Introducing Intel® SAT Solver

Alexander Nadel &4
Intel Corporation, Haifa, Israel

—— Abstract

We introduce Intel® SAT Solver (IntelSAT) — a new open-source CDCL SAT solver, written from
scratch. IntelSAT is optimized for applications which generate many mostly satisfiable incremental
SAT queries. We apply the following Incremental Lazy Backtracking (ILB) principle: in-between
incremental queries, backtrack only when necessary and to the highest possible decision level. ILB
is enabled by a novel reimplication procedure, which can reimply an assigned literal at a lower level
without backtracking. Reimplication also helped us to restore the following two properties, lost in
the modern solvers with the introduction of chronological backtracking: no assigned literal can be
implied at a lower level, conflict analysis always starts with a clause falsified at the lowest possible
level. In addition, we apply some new heuristics. Integrating IntelSAT into the MaxSAT solver
TT-Open-WBO0-Inc resulted in a significant performance boost on incomplete unweighted MaxSAT
Evaluation benchmarks and improved the state-of-the-art in anytime unweighted MaxSAT solving.

2012 ACM Subject Classification Mathematics of computing — Solvers
Keywords and phrases SAT, CDCL, MaxSAT
Digital Object Identifier 10.4230/LIPIcs.SAT.2022.8

Supplementary Material Software (Source Code): https://github.com/alexander-nadel/intel_
sat_solver; archived at swh:1:rev:b5c43319c7bf98bf39593fde909d1379d12cbe21

1 Introduction

The results of recent SAT competitions demonstrate a substantial progress in the performance
of Conflict-Driven-Clause-Learning (CDCL) SAT solvers [15] on non-incremental benchmarks.
However, some of the most widely-used SAT-based algorithms, such as state-of-the-art
MaxSAT [8] and model checking [21,25] algorithms, need solving a series of related SAT
instances, which require the underlying SAT solver to be incremental [22,49]. Surprisingly, it
was recently shown in [32] that a state-of-the-art SAT solver RLNT exhibits no significant
performance gains over Glucose 3.0 [4], released in 2013, on three prominent incremental SAT
applications (with mostly satisfiable, mostly unsatisfiable and mixed SAT queries), despite
RLNT being substantially more efficient on SAT competition benchmarks.

We introduce Intel® SAT Solver (IntelSAT) — a new open-source CDCL SAT solver,
written from scratch in C++20. Unlike other modern solvers, IntelSAT is optimized for
incremental SAT applications which generate many mostly satisfiable SAT queries. A
prominent example of such an application is anytime unweighted MaxSAT (included, under
the name Satisfiability-based MaxSAT, in the three applications, analyzed in [32]).

MaxSAT [8] is a well-studied and widely-used optimization problem. Given a Boolean
formula F' and a linear Pseudo-Boolean function ¥, a MaxSAT solver returns a model
(solution) to F' which minimizes ¥. In unweighted MaxSAT, ¥ has degree 1. In anytime
MaxSAT, the solver is required to generate a series of solutions improving w.r.t ¥. Anytime-
ness can be crucial, especially in industrial usage, where an approximate solution can often
do, while reaching a timeout without any solution is not an option [1,30,34,41-43].

The baseline algorithm for anytime MaxSAT is Linear Search SAT-UNSAT (LSU) [10]. For
unweighted MaxSAT, the leading solvers SATLike-c [17,33] and TT-Open-WBO-Inc [44-46)
combine LSU with Mrs. Beaver [40] and Polosat [43] algorithms. The resulting flow tends to
generate a lot of mostly satisfiable incremental SAT queries sharing many of the assumptions
with few clauses added in-between.

