variable u would have been unassigned at the time when variable e was picked as a decision
variable. But this is impossible if the solver follows the decision policy described earlier.

4 QCDCL with Propositional Unit Propagation

In this section, we describe how to modify QCDCL to use propositional unit propagation,
starting with a version that uses Q-resolution as its underlying proof system (Section 4.1).
Propositional unit propagation is weaker than the combination of propositional unit prop-
agation and universal reduction commonly used in QCDCL solvers, but it allows for the
propagation of universal variables, which leads to a version of QCDCL that generates
QU-resolution proofs (Section 4.2).

4.1 Propagation and Learning with Q-Resolution

A simple way of integrating propositional unit propagation with QCDCL is to stop propagating
when detecting a unit clause (u) that contains a single universal literal u. Instead of assigning
u := 1, propagation assigns u := 0 (at the current decision level) and reports a conflict. We
can still use the algorithm shown in Listing 2 for clause learning, but the definition of an
asserting clause must be adapted as follows. The asserting variable is now the unique variable
at maximum decision level among all variables in the clause, and it must be existential and
at a decision level greater than 0.

Clauses derived during conflict analysis cannot be tautological, since the universal literals
occurring in both premises of a resolution step are falsified by the trail assignment. Again,
conflict analysis always terminates with a clause that is empty or asserting, since the innermost
existential variable will eventually be a decision, so that outer universal variables must have
been assigned at a lower decision level.

Note that, even though tautological clauses are no longer a concern, conflict analysis may
still have to proceed beyond the last decision variable (even if it is existential), since the
derived clause may contain universal variables that were propagated by terms. These cannot
be removed by resolution and must instead be taken care of by universal reduction, which
in turn requires that “blocking” existential variables inner to these universal variables be
resolved out. Such blocking variables can be assigned at any decision level due to propagation,
and may lead to conflict analysis visiting earlier decision levels.

4.2 Propagation and Learning with QU-Resolution

To get QU-resolution as the underlying proof system, we modify the algorithm described in
the previous subsection by allowing the propagation of universal unit clauses (respectively,
existential unit terms). That is, upon detecting a unit clause (u) where u is a universal literal,
the algorithm proceeds by assigning u := 1, and a conflict arises only when unit propagation
falsifies a clause.

F. Slivovsky

Allowing unit propagation of variables regardless of their associated quantifier requires
several modifications to conflict analysis. First, since unit propagation of clauses can now
assign universal variables, the asserting variable is no longer required to be existential. That
is, a clause is considered asserting if there is a unique variable at maximum decision level
greater than 0. While the clause is not empty or asserting, it has to contain a falsified
existential literal (otherwise, universal reduction would have derived the empty clause). More
generally, there has to be a literal £ in the current clause that was last falsified by propagation,
not including universal literals that were propagated by terms (which are to be removed by
universal reduction). If literal ¢ was propagated by a clause D, a new clause is derived as
the resolvent of C' and D, followed by universal reduction. Note that the pivot may be a
universal variable.

Otherwise, literal ¢ is an existential literal propagated by a term D. Such a literal can be
removed neither by universal reduction nor by resolution, so conflict analysis cannot derive
an asserting clause. Noting that an existential variable propagated by a term is the dual of a
universal variable propagated by a clause, we proceed by reverting to the strategy from the
previous subsection: the term D is considered satisfied, and conflict analysis restarts with
the term D as the conflict term. Pseudocode for the new conflict analysis routine is shown
as Listing 3. A detailed example is presented at the end of this section.

4.3 Soundness and Termination

Soundness of the above variants of QCDCL follows from soundness of QU-resolution: the
algorithms return false if the empty clause was derived by QU-resolution, or true if the
empty term was derived by the dual proof system for terms. For termination, first observe
that decisions and propagation always leads to a conflict. Second, conflict analysis always
terminates. This is because variables are visited and resolved in reverse trail order, so that
no variable is resolved twice, and the trail index of pivot variables decreases in each step.?
If conflict analysis does not terminate with an empty clause or term (in which case the
algorithms terminate immediately), it derives an asserting clause (or term). Since this clause
is a unit clause at an earlier decision level than the one at which the conflict occurred, and it
propagates an assignment of the asserting variable that differs from its assignment on the
current trail, it cannot occur among the original or previously learnt clauses. So each clause
derived by learning is new, and since there are at most 3" (non-tautological) clauses that
can be derived from a QBF with n variables, the algorithms must terminate eventually.

