On the Performance of Deep Generative Models of
Realistic SAT Instances

Ivan Garzén &2

LSI, DaSCI, University of Granada, Spain

Pablo Mesejo &
DECSAI, DaSCI, University of Granada, Spain

Jestis Giraldez-Cru' =
DECSAI, DaSClI, University of Granada, Spain

—— Abstract

Generating realistic random SAT instances — random SAT formulas with computational characteristics

similar to the ones of application SAT benchmarks — is a challenging problem in order to understand
the success of modern SAT solvers solving this kind of problems. Traditional approaches are based on
probabilistic models, where a probability distribution characterizes the occurrences of variables into
clauses in order to mimic a certain feature exhibited in most application formulas (e.g., community
structure), but they may be unable to reproduce others. Alternatively, deep generative models have
been recently proposed to address this problem. The goal of these models is to learn the whole
structure of the formula without focusing on any predefined feature, in order to reproduce all its
computational characteristics at once. In this work, we propose two new deep generative models
of realistic SAT instances, and carry out an exhaustive experimental evaluation of these and other
existing models in order to analyze their performances. Our results show that models based on
graph convolutional networks, possibly enhanced with edge features, return the best results in terms
of structural properties and SAT solver performance.

2012 ACM Subject Classification Computing methodologies — Artificial intelligence

Keywords and phrases Realistic SAT generators, pseudo-industrial random SAT, deep generative
models, deep learning

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.3

Funding This work is funded by the University of Granada (Spain) under project PPJIA2021-05.
Jestds Girdldez-Cru: is also supported through the Juan de la Cierva program, fellowship 1JC2019-
040489-1, funded by MCIN/AEI /10.13039,/501100011033.

1 Introduction

The Boolean Satisfiability Problem (SAT) is one of the fundamental problems in Computer
Science and Artificial Intelligence. It has been extensively studied from a theoretical point
of view due to its complexity; SAT is the first known NP-complete problem. This means
that in the worst case, existing algorithms to solve SAT may run during exponentially long
executions. However, despite its worst-case complexity, modern SAT solvers are nowadays
able to solve large application SAT benchmarks in a reasonable amount of time. This is
due to the breakthrough contributions in the so-known Conflict-Driven Clause Learning
(CDCL) algorithm [29]. Nevertheless, the reasons explaining the success of CDCL solving
large application SAT formulas are not completely understood yet [19].

In the last years, there have been some attempts of explaining such a success. In the
literature, we can distinguish between rigorous and correlative approaches. On the one
hand, rigorous metrics generally establish theoretical upper-bounds on certain classes of SAT

! Corresponding author

© Ivan Garzén, Pablo Mesejo, and Jesis Girdldez-Cru;

37 licensed under Creative Commons License CC-BY 4.0
25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 3; pp. 3:1-3:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ivangarzon@ugr.es
mailto:pmesejo@ugr.es
mailto:jgiraldez@ugr.es
https://doi.org/10.4230/LIPIcs.SAT.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

On the Performance of Deep Generative Models of Realistic SAT Instances

formulas. Some examples of rigorous metrics are backdoors [31], and branch-width [1], among
others. Unfortunately, these rigorous metrics do not usually provide much information on
the actual hardness of existing application SAT formulas. On the other hand, correlative
metrics focus on features exhibited in the vast majority of these benchmarks that correlate
to CDCL performance. Some examples are the scale-free structure [3] and the community
structure [2]. In general, formulas with this kind of structures are easy in practice, although
there is no theoretical guarantee about their hardness.

A common approach in order to better understand the efficiency of SAT solving algorithms
is using random SAT models. In the classical random SAT model, a formula Fy(n,m) is a set
of m clauses over n variables, where clauses are chosen uniformly and independently among
all the 2% (2) non-trivial clauses of length k.2 Although the empirical hardness of this model
has been extensively studied [25, 8, 24, 34], it is unable to reproduce the computational
properties observed in real-world SAT instances, and hence, it hardly explains their hardness.

Alternatively, there are some models in the literature focused on reproducing certain
correlative metrics, which are exhibited by most of real-world SAT instances (e.g., scale-free
structure [3] and community structure [2]). In order to generate realistic SAT instances (i.e.,
random SAT formulas with these features observed in real-world benchmarks), a non-uniform
probability distribution can be defined to assign variables to clauses in a certain manner,
resulting in some models such as the Scale-Free (SF) model [4], the Community Attachment
(CA) model [13], and the Popularity-Similarity (PS) model [14]. For this reason, we refer
them as probabilistic models. Unfortunately, these probabilistic models are only able to
reproduce a few features at once.

Recently, deep generative models have been proposed as a new paradigm to address the
generation of realistic SAT instances. The goal of these models is to learn the whole structure
of the formula in order to reproduce all its properties at once. G2SAT [36] is one example of
these models. The main idea of G2SAT is representing the SAT formula as a graph in order
to perform a number of node-splitting operations to generate the set of training examples
which is used to train a model based on a graph neural network (GNN). This (trained)
model is used afterwards to generate random formulas of the same size (i.e., same number of
nodes and edges) with an expected resembling structure. A previous model that inspires the
architecture of G2SAT can be found in [32].

A key aspect of deep generative models is the computation of node embeddings, i.e., the
information associated to each node in the graph, which is computed by the GNN. Obviously,
this information depends on the graph representation of the SAT formula used by the model.
In G2SAT, this is done with a convolution layer based on GraphSAGE [16] over a bipartite
graph with literals and clauses. Moreover, the experimental evaluation of G2SAT presented
in [36] is only performed on a limited set of 10 heterogeneous SAT instances, training the
model with all of them at once. Therefore, it remains unclear whether G2SAT is able to learn
any kind of structure and how the convolutional layer used to compute node embeddings
affects its performance. These open questions on the performance of deep generative models
of realistic SAT instances motivate the present work.

In order to address the previous questions, in this work we present a much more extensive
experimental evaluation of models based on the G2SAT framework. Besides G2SAT, we
also analyze a model that uses Graph Convolutional Networks (GCN) [9, 10, 11] in order to
compute node embeddings, as already suggested in [36]. Also, we propose two new models
based on edge enhanced graph neural networks (EGNN) [15], and on edge-conditioned

2 A non-trivial clause of length k contains k distinct, non-complementary literals.

. Garzén, P. Mesejo, and J. Giraldez-Cru

convolution (ECC) [30]. In contrast to G2SAT, these new models are able to handle a graph
representation of the SAT formula which captures its whole structure in a more transparent
manner, without the need of ad hoc artifacts. In particular, these new models do not require
to create additional message passing paths between a literal and its negation in the GNN (as
G2SAT requires). To do so, they use a graph representation of the SAT formula where edges
model the sign of each variable within each clause, and this edge information is naturally
processed by the GNN. To the best of our knowledge, they are the first deep generative
models of realistic SAT instances that consider edge features to represent this semantic.

In our experimental study, we analyze the performance of these models in terms of
structural properties and practical hardness. The structural analysis is based on two crucial
features of application of SAT formulas. Namely, they are the community structure and
the clustering coefficient. Notice that the G2SAT framework does not alter the distribution
of variable occurrences in the generated formulas, hence it does not make sense to study
features such as the scale-free structure. On the other hand, the hardness of the instances is
evaluated with five well-known CDCL SAT solvers. In both cases, we analyze the structure
and the hardness of the synthetic instances generated by these models with respect to a
set of heterogeneous (input) real-world SAT instances. In contrast to [36], we train the
models separately for each formula, which allows us to evaluate with a finer precision the
performance of the generators. Our analysis shows that the models based on GCN and
EGNN can improve the performance of G2SAT in many cases. We emphasize that the
whole experimentation carried out in this work took more than 240 days, thus this extensive
experimental evaluation is the main contribution of the present work.