© Alexander Nadel;
37 licensed under Creative Commons License CC-BY 4.0

25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 8; pp. 8:1-8:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:alexander.nadel@intel.com
http://www.cs.tau.ac.il/research/alexander.nadel
https://orcid.org/0000-0003-4679-892X
https://doi.org/10.4230/LIPIcs.SAT.2022.8
https://github.com/alexander-nadel/intel_sat_solver
https://github.com/alexander-nadel/intel_sat_solver
https://archive.softwareheritage.org/swh:1:rev:b5c43319c7bf98bf39593fde909d1379d12cbe21;origin=https://github.com/alexander-nadel/intel_sat_solver;visit=swh:1:snp:910a1083c0b660b67c9ecf4a74c4c424f549a3fe
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Introducing Intel® SAT Solver

In addition to [32], there is also the following evidence for the lack of performance progress
in SAT solving for anytime unweighted MaxSAT. The anytime MaxSAT solver SATLike-c [33]
was submitted to the latest MaxSAT Evaluation 2021 (MSE’21) in two versions, the difference
being the SAT solver used for the initial SAT query — the SAT Competition 2020 winner
Kissat [12] or the older Glucose 4.1. The Glucose-based version performed better and won
both relevant (60- and 300-second unweighted incomplete) categories.

We introduce and apply in IntelSAT the following Incremental Lazy Backtracking (ILB)
principle: in-between incremental queries, backtrack only when necessary and to the highest
possible decision level. In contrast, a standard incremental solver processes new input clauses
and solving requests only at decision level 0. ILB is intended to save unnecessary recreation
of the same or similar trail [37,50,57] under the similar incremental queries.

Consider a situation, when the user provides a new input clause C' at level > 0, where
C contains one satisfied literal [while the rest are falsified, and [is assigned at a decision
level higher than the other literals in C'. We call such a clause a missed lower implication.
Intuitively, [should have been implied in C. Handling missed lower implications turned
out to be the main challenge in supporting ILB. We solved it with our novel reimplication
procedure, which fixes missed lower implications iteratively without backtracking.

Independently of ILB, with reimplication, we were able to design Boolean Constraint
Propagation (BCP) so as to ensure the following two properties:

(a) lowest implication: no assigned literal can be implied at a lower decision level (that is,
no missed lower implications exist after BCP), and

(b) lowest conflict: in case of a conflict, a clause falsified at the lowest possible decision level
is returned.

These properties trivially hold without Chronological Backtracking (CB) [50], but were lost

in modern CB-enabled solvers, since those propagate simultaneously at several decision levels.

To support reimplication and our BCP procedure, we modified core BCP invariants and

implemented the trail as a doubly linked list (rather than the standard stack).

Furthermore, we apply new heuristics in different solver components, including: query-
driven tuning (tune various heuristics, based on the SAT query type), subsumption-based
flipped clause filtering (conflict analysis) and incremental score reboot (decision heuristic).

Integrating IntelSAT into the anytime MaxSAT solver TT-Open-WB0O-Inc resulted in a
significant performance boost on MaxSAT Evaluation 2020 (MSE’20) and MSE’21 benchmarks
and improved the state-of-the-art in anytime unweighted MaxSAT solving.

We would like to emphasize that IntelSAT’s algorithms are applicable not only in the
context of anytime unweighted MaxSAT. Specifically, both BCP with reimplication and
subsumption-based flipped clause filtering are expected to help generic SAT solving, while
query-driven tuning and incremental score reboot are relevant for generic incremental SAT
solving. We leave integrating our algorithms into other solvers and testing their impact on
additional applications to future work.

The rest of this paper is organized as follows. Sect. 2 presents preliminaries. Sect. 3
introduces core IntelSAT algorithms, focusing on reimplication, BCP and their correctness.
Sect. 4 highlights some of the other algorithms and heuristics. Sect. 5 is about experimental
results. Sect. 6 concludes our work. Appendix A completes the correctness proofs.

2 Preliminaries

A literal [is either a Boolean variable v or its negation —w; [is called positive in the former
case and negative in the latter. We denote var(v)=var(—v)=v. A clause is a disjunction of
literals. The SAT solver maintains each clause C' = [c1,¢a, ..., ¢|c|] as an ordered sequence

A. Nadel

of literals (of pairwise different variables). We denote clauses by capital letters and their
literals by the corresponding small letters. For a clause C, we denote C’s sub-sequence
[Ci70i+1, .. .,c|c|] by Cp;..1 (where i > 1 and Cf;. is empty if i > |C[). When the literal
order is irrelevant, we use curly brackets in the clause definition: C' = {cl, C2y.nny c|c|}. A
clause C' subsumes the clause D, if VY¢; € C' : ¢; € D, in which case D is implied by C.