4.4 Adding Dependency Learning

The above arguments for why QCDCL conflict analysis arrives at an asserting clause rely
on a particular policy for choosing decision variables. Specifically, it was assumed that only
variables from the outermost quantifier block (with assigned variables removed from the
prefix) are considered as decision variables. It has frequently been observed that this policy
is needlessly restrictive, and many techniques have been proposed to enable more liberal
decision heuristics (see [27,33] and the references therein). So-called dependency learning is
a lazy approach that assumes variables can be assigned in any order until conflict analysis
fails to derive an asserting clause [33]. When that happens, a pair (x,y) of variables is added

2 Note that when conflict analysis is reset due to an existential literal £ propagated by a term D, literal ¢
(which was assigned last among variables in D) is not selected as the next pivot, since only satisfied
literals in D are considered, and ¢ was set to false by unit propagation.

24:7

SAT 2022

24:8

Quantified CDCL with Universal Resolution

Listing 3 QCDCL conflict analysis with QU-resolution.

1 def analyze(C):

2 while not C.empty() and not isAsserting(C):

3 1 = getPivot(C)

4 D = reason(l)

5 if not C.isClause() == D.isClause(Q):

6 # Vartable at mazimum DL cannot be removed.
7 # Restart analysis with conflict clause/term D.
8 C=0D

9 continue

10 C = resolveAndReduce(C, D, 1)

11 backtrack_level = secondHighestDecisionLevel(C)
12 return C, backtrack_level

14 def getPivot(C):

15 # Pivot literals must be false if C is a clause or

16 # true if C is a term.

17 pivot_value = C.isTerm()

18 candidates = [1 for 1 in C if value(l) == pivot_value]

19 # Moreover, pivots 1 must have been assigned by propagation
20 # of a unit clause or term, which is stored as reason(l).

21 candidates = [1 for 1 in candidates if reason(l) is not None]
22 # Universal variables propagated by terms must be removed

23 # by universal reduction, so we exclude them.

24 irreducible = existential if C.isClause() else universal

25 pivots = [1 for 1 in C if varType(var(l)) == irreducible or
26 C.isClause() == reason(l).isClause()]
27 # Choose the wvariable that was assigned last.

28 return max(pivots, key = traillndex)

to a dependency relation, and variable y is only considered eligible for decision once x has
been assigned. This technique was originally introduced for QCDCL with long-distance
Q-resolution, but it can be easily adapted to the versions of QCDCL with propositional
unit propagation presented here. Instead of assuming that an existential decision variable e
cannot block reduction of a universal variable v due to the decision policy, we detect such
cases, introduce a dependency (u, e), and backtrack to undo the decision level corresponding
to variable e. Unlike in QCDCL with long-distance Q-resolution, propagation does not need
to take dependencies into account, and no further changes are necessary. Termination is still
ensured since a dependency is added whenever no asserting clause can be derived, and the
decision policy will eventually revert to the strict policy based on the prefix order.

We conclude this section with an example illustrating a run of the new QCDCL algorithm
with dependency learning and QU-resolution as a proof system.

» Example 1. Let ® = Jey, e3Va;3ey.0 be the KBKF-LD [4] formula for n = 1, where

o= 1(eaVarV-es)AesV a;V-eg)A(arVeg)A(mar Ves)A(—es V—esV—ey).
—_———

Cq Cso Cs3 Cy Cs

F. Slivovsky

Initially, there are no dependencies and the trail e;@1, —e,@2 is obtained by decisions.?

Clause C5 then propagates a1, and the resulting trail eo@1, —e,@2, a1@2(Cs5) falsifies Cy.
Conflict analysis finds a; as pivot variable with C5 as a reason. Resolving C4; with
C3 derives the unit clause Cs = (ey4), which is asserting and leads to the algorithm
backtracking to decision level 0 and propagating e4.

Starting from e,@0, the decision a; and subsequent propagations result in the trail
€4@0(Cs),a1@Q1,e3Q1(Cs), 7e2@1(Cs). This trail satisfies the matrix, and the correspond-
ing term (—ea A ez A ag A ey) serves as a starting point for conflict analysis. Existential
reduction derives the term (—eg A eg A a1), which is not asserting since all three variables
are assigned at decision level 1. The existential variables es, e3 were propagated by clauses
and cannot be removed by term resolution (also known as consensus), so existential
reduction must be used instead. In particular, the outermost variable e; must be removed.
However, reduction cannot be applied due to the blocking universal decision variable a;.
The algorithm learns the dependency (es, a1), and backtracks to decision level 0.