The rest of this work is organized as follows. In Section 2 we summarize some related
works, while Section 3 defines some preliminary concepts. Section 4 describes the framework
of G2SAT, and Section 5 describes the new deep generative models of realistic SAT instances
proposed in this work. Section 6 is devoted to the extensive experimental evaluation of these
deep generative models. Finally, we conclude in Section 7.

2 Related works

There are some works in the literature facing the problem of the generation of realistic SAT
instances, i.e., SAT formulas with computational properties similar to the ones observed in
real-world benchmarks. In the SF model [4], SAT formulas are generated with scale-free

structure, i.e., variable occurrences follow a power-law distribution, thus with high variability.
The CA model [13] is able to generate SAT instances with any desired community structure.

In a formula with clear community structure, variables are grouped into communities such
that they mainly co-occur in clauses with other variables of the same community. The goal
of the PS model [14] is to reproduce in a single model these two structures. In particular,
it generates formulas with scale-free structure and high clustering coefficient, where the
community structure emerges as a results of them. G2SAT [36] is a pioneer approach of deep
generative models to the generation of realistic SAT instances, where a GNN is trained to
learn the structure of a (set of) input instance in order to generate formulas similar to it. A
preliminary version of it can be found in [32].

Machine learning has been already used in the context of SAT. One example is SATzilla [35,
17], where it is proposed a per-instance algorithm portfolio that estimates the best solver to
solve a given formula from a predefined set. This portfolio approach has also been successfully
applied in other works [23, 22]. More recently, deep learning has been introduced in order to
solve SAT [28, 27].

3:3

SAT 2022

3:4

On the Performance of Deep Generative Models of Realistic SAT Instances

3 Preliminaries

The SAT problem consists of deciding whether there exists a satisfying assignment for a
given propositional formula. A SAT formula is in Conjunctive Normal Form (CNF) if it is
written as a conjunction of clauses, where a clause is a disjunction of literals, and a literal is
either a Boolean variable or its negation. Let var(yp), lit(y), and cl(p) be respectively the
functions that return the set of variables, literals, and clauses of a SAT formula ¢. Let v;, I},
and wy, refer to variables, literals, and clauses, respectively.

For any graph G(V, E), where V is the set of nodes and E C V x V is the set of edges,
let N(u) be the neighborhood of node u € V, i.e., the set {v € V|(u,v) € E}, and let E, the
set of adjacent edges to node u € V, i.e., {(u,w) € E} for any node w € V.

A Literal-Clause Graph LCG,, of a SAT formula ¢ is a bipartite graph G(V1, Vs, E),
where Vi = lit(p) (i.e., literal-nodes), Vo = cl(p) (i-e., clause-nodes), and E C Vi x V5 is the
set of edges indicating the occurrence of a literal in a clause of ¢, i.e., (l;,wg) € E < I; € wg
for any clause wy € cl(¢). A Variable-Incidence Graph VIG, of a SAT formula ¢ is a
graph G(V, ew), where V = var(p) (i.e., variable-nodes), and ew : V. x V — R is the edge
weight function defined as ew(v;, vj) =) weo 1/(‘“;‘). This is, the sum of all the weights

v v Ew
generated by a clause is equal to 1, hence it considers the length of the clauses. A Signed
Variable-Clause Graph SV CG,, of a SAT formula ¢ is a bipartite graph G(V1, Vs, E), where
Vi = lit(p) (i.e., literal-nodes), Vo = cl(y) (i.e., clause-nodes), and E C V; x Vo x {+,—} is
the set of edges indicating the occurrence and the sign of a variable in a clause of ¢, i.e.,
(vi,wg, +) € E < l; € wg and (v, wg, —) € E <> —l; € wy, for any clause wy, € cl(p). For the
sake of clarity, we remove the subindex ¢ of the previous graph representations whenever it
is clear the SAT formulas ¢ they refer to.

4 The G2SAT framework

In this section we first provide a brief overview of GNN. Then, we summarize the G2SAT
framework [36] based on GraphSAGE, and then a modification of it based on GCN. For
further details we address the reader to the original reference.

4.1 Graph Neural Networks

Graphs represent a challenging structure to be addressed with conventional machine learning
techniques. These types of techniques are specialized in simple data structures, with fixed
sizes and structure (i.e., images). However, graphs are a type of data without a fixed form,
with a indeterminate number of unordered nodes, each having a different number of neighbors.
Therefore, the need of developing a new type of neural networks capable of working on graphs
is addressed by GNN.

The key aspect of GNN are node embeddings, which map the features of each node into a
low-dimensional space. This space is expected to provide information about node similarity
and (global) graph structure. As a consequence, the main operation of GNN consists of
learning a non-linear transformation function able of computing node embeddings based on
the aggregation of itself and its neighbor embeddings. This operation is known as message
passing [12], and can be visualized in Figure 1. The learning procedure consists of learning
the (trainable) weights of both the aggregation and the transformation functions. This
process is repeated in a number of layers (including linear and pooling layers), until the GNN

. Garzén, P. Mesejo, and J. Giraldez-Cru

Layer 1 Layer I+ 1

A

A Node embeddings { A

)
U4l [al Tal [at
Ll 5 [5t [5
W EEEEE a
R ot Tot Tot ot /
>

LRl VS VTR W 7] R, U I ——" ALY e gl g g e

> f >

Aggregate information Update node
Transform . N
from current and . . embedding with
. information N .
adjacent nodes new information

Figure 1 Computation of node embeddings based on the message passing operation on a graph.

is trained to solve different types of problems like node classification, graph classification
and link prediction, among others. A more in-depth review of these types of methods and
architectures can be found in [37, 33].

4.2 Overview of G2SAT

The general idea of G2SAT is to learn a probability distribution p(G) of the input graph(s) G
over the set of bipartite graphs G, i.e., learning the complex dependencies between nodes and
edges in the input data. In order to learn p(G), G2SAT applies an n-step iterative process:
p(G) =1 p(G;|Gy,...,Gi—1) where G; is the intermediate graph at step i¢. Nevertheless,
this can be simplified as p(G;|G1,...,Gi—1) = p(G;|G;—1) since the order of generating the
intermediate graphs does not alter the final resulting graph. To learn this distribution,
G2SAT relies on two operations: node splitting and node merging. They are always applied
to clause-nodes in the LCG of the formula, so we only define them to bipartite graphs as
follows.

» Definition 1 (Node splitting). Given a bipartite graph G(V1,Va, E) and a node u € V3,
the nodeSplit(G,u) operation returns a graph G(Vi,Vy,E') where Vo = Vo U {u'} and
E' =EU{(v,v)}\{(u,v)} for some nodes v € N(u). This is, the node u is split into u and
u' and its adjacent edges are distributed among them. In G2SAT this edge distribution is
randomly chosen.

» Definition 2 (Node merging). Given a bipartite graph G(V1, Va, E) and two nodes u,v € Vs,
the nodeMerge(G,u,v) operation returns a graph a graph G(V1,Vy, E') where Vi = Va\ {v}
and E' = EU{(u,w)}\ Ey for all nodes w € N(v). This is, the node v is collapsed into u,
including all its adjacent edges.

Any bipartite graph can be transformed into a set of trees by successively applying the node
splitting operation over the nodes in one of its partitions (e.g., clause-nodes). Also, a bipartite
graph can be always generated from a set of trees by applying a sequence of node merging
operations. Due to the extremely high computational cost of computing p(G;+1|G;), G2SAT
proposes to divide this process into two steps: p(G;,u,v) = p(u,v|Gi—1) - p(G; | Gi—1,u,v).
The new step p(u, v | G;_1) consists of selecting two random variables u and v which represent
a random pair of node candidates that may be merged in the second step (slightly modified
to consider them). In G2SAT, a discrete uniform probability distribution is used to select
such a random pair (u,v) as per Equation (1).

