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Abstract
We show that for any connected graph G the size of any regular resolution or OBDD(∧, reordering)
refutation of a Tseitin formula based on G is at least 2Ω(tw(G)), where tw(G) is the treewidth of G.
These lower bounds improve upon the previously known bounds and, moreover, they are tight.

For both of the proof systems, there are constructive upper bounds that almost match the
obtained lower bounds, hence the class of Tseitin formulas is almost automatable for regular resolution
and for OBDD(∧, reordering).
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1 Introduction

The development of solvers for the Boolean satisfiability problem is tightly connected with
the study of propositional proof systems. Every SAT solver corresponds to a proof system.
Roughly speaking, the execution log of every SAT solver running on an unsatisfiable formula
φ may serve as a certificate of unsatisfiability of φ. The size of the shortest proof of a formula
φ is a lower bound on the running time of a solver executed on φ. On the one hand, we need
that an underlying proof system is sufficiently strong to have short refutations of important
formulas, on the other hand, the underlying proof system should be sufficiently weak such
that short proofs can be efficiently found.

A propositional proof system Π is automatable (quasi-automatable) on a class of unsatis-
fiable formulas F [1] if there is an algorithm that finds a refutation of any formula φ ∈ F in
time poly(|φ|, S) = 2O(log |φ|+log S) (and 2poly(log |φ|,log S) in quasi-automatable case), where
S is the size of the shortest Π-refutation of φ. The series of results about the hardness
of automatability [2, 14, 19, 16] roughly speaking means that it is unlikely that some of
the commonly used proof systems are automatable or quasi-automatable on the class of all
unsatisfiable CNF formulas. However, it is possible that a proof system is automatable on
important formula classes.

In this paper, we consider the class of Tseitin formulas [30] encoding in CNF the following
parity principle: any graph has an even number of vertices with an odd degree. For an
undirected graph G = (V,E) and a charge function c : V → {0, 1} let a Tseitin formula

© Dmitry Itsykson, Artur Riazanov, and Petr Smirnov;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 6; pp. 6:1–6:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dmitrits@pdmi.ras.ru
mailto:aariazanov@gmail.com
mailto:petr.smirnov.tcs@gmail.com
https://orcid.org/0000-0002-2246-0273
https://doi.org/10.4230/LIPIcs.SAT.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Tight Bounds for Tseitin Formulas

T(G, c) be defined as follows. The variables of T(G, c) correspond to the edges of the graph.
The formula itself is the conjunction of the parity conditions of the vertices of G stating that
the sum of edges incident to v equals c(v) modulo 2. It is known that a Tseitin formula is
satisfiable if and only if for every its connected component the sum of charges of its vertices
is even [31]. Unsatisfiable Tseitin formulas based on special families of graphs (expanders
and grids) are hard for many proof systems [31, 3, 21, 10].

In order to show that a proof system Π is automatable on the class of Tseitin formulas,
first, we have to devise an algorithm that produces refutations of Tseitin formulas. Second,
we need to bound from below the refutation size of Tseitin formulas such that this bound
is close to the running time of the proof search algorithm. We emphasize that the lower
bounds must hold for all graphs, this is the main difficulty of the second step.

The first lower bounds on the refutation size of Tseitin formulas for all graphs used the
improved Grid Minor Theorem [8]. It states that any graph G has a grid graph of size t× t

as a minor, where t = Ω(tw(G)λ), tw(G) is the treewidth of G and λ ≥ 1
10 is a constant; it

is known, however, that the theorem is false for λ ≥ 1
2 . The strategy of the lower bound

proofs is to first show lower bounds for the grid graphs, and then extend them to all graphs
using the Grid Minor Theorem. Using this method, Glinskih and Itsykson [18] proved a
lower bound 2Ω(tw(G)λ) on the size of OBDD(∧, reordering) refutations of T(G, c); they also
give a non-matching upper bound O(2pw(G)|E|). Galesi et al. [15] proved a lower bound
2tw(G)Ω(1/d) on the size of depth-d Frege refutations of T(G, c) using Håstad’s lower bound
for the grids [21] and the Grid Minor Theorem. This very general approach yields bounds
that are very far from being optimal, but such results motivate searching for more precise
lower bounds.

Itsykson et. al. [23] proved a lower bound 2Ω(tw(G)/ log |V |) on the size of regular resolution
refutations of T(G, c) for any connected graph G. The heart of this proof is the reduction
from satisfiable Tseitin formulas. Namely, if there exists a regular resolution refutation of
a Tseitin formula T(G, c) of size S, then it can be transformed into a read-once branching
program (1-BP) computing a satisfiable formula T(G, c′) of size SO(log |V |). It is shown in [23]
that the size of the minimal 1-BP computing a satisfiable Tseitin formula T(G, c′) is at least
2Ω(tw(G)).

De Colnet and Mengel considered a computational model that is stronger than 1-BP:
DNNF (decomposable negation normal form) is a special kind of Boolean circuit in the
basis {∧,∨,¬}, where negations are applied only to variables and for every ∧-gate variables
from two subcircuits of its children do not intersect. De Colnet and Mengel [12] have
proved a lower bound 2Ω(tw(G)/∆(G)) on the size of DNNF computing satisfiable Tseitin
formula T(G, c′), where ∆(G) denotes the maximum degree of G. Similarly to [23] a regular
resolution refutation of a Tseitin formula T(G, c′) of size S can be transformed into a
DNNF of size O(S|V |) computing a satisfiable Tseitin formula. This implies a lower bound
2Ω(tw(G)/∆(G))/|V | on the size of regular resolution refutations of T(G, c) for a connected
graph G. For constant-degree graphs this bound is tight up to a constant factor in the
exponent, but for graphs with ∆(G) = ω(log |V |) the bound from [23] is stronger.

Our results. In this paper, we study the complexity of refutations of Tseitin formulas in two
proof systems: OBDD(∧, reordering) ([22]) and regular resolution. These two proof systems
are very different; it is known that they do not simulate each other [7, 6]. However, the known
proofs of lower bounds on Tseitin formulas use similar techniques since in both cases they are
based on the complexity of satisfiable Tseitin formulas. Our results imply that the minimal
refutation sizes of Tseitin formulas in these proof systems are very close, however, the only
known example of a formula that requires resolution refutations of size superpolynomially
larger than the size of the shortest OBDD(∧) refutation is a Tseitin formula on the complete
graph [7].
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We prove a lower bound 2Ω(tw(G)) on the size of OBDD(∧, reordering) refutation of
T(G, c). This lower bound matches the upper bound O(2pw(G)|E|) [18] for a large family
of graphs with pw(G) = Θ(tw(G)) (this family includes grids, complete graphs, expanders,
etc.). Our approach is rethinking of the techniques from [22, 18] supplied with new ideas.

We prove a lower bound 2Ω(tw(G)) on the complexity of DNNF computing satisfiable
Tseitin formula T(G, c′), thereby improving the result from [12]. Our proof is highly based
on [12], we surgically remove the 1

∆(G) factor from the exponent. We also prove a matching
upper bound 2O(tw(G)). As a corollary of the lower bound using a reduction from [12], we
get a stronger lower bound 2Ω(tw(G)) on the size of regular resolution refutations of Tseitin
formulas that improve both the lower bounds from [23] and [12]. For regular resolution there
is also a known upper bound poly(T(G, c))2O(tw(L(G))), where L(G) is the line graph of G
[1]. There is a family of graphs Gn,k on Θ(n2k2) vertices with tw(L(Gn,k)) = 4n+ O(k3),
tw(Gn,k) ≥ n and ∆(Gn,k) = k [20, Section 7], thus for k < n1/3 our lower bound is tight.
Our upper bound on the size of DNNF implies that the method from [12] can not give a
better bound (for example, we can not prove 2Ω(tw(L(G))) using this method).

Almost automatability. We say that a propositional proof system Π is almost automatable
on a class of formulas F if there exists an algorithm A such that for any φ ∈ F , A(φ) produces
a Π-refutation of φ in time SO(log |φ|) = 2O(log |φ|·log S), where S is the size of the shortest
Π-refutation of φ. Notice that if φ = T(G, c), then Ω

(
|V | + 2∆(G)) ≤ |φ| ≤ O(|V |2∆(G)),

hence log(|φ|) = Θ(log |V | + ∆(G)).
Our results imply that regular resolution and OBDD(∧, reordering) are almost automat-

able on the class of Tseitin formulas.
Alekhnovich and Razborov [1] developed an algorithm (Branch-Width Based Auto-
mated Theorem Prover or BWBATP) searching for regular resolution refutations
of CNF formulas. BWBATP finds a regular resolution refutation of a Tseitin for-
mula T(G, c) in 2O(tw(L(G))poly(|T(G, c)|) steps. Since tw(L(G)) = O(tw(G)∆(G)),
2O(tw(L(G))poly(|T(G, c)|) = 2O(tw(G) log |T(G,c)|).
We show in Section 3.2 that an OBDD(∧) refutation of a Tseitin formula T(G, c) can be
constructed in 2O(tw(G) log |V |)poly(T(G, c)) = 2O(tw(G) log |T(G,c)|) steps.

New preprint of de Colnet and Mengel. While preparing this paper we became aware of
the new preprint of de Colnet and Mengel [13]. Results of that paper imply a lower bound
2Ω(tw(G)/∆3(G)) on the size of OBDD(∧, reordering) refutations of T(G, c). In fact, in [13]
the authors deal with a slightly stronger model, where instead of OBDD they use structural
DNNF. This model is not a propositional proof system since it is NP-hard to verify such
proofs [26]. However, our proof works for their model without any changes, and using our
DNNF lower bound we get a lower bound 2Ω(tw(G)) on the model used in [13], that is better
for graphs with non-constant degrees (see Remark 3.7 for details). Our proof and the proof
from [13] use different strategies, while ours seems to be much simpler.