Next, the decision —esy leads to the trail e4@Q0(Cs), 7e2@1,a;@1(C4), e3@1(Cy), so that
conflict analysis again starts at the term (—es A ez A ay). As in the previous conflict,
variable es must be removed by existential reduction, but in this case, the blocking
universal variable a; was propagated by clause C7. Conflict analysis cannot derive a
term and instead restarts with C; as a conflict clause. Literal a; is not considered as a
potential pivot since it is satisfied by the trail assignment, and variable e; is a decision
variable, so e4 is chosen as a pivot. Resolving C; with Cg = (e4) and applying universal
reduction, the algorithm derives the unit clause C7 = (e3).

The algorithm arrives at the trail e4@Q0(Cs), e2@0(Cr), —e3@Q0(C5), ~a1@Q0(Cs) by prop-
agation, which satisfies the matrix and leads to the initial term (ez A —eg A —aq) by
existential reduction. Again, conflict analysis cannot derive a term because the blocking
universal variable a; was propagated by a clause. Resuming conflict analysis at clause Cs,
variable ez is chosen as a pivot with reason clause (5. Resolving C's and Cj results in the
clause (—e2 V —ay V —eq). Further resolving with the unit clauses C7 = (e2) and Cs = (e4)
and applying universal reduction derives the empty clause, so the algorithm reports that
the QBF & is false.

5 Implementation and Experiments

We implemented QCDCL with propositional unit propagation on top of MINISAT [14] in
a system named MINIQU.* The performance of MINIQU was evaluated in two sets of
experiments. First, we ran the solver on crafted instances that are provably hard to solve
for Q-resolution and even LDQ-resolution [4], to determine whether MINIQU can find short
proofs by leveraging QU-resolution. In the second experiment, we compared the system with
the best publicly available solvers using instances from recent QBF evaluations [34]. All
experiments were run on a cluster with Intel Xeon E5649 processors at 2.53 GHz running
64-bit Linux, with a memory limit of 8 GB.

3 We write trails as sequences ¢1@dl1(C1),...,£:Qdl;(C;) of literals with their associated decision level
and, if assigned by propagation, their reason clause/term.
4 https://github.com/fslivovsky/miniQU

24:9

SAT 2022

https://github.com/fslivovsky/miniQU

24:10

Quantified CDCL with Universal Resolution

5.1 Implementation

MiINIQU supports the following propagation modes and underlying proof systems: UP with
Q-resolution (Q), UP with QU-resolution (QU), and QUP with long-distance Q-resolution
(LDQ). Being based on MINISAT, the solver inherits many of its characteristics, such as the
restart policy, the decision heuristic (restricted by learned dependencies or prefix order), and
an aggressive clause (and term) cleaning strategy. We briefly list a few relevant features and
design choices:

MINIQU accepts QDIMACS (prenex CNF) and QCIR, (prenex non-CNF) formulas.

For QDIMACS, initial terms are obtained by model generation [19] when all variables
are assigned without conflict.

Clause and term cleaning is performed based on the literal blocks distance (LBD) [1] and
activity, rather than activity alone. As in MINISAT, half of the learned clauses and terms
are removed. Clauses and terms with LBD at most 2 are kept indefinitely.

Dependency learning is supported in Q-mode and QU-mode, and dependencies are
reset every 20 restarts. For technical reasons, dependency learning is not supported in
LDQ-mode.

5.2 Experiments with Crafted Instances

To determine whether MINIQU in QU-mode takes advantage of QU-resolution, we performed
experiments with classes of formulas that have short QU-resolution refutations but no short
proofs in Q-resolution or long-distance Q-resolution. For this purpose, we used two variants
of the KBKF family of formulas introduced by and named after Kleine Biining, Karpinski,
and Flogel [25]. Instances from these families were generated with the QBFFAM® tool [9].
In both cases, we used parameter values between n = 5 and n = 60, and ran MINIQU in
five different configurations: Q-mode with (Q-dl) and without (Q) dependency learning,
QU-mode with (QU-dl) and without (QU) dependency learning, as well as LDQ-mode. The
time limit for each run was set to 600 seconds.