3:5

SAT 2022

3:6

On the Performance of Deep Generative Models of Realistic SAT Instances

p(Gix1,u,v|Gy) = p(u,v|G;) - p(nodeMerge(Gi,u,v) | Gi,u,v)
= Uniform ({(u7 v) | Vu,v € VQG’}) -Bernoulli (o(h] h, | u,v)) (1)

where o(-) is the sigmoid function, and h,, and h, are the node embeddings for nodes u and
v. Therefore, the key question is how to obtain the node embeddings in order to correctly
capture the structure of the input graph(s).

In G2SAT, node embeddings are computed with GraphSAGE [16], a variant of GCNs with
strong inductive capabilities across different graphs. In this framework, the node embedding
of a node in a certain layer [depends on the embeddings of its neighbors and of itself in the
previous layer [— 1. In particular, the node embedding h,(fH) of a node w in the (I 4+ 1)-th
layer is given by Equation (2).

h(+D) = ReLU (W(“ . CONCAT (hgj), AGG (ReLU(Q(“hg“ +qV|ve N(u)))) 2)

where Q. q, and WO are the trainable parameters of the model, and AGG(-) is the
mean pooling aggregation function. The input node features are one-hot vectors of length
3, indicating the type of node (clause, positive, or negative literal). In this process, an
additional message passing path is created between every literal and its negation, due to
their strong relation.

Notice that the previous procedure defined in Equation (1) can be seen as a classification
task, where the model has to decide whether a pair of nodes (u,v) must be merged or not.
In order to train the model, during the training phase a number of node splitting operations
is performed. When a node s is split into a pair of nodes (s,s'), a positive example is
generated. Also, a negative example (s,s7) can be easily generated by just selecting a
randomly chosen node s~ € V2\{s,s"}. This dataset of positive and negative examples is
then used to compute the node embedding, by minimizing the binary cross entropy loss of
Equation (3):

L=—Eypmp,.. [log(c(hihy))] = Euvep,., [log (1 —o(hlh,))] (3)

where ppos and ppeq are distributions over positive and negative training examples. In order
to guarantee a tree-like structure from the original bipartite graph, the number of node
splitting operations is |E| — |V|. Moreover, this tree-like decomposition from the original
graph is repeated r times. Therefore, the number of training examples is 2r(|E| — |Vz]).
Finally, the resulting r trees are saved into a template in order to start the generation
procedure from one of them.

In the generation phase, G2SAT starts with a randomly chosen tree from the previous
template, and iteratively performs node merging operations between two nodes u,v € V3,
i.e., clause-nodes. For each node merging, a number of distinct pairs (u,v) is randomly
generated with the only constraint that clause-node v cannot be connected to any variable
(both literal-nodes, with any sign) already connected to clause-node u. From this set of
pairs, the selected pair is (u,v) = argmax,, ,{hTh,}. Notice that this does not exactly follow
Equation (1), but uses a greedy method to select the most likely pair (u,v) among the set of
possible candidates. This is due to the large amount of time required to sample the true
distribution. Experimental results reported in [36] show that this change also produces
reasonable results in a much shorter time.

. Garzén, P. Mesejo, and J. Giraldez-Cru

(1) (4) (6)

o
r4
m

(=

O (2) (3) GNN (4a) (5) O
i)
~ :> Node splitting I:(> :> Node merging I::> ~
Yo M)
(® 0
y o rohy
A 4
(ns) (4b)
[ssssus]

((M)) ()

R R)

e ~ ~

J = () Y = ()

Ve) e M

</ Y O

Figure 2 General overview of GSAT-based methods. First, an input CNF (1) is represented as a
bipartite graph (2). Then, this graph is converted into a set of trees after a number of node splitting
operations (3), from which training examples are generated. In the training phase (4), a GNN (4a)
is used to compute node embeddings according to the neighbors of each node (4b). Finally, in the
generation phase, node merging operations (5) are performed to generate a bipartite graph which
represents the output CNF (6). The methods analyzed in this work differ in the graph representation
of the CNF formulas (steps 2 and 5) as well as in the way node embeddings are represented and
computed (steps 4a and 4b).

In Figure 2, we depict the general overview of the G2SAT framework, which will be used
by all the methods analyzed in this work. They all differ in the graph representation of the
CNF formulas (see steps 2 and 5) as well as in the way node embeddings are represented
and computed (see steps 4a and 4b).

4.3 Node embeddings based on GCN

The original version of G2SAT uses GraphSAGE to compute node embeddings. However, as
suggested in [36], other GCN-based convolutional layers can be used to this end. In this work,
we analyze the graph convolution proposed in [18]. Equation (4) describes the computation
of the node embeddings H (in matrix notation):

H(+D = ReLU (D*%AD*%H“)W(”) (4)
where A is the adjacency matrix with added self-connections, i.e., A = A + Iy (where I is
the identity matrix of size N), Dy = > y A;ij, and W is the trainable matrix of weights.

This is the only difference of this model with respect to G2SAT. This model will be
named as GCN2S in the rest of this work.

5 Deep generative models of realistic SAT instances based on G2SAT

In this section we define the two new alternatives of deep generative models of realistic SAT
instances proposed in this work. They both follow the general ideas from G2SAT, but they
differ in the way node embeddings are computed. Recall that node embeddings is the key
aspect in the process of G2SAT, where pairs of nodes are selected to be merged based on
those embeddings. Our first model is based on EGNN [15], where a number of edge features
(e.g., sign of the variables within the clauses) is used to compute node embeddings. In
our second model, we use an ECC [30] where edge filter weights are dynamically generated
according to the neighborhood of each node.

3:7

SAT 2022

3:8 On the Performance of Deep Generative Models of Realistic SAT Instances

Xt LLTTTTITTITT]
P -1
s (Buspht ™)
X! HEEEEEEEEEEEEEEEEEEEEEEEEEEEEN
X£><Ei70 X%XEZ',I XéXELQ

Figure 3 Computation of node embeddings based on EGNN, as a concatenation of adjacent edge
embeddings. In this example, P = 3, i.e., each edge has three features.

5.1 Enhancing G2SAT edge representation with EGNN

A drawback of G2SAT and, in particular, of the graph model used to represent SAT formulas
(i.e., the LCG), is the inability to explicitly represent the relation between a literal and its
negation. This limitation forces G2SAT to create additional message passing paths between
these two nodes, due to the strong dependency between them. As a consequence, the bipartite
structure of the LCG is destroyed in order to introduce this ad hoc solution.

Alternatively, we present a model where this dependency is directly captured from the
graph representation of the formula. Our model is based on EGNN [15], where edges are
allowed to have several features. This is useful to represent graphs with multiple type of edges.
In this model, we use the SVCG to represent SAT formulas. Recall that this representation
has two types of edges (positive and negative) in order to represent the sign of each variable
within each clause. Therefore, we can compute node embedding with EGNN using this
information of the edges. Notice that this does not require to create additional message
passing paths between (literal) nodes, since this dependency is directly captured by the edge
features.

As in G2SAT, each node u is characterized by a node embedding h,,. Additionally, EGNN
also includes a tensor representing the edge features. In particular, F,,, represents the
feature p € [1, P] on the edge between nodes u and v. These edge features can be seen as a
filter to produce the new node embeddings. This way, the node embedding is computed as an
aggregation between itself and its adjacent edges. This process is performed in a multi-layer
feed-forward architecture, and is summarized in Equation (5) for a layer [.

h() = ReLU (W<H> : AGG(||5:1Em)ph,(f’1))) Vo € N(u) U {u} (5)

where ||- is the concatenation operator, and the aggregation function is the average. Notice
that the dimensionality of the concatenation depends on the number of edge features P, but
it is reduced by the aggregation function to the number of weights in that layer.

In Figure 3, we represent the computation of node embeddings based on EGNN. In
particular, the embedding of a certain node depends on the embeddings of all the adjacent
edges to it and their edge features, and all these edges features are aggregated in order to
produce the new node embedding in the next layer.