The solver maintains the current assignment o, which, for every variable v, holds its
current value o(v) € {U, T, L}. A literal/variable [is assigned iff o(var(l)) # U, otherwise it
is unassigned. Given an assigned variable v, its assigned literal lit(v) is v/—wv, if o(v) = T/L,
respectively. A variable v is satisfied/falsified iff o(v) = T /L, respectively. A negative literal
—wv is satisfied/falsified iff v is falsified /satisfied, respectively. Assigning a negative literal
—v the value T/L amounts to assigning 1 /T to v, respectively. Flipping a literal [, assigned
T/L, means unassigning it and then assigning it | /T, respectively. A literal [is non-falsified,
if o(var(l)) # L. Given a clause C, #T(C)/#L(C)/# U(C)/#NF(C) stand for the number
of C’s literals, which are satisfied/falsified /unassigned /non-falsified, respectively.

» Definition 1 (Unit, Unisat, Falsified). A clause C' is unit iff #U(C) =1 and #1(C) =
|C] — 1. C is unisat iff #T(C) =1 and #L(C) =|C|—1. C is falsified iff #L(C) =|C]|.

2.1 Incremental CDCL SAT Solving Review

Since Minisat [22], the two basic API functions of an incremental CDCL SAT solver are
ADDCLAUSE(Clause C) and SOLVE(Literals A).

The solver maintains the current decision level (current level) d, initialized to 0. Whenever
a variable v is assigned, it is associated with its decision level (level) dl(v) < d (where
di(—v) = dl(v)). We assume an order relation between assigned literals and variables,
induced by their levels (e.g., literal [is higher than literal g iff di(l) > di(q)).

If |C| > 1, ADDCLAUSE(C') adds the given clause C' to the set of clauses F and other
data structures. If |C| = 1, the literal ¢; is assigned T at level 0.

SOLVE(A) returns the satisfiability status (SAT or UNSAT) of the formula F' A A, where
A is a set (conjunction) of the so-called assumptions, which hold only for the current SOLVE
invocation. SOLVE carries out backtrack search. Any newly assigned literal [is pushed to:
(a) the trail, which contains all the assigned literals, and
(b) the propagation stack II, which contains literals to be propagated by Boolean Constraint

Propagation (BCP).

2.1.1 Boolean Constraint Propagation (BCP)

For every literal [€ II, BCP propagates [’s value as follows.

BCP visits any clause which might become unit as the result of I’s assignment. Assume
that a unit clause C is identified; assume WLOG that ¢y is the only unassigned literal in
C. Then, BCP assigns ¢; := T (also pushing ¢; to IT), in which case we say that ¢; is
implied in the parent clause C. The algorithm sets di(c1) to mazl(Cls.. 1), where mazl(D) is
the maximal level amongst D’s assigned literals or 0 if D is empty. Then, BCP continues
propagating [. BCP might also encounter a falsified clause C, in which event we say that a
conflict at conflict level mazl(C) occurs, and BCP returns C.

Since Chaff [38], to identify unit and falsified clauses efficiently, the algorithm watches
two literals in every clause C, where the watched literals (watches) are the first two literals in

the clause: ¢ and co. For every literal [, the solver maintains its Watch List (WL): WL(I).

Since [19], every WL(I) element is a pair (h # 1 € C,C) containing a clause C' where [is
watched and I's cached literal he C : h # 1, denoted by h(l,C). To propagate —I, BCP goes

8:3

SAT 2022

8:4

Introducing Intel® SAT Solver

over WL(Il). Assume some (h,C'y e WL(I) is visited. If h is satisfied, BCP skips the satisfied
clause, thus saving potential cache misses. Otherwise, C' is visited and tested for being unit
or falsified. BCP ensures that, by its end, the following WL invariants hold for every C' and
i€ {1,2} (if a conflict interrupts BCP, the invariants might be broken for unvisited clauses,
but backtracking following conflict analysis, reviewed in Sect. 2.1.2, restores them):

(a) ¢; is non-falsified or h(c;, C') is satisfied, or

(b) ¢; is falsified and dl(c;) = mazl(Cls..]) and Vj > 2 : ¢; is falsified.