We first considered the original KBKF class, which has short QU-resolution [17] and
LDQ-resolution [15] refutations, but requires Q-resolution proofs of exponential size [8,25].
The left plot in Figure 2 clearly shows that the running time of MINIQU in Q-mode grew
exponentially with the parameter n. By contrast, the solver was able to find short refutations
in LDQ-mode and QU-mode. Notably, in QU-mode this was the case only when dependency
learning was active. There was also a clear gap between LDQ-mode and QU-mode, with
LDQ-mode honing in on short proofs more reliably.

Second, we ran a similar experiment on the KBKF-LD family, which has short proofs in
QU-resolution but requires exponential LDQ-resolution proofs (and therefore also exponential
Q-resolution proofs) [4]. The right plot of Figure 2 shows an exponential growth in running
time exhibited by MINIQU in Q-mode and LDQ-mode. In QU-mode, the solver found short
refutations of these instances. Unlike in the first experiment, this was the case regardless of
whether dependency learning was active. In fact, for larger values of n, the running times
were lower and showed less variance without dependency learning.

5 https://github.com/marseidl/qbffam

https://github.com/marseidl/qbffam

F. Slivovsky

600) N Ll

100

Mode

10 LDQ
= - Q
(<5}
g ! - Qdl
= —+ QU

/,/ QU-dl
'

5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60
n

Figure 2 Running time (y-axis) of MINIQU in different modes on instances from the KBKF (left)
and KBKF-LD (right) families, for different values of n (x-axis).

5.3 Experiments with QBF Evaluation Benchmarks

To assess whether QCDCL with propositional unit propagation is viable on standard bench-
marks, we ran MINIQU alongside publicly available solvers on families from the 2019 and
2020 QBF evaluations [34]. For each run, we set a time limit of 900 seconds and capped
memory at 8 GB using RUNSOLVER [36].

We first considered the union of the QBF evaluation 2019 and 2020 prenex non-CNF
(QCIR) benchmark sets comprising 504 instances. Out of these, 40 instances had to be
removed due to incorrect encodings that caused parsing errors, leaving 464 instances. Again,
we ran MINIQU in five different configurations arising from the available propagation modes
and dependency learning switched on and off.

Table 1 (left) shows a comparison with the solvers QUABS [42], QFUN [21], GHOSTQ [26],
and QUTE [33]. Figure 3 displays these results as a cumulative solved instances plot. MINIQU
solved the most instances in LDQ-mode, closely followed by Q-mode with dependency learning.
In these configurations, the solver’s results were on a par with QUABS and QFUN. Fewer
instances were solved in QU-mode. Dependency learning improved the number of solved
formulas in both Q-mode and QU-mode.

Next, we considered the union of the QBF evaluation 2019 and 2020 prenex CNF
(QDIMACS) sets totaling 716 instances. These were first preprocessed by HQSPRE [45]
using default settings and a timeout of 600 seconds. We subsequently removed instances for
which preprocessing timed out or that were solved by preprocessing, leaving 455 instances. On
these remaining (preprocessed) formulas, we ran MINIQU alongside the solvers CAQE [35],
DEPQBF [27], and RAREQS [22]. Results are shown in Table 1 (right) and Figure 4.

MINIQU solved notably fewer instances than the two abstraction solvers. However, it
was able to solve more instances than DEPQBF in all but one configuration. Again, the
configurations using QU-mode solved the fewest instances. Curiously, unlike in the previous
experiment, dependency learning reduced the number of solved instances.

We initially suspected that the lower number of solved instances in QU-mode might be due
to an overhead caused by frequent resets of conflict analysis (Line 5 in Listing 3), resulting in
fewer learned clauses and terms. To get a sense of raw performance, we compared the number

24:11

SAT 2022

24:12 Quantified CDCL with Universal Resolution

Solver
GhostQ
miniLDQ

200

miniQ
miniQ-dl
miniQU
miniQU-dl
QFun
QuAbS
Qute

Solved Instances
1 B B B B B B O

0 100 200 300 400 500 600 700 800 900
Time (s)

I Figure 3 Solved instances (y-axis) by time (x-axis) for prenex non-CNF (QCIR) instances.

200 -
Solver
CAQE
L 150+ Q
g DepQBF
é minil.DQ
= miniQ
—q'; 100 - miniQ-dl
g miniQU
miniQU-dl
RAReQS
50
0,
0 100 200 300 400 500 600 700 800 900
Time (s)

" Figure 4 Solved instances (y-axis) by time (x-axis) for prenex non-CNF (PCNF) instances.