2 Preliminaries

Boolean functions and formulas. Let X be a set of propositional variables. A partial
assignment is a set of elementary assignments x := a, where x ∈ X and a ∈ {0, 1} such
that every variable appears in at most one elementary assignment. The support of a partial
assignment ρ is the set of variables on the left-hand side of the elementary assignments.

SAT 2022
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Let σ and τ be partial assignments. We write σ ⊆ τ , if the support of σ is a subset of the
support of τ , and they agree on the support of σ. If the supports of σ and τ do not intersect,
we denote by σ ∪ τ a partial assignment that coincides with σ on the support of σ and with
τ on the support of τ .

For a Boolean function f : {0, 1}n → {0, 1} we use a notation sat(f) = {x ∈ {0, 1}n |
f(x) = 1}.

We identify a CNF formula φ with the set of its clauses. For example, if φ and ψ are
CNF formulas, then φ = ψ means that their sets of clauses are equal, and φ ⊆ ψ means that
every clause of φ occurs in ψ.

OBDD. An ordered binary decision diagram (OBDD) is used to represent a Boolean
function [5]. Let X = {x1, . . . , xn} be a set of propositional variables. A binary decision
diagram (BDD) is a directed acyclic graph with one source. Each node of the graph is labeled
by a variable from X or by a constant 0 or 1. If a node is labeled by a constant, then it is a
sink (has out-degree 0). If a node is labeled by a variable, then it has exactly two outgoing
edges: one edge is labeled by 0 and the other edge is labeled by 1. Every binary decision
diagram defines a Boolean function {0, 1}n → {0, 1}. The value of the function for given
values of x1, . . . , xn is computed as follows: we start a path at the source and at every step
follow the edge that corresponds to the value of the variable labeling the current node. Every
such path reaches a sink, which is labeled either 0 or 1: this constant is the value of the
function.

Let π be a permutation of the set [n] = {1, . . . , n}. A π-ordered binary decision diagram
(π−OBDD) is a binary decision diagram such that on every path from the source to a sink
every variable has at most one occurrence and the variable xπ(i) can not appear before
xπ(j) if i > j. An ordered binary decision diagram (OBDD) is a π-ordered binary decision
diagram for some permutation π. By convention, every OBDD is associated with a single
fixed permutation π. This π puts a total order on all the variables, even if the OBDD does
not query all variables.

The size of an OBDD is the number of nodes in it.

▶ Lemma 2.1 ([32, Theorem 3.3.1]). Let D be a π-OBDD, and ρ be a partial assignment to
variables of D. Then there is a π-OBDD computing D|ρ of size at most |D|.

▶ Lemma 2.2 ([32, Theorem 3.3.6]). Let D1 and D2 be π-OBDDs over the same set of
variables. Then there is a π-OBDD of size O(|D1||D2|) computing D1 ∧D2.

DNNF. A Boolean circuit in the negation normal form (NNF) is a circuit in the de Morgan
basis {∧,∨,¬} with binary conjunctions and disjunctions, where all negations only apply to
variables. For a gate g of an NNF Boolean circuit, we define var(g) as a set of variables in
its subcircuit.

Let g be a gate of an NNF with direct predecessors gl and gr. The gate g is decomposable
if var(gl) ∩ var(gr) = ∅. The gate g is complete if var(gl) = var(gr). An NNF is called
decomposable (DNNF) if each ∧-gate is decomposable. An NNF is complete if each ∨-gate is
complete.

▶ Lemma 2.3 ([11]). Let D be a DNNF. Then there is a complete DNNF computing the
same function as D and it can be constructed in time poly(|D|).
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Resolution. A resolution refutation of an unsatisfiable CNF formula φ is a sequence of
clauses C1, C2, . . . , Cs such that Cs is the empty clause (identically false), and for all i ∈ [s],
the clause Ci is either a clause of φ, or can be obtained by the resolution rule from two
preceding clauses, where the resolution rule allows to derive A ∨B from A ∨ x and B ∨ ¬x.

A resolution refutation is regular if for every increasing sequence 1 ≤ i1 < i2 < · · · < ik ≤ s

such that for all j ∈ {2, . . . , k} the clause Cij
is obtained by the resolution rule applied

to Cij−1 as one of the premises (let xj denote the resolved variable), all variables xj for
j ∈ {2, . . . , k} are distinct.

The number s is the size of the resolution refutation.

OBDD-based proof systems. An OBDD(∧, reordering) refutation of an unsatisfiable CNF
formula φ is a sequence of OBDDs D1, D2, . . . , Ds such that Ds computes the identically
false function, and for all i ∈ [s], the OBDD Di is either computes a clause of φ, or can be
obtained from previous OBDDs by the following inference rules:

Conjunction: If j, k < i and Dj and Dk are π-OBDDs for some order π, then we can
infer OBDD Di = Dj ∧Dk with the same order π.
Reordering: If j < i, then we can infer OBDD Di computing the same function as Dj ,
and variable orders of Di and Dj can be different.

The length of the refutation is s and its size is the sum of the sizes of OBDDs in it, i.e.,
|D1| + |D2| + . . .+ |Ds|.

OBDD(∧) refutation is an OBDD(∧, reordering) refutation that does not contain the
reordering rule. A refutation is tree-like if every OBDD in it is used at most once as a
premise of a rule.

▶ Lemma 2.4 ([18, Lemma 5.4]). Let φ be an unsatisfiable CNF formula that has an
OBDD(∧, reordering) refutation of size S. Let ρ be a partial assignment of values of the
formula φ. Then φ|ρ has an OBDD(∧, reordering) refutation of size at most S.

Graph basics. Throughout the paper, we consider undirected graphs possibly with self-loops
and parallel edges. We use G = (V,E) to denote a graph G with a vertex set V and an edge
set E. An undirected edge e ∈ E incident to vertices v ∈ V and u ∈ V , we denote by (v, u) or
(u, v). For a vertex v, we denote the set of edges incident to v by E(v): E(v) = {(v, u) ∈ E}.

By ∆(G) we denote the maximum degree of a graph G, and by #G we denote the number
of connected components in G.

For V ′ ⊆ V we denote by G[V ′] the subgraph of G, induced by vertices of V ′. In
particular, if V ′ = {v1, v2, . . . , vk}, we write G[v1, v2, . . . , vk] meaning the same graph G[V ′].
We denote by G \ V ′ the graph G[V \ V ′]. For E′ ⊆ E, we denote by G \ E′ the graph
G′ = (V,E \ E′).

A graph G = (V,E) is k-connected, if it has more than k vertices, and for each vertex
subset S ⊆ V of size at most k, the graph G \ S is connected.

For any graph H, we denote by V (H) the set of its vertices and by E(H) and the set of
its edges.

Graph minors. For e = (v, u) ∈ E, we denote by G/e the graph obtained from G by
contraction of edge e: we delete the edge e and merge v and u into one vertex. A graph G′ is
a minor of graph G, if G′ can be obtained from G by vertex deletions, edge deletions and
edge contractions.

SAT 2022



6:6 Tight Bounds for Tseitin Formulas

Let a vertex v ∈ V of degree two has two different neighbors u and w. Suppression of v
is an operation on graph G, in which we delete the vertex v from G and add an edge (u,w).
G′ is called a topological minor of graph G, if G′ can be obtained from G by vertex deletions,
edge deletions and vertex suppressions.

Graph decompositions. A tree decomposition of an undirected graph G = (V,E) is a tree
T = (VT , ET ) and a family {Xt}t∈VT

of subsets of V such that the following properties hold:
1. The union of Xt for t ∈ VT equals V .
2. For every edge (v, u) ∈ E there exists t ∈ VT such that v, u ∈ Xt.
3. If a vertex v ∈ V is contained in the sets Xt and Xs for some t, s ∈ VT , then it is also

contained in Xp for all vertices p on the unique path between s and t in T .

The sets Xu are called bags of the tree decomposition. The size of tree decomposition
is the number of nodes in T . The width of a tree decomposition, denoted by w(T ), is the
maximum bag size |Xu| for u ∈ VT minus one. The treewidth of a graph G, denoted by
tw(G), is the minimum width among all tree decompositions of the graph G.

A path decomposition of a graph G is a tree decomposition of G such that the underlying
tree T is a simple path. The pathwidth of a graph G, denoted by pw(G), is the minimum
width among all path decompositions of the graph G.

▶ Lemma 2.5 (Folklore, see, e.g., [24, Theorem 6]). For any graph G, pw(G) ≤
O(tw(G) log |V (G)|).

Moreover, given a tree decomposition T of width k, one can construct a path decomposition
of width O(k log |V (G)|) in time poly(|V (G)|, |E(G)|, |V (T )|).

▶ Lemma 2.6 (Folklore). Let G be a graph, A ⊆ V (G). Then tw(G \A) ≥ tw(G) − |A|.

▶ Lemma 2.7 ([27, Proposition 2.7]). Let G be a graph and G′ be its minor. Then tw(G′) ≤
tw(G).

▶ Lemma 2.8 ([9, Chapter 7]). Let G be a graph and H be obtained from G by vertex
suppressions. Then tw(H) ≥ tw(G) − 1.

▶ Theorem 2.9 ([4]). Given a graph G, one can obtain a tree decomposition of width
O(tw(G)) in time 2O(tw(G))|V (G)|.