2.1.2 Solve

SOLVE(A) starts off by running BCP. In case of a conflict, there is a global contradiction,
hence the solver will return UNSAT from that moment on. Otherwise, SOLVE embarks
on the backtrack search. At each new level d, SOLVE heuristically chooses an unassigned
decision variable v and assigns it either T or L, where lit(v) is called the decision literal at
level d. If unassigned assumptions exist, an unassigned assumption is always chosen as the
next decision literal. This simple strategy ensures that SOLVE satisfies all the assumptions,
whenever possible. If a falsified assumption is discovered, the solver returns UNSAT.

BCP is invoked after every decision. If there is no conflict, the solver moves on to a
new level d + 1, otherwise it enters conflict analysis. An iteration of the conflict analysis
loop derives the so-called asserting learnt clause D, where it holds that: D is implied by F,
D is falsified and di(dy) = d > dl(d2) = mazl(D[s. 7). The algorithm adds D to F' (unless
|D| = 1) and backtracks to level b, where b € [dl(dz), dl(d2) + 1,...,d — 1] (if | D| = 1, assume
dl(d2) = 0). If CB is not applied, b always equals di(ds).

Backtracking to level e unassigns all the literals assigned at levels > e and removes them
from the trail. It also updates d to e. In addition, if CB is applied, backtracking reassigns any
out-of-order literals (that is, literals whose level < e), which are then repropagated by the
next BCP. The WL invariants are maintained under backtracking with no action required.

After backtracking, D becomes unit and d; is assigned T, followed by BCP. Normally,
conflict analysis loop goes on until BCP does not identify a conflict anymore, in which case
the solver increments d and continues to a new decision. Otherwise, the conflict analysis
loop might derive a global contradiction or conclude that an assumption is flipped, in which
cases the solver returns UNSAT.

After SOLVE is completed, the solver backtracks to the global decision level 0 and waits
for new clauses and incremental invocations.

3 Core CDCL Algorithms in Intel® SAT Solver

This section introduces our implementation of the core CDCL algorithms. Specifically,
Sects. 3.1 and 3.2 are about SOLVE and ADDCLAUSE, respectively. Sect 3.3 makes the case
for reimplication. Sect 3.4 presents our formal framework. Sects. 3.5 and 3.6 introduce our
reimplication and BCP algorithms, respectively. We provide arguments for the correctness
of our algorithms while presenting them, yet complete the proofs in Appendix A.

3.1 Solve

Our implementation of SOLVE is mostly standard. The differences stem from applying ILB.

First, consider the end of a SOLVE invocation. If the result is SAT, we do not backtrack.
Assume now that a falsified assumption [is discovered by BCP. We let BCP complete the
propagation. If no conflict follows, we return UNSAT without backtracking. Otherwise, if a
falsified clause C' is discovered, we backtrack to level mazl(C) — 1 to make sure the trail is
consistent with F' and return UNSAT.

A. Nadel

Now counsider the beginning of a non-initial SOLVE(A) invocation. Observe that if one
or more of the first decision literals appear in A, backtracking can be saved. Let k be the
lowest level, whose decision literal does not appear in A. We backtrack to level k — 1 instead
of 0. For an example, consider Fig. 1a (ignore Fig. 1’s caption for now, except for the first
sentence after the title). It shows a trace of a satisfiable SAT solver invocation without
conflicts over the formula C = {—=ly,ls,l3} A D = {—l3,l4}. Assume there are no new input
clauses until the next invocation SOLVE({l3,[1}). We backtrack to level 1 (rather than 0),
since the assumption [; already serves as the first decision literal. The impact of backtracking
to level k — 1 instead of 0 is similar to that of trail savings [28], except that our scheme works
independently of whether any skipped literals (I in our case) were previously assumptions
or just happened to be chosen as first decision literals by the variable decision heuristic.

3.2 AddClause

ILB requires enabling ADDCLAUSE(C) at an arbitrary level. We still ensure that the WL
invariants hold for C' by the end of function as follows.