F. Slivovsky

Prenex non-CNF (QCIR) Prenex CNF (PCNF)

Solver # SAT UNSAT Solver # SAT UNSAT
QuAbS 261 150 111 CAQE 228 92 136
QFun 257 143 114 RAReQS 196 75 121
minilDQ 256 150 106 miniQ 176 65 111
miniQ-dl 254 152 102 miniQ-dl 175 62 113
GhostQ 252 137 115 miniLDQ 166 63 103
miniQ 244 149 95 miniQU 161 57 104
miniQU-dl 243 145 98 DepQBF 150 60 90
miniQU 214 136 78 miniQU-dl 137 45 92
Qute 181 101 80

Table 1 Results for prenex non-CNF (left) and prenex CNF (right) benchmarks. For each solver,
the number of solved instances (#), the number of solved true instances (SAT), and the number of
solved false instances (UNSAT) are reported.

10°] 10° 2

. .
, .
‘/‘/ //
?° 22
A
_ v 3 — %4
= 10! A & o 10 7
e v o
7 i, Y = R
g L = 2033
g ¢ ir= é ey’ ™
g 7 =} .} L
= R & = 4 ¥ *
A . £ va & ,;.
w 10° A = 10° / . AA i, - Benchmark
: N _A_/l.(l : A //AA-? R, :AA PCNF
+ /‘A = ’ A
£ . o2 B8 e R & 4 Qom
= A A = # Pesd® ¢
3 10 3 10 2
O O L
p2 8 isy 4 4
7TA s A ASA
/A RV >3+
7z 7 A
4 Aud
10,7 00,7 &
L L
10" 10? 10° 10! 10° 10! 10 10° 10! 10°
Conflicts / s (miniQU-dl) Conflicts / s (miniQU-dl)

Figure 5 Comparison of conflicts per second on instances with timeouts between different modes.

of conflicts per second on instances that caused a timeout in Q-mode and QU-mode, as well
as in LDQ-mode and QU-mode. Figure 5 (left side) shows that Q-mode and QU-mode are
fairly evenly matched, contradicting our hypothesis that QU-mode slows down learning. At
the same time, Figure 5 shows (right side) a substantial difference between LDQ-mode and
QU-mode, with the number of conflicts in QU-mode exceeding those in LDQ-mode by about
one order of magnitude on many instances.

6 Discussion

This paper introduced new versions of QCDCL that leverage propositional unit propagation.
The experimental results presented in the previous section showcase the potential of these
algorithms. QCDCL with QU-resolution as the underlying proof system was able to find short
proofs of crafted formulas that are unavailable to other versions of QCDCL. Unfortunately,
this advantage did not translate to improved performance on standard benchmark sets.
However, a simpler version of the algorithm with Q-resolution as its underlying proof system

24:13

SAT 2022

24:14

Quantified CDCL with Universal Resolution

performed very well, which suggests that the main challenge is proof search, rather than the
strength of the underlying proof system. This is consistent with the excellent performance of
the solver CAQE, whose traces correspond to a restricted version of Q-resolution [43].
Aside from performance, simplicity is a reason to adopt propositional unit propagation
in QCDCL. For instance, it was possible to port clause minimization as implemented in
MINISAT [39] to our system with minimal changes (with the caveat that universal reduction
is currently not taken into account). We hope that a simplified QCDCL algorithm will allow
for SAT techniques to be more easily integrated with solvers, and encourage experimentation.
Finally, there is a good theoretical argument in favor of these new QCDCL algorithms: it
was recently shown that, as a non-deterministic proof system, QCDCL with propositional
unit propagation is able to p-simulate Q-resolution, provided that the decision heuristic
can ignore the variable order in the quantifier prefix [7]. In principle, such liberal decision
policies are also supported by our new versions of QCDCL, through a fortuitous interaction of
propositional unit propagation with dependency learning. Unlike in the original version [33],
learned dependencies play no role in unit propagation, and can only result from out-of-order
decisions where conflict analysis was unable to derive an asserting clause. Dependencies
are added to ensure that the decision heuristic does not keep making the same “mistake”
indefinitely, but this could possibly be achieved by other means, such as randomization.

—— References

1 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference
on Artificial Intelligence, pages 399-404, 2009.

2 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.
Formal Methods Syst. Des., 41(1):45-65, 2012.