▶ Theorem 2.10 ([12, Lemma 25]). Let G be a graph with a treewidth of at least 3. Then G

has a 3-connected topological minor H with tw(H) = tw(G).

A branch decomposition of an undirected graph G = (V,E) is a tree T = (VT , ET ), each
non-leaf node has degree three, and leaves are in bijection with the edges of G. Each edge
e of ET gives an e-separation of the set E into two non-empty parts E1 and E2: deleting
the edge e from T , we get two trees T1 and T2; let E1 be edges that occur in leaves of T1,
E2 be edges that occur in leaves of T2. The width of e-separation is the number of vertices
of G incident to edges from both E1 and E2. The width of branch decomposition T is the
maximum width of e-separation over all e ∈ ET . The branchwidth of G, denoted by bw(G),
is the minimum width among all branch decompositions of G.

▶ Theorem 2.11 ([28, Theorem 5.1]). For any graph G, max(bw(G), 2) ≤ tw(G) + 1 ≤
max(

⌈ 3
2 bw(G)

⌉
, 2).
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Tseitin formulas. Let G = (V,E) be a graph. Let c : V → {0, 1} be a charge function. A
Tseitin formula T(G, c) depends on the propositional variables xe for e ∈ E. For each vertex
v ∈ V we define the parity condition of v as Pv :=

(∑
e∈E(v) xe ≡ c(v) mod 2

)
. The Tseitin

formula T(G, c) is the conjunction of parity conditions of all the vertices:
∧

v∈V Pv. Tseitin
formulas are represented in CNF as follows: we represent Pv in CNF in the canonical way
for all v ∈ V .

When we write about substitutions to a Tseitin formula, we often identify variables and
edges that correspond to them.

Assume that G consists of connected components H1, H2, . . . ,Ht. Then the Tseitin
formula T(G, c) is equivalent to the conjunction

∧t
i=1 T(Hi, c). In the last formula we abuse

the notation since c is defined not only on the vertices of Hi and, thus, we implicitly use the
corresponding restriction on the set of vertices.

Let c1 : V1 → {0, 1}, c2 : V2 → {0, 1} be charge functions. We denote by c1 + c2 the charge
function (c1 + c2) : V1 ∪ V2 → {0, 1} such that

(c1 + c2)(v) =


c1(v), if v ∈ V1 \ V2;
c2(v), if v ∈ V2 \ V1;
c1(v) + c2(v) mod 2, if v ∈ V1 ∩ V2.

If V1 and V2 do not intersect, we can also write c1 ⊔ c2 meaning the same charge function
c1 + c2. By 1v, we denote the charge function 1v : {v} → {0, 1} such that 1v(v) = 1.

▶ Lemma 2.12 (Folklore, see, e.g., [31]). A Tseitin formula T(G, c) is satisfiable if and only if
for every connected component C(U,EU ) of the graph G, the condition

∑
u∈U c(u) ≡ 0 mod 2

holds.

Note that if a connected component C consists of an isolated vertex v, then either c(v) = 1
and T(G, c) is unsatisfiable, or c(v) = 0 and T(G, c) = T(G \ v, c). In other words, adding
zero-charged isolated vertices does not change a Tseitin formula.

▶ Lemma 2.13 (Folklore). Let G = (V,E) be a graph, T(G, c) be satisfiable, σ be a full
assignment for the set of variables of T(G, c). Then the number of parity conditions falsified
by σ is even.

Proof. See Appendix A for the proof. ◀

▶ Lemma 2.14 (Folklore). The result of the substitution xe := b to T(G, c) where b ∈ {0, 1}
is a Tseitin formula T(G′, c′) where G′ = G− e and c′ differs from c on the endpoints of the
edge e by b and equals c for every other vertex.

▶ Lemma 2.15 (Folklore, see, e.g., [23, Lemma 2.3]). Let G = (V,E) be a connected graph
and let c1, c2 : V → {0, 1} be charge functions. If Tseitin formulas T(G, c1) and T(G, c2)
are both satisfiable or both unsatisfiable, then one of them can be obtained from another by
replacing some variables with their negations.

▶ Lemma 2.16 ([17, Lemma 2]). If a Tseitin formula T(G, c) is satisfiable, then it has
2|E|−|V |+#G satisfying assignments.

▶ Lemma 2.17 ([18, Lemma 5.5]). Let G = (V,E) be a connected graph and G′ = (V ′, E′)
be a connected subgraph of G with E′ ̸= ∅ that is obtained from G by the deletion of some
vertices and edges. For every unsatisfiable Tseitin formula T(G, c) there exists an assignment
ρ on variables E \ E′, such that ρ does not falsify any clause of T(G, c).

SAT 2022



6:8 Tight Bounds for Tseitin Formulas

▶ Lemma 2.18 (Folklore, see, e.g., [18, Lemma 5.2]). Let G be a 2-connected graph and
T(G, c) be unsatisfiable. Then T(G, c) is a minimally unsatisfiable formula, i.e. removing
any of its clauses makes it satisfiable.

▶ Lemma 2.19 ([12, Lemma 24]). Let H be a topological minor of G. If a satisfiable Tseitin
formula T(G, c) has a DNNF of size s, then any satisfiable formula T(H, c′) also has a
DNNF of size s.

▶ Theorem 2.20 ([23, Theorem 1.9]). Let T(G, c) be a satisfiable Tseitin formula. Then the
minimum size of OBDD computing T(G, c) is at least 2Ω(tw(G)).

3 OBDD(∧, reordering)

3.1 Lower Bound
In this section, we prove the following theorem.

▶ Theorem 3.1. Let G be a connected graph and T(G, c) be an unsatisfiable Tseitin formula.
Then any OBDD(∧, reordering) refutation of T(G, c) has a size of at least 2Ω(tw(G)).

We say that a graph G is a subdivision of H if H can be obtained from G by several
suppression operations. We say that a graph G is almost 3-connected if it is a subdivision of
a 3-connected graph H.

First, we prove Theorem 3.1 only for almost 3-connected graphs.

▶ Theorem 3.2. Let G be an almost 3-connected graph and T(G, c) be an unsatisfiable
Tseitin formula. Then any OBDD(∧, reordering) refutation of T(G, c) has a size of at least
2Ω(tw(G)).

Let us show how Theorem 3.2 implies Theorem 3.1.

Proof of Theorem 3.1. Let S be the minimal size of OBDD(∧, reordering) refutation of
T(G, c).

If tw(G) ≤ 2, then the theorem is trivial. Otherwise, by Theorem 2.10, there exists a
3-connected topological minor H of G such that tw(G) = tw(H). Consider a sequence of
operations that transforms G to H, where all edge and vertex deletions precede suppressions.
Let us denote by G′ the graph obtained from G after the application of all edge and vertex
deletions. By Lemma 2.17 there exists a partial assignment ρ with support corresponding to
the edges that are in G but not in G′ such that ρ does not falsify any clause of T(G, c). It is
easy to see that T(G, c)|ρ coincides with T(G′, c′) for some c′ and T(G′, c′) is unsatisfiable.
By Lemma 2.4, there exists OBDD(∧, reordering) refutation of T(G′, c′) of size at most S.

Since H is obtained from G′ by several suppressions, G′ is almost 3-connected. Hence,
by Theorem 3.2, S ≥ 2Ω(tw(G′)). Since H is a minor of G′ and G′ is a minor of G, by
Lemma 2.7 we have tw(G) ≥ tw(G′) ≥ tw(H) = tw(G). Thus, tw(G′) = tw(G) and, hence,
S ≥ 2Ω(tw(G)). ◀

In order to complete the proof of Theorem 3.1, we have to prove Theorem 3.2.
Let G be a subdivision of H. Notice that for every vertex u of H there exists a vertex u′

from G that is transformed to u. We call such vertices u′ main vertices; we call all other
vertices of G (that are not main) interior vertices. If vertices u and v are adjacent in H,
then corresponding main vertices u′ and v′ are connected by a path in G (possibly of length
1) that is entirely transformed to the edge (u, v). We call such paths in G as long edges.
Notice that all endpoints of long edges are main vertices, and all other vertices of long edges
are interior.
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For every subgraph H ′ of H, we define a corresponding subgraph G′ of G in the following
way. The set of vertices of G′ are 1) main vertices of G that correspond to the vertices of H ′,
and 2) interior vertices of long edges corresponding to the edges of H ′. The set of edges of
G′ consists of all edges from long edges corresponding to edges of H ′. It is easy to see that
G′ is a subdivision of H ′.

It is easy to see that every almost 3-connected graph is 2-connected. However, the
stronger statement holds.

▶ Lemma 3.3. Let G be an almost 3-connected graph. Let u and v be two vertices that do
not belong to the same long edge. Then the graph G \ {v, u} is connected.

Proof. See Appendix B for the proof. ◀

Proof of Theorem 3.2. If ∆(G) > tw(G)/10, then formula T(G, c) has at least 2tw(G)/10

clauses and since G is 2-connected, by Lemma 2.18 all these clauses should be used in a
refutation. Hence, any OBDD(∧, reordering) refutation of T(G, c) has a size of at least
2tw(G)/10. So we can assume that ∆(G) ≤ tw(G)/10.

Let G is a subdivision of a 3-connected graph H.
Consider an OBDD(∧, reordering) refutation of T(G, c) that has the minimal possible

size. The last line in the refutation is an identically false OBDD. If this line represents
a clause of the initial formula, then G has an isolated vertex and since G is connected, it
consists of one vertex, in this case the statement is trivial. Since the refutation is minimal,
the last line can not be obtained by the reordering rule. Hence, the last line is obtained by
the conjunction rule: D1 ∧D2 = , where D1 and D2 have the same order that we denote
by π. Notice that by the minimality of the refutation, both D1 and D2 are satisfiable.