If #NF(C) > 1, we safely watch any two non-falsified literals. If C' is unit, we watch the
unassigned literal | and a falsified ¢; : dl(c;) = mazl(C), and then assign I at mazi(C). If C
is falsified, we backtrack to mazl(C)-1 to unassign one or more of C’s literals and proceed as
above. Let now C be unisat (recall Def. 1), where the satisfied literal is . We watch [. If
there exists ¢; # 1 : di(c;) = mazl(C), ¢; is also watched. The only remaining non-trivial case
led us to introducing reimplication, which we apply to complete ADDCLAUSE.

3.3 The Case for Reimplication

Def. 2 formalizes the notion of a missed lower implication. Intuitively, if a missed lower
implication clause C exists, its satisfied literal [€ C' could be implied in C at a level lower
than its current level di(1).

» Definition 2 (Missed Lower Implication). A clause C' is a Missed Lower Implication (Lower

Implication) iff C' is unisat and, assuming c; is the satisfied literal in C, it holds that:

Vi #i:dlc;) > dl(c;), where 1 <i,j < |C].

3.3.1 AddClause

Assume ADDCLAUSE is provided with a missed lower implication C, where, WLOG, the
satisfied literal is ¢;. To eliminate the lower implication, an ILB-driven solution could
backtrack to di(c;) — 1 to make C unit, assign ¢; at mazl(C) and propagate by rerunning
BCP. However, that would unassign intermediate decision levels. Our key observation is
that one can abstain from backtracking and propagating altogether. Instead, we fix C' by
reassigning ¢; in C' at mafnl(C[Qm]). Fixing might generate more missed lower implications
and break the WL invariants for some clauses. Our reimplication procedure, introduced in
Sect. 3.5, iteratively fixes the new lower implications and restores the WL invariants.

To handle reimplication (and CB) efficiently, IntelSAT implements the trail as a doubly
linked list (rather than the standard stack) with pointers to the end of each decision level
and to the list’s beginning. This allows us to easily remove literals from anywhere in the
trail and append literals to the end of any level.

Fig. 1 presents an example of handling a lower implication in ADDCLAUSE.

8:5

SAT 2022

8:6

Introducing Intel® SAT Solver

3.3.2 BCP

Our BCP procedure uses reimplication to ensure lowest implication and lowest conflict (recall
Sect 1). Fig. 2 shows how lower implications are handled in a standard solver vs. IntelSAT.

Fig. 2 illustrates that CB might cause the solver learn a weaker clause, subsumed by one
that would be learnt without CB for the same conflict. This is because, with CB, the solver
does not meet the lowest implication property: unlike IntelSAT, it does not decrease the
levels of the assigned literals by reimplying them in lower implications whenever required,
while there are no missed lower implications if CB is not used. For example, in Fig. 2, the
analysis of the second conflict by the CB-enabled solver involves two decision levels instead
of one (since I3 is not reimplied in the lower implication H), which results in learning the
clause L = {l4, —I3} instead of M = {l4}, where M would be learnt by both a standard solver
without CB and IntelSAT with CB (since IntelSAT applies reimplication).

Fig. 2 also illustrates that BCP may discover more than one conflict. Pre-CB solvers
stopped at the first conflict due to lack of a better heuristic [24]. With CB, BCP can identify
several conflicts at different levels, but the current solvers still stop at the first conflict, even if
it is not a lowest one. Note that reassignment and repropagation of out-of-order literals after
backtracking guarantees that lower conflicts are discovered by the conflict analysis loop before
taking any further decisions (and that implications are not missed). However, while working
correctly, current CB-enabled solvers learn unnecessary clauses and lose time due to their
failure to always start conflict analysis with a lowest conflict. Reimplication enables BCP
restoring the lowest conflict property and makes out-of-order literal management obsolete.

ll@l ll@

—[,@2 —-,@1: F

[3@2:C l3Ql1:C

l4@2 : D l4@1 : D
(a) C = {ﬁl1,l2,l3} AND = {ﬁlg,l4}. (b) CADA (E = {ﬁlz,ﬁll}).