In our model, node embeddings are computed using the previous procedure. This allows
us to integrate edge features (i.e., the sign of the variables within the clauses) in a transparent
manner. The rest of the model follows the same ideas from G2SAT. First, a sequence of
node-splitting operations transforms the bipartite SVCG into a set of trees. This produces a

. Garzén, P. Mesejo, and J. Giraldez-Cru

Edge Features

o Neighbour Node Features
Eu,u
=)
Eau =
h(l 1)
E b
b,u o) \‘.* h(l—l)
) (]

Ec.u b, u) ‘\\“\(b
______________________ au) @®
- : O(u, u) ©
H <a H ’b‘(\

H N
i : o
b Node Features ©
E —> u ! —7
E / E h) "‘ ®
: (C :
b Updated Node Features
Example Graph

Figure 4 Computation of node embeddings based on ECC, where a dynamic weight matrix
(based on edge features) is used to aggregate neighbor embeddings.

number of positive and negative examples which will be used to train the model afterwards.
Finally, in the generation phase, a random formula is generated using that trained model
after a sequence of node merging operations. Notice that the edge type is not altered during
the node splitting and merging operations, so the total number of literals remains unaltered
by this model. In the rest of this work we refer this model as EGNN2S.

5.2 Adjusting G2SAT node embeddings with ECC

Another alternative to capture the strong dependencies between literals of a SAT formula
in the graph representation is ECC [30]. Again, this model does not require any ad hoc
artifacts to learn those dependencies. To this end, node embeddings are computed according
to their neighbors in the graph, but using a dynamic weight matrix that depends on edge
features. To get this dynamic matrix, a neural network is trained in order to transform the
edge features (of an arbitrary size) to the specific size required in the convolution layer.
Specifically, the node embedding hg) of a node u for a layer (1) is computed in Equation (6).

h() = WEDh™D + 3" Owen) (Euy)h{ ™ (6)
vEN (u)

where W) is the weight matrix in layer I, Ow is the neural network that transforms edge
features into a dynamic weight matrix used by the neighbor node embeddings, and E,,, is
the edge feature between nodes u and v.

In Figure 4, we depict this architecture. It can be seen that the dynamic weight matrix
is computed with © from the edge features. Based on it, the aggregation of neighbors is
computed and added to the current node embedding.

In our implementation, © is a multi-layer perceptron (MLP) with 2 dense layers, using
a ReLU activation layer between them. This MLP maps edge features of dimension |E| to
a dimension of (in__channels - out__channels), where both in_ channels and out__channels
depend on the dimensionality of the corresponding convolutional layer.

In this model, we use the SVCG to represent SAT formulas, and compute node embeddings
according to Equation (6). The rest of the model follows the same strategy than G2SAT, i.e.,
a sequence of node splitting operations during the training phase, and a sequence of node
merging actions during the generation step. From now on, we refer this model as ECC2S.

3:9

SAT 2022

3:10

On the Performance of Deep Generative Models of Realistic SAT Instances

6 Experimental evaluation

In this section, we provide an extensive experimental evaluation of the four deep generative
models of realistic SAT instances analyzed in this work. Namely, they are G2SAT (Sect. 4.2),
GCN2S (Sect. 4.3), EGNN2S (Sect. 5.1), and ECC2S (Sect. 5.2). The four models are
implemented in PyTorch 1.9 and their code is publicly available.®> We first analyze their
performance in terms of the structure observed in the generated formulas with respect to the
original structure. Second, we analyze the hardness of the generated benchmarks in terms of
SAT solver performance.

In our analysis we select a total of 41 real-world SAT instances to train the models
(see Appendix A for more details on these formulas). Notice that the results on G2SAT
presented in [36] are only computed for 10 smallest formulas of our analysis. Therefore, this
experimental evaluation provides new and better insights about the performance of G2SAT.

For every input formula, we separately train each model and generate 3 distinct random
instances. The four models are trained with learning rate of 0.001, batch size of 64, and 200
training epochs, using Adam optimizer. All of them are composed of 3 convolutional layers
with 32 filters each. Models have been trained on a single GTX Titan Xp GPU, and Intel®
Xeon® E5-2630 CPU.

We must emphasize that the whole experimentation, including the training and the
generation phases performed by the 4 models on these 41 SAT formulas, took more than
240 days. Therefore, the first conclusion drawn from our experiments is the poor scalability
of these G2SAT-based models. Notice that the formula size of the largest instance is only
88,849 literals in 22,792 clauses, a small size compared to the size of actual benchmarks used
in the last SAT Competitions. As a consequence, an interesting direction of future work on
deep generative models of realistic SAT instances is the adaptation of these models to handle
larger real-world benchmarks. This phenomenon is summarized in Observation 3.

» Observation 3. G2S5AT-based frameworks exhibit a limited scalability due to the large
amount of time spent in the pair selection procedure.

6.1 Performance on structural properties

In the first part of our experimental analysis, we analyze the structure of the generated
formulas with respect to the one of the original formulas used to train the models. In contrast
to [36], we train the models separately for each SAT formula because of the heterogeneity
of structures found in the input data. For instance, if a model is trained with graphs (or
SAT formulas) having both low and high values for a specific feature, the synthetic graphs
generated with it may have an average value for this feature, thus not resembling to any of
the input graphs.

In our analysis, we focus on two structural properties that have been extensively studied
in the context of SAT formulas due to their correlation with respect to solving times. Namely,
they are the community structure [2, 19] and the clustering coefficient [34, 14]. They both
are studied on the VIG of the formulas.* Although both structures represent the density and
the form of connections within the graph, they differ in its scale. In particular, the clustering
coefficient focuses on local densities, whereas the community structure determines the global
density of the graph within communities of nodes.

3 https://github.com/i4vk/SAT_generators
1 To study the clustering coefficient, we use the unweighted version of the VIG.

https://github.com/i4vk/SAT_generators

. Garzén, P. Mesejo, and J. Giraldez-Cru

On the one hand, to study the community structure we analyze the modularity Q [26].
This value represents the density of connections in a partition of the nodes of a graph into
communities. Specifically, the modularity of a (weighted) graph G and a partition P of its
nodes is defined as:

Z w(z,y) Z deg(x)

QG(V,w),P)= Y ¥l — | =L (7)
25 wew | S dw
z,yeVv xeV

The optimal modularity @ is a value in [0, 1], with higher values indicating a more clear
community structure.

On the other hand, the clustering coefficient of a node determines the number of neighbors
of that node that are also connected. As in [36], we analyze the average clustering coefficient
of the graph. This value is defined as:

CC(G(V,

I{e]k %avk € N(i),ejx € B}
~ Vi 2; NG -1)

This CC value is defined in the interval [0, 1], with higher values representing graphs
with a higher clustering coefficient.

Also, we must emphasize that the design of G2SAT does not alter the number of occur-
rences of each literal. Notice that node splitting and merging operations are only performed
on clause-nodes. As a consequence, the degree of literal- or variable-nodes (depending on
the model) remains unaltered. Therefore, we omitted in our experimental evaluation the
study of distributions of variables occurrences, such as the scale-free structure [3], since all
the generated formulas have exactly the same distribution than the one in the input data.

In Table 1 we report the results on this analysis of structural properties, remarking in
bold the model obtaining the best performance for each metric. The first observation is that
there is a very low, almost negligible, variability in the generated formulas of every model. In
a large majority of the cases, the standard deviation in the analyzed metrics is smaller than
0.01. Therefore, this suggests that all the models are robust to learn a particular structure,
regardless whether it is close to the structure in the input data or not. This is summarized
in Observation 4.

» Observation 4. G2SAT-based frameworks exhibit a robust performance in terms of the
achieved structural features, due to the small variability of these features in the generated
formulas.