For every i ∈ {1, 2}, Di is the conjunction of several clauses of T(G, c). Since Di is
satisfiable, this conjunction does not contain all clauses. Let Ai ⊆ V be a set of vertices such
that there is a clause from their parity conditions that is not included in Di. Notice that
Ai ̸= ∅ for i ∈ {1, 2}.

We consider two cases.

First case. Assume that every two vertices v ∈ A1 and u ∈ A2 belong to the same long
edge of G.

▷ Claim 3.4. There exists a subgraph G′ of G such that tw(G′) ≥ tw(G) − max(3,∆(G) − 1)
and at least one of the sets A1 and A2 does not intersect with the set of vertices of G′.

Proof. If A2 contains an interior vertex of a long edge, then all vertices from A1 belong to
this long edge. Let x and y be the endpoints of this long edge. Let H ′ = H \ {x, y} and G′

be a subgraph of G corresponding to H ′. Let us estimate tw(G′):

tw(G′) ≥ tw(H ′) ≥ tw(H) − 2 ≥ tw(G) − 3.

In the first inequality we use Lemma 2.7, in the second one we use Lemma 2.6 and in the
third one we use Lemma 2.8. Notice also that the set of vertices of G′ does not intersect
with A1. The case in which A1 contains an interior vertex of a long edge is analogous.

Now assume that A1 and A2 consist of only main vertices, so we may assume that A1
and A2 are vertices of H. Let u be a vertex from A2. Then in the graph H every vertex
from A1 is either adjacent to u or equal to u, hence |A1| ≤ ∆(H) + 1 ≤ ∆(G) + 1. Then we
delete from G all vertices from A1 and get G′. The set of vertices of G′ does not intersect
with A1 and tw(G′) ≥ tw(G) − ∆(G) − 1 by Lemma 2.6. ◁
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W.l.o.g. we assume that the set of vertices of G′ does not intersect with A1. Let σ be a
satisfying assignment of D1 and let σ′ be the restriction of σ to the all edges in E(G) \E(G′).
Let us denote F := D1|σ′ .

Notice that F computes a satisfiable Tseitin formula T(G′, c′) for some charging function
c′. By Theorem 2.20, |F | ≥ 2Ω(tw(G′)). tw(G′) ≥ tw(G) − max(3,∆(G) − 1), and we already
know that ∆(G) ≤ tw(G)/10, hence tw(G′) ≥ 0.9 tw(G) − 3. Since F is obtained by an
application of a substitution from D1, by Lemma 2.1, |D1| ≥ |F |. Hence, |D1| ≥ 2Ω(tw(G)).

Second (main) case. Assume that there exist v ∈ A1 and u ∈ A2 that do not belong to
the same long edge of G.

▶ Theorem 3.5 ([29, Theorem 3.2]). Let G be a 2-connected graph and v, u are two vertices
from G. Then there is a path p connecting v and u such that tw(G \ V (p)) ≥ c tw(G), where
V (p) is the set of vertices of the path p and c > 0 is an absolute constant.

Let p be a path between u and v in the graph G given by Theorem 3.5. We know that
tw(G \ V (p)) ≥ c tw(G) for some constant c > 0. Since v and u do not belong to the same
long edge, the distance between them in G is at least 2. By Lemma 3.3, the graph G \ {v, u}
is connected.

▶ Lemma 3.6. Let G = (V,E) be a 2-connected graph, v, u ∈ V , the distance between v

and u be at least 2 and G \ {v, u} be connected. Let p be a path between v and u, define
G0 = G \ V (p).

Let T(G, c) be an unsatisfiable Tseitin formula, CNF formulas φ1 and φ2 be the con-
junctions of several clauses of T(G, c) such that φ1 and φ2 are satisfiable and φ1 ∧ φ2 is
unsatisfiable. Let φ1 does not contain a clause from the parity condition of v of formula
T(G, c) and φ2 does not contain a clause from the parity condition of u.

Then there exists such partial assignments α1 and α2 such that φ1|α1 ∧φ2|α2 = T(G0, c0)
and T(G0, c0) is satisfiable.

Using Lemma 3.6 we now complete the second case of the proof and, thus, we complete
the whole proof of Theorem 3.2. Indeed, let φ1 and φ2 be the conjunctions of clauses
included in D1 and D2 respectively. By the choice of p, tw(G0) ≥ c tw(G), hence, the size
of any OBDD computing φ1|α1 ∧ φ2|α2 is at least 2Ω(c tw(G)) by Theorem 2.20. Hence, by
Lemma 2.2 at least one of φ1|α1 or φ2|α2 requires π−OBDD of size at least 2Ω(c tw(G))/2,
hence by Lemma 2.1 at least one of D1 and D2 has a size of at least 2Ω(c tw(G))/2.

Proof of Lemma 3.6. Let Cv be a clause from the parity condition of v that does not appear
in φ1 and Cu be a clause from the parity condition of u that does not appear in φ2. Let ev

be an edge of p incident to v and eu be an edge of p incident to u. Notice that ev ≠ eu, since
the distance between v and u is at least 2. We denote by V (p) the set of vertices of p, and
by E(p) the set of edges of p.

Partial assignments α1 and α2 will have the same support corresponding to all edges
incident to vertices of V (p). Partial assignments α1 and α2 differ exactly on E(p) and
coincide on all other edges. We will define αi in several steps. In the first and the second
steps, we construct a partial assignment σ that is defined on the set of edges incident to v or
u except ev and eu. In the third and fourth steps, we construct an assignment to edges of p.
In the fifth step, we conclude with the construction of αi, and in the final step we verify that
substitutions αi satisfy the required properties.
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1. Construction of σ. We define an assignment σ with support E(v) ⊔ E(u) \ E(p) such
that it does not satisfy Cv and Cu. Such σ exists since E(u) and E(v) are disjoint.

2. Application of σ. Consider the Tseitin formula T(G, c + 1v). It is satisfiable since
T(G, c) is unsatisfiable and G is connected. By Lemma 2.14, T(G, c+ 1v)|σ is also a Tseitin
formula; let us denote it by T(G′, c′ + 1v).

We claim that T(G′, c′ + 1v) is satisfiable. By the condition of the lemma, G \ {v, u}
is connected. G′ is connected since both v and u have in G′ one edge connecting them
with G \ {v, u}. The formula T(G, c+ 1v) is satisfiable and since the number of connected
components does not increase after applying σ, the result of the substitution is also satisfiable.

Analogously define T(G′, c′ + 1u) := T(G, c+ 1u)|σ. Notice that G′ and c′ are the same
as above.

3. Construction of ρ1 and ρ2. Consider arbitrary satisfying assignment of T(G′, c′ + 1v)
and let ρ1 be its restriction to E(p). We also define a partial assignment ρ2 with the same
support such that for all e ∈ E(p), ρ2(xe) = 1 − ρ1(xe).

4. Satisfiability of the conjunction. Let us define ψ1 := φ1|σ∪ρ1 and ψ2 := φ2|σ∪ρ2 . We
claim that the conjunction of ψ1 ∧ ψ2 is satisfiable.

The formula φ1 is a subformula of T(G, c), so if we remove from φ1 all clauses of the
parity condition of v, then it will be a subformula of T(G, c+ 1v). By the construction of σ,
Cv is the only clause from the parity condition of v in T(G, c) that is not satisfied by σ. But
Cv is not included in φ1, hence φ1|σ does not contain clauses of the parity condition of v.
Hence, φ1|σ is a subformula of T(G, c+ 1v)|σ = T(G′, c′ + 1v). Thus, ψ1 is a subformula of
T(G′, c′ + 1v)|ρ1 .

Analogously, ψ2 is a subformula of T(G′, c′ + 1u)|ρ2 .
We claim that Tseitin formulas T(G′, c′ + 1v)|ρ1 and T(G′, c′ + 1u)|ρ2 coincide. To prove

it, it is sufficient to verify that for each vertex from V (p), its charges in both formulas are
equal.

Consider a vertex w ∈ V (p). If w ∈ V (p) \ {v, u}, then (c′ + 1v)(w) = (c′ + 1u)(w).
Assignments ρ1 and ρ2 change the charge of w in the same way. Indeed, let e1 and e2 be edges
of p incident to w, then ρ2(xe1) + ρ2(xe2) = (1 − ρ1(xe1)) + (1 − ρ1(xe2)) = ρ1(xe1) + ρ1(xe2)
(mod 2).

If w = v, then (c′ + 1v)(v) = 1 − c′(v) and ρ1(ev) = 1 − ρ2(ev), then the charge of v in
the formula T(G′, c′ + 1v)|ρ1 equals (1 − c′(v)) + (1 − ρ2(ev)) = c′(v) + ρ2(ev) (mod 2), and
that is the charge of v in the formula T(G′, c′ + 1u)|ρ2 . The case w = u is analogous.

Thus, we have that ψ1 ∧ψ2 is a subformula of the satisfiable formula T(G′, c′ + 1v)|ρ1 , so
ψ1 ∧ ψ2 is satisfiable.

5. Construction of β. We define a partial assignment β on the edges of G that are not in
E(v) ∪ E(u) ∪ E(p) and incident to vertices of V (p). Let β be such that T(G′, c′ + 1v)|ρ1∪β

is satisfiable. Let αi := σ ∪ ρi ∪ β for i ∈ {1, 2}. Notice that T(G, c+ 1v)|α1 = T(G0, c0) is a
satisfiable formula for some c0.