Figure 1 Reimplication in ADDCLAUSE. Fig. la shows a solver invocation trace (without any
conflicts), given the clauses C' = {—l1,l2,l3} A D = {—l3, 14}, where [@z means that [is the decision
literal at level z and {@Qx : C' means that [was implied at level = in the parent clause C'. The solver
returns SAT, but, in the ILB-driven IntelSAT, it does not backtrack. Assume it receives a new
input clause E = {—l2, —l1}. E is a lower implication, since it has one satisfied literal —l2, while the
rest (—ly only here) are falsified at a level lower than di(—l2). In our case, —l2 is a decision literal,
which should now be reimplied at level 1. This can be accomplished by either backtracking to level
1, implying —ls in E and propagating or, instead, by applying our novel reimplication procedure. In
our simple case, both alternatives result in the same trace, shown in Fig. 1b.

3.4 Formal Framework

The correctness of CDCL SAT solvers has been proven in several different frameworks [37,
39,51] (e.g., [39] proves it with or without CB). However, all the proofs implicitly assume
that BCP never misses falsified clauses (for correctness) and unit clauses (for performance),
which, after the introduction of cached literals and CB, is no longer self-evident. To argue
that, in IntelSAT, BCP terminates, does not miss falsified and unit clauses and guarantees
lowest implication and lowest conflict, we need to introduce a formal framework.

A. Nadel

;@1
1,@2
_'14@1 o1

(a) Conflict. (b) CB. (c) IntelSAT.

Figure 2 Reimplication in BCP. A SAT solver is invoked over F, which includes C' = {—l2,l3},
D = {=li,~ls,l5}, E = {—=l1,—ls,~ls} and H = {la,l3}. Consider the conflict in Fig. 2a. The
algorithm will learn I = {—l1, —l4}. Hence, —l4 will be implied at level 1 after backtracking. Assume

a solver which implements CB [50] is used (we refer to it simply as CB throughout this example).
CB backtracks to level 2 and places —l4 after the literals assigned at level 2, as shown in Fig. 2b.

At this point, H becomes a missed lower implication: l3 could have been implied in H at level 1,

instead of its current implication in C' at level 2. However, CB continues using C' as [3’s parent.

Instead, IntelSAT places —l4 at the end of level 1 (using our doubly linked list trail) and runs BCP,

which identifies H as a lower implication and invokes reimplication to create the trace in Fig. 2c.
Assume now that the following two clauses also belong to F': J = {—l3,l4,l5} and K = {=l3,l4, —l5}.

There will be a conflict immediately after propagating —l4 for both CB and IntelSAT. CB will
learn L = {l4, —l3}, while IntelSAT will learn M = {l4}, which subsumes L. Assume now that, in
addition to J and K, the clauses N = {—l2,l4,l6} and P = {—l2,ls, —ls} also belonged to F. In this
case, there would be two potential conflicts after propagating —l4. For IntelSAT, the two potential
learnt clauses would be M or Q = {—l2,l4}. IntelSAT would choose M, since it occurs at a lower
level. CB would stop at the first (arbitrary) conflict.

We disallow missed lower implications through strengthening the WL invariant for cached
literals as follows: if a falsified watch [has a satisfied cached literal h, then h can no longer be
higher than [. Def. 3 formally defines a c;-stable/stable clause (where we make the following
standard assumption, satisfied by construction: VC € F : C appears once and only once in
WL(c1) and WL(c3); see Appendix A for further details).

» Definition 3 (¢;-Stable Clause, Stable Clause). For i€ {1,2}, a clause C is c;-Stable if:
(@) o(¢;) # L, or

(b) 3<h,C) e WL(¢;) : o(h) = T and di(h) < di(c;).

A clause C is Stable iff Vi € {1,2} : C is ¢;-Stable.

Our algorithms ensure that, by the end of BCP without a conflict, all the clauses are
stable. However, we need to allow some intermediate exceptions.

A clause ceases to be ¢;-stable when an unassigned watch c¢; is assigned L. In this case,
we request ¢; to register for BCP, that is, —c¢; is to be added to the propagation stack II.