For each model and metric, we consider that its performance is adequate whenever the
difference between the generated formulas and the input one is smaller than 0.05, i.e., both
structures are resembling. Based on that, the results on the community structure show that
the four models exhibit a reasonably good performance, since the modularity in the generated
instances is, in general, similar to the one in the input formulas. However, comparing the
accuracy of the models, we observe that G2SAT is the one with the worst performance,
whereas EGNN2S and GCN2S achieve very good results. In particular, our proposed model
EGNN2S is the one with the best accuracy in 12 of the 41 input formulas. On the contrary,
our model ECC2S shows a modest performance. Interestingly, in 16 formulas no model is
able to correctly reproduce the original structure, including formulas with both low and
high modularity (see, e.g., I1 and I17). These observations on the community structure are
summarized in Observation 5.

3:11

SAT 2022

3:12

On the Performance of Deep Generative Models of Realistic SAT Instances

Table 1 Performance of deep generative models of realistic SAT instances on the community
structure (modularity) and the (average) clustering coefficient (in the VIG) of a set of real-world
SAT instances. For each model and input formula, best results are marked in bold whenever the
precision w.r.t. the original instances (Or.) is smaller than 0.05. #i stands for the number of
instances for which each generator shows the best performance.

Community structure (modularity) Clustering coefficient

Or.| G2SAT | GCN2S |EGNN2S| ECC2S || Or.| G2SAT | GCN2S |[EGNN2S| ECC2S
0.84]0.49+.00{0.47 £.00| 0.29 £ .00| 0.23 £+ .00{|0.66| 0.88 &= .00| 0.75 £ .01| 0.89 £ .00{0.88 & .00
0.64/0.90+.00|0.84 +.01|0.66+£.00| 0.77 £.00{|0.44| 0.71 £ .00|0.47+.01| 0.30 £ .01|0.28 £ .00
0.66/0.87+.00|0.83 +£.01|0.62 £+ .00{0.67+£.00{|0.46| 0.82 £ .01| 0.52 £ .02| 0.33 £ .00|0.33 £ .00
0.630.91+.00{0.85£.00|0.64+.00|0.79 .00(|0.45] 0.52 £ .00| 0.33 £.00{ 0.29 £ .00{0.20 £ .00
0.73/0.93 £.00{0.86 +.00|0.77+.00| 0.82 % .00||0.44| 0.37 .00| 0.25 £ .00| 0.26 £ .00{0.17 £ .00
0.68/0.94 +.00/0.81 +.01| 0.89 4 .00{ 0.84 £ .00{|0.49| 0.74 £ .00/ 0.41 £+ .00|0.45+.01|0.33 £ .01
0.60/0.74+.01|0.53 +£.01|0.75+.01{ 0.70 £ .01{|0.63|0.65+.01| 0.40 + .01| 0.42 £ .01{0.40 £ .01
0.79]0.93 +.00{0.80+.00| 0.93 £ .00| 0.85 %+ .00(|0.58{ 0.69 £ .00| 0.37 £ .00{ 0.47 £ .01{0.28 + .00
0.72(0.91 £.00{0.78 +.00|0.90 £ .00| 0.83 .00||0.61| 0.70 = .00| 0.39 £ .00| 0.41 £ .00{0.29 £ .00
0.72/0.60 £.00{0.59 .00/ 0.38 £ .00| 0.46 %-.00||0.59| 0.54 %-.00| 0.42 £ .00| 0.33 4-.00{0.31 £ .00
0.73/0.91 £.00{0.87+.00|0.84 £ .00| 0.80 % .00||0.54| 0.37 4-.00| 0.27 £ .00| 0.24 4-.00{0.18 & .00
0.84]0.86 +.00({0.83+.00|0.69 £ .00| 0.78 +.00(|0.51{ 0.23 .00/ 0.17 £ .00{ 0.16 £ .00{0.13 £+ .00
0.69/0.86 &.01|{0.84+.00|0.77 £ .00| 0.79 .00||0.47| 0.25 % .00| 0.21 £ .00| 0.26 4= .00{0.16 £ .00
0.76/0.87 £.00{0.83 +.00|0.79 £.00|0.77=+.00||0.54| 0.30 - .00| 0.20 £ .00{ 0.17 4-.00{0.15 £ .00
0.73]0.88 +.00{0.86 £.00|0.74+.00| 0.81 £ .00{|0.50{ 0.20 £ .00| 0.15 £ .00{ 0.21 £+ .00{0.13 £ .00
0.72]0.88 +.00{0.86 £.00|0.74+.00| 0.81 +.00(|0.51{0.19 .00/ 0.15 £ .00{ 0.21 £ .00{0.13 £ .00
0.15/0.58 £.00{ 0.64 £ .00/ 0.71 £ .00| 0.65 % .00||0.50| 0.72 4 .00|0.53+.00| 0.41 4 .00{0.41 £ .00
0.17/0.57 £.00{ 0.65 .00/ 0.69 £ .00| 0.66 +-.00||0.64| 0.56 +-.00| 0.49 £ .00| 0.34 4-.00{0.33 & .00
0.18]0.53 .00/ 0.65 £ .00{ 0.62 £ .00| 0.55 £ .00{|0.62| 0.82 £-.00|0.64+.00| 0.54 £ .00|0.56 £ .00
0.61]0.85+.00{0.70 £.01|0.574.00| 0.50 & .00{|0.62{ 0.67 £ .00| 0.41 £ .01| 0.40 £ .00{0.37 £ .00
0.72/0.88 £.00{0.77 .00/ 0.60 & .00| 0.50 % .00||0.54| 0.66 %= .00| 0.39 £ .00| 0.31 4-.00{0.31 £ .00
0.66(0.76 .00{ 0.59 +.01|0.80 £ .00| 0.73 +.00(|0.45| 0.53 +.01| 0.37 £.01| 0.33 +.00|0.32 4 .01
0.67/0.79+.00{0.63+.01|0.80+£.00{0.74 £ .00{|0.43| 0.57 +.00| 0.35 £ .01| 0.30 £ .00|0.28 £ .01
0.80(0.75£.00{0.82+.00|0.79+.00| 0.64 +.00||0.38/0.42+.00|0.34+.00| 0.20 £ .00{0.14 £ .00
0.65(0.83 £ .00{0.70 +.00|0.81 £ .00| 0.74 £.00||0.43| 0.63 £ .00| 0.38 £ .00| 0.30 4= .00{0.28 £ .00
0.77/0.75+.00|0.81 +.00|0.78+£.00| 0.63 £ .00{|0.39| 0.52 £ .00|0.39£.00| 0.21 £+ .00|0.16 £ .00
0.78]0.75+.00{0.82 £.00|0.78+.00| 0.63 = .00{|0.39{ 0.48 £ .00|0.36+.00{ 0.20 & .00{0.15 £ .00
0.69/0.85+.00{0.78 +.01|0.82 £ .00| 0.77 .00||0.39| 0.66 £ .00|0.42+.00| 0.27 £ .00{0.24 £ .00
0.73|0.72+.00|0.78 +.00| 0.80 £ .00| 0.62 +-.00||0.40| 0.47 +-.00|0.43+.00| 0.27 4-.00{0.19 & .00
0.79]0.74 4+ .00{0.82 £.00|0.80+.00| 0.63 £ .00(|0.39{0.38+.00|0.38+.00| 0.22 + .00{0.14 £ .00
0.75/0.73£.00(0.80 £.00| 0.80 £ .00| 0.62 £ .00{|0.39{ 0.45 £ .00|0.42+.00{ 0.26 & .00{0.17 £ .00
0.77/0.69 £.00|0.76+.00| 0.81 £ .00| 0.63 £ .00||0.38]0.37+.00| 0.35 £ .00| 0.23 £ .00{0.15 £ .00
0.78/0.69 £.00|0.77+.00| 0.82 £ .00| 0.62 +-.00||0.38]0.34+.00| 0.33 £ .00| 0.24 4-.00{0.14 £ .00
0.77/0.66 +.00({0.73+.00|0.81+.00| 0.63 .00(|0.38{0.36£.00| 0.32 £ .00{ 0.22 + .00{0.16 £ .00
0.77/0.68 +.00({0.76+.00| 0.81 £ .00| 0.63 = .00{|0.37{0.33+.00| 0.32 £ .00{ 0.22 £ .00{0.14 £ .00
0.77(0.89 £.00{0.86 + .00/ 0.87 £.00{0.81£.00{|0.46| 0.20 -.00| 0.17 £ .00| 0.27 £ .00{0.13 £ .00
0.79/0.93+.00|0.87 +.00{0.81+£.00| 0.82 £ .00{|0.44| 0.28 £.00| 0.20 £ .00| 0.20 £ .01|0.14 £ .00
0.81]0.65+.00({0.77+.00|0.41 £ .00| 0.72 +.00(|0.44|0.31 £ .00| 0.21 £ .00{ 0.21 £+ .00{0.15 £ .00
0.710.89+.00{0.85 £.00| 0.87 £ .00| 0.82 +.00{|0.49{ 0.24 £ .00| 0.21 £ .00{ 0.27 £ .00{0.15 £ .00
0.53/0.82+.00/0.60 +.02|0.78 +.01{ 0.73 £ .01{|0.59| 0.73 £ .02/ 0.40 £ .02| 0.51 £+ .04|0.43 £ .01
0.49/0.83+.01|0.62+.02|0.79 £ .00{ 0.75 £ .01{]|0.58| 0.75 £ .03/ 0.39 £ .02|0.55+.01|0.43 £ .03
8 2 12 3 - 10 7 2 0