6. Final step. On step 4 we showed that φ1|σ∪ρ1 ∧ φ2|σ∪ρ2 ⊆ T(G, c + 1v)|σ∪ρ1 . Hence,
φ1|α1 ∧ φ2|α2 ⊆ T(G, c+ 1v)|α1 Let us show that φ1|α1 ∧ φ2|α2 = T(G, c+ 1v)|α1 .
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Consider some w ∈ V \V (p), let Cw|α1 be a clause from the parity condition of the vertex
w in the formula T(G, c + 1v)|α1 . Notice that α1 and α2 assign the same values to edges
incident to w, hence Cw|α1 = Cw|α2 .

Cw|α1 ∈ T(G, c + 1v)|α1 , then Cw ∈ T(G, c + 1v), hence Cw ∈ T(G, c) (since w ̸= v).
The formula φ1 ∧ φ2 ⊆ T(G, c) is unsatisfiable and G is 2-connected, hence, by Lemma 2.18
every clause of T(G, c) appears in at least one of the formulas φ1 or φ2. If Cw ∈ φ1, then
Cw|α1 ∈ φ1|α1 . If Cw ∈ φ2, then Cw|α2 ∈ φ2|α2 . ◀

◀

▶ Remark 3.7. Notice that in the proof of Theorem 3.1 we use not very much specific about
OBDDs. Namely, we use only Lemmas 2.1, 2.2, 2.4 and for a lower bound on the size of
OBDD we use Theorem 2.20.

In the recent work [13], de Colnet and Mengel introduce so-called str-DNNF(∧, r)
refutations that are defined similarly to OBDD(∧, reordering) refutations, but use structured
DNNFs instead of OBDDs. OBDD is a partial case of str-DNNF, an order of variables in
OBDD corresponds to a vtree (variable tree) in str-DNNF. “r” stands for the restructuring
and it is the extension of the reordering rule.

We claim that Theorem 3.1 also holds for str-DNNF(∧, r) refutations: there are lemmas
analogous to Lemma 2.1, Lemma 2.2, Lemma 2.4 (see [26, Theorem 1], [13, Lemma 3]); and
for a lower bound on the size of DNNF, one should use Theorem 4.1 (proved in Section 4)
instead of Theorem 2.20.

▶ Corollary 3.8. Let G be a graph and T(G, c) be an unsatisfiable Tseitin for-
mula, H1, H2, . . . ,Hk be all unsatisfiable connected components of G. Then any
OBDD(∧, reordering) refutation of T(G, c) has a size of at least 2Ω(t), where t =
mini∈[k] tw(Hi).

Proof. See Appendix B for the proof. ◀

3.2 Almost Automatability
▶ Theorem 3.9. Let T(G, c) be unsatisfiable Tseitin formula based on graph G = (V,E), and
there is an OBDD(∧, reordering) refutation for it of size S. Then one can construct tree-like
OBDD(∧) in time SO(log |V |)poly(|T(G, c)|).

We use the following lemma.

▶ Lemma 3.10 ([18, Corollary 6.3]). Let T(G, c) be an unsatisfiable Tseitin formula based
on a graph G = (V,E) and P be a path decomposition of G. Given T(G, c) and P , one can
construct a tree-like OBDD(∧) refutation of size O(|E||V |2w(P ) + |T(G, c)|2) in time that is
polynomial of sizes of the input and the output.

Proof of Theorem 3.9. Assume that G is connected. By Theorem 2.9, one can obtain a
tree decomposition of width O(tw(G)) in time 2O(tw(G))|V |. Using Lemma 2.5, we construct
a path decomposition of G of width O(tw(G) log |V |). Using Lemma 3.10, we build a
tree-like OBDD(∧) refutation in time at most poly

(
|T(G, c)|, 2tw(G) log |V |) using this path

decomposition.
Now consider the case when G is not necessarily connected and its unsatisfiable connected

components are {H1, . . . ,Hk}. For each component Hi, we compute an approximation ti
of its treewidth using Theorem 2.9: tw(Hi) ≤ ti ≤ α tw(Hi) for some constant α ≥ 1. We
make it in

∑k
i=1 2O(tw(Hi)) ≤ 2O(tw(G))|V | time. Then we choose Hi with the smallest ti, let
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it be Ha. We construct a tree-like OBDD(∧, reordering) refutation of T(Ha, c) as above in
time poly

(
|T(Ha, c)|, 2ta log |V (Ha)|). By Corollary 3.8, S ≥ 2Ω(t), where t = mini∈[k] tw(Hi),

so S ≥ 2Ω(ta).
Thus, the running time is at most SO(log |V |)poly(|T(G, c)|). ◀

4 Bounds on DNNF and Regular Resolution

The main result of this section is the following theorem:

▶ Theorem 4.1. Let T(G, c) be satisfiable and D be a DNNF computing T(G, c). Then
|D| ≥ 2Ω(tw(G)).

The following reduction from DNNF to regular resolution theorem was proved by de
Colnet and Mengel [12].

▶ Theorem 4.2 ([12, Theorem 8]). Let T(G, c) be an unsatisfiable Tseitin formula where
G is connected and let S be the size of its smallest resolution refutation. Then for every
satisfiable Tseitin formula T(G, c′) there exists a DNNF of size O(S × |V (G)|) computing it.

Theorem 4.2 and Theorem 4.1 imply the following theorem.

▶ Theorem 4.3. Let G = (V,E) be a connected graph and T(G, c) be an unsatisfiable formula.
Then any regular resolution refutation of T(G, c) has a size of at least 2Ω(tw(G)).

Proof. See Appendix C.1 for the proof. ◀

In Appendix C.2, we also prove a matching upper bound.

▶ Theorem 4.4. Let G = (V,E) be a graph and T(G, c) be a satisfiable Tseitin formula.
Then there exists a DNNF of size at most 2O(tw(G)) · |E| computing T(G, c).

Proof sketch. We consider a nice tree decomposition T with “introduce edge” nodes. We
construct a DNNF D such that for every node t ∈ T with bag Xt and for every charge
function f : Xt → {0, 1} there exists a node dt,f ∈ D that computes T(Gt, ct), where Gt is a
subgraph of G corresponding to the subtree of t, and ct acts on Xt as f and on the other
vertices as c. We make it by bottom-up induction on the T . The root of T gives a node in D
that computes T(G, c). ◀

4.1 Rectangle game
De Colnet and Mengel [12] proposed a game to prove DNNF lower bounds. For simplicity,
we describe it only in a special case when the computed function is a Tseitin formula.

Let X be a set of propositional variables. (X1, X2) is called a variable partition if
X1 ⊔X2 = X and X1, X2 are not empty. If X is a set of variables of a Tseitin formula T(G, c)
based on a graph G = (V,E), then every variable partition (X1, X2) naturally corresponds
to an edge partition (E1, E2).

A (combinatorial) rectangle for a variable partition (X1, X2) of a variable set X is defined
to be a set of full assignments of form R = A×B where A ⊆ {0, 1}X1 and B ⊆ {0, 1}X2 . A
rectangle R respects a Boolean function f : {0, 1}X → {0, 1} if R ⊆ sat(f), i.e. R consists
only of satisfying assignments of f .

We define the adversarial multi-partition rectangle cover game for a satisfiable Tseitin
formula T(G, c) with a set of variables X to be played as follows: two players, Charlotte and
Adam, construct in several rounds a set R of combinatorial rectangles that respect T(G, c)
and cover the set sat(T(G, c)).
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The game starts with R = ∅ and consists of several rounds. On each round Charlotte
chooses an input a ∈ sat(T(G, c)) and a branch decomposition T of G. Then Adam chooses
an edge e of T and let (E1, E2) be the e-separation. Then Charlotte chooses a rectangle R
for the corresponding partition of variables of T(G, c) that respects T(G, c) and covers a,
and adds R to R. This completes the round.

The game is over when sat(T(G, c)) is covered by R. The adversarial multi-partition
rectangle complexity of T(G, c), denoted by aR(T(G, c)) is the minimum number of rounds
in which Charlotte can finish the game, whatever the choices of Adam are.

▶ Theorem 4.5 ([12, Theorem 16]). Let D be a complete DNNF computing a satisfiable
Tseitin formula T(G, c). Then |D| ≥ aR(T(G, c)).

In the next subsection, we prove the following lemma:

▶ Lemma 4.6. Let T(G, c) be a satisfiable Tseitin formula where G is a 3-connected graph.
Then aR(T(G, c)) ≥ 2Ω(bw(G)).

Let us prove Theorem 4.1 using this lemma.

Proof of Theorem 4.1. Let S be the minimum size of a DNNF computing T(G, c). If
tw(G) ≤ 2, then the statement is trivial. Otherwise, by Theorem 2.10, there is a 3-connected
graph G′ such that G′ is a topological minor of G and tw(G′) = tw(G). By Lemma 2.19,
there is a DNNF of size at most S computing a satisfiable T(G′, c′). By Lemma 2.3, there is a
complete DNNF of size S′ ≤ SO(1) computing T(G′, c′). By Theorem 4.5, S′ ≥ aR(T(G, c)).
By Lemma 4.6, aR(T(G, c)) ≥ 2Ω(bw(G)). Note that bw(G) = Θ(tw(G)) by Theorem 2.11.

Thus, S′ ≥ aR(T(G, c)) ≥ 2Ω(tw(G)); hence, S ≥ 2Ω(tw(G)). ◀

4.2 Proof of Lemma 4.6
Our goal is to prove the inequality aR(T(G, c)) ≥ 2Ω(tw(G)) for a 3-connected graph G (i.e.
to prove Lemma 4.6). The plan of the proof is the following. We will describe a strategy for
Adam. The goal of Adam is to play such that every rectangle R chosen by Charlotte has a
small size, so a large number of such rectangles is required to cover sat(T(G, c)). We show
that there exists a formula T(G′, c′) such that R is a subset of sat(T(G′, c′)) and that Adam
can play in such a way that the number of satisfying assignments of T(G′, c′) is small, hence
|R| is also small.