» Definition 4 (¢;-BCP-Registered). For i € {1,2}, a clause C is ¢;-BCP-Registered if
—C; € II.

Intuitively, it is safe for a clause C to become ¢;-BCP-Registered, since BCP will visit C
while propagating —c¢; and make C' ¢;-stable, if possible, or, otherwise, discover that C' is
falsified. Hence, if a clause is either ¢;-stable or ¢;-BCP-Registered, we call it ¢;-BCP-Safe.

» Definition 5 (¢;-BCP-Safe, BCP-Safe). For i € {1,2}, a clause C is ¢;-BCP-Safe if C
is either c;-stable or ¢;-BCP-Registered. A clause C is BCP-Safe if Vi € {1,2} : C is
c;-BCP-Safe.

8:7

SAT 2022

8:8

Introducing Intel® SAT Solver

A lower implication C'is not ¢;-stable for the falsified watch ¢;. We store lower implications
in a dedicated stack At, so that reimplication could fix them one by one (where some clauses
in AT could already be inadvertently fixed). Def. 6 lists the five conditions under which a
clause is considered to be registered for reimplication.

» Definition 6 (Reimplication-Registered). A clause C is Reimplication-Registered if:
(a) C e AR, and

(b) C is unisat, and

(c) o(c1) =T, and

(d) h(c2,C) =c1, and

(e) dl(CQ) = maxl(C’[g,])

The conditions in Def. 6 are intended to ensure that a reimplication-registered clause is
either already BCP-Safe or is a fizable lower implication; see Cor. 7.

» Corollary 7 (Fixing). A reimplication-registered clause C is either:

(a) BCP-Safe, or

(b) a lower implication, in which case C can be fixed to become BCP-Safe by applying
REASSIGN(c1, C, dl(ca)); see Alg. 1, line 4, where fixing lowers (the level of) c;.

Finally, we store any falsified clauses in a stack A% to ensure they are not missed by BCP.
Def. 8 defines clauses registered for falsification.

» Definition 8 (Falsification-Registered). A clause C is Falsification-Registered if C € A and
C is falsified.

3.5 Reimplication

REIMPLY, shown in Alg. 1, line 14, eliminates any lower implications and guarantees that
all the non-falsification-registered clauses are BCP-Safe. It removes one clause R € AT at a
time in a while-loop until A® becomes empty. Each while-loop iteration fixes R, if required,
which makes R BCP-Safe, but might render other clauses in WL(—r;) BCP-Unsafe. Hence,
the algorithm goes over WL(—ry) and ensures every clause is either reimplication-registered
(to be handled later by our loop), falsification-registered or BCP-Safe.

Notably, REIMPLY never modifies the assignment o, but only the levels and the parents
of assigned literals. In addition, REIMPLY might decrease the levels of assigned literals, but it
never increases them. Finally, during REIMPLY, some levels might “collapse” and disappear
(if their decision literal is reimplied at a lower level).

Lemma 9 is pivotal for arguing about REIMPLY’s correctness; see Appendix A.1 for further
details. We show that Lemma 9 holds while presenting REIMPLY below.

» Lemma 9 (REIMPLY Loop Invariants). The following are two loop invariants for the
while-loop in Alg. 1, line 15:

1. Every clause C € F\AT is either BCP-Safe or falsification-registered.

2. Every clause C € AT is reimplication-registered.

We assume the invariants hold at the beginning of a while-loop iteration and show that
they also hold at its end. Each iteration removes one clause R from Af*. By Cor. 7 and our loop
invariant, R is either BCP-Safe or a fixable lower implication. Line 17 skips R, if it is BCP-
Safe (optionally, one could also skip R, if r1 = ¢1 for @ € A : mazl(Q2..1) < mazl(Rpz. 1))
Otherwise, line 18 fixes R (recall Cor. 7).

A. Nadel 8:9

Algorithm 1 REiMPLY and Other Functions.