S

© 00 N O O W N =

BB W W W W W W WWWWNNNDNDNDNDDNDNDNDDNERERR B B B B 22
H O O 0 NO O WNEFE O OO0 NP WNEFE O O O0WwWNO O WM~ O

*

» Observation 5. The model EGNN2S shows the best performance in terms of community
structure. While G2SAT also exhibits a reasonably good performance, the other models GCN2S
and ECC2S perform very poorly on this feature. Moreover, in a large fraction of formulas
none of the analyzed methods is able to correctly mimic their community structure.

. Garzén, P. Mesejo, and J. Giraldez-Cru

061 @ G2SAT L 3
A GON2S a ®
W EGNN2S
o) § o $e
A A
s u
o °
Soa n .
z . 34
% 03 ° °°
= am
2 i ® o * %
Bo2 A® * * L]
= e oo]
_o ° [I 4 b4 ° !
*e n%0u%00200, GX e AU, amERE 2,2
01 o o0 o 0’2"ﬁ¢0¢ * lzb‘.ﬂzLO
A 'S 8 oA
e® n m® A [B F'POSDE FW
00 gxﬁulzsgﬂullllﬂﬁlg““." ¢
291425 8 4 33 12323522152837 2 3 24162320 343638 5 3027 9 211126 7 311340413910 6 19 1 18 17
ID instance (ordered by min. error)
0.40
® G25AT °*
A GCN2S ° . noo ‘
0351 m EGNN2S oLMAA
= @ ECC2s < °
o
2 030 - ® ® o%mi , . []
ﬁ 0.25 'S ® PS ¢ nd PS A®4
- o |} o
8 *7e eteo, *00g0 oL L8] "
Y 020 ° * [} L []
= AR A A
£ 4
= 015 "a o L *8 ¢ e’ ' m * A ®*®
9 " [I | n Ao °® °
] o . L] % 1 ve
010 A
(v} ° AO
© 3 4 ° A cotso®
0.05 L4 eméobareo
eAAAOGOAALADSY
]
0.00 A

282233193124 7 341723 2 412925 6 3220353010 5 4 26271840 1 9 3 8 21 38 37 11 36 13 39 14 12 15 16
ID instance (ordered by min. error)

Figure 5 Error on the community structure and the clustering coefficient of deep generative
models of realistic SAT instances w.r.t. to original benchmarks.

In the case of the clustering coefficient, the differences with respect to the original formulas
are slightly bigger, suggesting that this structure is harder to mimic. For instance, in 21 of
the 41 formulas, the clustering coefficient is not correctly reproduced by any model. In this
case, the model with the best performance is GCN2S, but G2SAT also shows a reasonably
good accuracy. On the contrary, the model ECC2S seems to be unable to learn this kind of
structure, with a very poor performance in almost all the benchmarks. These results are
summarized in Observation 6.

» Observation 6. In the task of reproducing the clustering coefficient of input formulas, the
model G2SAT shows the best performance. The model GCN2S also exhibits a relatively good
performance, but the other models EGNN2S and ECC2S do not. However, it is worth noticing
that no model is able to correctly reproduce this feature in 21 of the 41 analyzed formulas.

Moreover, in Figure 5 we depict the performance of the analyzed deep generative models
on the community structure (top) and the clustering coefficient (bottom). In these plots,
each column represents a SAT instance of our dataset (ordered by error), and the Y values
represent the error between the original instance and the generated ones (the lower, the
better). We emphasize that the results of each instance must not be aggregated. Notice that
our dataset has formulas with modularity ranging from 0.15 to 0.84; a model trained with
all of them (as [36]) would possibly learn something spurious.

In summary, these results show that in many cases deep generative models based on
GCN2S and EGNNZ2S are able to improve the results of the existing model G2SAT based on
G2SAT, in terms of structural properties. However, it is also observed that there is room
for improvements due to the large number of real-world formulas for which the structure is
hardly mimicked.

3:13

SAT 2022

3:14

On the Performance of Deep Generative Models of Realistic SAT Instances

6.2 Performance on SAT solver hardness

In the second part of our experimental evaluation, we analyze the hardness of the generated
formulas with respect to the one in the original instances. The goal of this analysis is to
compare the hardness and the satisfiability of the original formulas with respect to the
instances generated by the analyzed models. To this end, we solve both the original and the
generated formulas (for each generator) with several SAT solvers and analyze whether the
percentages of SAT/UNSAT formulas are similar, and compare the cumulative CPU time
and the rankings of the solvers in each dataset. Therefore, this analysis characterizes the
ability of each generator to reproduce the hardness of the original instances. In contrast
to [36], we only select CDCL SAT solvers specialized in application benchmarks. In [36],
this experiment was carried out using solvers specialized in both real-world and random
formulas, and it was observed that solvers specialized in random formulas exhibit a very
poor performance on realistic SAT instances, as expected. However, those results do not
provide much information about the ability of deep generative models to actually reproduce
the hardness and the satisfiability of the input formulas.

In our study, we use the following CDCL SAT solvers: Glucose®[5], Lingenling®[6],
MapleSAT7[20], MapleLCM?®[21], and CaDiCaL?[7]. They all are executed with a timeout of
5000 seconds. In order to evaluate each generator, we measure the percentages of SAT and
UNSAT formulas with respect to the input dataset, as well as the ranking of these five solvers
on the generated formulas compared to the ranking obtained in the original benchmark.
Additionally, we study whether the resulting formulas are as hard as the original ones in
terms of timeouts and CPU time.

To compare two rankings z and y, we use the Kendall rank correlation coefficient 7:

P—-Q
(P+Q+T)- (P+Q+U)

where P and @) are the number of concordant and discordant pairs, respectively, whereas

9)

T(xvy):: N/

T and U are the number of ties in x and y, respectively. This coefficient returns a value
in [—1, 1], where 1 indicates full concordance, and -1 indicates full discordance. Therefore,
higher values of 7 indicate a better ability to reproduce the practical hardness of the input
set of formulas.

In Table 2 we report the performance of CDCL SAT solvers on the formulas generated
by the analyzed models. First, we observe that the four models hardly generate satisfiable
formulas. In particular, 47.3% of the input SAT instances are satisfiable. However, the
four models are only able to generate around 8% of satisfiable formulas. This suggests
that, although the randomizations that this kind of models introduce in the structure of the
formulas have a small impact on its structure, they can have a major impact on the solution
space they affect, which ultimately remove all the solutions until making the generated
formula unsatisfiable, as summarized in Observation 7.