Let G = (V,E) be a graph with edges colored in two colors: E = E1 ⊔ E2; edges in E1
are colored with the first color and edges in E2 are colored with the second one. We call
a vertex v ∈ V bicolored, if there are edges of both colors that are incident to it; we call a
set A ⊆ V bicolored if all vertices in it are bicolored (it is not necessary that all bicolored
vertices are in A).

Let us construct a new graph Split(G,E1, E2, A) = (V ′, E′): we split each node v in A

into two fresh nodes and direct each edge e incident to v to one of the copies depending on
the color of e. More formally, let

V ′ = V \A ∪ {vi | i ∈ {1, 2} and v ∈ A};

E′ = {(fi(v), fi(u)) | i ∈ {1, 2} and (v, u) ∈ Ei}, where fi(v) =
{
vi, v ∈ A

v, v ̸∈ A
.

▶ Lemma 4.7 (Generalization of Lemma 18 and Lemma 21 from [12]). Let G = (V,E) be a
graph, E = E1 ⊔ E2 be a coloring of the edges in two colors, and A ⊆ V be a bicolored set.
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Let T(G, c) be a satisfiable Tseitin formula, R ⊆ sat(T(G, c)) be a rectangle w.r.t. to the
partition (E1, E2). Then for a graph G′ = Split(G,E1, E2, A) and a charge function c′ such
that T(G′, c′) is satisfiable, the following holds: |R| ≤ |sat(T(G′, c′))| = 2|E|−(|V |+|A|)+#G′ .

Proof. See Appendix C.1 for the proof. ◀

In [12] this statement is proven for the case when A is an independent set, but this restriction
actually is not used in the proof. In appendix, we prove this lemma for arbitrary bicolored A
explicitly.

Lemma 4.7 yields an upper bound for the size of Charlotte’s rectangle if the set of
bicolored vertices is large enough. However, we have a summand #G′ in the exponent.
In [12] the authors make sure that #G′ = 1 restricting A to be a specific independent set.
We weaken this condition and simply make sure that #G′ is not too large, which makes it
possible for us to pick a larger set A (and we do not require that A is an independent set).

Proof of Lemma 4.6. To prove the lower bound on aR, we show a winning strategy for
Adam. Let a be an assignment and T be a branch decomposition picked by Charlotte. By
definition of the branchwidth, there exists a cut of T that yields a partition of the edges
E(G) = E1 ⊔E2 such that there are at least bw(G) bicolored vertices. Adam chooses such a
cut, let B be the set of bicolored vertices. Then Charlotte picks a rectangle R respecting
the partitions (E1, E2). We will show that |R| ≤ |sat(T(G, c))| 2−Ω(bw(G)), hence, there are
at least 2Ω(bw(G)) rounds. We denote N = |sat(T(G, c))| = 2|E|−|V |+1. Our goal is to show
that |R| ≤ 2−Ω(bw(G))N .

For a graph F , we denote by degF (v) the number of different neighbors of v except for v
itself (it differs from the usual degree of v since we count all parallel edges only once and do
not count self-loops at all).

Let H be a subgraph of G induced by vertices B. We consider the following set of
low-degree vertices: B≤2 = {v ∈ B | degH(v) ≤ 2}. We consider two cases depending on
whether B≤2 is large or not.

First case: B≤2 is large. Assume that |B≤2| ≥ |B|/100. B≤2 contains an independent (in
H and consequently in G) set I of size at least |B≤2|/(2 + 1). Observe that I is bicolored as
a subset of a bicolored set B.

▶ Lemma 4.8 ([12, Lemma 22]). Let G = (V,E) be a 3-connected graph, E = E1 ⊔ E2 be a
coloring of the edges in two colors, A ⊆ V be an independent set in G and bicolored.

Then there exists S ⊆ A such that |S| ≥ |A|/3 and Split(G,E1, E2, S) is connected.

Applying this lemma to I, we get a set S of size at least |I|/3 such that Split(G,E1, E2, S)
is connected. Application of Lemma 4.7 to S yields the inequality |R| ≤ 2|E|−(|V |+|S|)+1 =
2−|S|N . |S| ≥ |I|/3 ≥ |B≤2|/9 ≥ |B|/900 ≥ bw(G)/900 which completes the proof in the
first case.

Second case: B≤2 is small. Now assume that |B≤2| < |B|/100. Let G′ =
Split(G,E1, E2, B), B′

i = {vi | v ∈ B} for i ∈ {1, 2} and B′ = B′
1 ⊔ B′

2 be the set of
copies of vertices from B in G′. Let H ′ be a subgraph of G′ induced by vertices of B′.
Observe that degH(v) = degH′(v1) + degH′(v2) for every v ∈ B.

Note that if we add an edge (v1, v2) for each v ∈ B in graph G′, then it becomes connected
since G is connected. Hence, each connected component C of G′ intersects B′. We call an
intersection of C and B′ as the imprint of C on B′. We are going to bound the number of
connected components in G′ by estimating the sizes of these imprints.
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Let v ∈ B′ and v ∈ C, where C is a connected component of G′. Denote by h(v) = |C∩B′|
the size of the imprint of the component C. Let w(v) = 1/h(v) be a weight of a vertex
v ∈ B′. Notice that the sum of weights

∑
v∈B

(
w(v1) + w(v2)

)
equals the number of connected

components in G′.
Fix a node v ∈ B which has been split into v1 and v2. W.l.o.g. we assume that

h(v1) ≥ h(v2). Let us consider the following cases:

h(v2) = 1. Observe that degG′(v2) ≥ 1 (otherwise v is not incident to any edge from E2).
Thus the connected component of v2 in G′ contains some vertices except v2; let us denote
the set of these vertices as X. The imprint of this component, by the assumption, contains a
single vertex. Then, if v is removed from G the vertices of X become not reachable from
the rest of the vertices of G. It is easy to see that there are vertices in G being not in
X ∪ {v}: consider the neighbors of v that do not belong to X, which exist since v is bicolored.
Therefore, G is not 2-connected, which is a contradiction, so this case is impossible.

h(v2) = 2 and h(v1) = 2. Observe that for every node u ∈ B′ the inequality h(u) ≥
degH′(u) + 1 holds, so degH′(v1) + degH′(v2) + 2 ≤ h(v1) + h(v2) = 4, i.e. degH(v) =
degH′(v1) + degH′(v2) ≤ 4 − 2 = 2. Then we have v ∈ B≤2. There are at most |B|/100 such
nodes v. The weight in this case equals w(v1) + w(v2) = 1/2 + 1/2 = 1.

h(v2) ≥ 2 and h(v1) ≥ 3. Then w(v1) + w(v2) ≤ 1/2 + 1/3 = 5/6.
Now the number of connected components of G′ can be estimated as follows:

#G′ =
∑
v∈B

(
w(v1) + w(v2)

)
≤ 1 × |B|/100 + (5/6) × |B| < 0.9|B|.

Applying Lemma 4.7 to B we get that

|R| ≤ 2|E|−(|V |+|B|)+0.9|B| = 2−0.1|B|−1 · 2|E|−|V |+1 ≤ 2−0.1 bw(G)−1N = 2−Ω(bw(G))N. ◀

The statement. The content of this statement had to be truncated due to de facto
introduced censorship in Russia. Nevertheless, the authors express their condolences to all
the victims of the events taking place in Ukraine.

References
1 Michael Alekhnovich and Alexander A. Razborov. Satisfiability, Branch-Width and Tseitin tau-

tologies. Computational Complexity, 20(4):649–678, 2011. doi:10.1007/s00037-011-0033-1.
2 Albert Atserias and Moritz Müller. Automating Resolution is NP-Hard. J. ACM, 67(5):31:1–

31:17, 2020. doi:10.1145/3409472.
3 Eli Ben-Sasson. Hard examples for the bounded depth Frege proof system. Computational

Complexity, 11(3-4):109–136, 2002. doi:10.1007/s00037-002-0172-5.
4 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,

and Michal Pilipczuk. A ckn 5-Approximation Algorithm for Treewidth. SIAM J. Comput.,
45(2):317–378, 2016. doi:10.1137/130947374.

5 Randal E. Bryant. Symbolic manipulation of Boolean functions using a graphical representation.
In Hillel Ofek and Lawrence A O’Neill, editors, Proceedings of the 22nd ACM/IEEE conference
on Design automation, DAC 1985, Las Vegas, Nevada, USA, 1985., pages 688–694. ACM,
1985. doi:10.1145/317825.317964.

https://doi.org/10.1007/s00037-011-0033-1
https://doi.org/10.1145/3409472
https://doi.org/10.1007/s00037-002-0172-5
https://doi.org/10.1137/130947374
https://doi.org/10.1145/317825.317964


D. Itsykson, A. Riazanov, and P. Smirnov 6:17

6 Sam Buss, Dmitry Itsykson, Alexander Knop, Artur Riazanov, and Dmitry Sokolov. Lower
Bounds on OBDD Proofs with Several Orders. ACM Trans. Comput. Log., 22(4):26:1–26:30,
2021. doi:10.1145/3468855.

7 Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Reordering Rule Makes
OBDD Proof Systems Stronger. In Rocco A. Servedio, editor, 33rd Computational Complexity
Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages
16:1–16:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
CCC.2018.16.