3 Valeriy Balabanov, Jie-Hong Roland Jiang, Mikolas Janota, and Magdalena Widl. Efficient
extraction of QBF (counter)models from long-distance resolution proofs. In AAAI, pages
3694-3701. AAAI Press, 2015.

4 Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and
their proof complexities. In SAT, volume 8561 of Lecture Notes in Computer Science, pages
154-169. Springer, 2014.

5 Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi.
A survey of symbolic execution techniques. ACM Comput. Surv., 51(3):50:1-50:39, 2018.

6 Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Building strategies into QBF proofs.
J. Autom. Reason., 65(1):125-154, 2021.

7 Olaf Beyersdorff and Benjamin Bohm. Understanding the relative strength of QBF CDCL
solvers and QBF resolution. In ITCS, volume 185 of LIPIcs, pages 12:1-12:20. Schloss Dagstuhl
- Leibniz-Zentrum fir Informatik, 2021.

8 Olaf Beyersdorff, Leroy Chew, and Mikolds Janota. New resolution-based QBF calculi and
their proof complexity. ACM Trans. Comput. Theory, 11(4):26:1-26:42, 2019.

9 Olaf Beyersdorff, Luca Pulina, Martina Seidl, and Ankit Shukla. Qbffam: A tool for generating
QBF families from proof complexity. In SAT, volume 12831 of Lecture Notes in Computer
Science, pages 21-29. Springer, 2021.

10 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In Rance Cleaveland, editor, Tools and Algorithms for Construction
and Analysis of Systems, 5th International Conference, TACAS ’99, Proceedings, volume 1579
of Lecture Notes in Computer Science, pages 193-207. Springer, 1999.

11 Nikolaj Bjgrner, Mikolas Janota, and William Klieber. On conflicts and strategies in QBF. In
LPAR (short papers), volume 35 of EPiC Series in Computing, pages 28-41. EasyChair, 2015.

F. Slivovsky

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Roderick Bloem, Nicolas Braud-Santoni, Vedad Hadzic, Uwe Egly, Florian Lonsing, and
Martina Seidl. Two SAT solvers for solving quantified boolean formulas with an arbitrary
number of quantifier alternations. Formal Methods Syst. Des., 57(2):157-177, 2021.

Marco Cadoli, Marco Schaerf, Andrea Giovanardi, and Massimo Giovanardi. An algorithm
to evaluate quantified boolean formulae and its experimental evaluation. J. Autom. Reason.,
28(2):101-142, 2002.

Niklas Eén and Niklas Sorensson. An extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, SAT 2003, volume 2919 of Lecture Notes in Computer Science,
pages 502-518. Springer, 2003.

Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof generation
and strategy extraction in search-based QBF solving. In LPAR, volume 8312 of Lecture Notes
in Computer Science, pages 291-308. Springer, 2013.

Nils Froleyks, Marijn Heule, Markus Iser, Matti Jarvisalo, and Martin Suda. SAT competition
2020. Artif. Intell., 301:103572, 2021.

Allen Van Gelder. Contributions to the theory of practical quantified boolean formula solving.
In CP, volume 7514 of Lecture Notes in Computer Science, pages 647—-663. Springer, 2012.
Allen Van Gelder, Samuel B. Wood, and Florian Lonsing. Extended failed-literal preprocessing
for quantified boolean formulas. In SAT, volume 7317 of Lecture Notes in Computer Science,
pages 86—99. Springer, 2012.

Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Clause/term resolution and
learning in the evaluation of quantified boolean formulas. J. Artif. Intell. Res., 26:371-416,
2006.

Marijn Heule, Matti Jéarvisalo, Florian Lonsing, Martina Seidl, and Armin Biere. Clause
elimination for SAT and QSAT. J. Artif. Intell. Res., 53:127-168, 2015.

Mikolds Janota. Towards generalization in QBF solving via machine learning. In Sheila A.
Mecllraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), pages 6607-6614. AAAT Press, 2018.

Mikoléas Janota, William Klieber, Jodo Marques-Silva, and Edmund M. Clarke. Solving QBF
with counterexample guided refinement. Artif. Intell., 234:1-25, 2016.

Mikolas Janota and Joao Marques-Silva. Solving QBF by clause selection. In IJCAI, pages
325-331. AAAIT Press, 2015.

Mikolds Janota and Jodo Marques-Silva. An achilles’ heel of term-resolution. In EPIA, volume
10423 of Lecture Notes in Computer Science, pages 670—680. Springer, 2017.