» Observation 7. Deep generative models based on G2SAT are unable to reproduce the
satisfiability of the input formula in most of the cases. In particular, most of the generated
formulas are unsatisfiable regardless the satisfiability of the input formulas.

https://www.labri.fr/perso/lsimon/glucose/
https://github.com/arminbiere/lingeling
https://bitbucket.org/JLiangWaterloo/maplesat/src/master/maplesat/
http://sat-race-2019.ciirc.cvut.cz/solvers/MapleLCMDiscChronoBT-DL-v3.zip
https://github.com/arminbiere/cadical

© o N o w»

https://www.labri.fr/perso/lsimon/glucose/
https://github.com/arminbiere/lingeling
https://bitbucket.org/JLiangWaterloo/maplesat/src/master/maplesat/
http://sat-race-2019.ciirc.cvut.cz/solvers/MapleLCMDiscChronoBT-DL-v3.zip
https://github.com/arminbiere/cadical

. Garzén, P. Mesejo, and J. Giraldez-Cru

Table 2 Results on SAT solver performance of deep generative models of realistic SAT instances.
7 stands for the Kendall rank correlation coefficient, computed for both SAT and UNSAT formulas.
TO stands for timeout within 5000 seconds.

%SAT 7(SAT) | %UUNSAT 7(UNSAT) | %TO CPU time
Original formulas 47.3 - 42.9 - 9.8 44503.55
G2SAT 8.1 0.2 91.9 -0.6 0.0 1.38
GCN2S 7.4 0.0 91.6 -04 1.0 14910.86
EGNN2S 7.4 0.2 92.6 -0.6 0.0 1.48
ECC2S 7.3 0.0 92.7 -0.8 0.0 2.22

The previous observation is also an important drawback in order to mimic the hardness
of the input benchmarks. In fact, only GCN2S is able to produce formulas of a reasonable
hardness. However, these instances are much easier than the actual input set (the accumulated
CPU time to solve these synthetic formulas is around three times lower than for real-world
instances). The other three models always generate very easy formulas. We summarize these
results in Observation 8.

» Observation 8. SAT instances generated with deep generative models based on G2SAT
are, in general, much easier than the original formulas used to train the models. The only
model able to generate formulas of a certain hardness —although much easier than original
instances— is GCN2S.

Finally, if we compare the rankings obtained with the five CDCL SAT solvers through
the 7 coefficients for SAT and UNSAT instances, we observe that G2SAT and EGNN2S are
the best models to reproduce the computational properties in satisfiable formulas, whereas
GCN2S is the best in unsatisfiable ones. However, this observation must be interpreted
cautiously due to the two previous observations, i.e., the inability of this kind of models to
mimic both the satisfiability and the hardness of the input set of benchmarks. Therefore,
we consider these results are not conclusive. Notice that this is an important drawback
with respect to probabilistic models (e.g., SF [3], CA [13], and PS [14]), where both the
satisfiability and the hardness of the generated formulas can be easily controlled.

As future work, we plan to extend this hardness and satisfiability analysis through the lens
of MaxSAT. In particular, we conjecture that the reason that most of the generated formulas
(for every model) are trivially UNSAT may be due to a small (sub)set of highly connected
variables, which produces a very small UNSAT core in the generation phase (i.e., many links
are repeatedly generated between those variables). As a consequence, the satisfiability of the
formula can be altered, as well as its hardness. However, the rest of the formula may be able
to preserve the global structure of the formula. Therefore, detecting those highly connected
variables may be a first step towards improving deep generative models in terms of practical
hardness.

7 Conclusions and future work

In this work, we presented an extensive experimental evaluation of four deep generative
models of realistic SAT instances based on the G2SAT framework [36]. In this framework,
SAT formulas are represented as bipartite graphs, and a number of node splitting operations
are performed in order to generate training examples to train a model based on a GNN.
Afterwards, in the generation phase, this trained model is used to generate random SAT

3:15

SAT 2022

3:16

On the Performance of Deep Generative Models of Realistic SAT Instances

instances whose computational properties are expected to be similar to the ones in the
original benchmark. The four models differ in the graph representation of the formulas as
well as in the computation of the node embeddings in the GNN.

The original G2SAT model uses the LCG graph representation of the SAT formula,
and a convolutional layer based on GraphSAGE [16]. We also analyzed this model using a
convolutional layer based on GCN [18]. Additionally, we proposed two models that consider
edge features in order to represent all the semantics in the SAT formula (e.g., the sign of
the variables in the clauses) in a more transparent manner. Specifically, they are based on
EGNN [15], where a number of edge features is used to compute node embeddings, and on
ECC [30], where edge filter weights are dynamically generated according to the neighborhood
of each node. To the best of our knowledge, they are the first deep generative models of
realistic SAT instances that consider edge features to represent the sign of the variables
within the clauses.

In our experimental evaluation, we analyzed the performance of these models in terms of
reproducing the structure and the hardness of an input set of instances. In terms of structural
properties, we analyzed the community structure and the clustering coefficient, two crucial
features extensively studied in the literature. Since this kind of models do not alter the
number of variable occurrences, we omitted other kind of structures, such as scale-free. In
terms of hardness, we analyzed the robustness of the models using five well-known CDCL
SAT solvers.

Our analysis showed that, although the models exhibit a robust performance in terms
of variability (the results show an almost negligible deviation), they all have a very poor
scalability. In particular, the experimental evaluation was performed on a set of 41 real-world
SAT instances of small size, and took more than 240 days. Furthermore, we observed that,
in general, the models based on GCN and EGNN are the most robust ones in terms of
structural properties. In particular, our generator based on EGNN is the most accurate
model to reproduce the community structure of the input formulas it tries to mimic. However,
reproducing the clustering coefficient appears to be a much more challenging task. On the
other hand, we also observed that the four models have a very poor performance in terms
of practical hardness. In particular, they all are biased towards the generation of very easy
unsatisfiable instances. This is an important drawback with respect to probabilistic models
(e.g., SF [3], CA [13], and PS [14]), where both the satisfiability and the hardness of the
generated formulas can be easily controlled.

As a consequence, this experimental study showed some potential lines of future research
on deep generative models of realistic SAT instances. Namely, the scalability of the models in
order to train them with larger instances, the randomizations in the generation phase through
the lens of MaxSAT in order to preserve the satisfiability of the formulas as well as their
hardness, and a much more robust performance in terms of structural features (especially in
the clustering coeflicient), since we found a large number of real-world formulas for which no
model is able to correctly reproduce their structure.

—— References

1 Michael Alekhnovich and Alexander A. Razborov. Satisfiability, branch-width and Tseitin
tautologies. Computational Complezity, 20(4):649-678, 2011.

2 Carlos Ansétegui, Maria Luisa Bonet, Jestis Girdldez-Cru, Jordi Levy, and Laurent Simon.
Community structure in industrial SAT instances. Journal of Artificial Intelligence Research,
66:443-472, 2019.

. Garzén, P. Mesejo, and J. Giraldez-Cru

10

11

12

13

14

15

16

17

18

19

Carlos Ansétegui, Maria Luisa Bonet, and Jordi Levy. On the structure of industrial SAT
instances. In Proc. of the 15th International Conference on Principles and Practice of
Constraint Programming (CP 2009), pages 127-141, 20009.

Carlos Ansétegui, Maria Luisa Bonet, and Jordi Levy. Towards industrial-like random SAT
instances. In Proc. of the 21st International Joint Conference on Artificial Intelligence (IJCAI
2009), pages 387-392, 2009.

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In Proc. of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),
pages 399-404, 2009.

Armin Biere. CaDiCalL, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Compe-
tition 2017. In Proc. of SAT Competition 2017 : Solver and Benchmark Descriptions, pages
14-15. Department of Computer Science Series of Publications B, University of Helsinki, 2017.
Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCalL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Proc. of SAT
Competition 2020 : Solver and Benchmark Descriptions, pages 51-53. Department of Computer
Science Report Series B, University of Helsinki, 2020.