8 Julia Chuzhoy and Zihan Tan. Towards Tight(er) Bounds for the Excluded Grid Theorem.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1445–1464, 2019. doi:
10.1137/1.9781611975482.88.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Stefan S. Dantchev and Søren Riis. Tree Resolution Proofs of the Weak Pigeon-Hole Principle.
In Proceedings of the 16th Annual IEEE Conference on Computational Complexity, Chicago,
Illinois, USA, June 18-21, 2001, pages 69–75, 2001. doi:10.1109/CCC.2001.933873.

11 Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map. J. Artif. Intell. Res.,
17:229–264, 2002. doi:10.1613/jair.989.

12 Alexis de Colnet and Stefan Mengel. Characterizing Tseitin-Formulas with Short Regular
Resolution Refutations. In Chu-Min Li and Felip Manyà, editors, Theory and Applications
of Satisfiability Testing - SAT 2021 - 24th International Conference, Barcelona, Spain, July
5-9, 2021, Proceedings, volume 12831 of Lecture Notes in Computer Science, pages 116–133.
Springer, 2021. doi:10.1007/978-3-030-80223-3_9.

13 Alexis de Colnet and Stefan Mengel. Lower Bounds on Intermediate Results in Bottom-Up
Knowledge Compilation. CoRR, abs/2112.12430, 2021. arXiv:2112.12430.

14 Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Dmitry Sokolov. Automating algebraic proof systems is NP-hard. In Samir Khuller and
Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 209–222. ACM, 2021.
doi:10.1145/3406325.3451080.

15 Nicola Galesi, Dmitry Itsykson, Artur Riazanov, and Anastasia Sofronova. Bounded-Depth
Frege Complexity of Tseitin Formulas for All Graphs. In Peter Rossmanith, Pinar Heggernes,
and Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of
LIPIcs, pages 49:1–49:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.MFCS.2019.49.

16 Michal Garlík. Failure of Feasible Disjunction Property for k-DNF Resolution and NP-
hardness of Automating It. Electron. Colloquium Comput. Complex., page 37, 2020. URL:
https://eccc.weizmann.ac.il/report/2020/037.

17 Ludmila Glinskih and Dmitry Itsykson. Satisfiable Tseitin Formulas Are Hard for Non-
deterministic Read-Once Branching Programs. In Kim G. Larsen, Hans L. Bodlaender,
and Jean-François Raskin, editors, 42nd International Symposium on Mathematical Foun-
dations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, vol-
ume 83 of LIPIcs, pages 26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.MFCS.2017.26.

18 Ludmila Glinskih and Dmitry Itsykson. On Tseitin Formulas, Read-Once Branching
Programs and Treewidth. Theory Comput. Syst., 65(3):613–633, 2021. doi:10.1007/
s00224-020-10007-8.

19 Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating Cutting Planes
is NP-Hard. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, pages 68–77, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3357713.3384248.

SAT 2022

https://doi.org/10.1145/3468855
https://doi.org/10.4230/LIPIcs.CCC.2018.16
https://doi.org/10.4230/LIPIcs.CCC.2018.16
https://doi.org/10.1137/1.9781611975482.88
https://doi.org/10.1137/1.9781611975482.88
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/CCC.2001.933873
https://doi.org/10.1613/jair.989
https://doi.org/10.1007/978-3-030-80223-3_9
http://arxiv.org/abs/2112.12430
https://doi.org/10.1145/3406325.3451080
https://doi.org/10.4230/LIPIcs.MFCS.2019.49
https://doi.org/10.4230/LIPIcs.MFCS.2019.49
https://eccc.weizmann.ac.il/report/2020/037
https://doi.org/10.4230/LIPIcs.MFCS.2017.26
https://doi.org/10.1007/s00224-020-10007-8
https://doi.org/10.1007/s00224-020-10007-8
https://doi.org/10.1145/3357713.3384248


6:18 Tight Bounds for Tseitin Formulas

20 Daniel J. Harvey and David R. Wood. The treewidth of line graphs. J. Comb. Theory, Ser. B,
132:157–179, 2018. doi:10.1016/j.jctb.2018.03.007.

21 Johan Håstad. On Small-Depth Frege Proofs for Tseitin for Grids. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 97–108, 2017. doi:10.1109/FOCS.2017.18.

22 Dmitry Itsykson, Alexander Knop, Andrei E. Romashchenko, and Dmitry Sokolov. On OBDD-
based Algorithms and Proof Systems that Dynamically Change the order of Variables. J.
Symb. Log., 85(2):632–670, 2020. doi:10.1017/jsl.2019.53.

23 Dmitry Itsykson, Artur Riazanov, Danil Sagunov, and Petr Smirnov. Near-Optimal Lower
Bounds on Regular Resolution Refutations of Tseitin Formulas for All Constant-Degree Graphs.
Comput. Complex., 30(2):13, 2021. doi:10.1007/s00037-021-00213-2.

24 Ephraim Korach and Nir Solel. Tree-Width, Path-Width, and Cutwidth. Discret. Appl. Math.,
43(1):97–101, 1993. doi:10.1016/0166-218X(93)90171-J.

25 Jan Krajíček. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2019. doi:10.1017/9781108242066.

26 Knot Pipatsrisawat and Adnan Darwiche. New Compilation Languages Based on Structured
Decomposability. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, pages 517–522. AAAI Press, 2008. URL: http://www.aaai.org/Library/AAAI/2008/
aaai08-082.php.

27 Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic Aspects of Tree-Width.
J. Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

28 Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree-decomposition.
J. Comb. Theory, Ser. B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)90061-N.

29 Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly Excluding a Planar Graph. J.
Comb. Theory, Ser. B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.1073.

30 G.S. Tseitin. On the complexity of derivation in the propositional calculus. In Studies in
Constructive Mathematics and Mathematical Logic Part II. A. O. Slisenko, editor, 1968.

31 Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987. doi:
10.1145/7531.8928.

32 Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000. URL:
http://ls2-www.cs.uni-dortmund.de/monographs/bdd/.

A Proofs for Section 2 (Preliminaries)

▶ Lemma 2.13 (Folklore). Let G = (V,E) be a graph, T(G, c) be satisfiable, σ be a full
assignment for the set of variables of T(G, c). Then the number of parity conditions falsified
by σ is even.

Proof. Let A ⊆ V be a set of vertices with falsified parity conditions. Consider the sum
S =

∑
v∈V

∑
e∈E(v) σ(xe) ≡

∑
v∈A(1 − c(v)) +

∑
v ̸∈A c(v) ≡ |A| +

∑
v∈V c(v) ≡ |A| (mod 2),

where the last congruence holds since T(G, c) is satisfiable. On the other hand, S ≡ 0
(mod 2) since for each edge e the summand σ(xe) appears in the sum twice. ◀

B Proofs for Section 3 (OBDD(∧, reordering))

▶ Lemma 3.3. Let G be an almost 3-connected graph. Let u and v be two vertices that do
not belong to the same long edge. Then the graph G \ {v, u} is connected.

Proof. Let G is a subdivision of a 3-connected graph H. Since u and v do not belong to
the same long edge, every interior vertex is connected in G \ {v, u} with some non-deleted
main vertex. So it is sufficient to prove that all non-deleted main vertices are in the same
connected component in G \ {v, u}.
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The graph G \ {v, u} is obtained from G by deletion of two vertices. We may look on the
deletion of an interior vertex from a long edge in G as on the deletion of the corresponding
edge in H. We also look on the deletion of a main vertex in G as on the deletion of the
corresponding vertex in H. Since H is 3-connected, then it remains to be connected after
removing of either two vertices, or two edges, or one vertex and one edge. Hence, all
non-deleted main vertices of G \ {v, u} belong to one connected component. ◀

In order to handle not only connected graphs, we need to show that OBDD(∧, reordering)
satisfies the strong feasible disjunction property [25].

▶ Lemma B.1. Let φ(x⃗) and ψ(y⃗) be two CNF formulas with disjoint sets of variables. If
there is an OBDD(∧, reordering) refutation of φ ∧ ψ of size S, then at least one of φ or ψ
has an OBDD(∧, reordering) refutation of size at most S.

Proof. Consider the smallest OBDD(∧, reordering) refutation of φ ∧ ψ; its size is at most
S. The last OBDD in this refutation is φ′ ∧ ψ′, where φ′ is a subformula φ and ψ′ is a
subformula of ψ. Since variables of φ′ and ψ′ are disjoint, then at least one of φ′ and ψ′ is
unsatisfiable.

W.l.o.g. assume that φ′ is unsatisfiable. All previous OBDDs in the refutation are
satisfiable, for each OBDD D in the refutation we substitute the values of variables y⃗ that
satisfies all clauses of ψ included in D. The result of this substitution is equivalent to the
part of D that contains only clauses from φ.

By Lemma 2.1 such substitution does not increase the size ofD. After all such substitutions
we obtain a correct OBDD(∧, reordering) refutation of φ of size at most S. ◀

▶ Corollary 3.8. Let G be a graph and T(G, c) be an unsatisfiable Tseitin for-
mula, H1, H2, . . . ,Hk be all unsatisfiable connected components of G. Then any
OBDD(∧, reordering) refutation of T(G, c) has a size of at least 2Ω(t), where t =
mini∈[k] tw(Hi).