Hans Kleine Biining, Marek Karpinski, and Andreas Flogel. Resolution for quantified boolean
formulas. Inf. Comput., 117(1):12-18, 1995.

William Klieber. Ghostq. J. Satisf. Boolean Model. Comput., 11(1):65-72, 2019.

Florian Lonsing and Armin Biere. Integrating dependency schemes in search-based QBF
solvers. In SAT, volume 6175 of Lecture Notes in Computer Science, pages 158—171. Springer,
2010.

Florian Lonsing and Armin Biere. Failed literal detection for QBF. In SAT, volume 6695 of
Lecture Notes in Computer Science, pages 259-272. Springer, 2011.

Florian Lonsing and Uwe Egly. Evaluating QBF solvers: Quantifier alternations matter. In
CP, volume 11008 of Lecture Notes in Computer Science, pages 276-294. Springer, 2018.
Florian Lonsing, Uwe Egly, and Allen Van Gelder. Efficient clause learning for quantified
boolean formulas via QBF pseudo unit propagation. In SAT, volume 7962 of Lecture Notes in
Computer Science, pages 100-115. Springer, 2013.

Florian Lonsing, Uwe Egly, and Martina Seidl. Q-resolution with generalized axioms. In SAT,
volume 9710 of Lecture Notes in Computer Science, pages 435-452. Springer, 2016.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient SAT solver. In DAC, pages 530-535. ACM, 2001.
Tomas Peitl, Friedrich Slivovsky, and Stefan Szeider. Dependency learning for QBF. J. Artif.
Intell. Res., 65:180-208, 2019.

24:15

SAT 2022

24:16

Quantified CDCL with Universal Resolution

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Luca Pulina and Martina Seidl. The 2016 and 2017 QBF solvers evaluations (gbfeval’16 and
qbfeval’17). Artif. Intell., 274:224-248, 2019.

Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF solver. In FMCAD, pages
136-143. IEEE, 2015.

Olivier Roussel. Controlling a solver execution with the runsolver tool. J. Satisf. Boolean
Model. Comput., 7(4):139-144, 2011.

Horst Samulowitz and Fahiem Bacchus. Using SAT in QBF. In CP, volume 3709 of Lecture
Notes in Computer Science, pages 578-592. Springer, 2005.

Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on applications of
quantified boolean formulas. In ICTAI pages 78-84. IEEE, 2019.

Niklas Sorensson and Armin Biere. Minimizing learned clauses. In SAT, volume 5584 of
Lecture Notes in Computer Science, pages 237—243. Springer, 2009.

Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,
Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings of the
5th Annual ACM Symposium on Theory of Computing, April 30 — May 2, 1973, Austin, Tezas,
USA, pages 1-9. ACM, 1973.

Martin Suda and Bernhard Gleiss. Local soundness for QBF calculi. In SAT, volume 10929 of
Lecture Notes in Computer Science, pages 217-234. Springer, 2018.

Leander Tentrup. Non-prenex QBF solving using abstraction. In SAT, volume 9710 of Lecture
Notes in Computer Science, pages 393-401. Springer, 2016.

Leander Tentrup. On expansion and resolution in CEGAR based QBF solving. In CAV (2),
volume 10427 of Lecture Notes in Computer Science, pages 475—494. Springer, 2017.

Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers and their
applications in model checking. Proc. IEEE, 103(11):2021-2035, 2015.

Ralf Wimmer, Christoph Scholl, and Bernd Becker. The (D)QBF preprocessor HQSpre —
Underlying theory and its implementation. J. Satisf. Boolean Model. Comput., 11(1):3-52,
2019.

Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified boolean satisfiability
solver. In ICCAD, pages 442-449. ACM / IEEE Computer Society, 2002.

Lintao Zhang and Sharad Malik. Towards a symmetric treatment of satisfaction and conflicts
in quantified boolean formula evaluation. In CP, volume 2470 of Lecture Notes in Computer
Science, pages 200—215. Springer, 2002.

	1 Introduction
	2 Preliminaries
	3 Quantified CDCL
	4 QCDCL with Propositional Unit Propagation
	4.1 Propagation and Learning with Q-Resolution
	4.2 Propagation and Learning with QU-Resolution
	4.3 Soundness and Termination
	4.4 Adding Dependency Learning

	5 Implementation and Experiments
	5.1 Implementation
	5.2 Experiments with Crafted Instances
	5.3 Experiments with QBF Evaluation Benchmarks

	6 Discussion