Vasek Chvatal and Bruce A. Reed. Mick gets some (the odds are on his side). In Proc. of the
38rd Annual Symposium on Foundations of Computer Science (FOCS 1992), pages 620-627,
1992.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Proc. of the Annual Conference on Neural
Information Processing Systems (NIPS 2016), pages 3837-3845, 2016.

David K. Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Proc. of the Annual Conference on Neural Information Processing
Systems (NIPS 2015), volume 28, pages 224-2232, 2015.

Fernando Gama, Elvin Isufi, Geert Leus, and Alejandro Ribeiro. Graphs, convolutions,
and neural networks: From graph filters to graph neural networks. IEEE Signal Processing
Magazine, 37(6):128-138, 2020.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proc. of the 34th International Conference
on Machine Learning (ICML 2017), pages 1263-1272, 2017.

Jests Girdldez-Cru and Jordi Levy. Generating SAT instances with community structure.
Artificial Intelligence, 238:119-134, 2016.

Jests Giraldez-Cru and Jordi Levy. Popularity-similarity random SAT formulas. Artificial
Intelligence, 299:103537, 2021.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), pages
9211-9219, 2019.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proc. of the Annual Conference on Neural Information Processing Systems (NIPS
2017), pages 1025-1035, 2017.

Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence, 206:79-111, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Proc. of the 5th International Conference on Learning Representations (ICLR
2017), 2017.

Chunxiao Li, Jonathan Chung, Soham Mukherjee, Marc Vinyals, Noah Fleming, Antonina
Kolokolova, Alice Mu, and Vijay Ganesh. On the hierarchical community structure of practical
boolean formulas. In Proc. of the 24th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2021), pages 359-376, 2021.

3:17

SAT 2022

3:18

On the Performance of Deep Generative Models of Realistic SAT Instances

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Jia Hui Liang. Machine Learning for SAT Solvers. PhD thesis, University of Waterloo, Ontario,
Canada, 2018.

Mao Luo, Chu-Min Li, Fan Xiao, Felip Manya, and Zhipeng Lii. An effective learnt clause
minimization approach for CDCL SAT solvers. In Proc. of the 26th International Joint
Conference on Artificial Intelligence (IJCAI 2017), pages 703711, 2017.

Yuri Malitsky. Instance-specific algorithm configuration. Constraints, 20(4):474, 2015.

Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann. Non-model-based
algorithm portfolios for SAT. In Proc. of the 14th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2011), pages 369-370, 2011.

David G. Mitchell and Hector J. Levesque. Some pitfalls for experimenters with random SAT.
Artificial Intelligence, 81(1-2):111-125, 1996.

David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and easy distributions of SAT
problems. In Proc. of the 10th National Conference on Artificial Intelligence (AAAI 1992),
pages 459-465, 1992.

Mark E.J. Newman and Michelle Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2):026113, 2004.

Daniel Selsam and Nikolaj Bjgrner. Guiding high-performance SAT solvers with unsat-core
predictions. In Proc. of the 22nd International Conference on Theory and Applications of
Satisfiability Testing (SAT 2019), pages 336-353, 2019.

Daniel Selsam, Matthew Lamm, Benedikt Biinz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision. In Proc. of the 7th International
Conference on Learning Representations (ICLR 2019), 2019.

Jodo P. Marques Silva, Inés Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, pages 131-153. I0S Press, 2009.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2017), pages 29-38, 2017.

Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical case complexity. In
Proc. of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pages
1173-1178, 2003.

Haoze Wu and Raghuram Ramanujan. Learning to generate industrial SAT instances. In Proc.
of the 12th International Symposium on Combinatorial Search (SOCS 2019), pages 206-207,
2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEFE transactions on neural networks and
learning systems, 32(1):4-24, 2020.

Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Predicting satisfiability at the phase
transition. In Proc. of 26th National Conference on Artificial Intelligence (AAAI 2012), 2012.
Lin Xu, Frank Hutter, Holger H. Hoos, and Keving Leyton-Brown. Satzilla: Portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research, 32:565—606, 2008.
Jiaxuan You, Haoze Wu, Clark W. Barrett, Raghuram Ramanujan, and Jure Leskovec. G2SAT:
learning to generate SAT formulas. In Proc. of the Annual Conference on Neural Information
Processing Systems (NeurIPS 2019), pages 10552-10563, 2019.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. Al Open, 1:57-81, 2020.

. Garzén, P. Mesejo, and J. Giraldez-Cru

A Real-world SAT instances used in the experimental analysis

In this appendix we provide the details of the 41 real-world SAT instances used in our
experimental analysis. In particular, in Table 3 we detail these benchmarks as well as their
characteristics (number of variables and clauses, and formula size).

Table 3 Features of the real-world SAT instances used in our experimental analysis, including
number of variables (#vars), number of clauses (#clau.) and formula size (f. size).

ID | SAT Instance f##vars | F£clau. | f. size
1 aes_24_4_keyfind_2 320 5424 | 33136
2 aes_32_3_keyfind_2 450 2204 7772
3 aes_64_1_keyfind_1 320 2088 8648
4 | AProVE07-03 1317 7448 | 25057
5 | AProVEO7-08 2481 12625 | 39603
6 | bf0432-007 473 2038 5989
7 | bmc-ibm-2 119 573 1887
8 | bmc-ibm-5 1068 6042 | 17685
9 | bmc-ibm-7 860 4797 | 14634
10 | cmu-bmc-barrel6 602 4533 | 20440
11 | cmu-bmc-longmulti5 1731 9791 | 32002
12 | countbitsarray02_32 2202 9416 | 27628
13 | countbitsrotate016 1122 4555 | 12887
14 | countbitssrl016 1691 8378 | 25855
16 | g2-hwmcclbdeep-6s399b02-k02 3394 14336 | 40763
16 | g2-hwmccl5deep-6s399b03-k02 3516 14837 | 42129
17 | i32al 370 9123 | 35584
18 | i32d2 367 5116 | 20160
19 | i32e3 284 4974 | 25280

20 | minor032 751 5130 | 29532
21 | minxorminand032 1751 13938 | 80477
22 | mrpp_4x4#10_20 2135 21720 | 85231
23 | mrpp_4x4#10_9 859 8333 | 31990
24 | mrpp_4x4#12_12 1197 11737 | 45696
25 | mrpp_4x4#4_24 2217 | 21443 | 83138
26 | mrpp_4x4#4_4 208 1538 5340
27 | mrpp_4x4#4_5 309 2517 8970
28 | mrpp_4x4#6_16 1446 13684 | 53264
29 | mrpp_4x4#6_20 1846 17576 | 68672
30 | mrpp_4x4#6_5 330 2721 9733
31 | mrpp_4x4#8_8 717 6773 | 24667
32 | mrpp_6x6#10_10 2144 22792 | 88849
33 | mrpp_6x6#10_8 1630 17009 | 65607
34 | mrpp_6x6#12_8 1551 15788 | 60713
35 | mrpp_6x6#16_9 2085 22775 | 88141
36 | mulhs016 2589 10400 | 29015
37 | sat_prob_3 2860 13998 | 44208
38 | sat_prob_83 1759 8012 | 27063
39 | smulo016 1459 6288 | 17894
40 | ssa2670-130 82 327 1011
41 | ssa2670-141 91 377 1161

3:19

SAT 2022

	1 Introduction
	2 Related works
	3 Preliminaries
	4 The G2SAT framework
	4.1 Graph Neural Networks
	4.2 Overview of G2SAT
	4.3 Node embeddings based on GCN

	5 Deep generative models of realistic SAT instances based on G2SAT
	5.1 Enhancing G2SAT edge representation with EGNN
	5.2 Adjusting G2SAT node embeddings with ECC

	6 Experimental evaluation
	6.1 Performance on structural properties
	6.2 Performance on SAT solver hardness

	7 Conclusions and future work
	A Real-world SAT instances used in the experimental analysis