Proof. Let S be the size of an OBDD(∧, reordering) refutation of T(G, c). Let
Hk+1, . . . ,Hk+m be all satisfiable connected components of G, where m ≥ 0. Notice that the
sets of variables of T(Hi, c) are disjoint for different i ∈ [k +m]. By k +m− 1 applications
of Lemma B.1 we get that for some i ∈ [k] there exists an OBDD(∧, reordering) refutation
of T(Hi, c) of size S. By Theorem 3.1, S is at least 2Ω(tw(Hi)). ◀

C Proofs for Section 4 (Bounds on DNNF and Regular Resolution)

C.1 Lower Bound
▶ Theorem 4.3. Let G = (V,E) be a connected graph and T(G, c) be an unsatisfiable formula.
Then any regular resolution refutation of T(G, c) has a size of at least 2Ω(tw(G)).

Proof. Consider a regular resolution refutation of T(G, c), let S be its size.
By Theorem 4.1 there exists a constant α > 0 such that any DNNF computing T(G, c)

has a size of at least 2α tw(G). By Theorem 4.2, S is at least 2α tw(G)/|V | = 2α tw(G)−log |V |.
If α tw(G) − log |V | ≥ α tw(G)/2, then S ≥ 2α tw(G)/2 = 2Ω(tw(G)).

Otherwise, α tw(G) − log |V | < α tw(G)/2, i.e. log |V | > α tw(G)/2. A resolution
refutation must use at least one clause of each vertex v ∈ V (otherwise it is also a refutation
of satisfiable T(G, c+ 1v)), so its size S ≥ |V | = 2log |V | > 2α tw(G)/2 = 2Ω(tw(G)). ◀
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▶ Lemma 4.7 (Generalization of Lemma 18 and Lemma 21 from [12]). Let G = (V,E) be a
graph, E = E1 ⊔ E2 be a coloring of the edges in two colors, and A ⊆ V be a bicolored set.

Let T(G, c) be a satisfiable Tseitin formula, R ⊆ sat(T(G, c)) be a rectangle w.r.t. to the
partition (E1, E2). Then for a graph G′ = Split(G,E1, E2, A) and a charge function c′ such
that T(G′, c′) is satisfiable, the following holds: |R| ≤ |sat(T(G′, c′))| = 2|E|−(|V |+|A|)+#G′ .

Proof. Let σ = (σ1, σ2) ∈ R, where σi assigns values to {xe | e ∈ Ei} for i ∈ {1, 2}.
Let v ∈ A be bicolored. We denote cσ

i (v) =
∑

e∈E(v)∩Ei

σi(xe) mod 2. Observe that

cσ
1 (v) + cσ

2 (v) = c(v), since σ is a satisfying assignment of T(G, c). Since R is a rectangle, for
any σ′ = (σ′

1, σ
′
2) ∈ R the condition cσ′

i (v) = cσ
i (v) holds for i ∈ {1, 2}. Thus, cσ

i does not
depend on σ, so we define ci(v) = cσ

i (v) for each i ∈ {1, 2} and v ∈ A.
Now let us consider the graph G′ = Split(G,E1, E2, A). We define the charging function

c′ as c′(vi) = ci(v) for v ∈ A and i ∈ {1, 2}, and as c′(v) = c(v) for v ̸∈ A.
Let τ ∈ R, define a full assignment τ ′ of variables of T(G′, c′) in the following way:

τ ′(x(fi(v),fi(u))) = τi(x(v,u)) for (v, u) ∈ Ei. Observe that τ ′ is a satisfying assignment
of T(G′, c′) by the construction of c′. Thus, for each τ ∈ R, there is a corresponding
τ ′ ∈ sat(T(G′, c′)), and the correspondence function is injective. Hence, |R| ≤ sat(T(G′, c′)).

Finally, by Lemma 2.16, |sat(T(G′, c′))| = 2|E|−(|V |+|A|)+#G′ . ◀

C.2 Upper Bound
In this subsection, we prove an upper bound on the size of the smallest DNNF that computes
a satisfiable Tseitin formula.

Let T = (VT , ET ) be a tree decomposition of G = (V,E), and {Xt}t∈VT
be its bags. T

is called an extended version of nice tree decomposition (ENDT) [9, Section 7.3.2], if the
following conditions hold:
1. There is a distinguished node r ∈ VT such that Xr = ∅. We call r the root of T and

assume that T is rooted.
2. Every t ∈ VT has one of the following types:

a. t is a leaf node: t has no children and Xt = ∅;
b. t introduces vertex v ∈ V : t has exactly one child s and Xt = Xs ⊔ {v};
c. t forgets vertex v ∈ V : t has exactly one child s and Xs = Xt ⊔ {v};
d. t introduces edge (v, u) ∈ E: t has exactly one child s, the vertices v, u ∈ Xs, and

Xt = Xs;
e. t is a join node: t has exactly two children s1 and s2, Xt = Xs1 = Xs2 .

3. Every edge e ∈ E is introduced exactly once in T .

Since ENTD is also a plain tree decomposition, each vertex v ∈ V is forgotten exactly
once in ENTD.

▶ Lemma C.1 ([9, Section 7.3.2]). Let G be a graph without parallel edges and self-loops,
and T be its tree decomposition T of width k. Then one can construct an ENTD of width at
most k and size at most O(k|V (G)|) in poly(|V (G)|, |V (T )|) time.

▶ Theorem 4.4. Let G = (V,E) be a graph and T(G, c) be a satisfiable Tseitin formula.
Then there exists a DNNF of size at most 2O(tw(G)) · |E| computing T(G, c).

Proof. Since T(G, c) is satisfiable, all isolated vertices have zero charges, so we can delete
them from the graph. So we can assume that V = O(E). Also, we can assume that there
are no self-loops since they do not change a Tseitin formula.
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Let G′ = (V,E′) be a graph obtained from G as follows: for each v, u ∈ V , if there are
several parallel edges between v and u, we delete all of them except one. By Lemma C.1,
there exists an ENTD T ′ for graph G′ with w(T ′) = tw(G′) and |T ′| = O(tw(G′)|V |). Note
that tw(G′) = tw(G).

Now we construct ENTD for G from T ′ in the following way: if t ∈ T ′ introduces edge
e = (v, u), we replace t with a path of nodes that introduce all parallel edges between
v and u in G. The width of T is tw(G′) = tw(G) and its size is at most |T ′| + |E| ≤
O(tw(G′)|V | + |E|) = O(tw(G)|V | + |E|).

For each t ∈ T , we denote by Gt = (Vt, Et) a subgraph of G such that Vt and Et are the
sets of vertices and edges that are introduced in the subtree of t. Notice that Gr = G.

We claim that there exists a DNNF D of size 2O(tw(G))|T | such that for every node
t ∈ T for every charge function f : Xt → {0, 1} there exists a node dt,f ∈ D that computes
φt,f := T(Gt, f ⊔ c|Vt\Xt

). Moreover, the subcircuit of a node dt,f uses only variables
corresponding to the edges of Gt. Then the subcircuit of dr,f∅ is the required DNNF
computing T(G, c), where f∅ is the function with an empty domain.

We consider the nodes of T in such an order that the distance to the root of T does not
increase. For each considered t ∈T, we add to D at most 2α tw(G) nodes for some constant
α. Then for each charge function f : Xt → {0, 1} we select a node dt,f of D such that dt,f

computes φt,f . Every new ∧-node in D will be decomposable, so D stays DNNF. Initially,
D is an empty DNNF.

Assume that we consider a node t of T and a charge function f : Xt → {0, 1}. There are
several cases.

t is a leaf node. Vt = ∅, thus f is a function with an empty domain and φt,f is identically
true, so add to D a gate labeled with constant 1 and let this gate be dt,f .

t introduces vertex v. Let s be the child of t.
If f(v) = 1, then the formula φt,f is unsatisfiable since v is isolated in Gt. We add to D

a gate labeled with constant 0 and let this gate be dt,f .
If f(v) = 0, then φt,f = φs,f |Xs

, since adding zero-charged isolated vertex does not change
Tseitin formula. We do not add any new nodes in D and define dt,f := ds,f |Xs

.

t forgets vertex u. Let s be the child of t. Gt = Gs, so φt,f = φs,f⊔c|{u} . We do not add
any new nodes in D and define dt,f := ds,f⊔c|{u} .

t introduces edge e = (v, u). Let s be the child of t. By Lemma 2.14, the result of the
substitution xe := b to φt,f for b ∈ {0, 1} is φs,f+b·1v+b·1u . We add to D at most five gates
and build a subcircuit dt,f := (¬xe ∧ ds,f ) ∨ (xe ∧ ds,f+1v+1u

). Notice that dt,f computes
(¬xe ∧ φs,f ) ∨ (xe ∧ φs,f+1v+1u), hence, it computes φt,f . Observe that new ∧-gates are
decomposable since e is not in Gs.

t is a join node. Let s1, s2 be the children of t. Vs1 ∩Vs2 = Xt since every v ∈ V is forgotten
exactly once in T . Since each edge is introduced in T only once, Es1 and Es2 are disjoint.
We add to D 2|Xt|+1 nodes and build a subcircuit dt,f :=

∨
g : Xt→{0,1}

ds1,g ∧ ds2,f+g. All new

∧-gates are decomposable since Es1 and Es2 are disjoint. Given that for all f : Xt → {0, 1},
dsi,f computes φsi,f , it is easy to see that dt,f computes φt,f .

Now we estimate the size of constructed DNNF D. For each node t ∈ T and each function
f : Xt → {0, 1} we add at most max(2|Xt|+1, 5) ≤ 2|Xt|+3 nodes to the DNNF, so in total we
have at most |T | · 22w(T )+3 nodes. Since w(T ) = tw(G) and |T | ≤ O(tw(G)|V | + |E|), the
size of the resulting DNNF is 2O(tw(G)) (tw(G)|V | + |E|) = 2O(tw(G))|E|. ◀
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