: function AssIGN(Literal [, Parent clause P, Decision level di)

if [= —war(l) then o(var(l)) := L else o(var(l)) :=T

I.push__back(l);dl(l) := dl; Parent(var(l)) := P

: function REAssiGN(Literal I, Parent clause P, Level dl)

dl(var(l)) := dl; Parent(var(l)) := P

: function Swap(Clause C, ci<i<|c|, Ci<j<ic]) {t 1= cis¢ii=¢j5¢5 1=t}

: function UPDATEWATCHED(C, o € {c1,c2}, n € C)

Swapr(C, o, n) = if n € {c1, c2}, the two lines below update h(n, C) to the other watch
if n¢ {c1,c2} then WL(0) := WL(0)\{_,C) else WL(n) := WL(n)\{_,C)

WL(n) = WL(n) U {{cieq1,2y : ci # n,C)}

© X DT e

,_.
e

11: function BACKTRACK(D)

12: while dl(l) > b for the last literal in the trail I do o(var(l)) := U

13: d:=b

14: function REIMPLY

15: while A" is not empty do

16: Clause R := A% .back(); A.pop()

17: if R is BCP-Safe then continue > Otherwise, R is a lower implication

18: REASSIGN(r1, R, dl(r2)) > Fixing R to make it BCP-Safe

19: if —r, € II then continue

20: for (h,C) e WL(—r1) do © By the end of the iteration, C' will either be BCP-Safe or
reimplication-registered or falsification-registered

21: if C e A" or C € A™ then continue

22: if h is satisfied at di(h) < di(r1) then continue = No clause visit!

23: if ¢1 # h then UPDATEWATCHED(C, ¢, h)

24: if 31>2:0(c;) # L thenz:=ielse x :=a:Vj >1:dl(ca) = di(c;)

25: UPDATEWATCHED(C, c¢2, ¢z) > Assigns h(cz,C) := h, even if co = ¢,

26: if C is a lower implication then A®.push_ back(C)

Reassigning 1 to fix R might render a BCP-Safe clause C' BCP-unsafe, but only if the
falsified literal —r; is watched by C' (it can be easily verified that lowering an unwatched or
satisfied literal has no such impact). Hence, we visit every pair (h, C) € WL(—r;) and make
sure C' is BCP-Safe, reimplication-registered or falsification-registered.

Line 19 skips visiting —ry’s WL if —r; € II, since, by Def. 4, all the clauses in WL(—ry)
are —r1-BCP-Registered, hence they are still BCP-Safe after the reassignment. Intuitively,
they can be skipped, since BCP will visit them anyway.

Otherwise, we go over every pair (h, C) € WL(—ry). If C is already in A, it is skipped at
line 21, since it will be visited later by our loop. Line 21 also skips any falsification-registered
clauses (those will be handled by BCP). Otherwise, if the cached literal h is already satisfied
not higher than r;, C can be skipped, since it remains BCP-Safe (line 22). Note that clause
visit is not required in these cases.

In the remaining case, we visit C'. Lines 23-25 fix C’s watches to enable rendering C
either BCP-Safe or reimplication-registered. Specifically, line 23 ensures the first watch c;
has the satisfied literal h. Line 24 sets = to the current index of the second watch-to-be: a
non-falsified literal, if one exists, or, otherwise, a highest falsified literal. Line 25 updates the
second watch.

Finally, line 26 pushes C to A%, if C is a lower implication. By construction, C' becomes
either BCP-Safe or reimplication-registered.

SAT 2022

8:10

Introducing Intel® SAT Solver

3.6 Boolean Constraint Propagation (BCP)

We introduce our BCP algorithm starting with falsified clause processing. Consider Def.10,
which categorizes falsification-registered clauses. Note that fake clauses have only one highest
literal [. When such clauses are encountered by a standard CB-enabled solver, it backtracks,
flips [and reruns BCP, as elaborated in [37,50].

» Definition 10 (Contradicting, Backtrack-Contradicting, Fake). A falsification-registered
clause C' is Backtrack-Contradicting if at least two literals in C' are assigned at level mazl(C').
A backtrack-contradicting clause C is Contradicting if mazl(C) = d (recall that d is the
current decision level). A falsified clause C is Fake if it is not backtrack-contradicting.

Our BCP algorithm guarantees that all the falsified clauses (if any) are contradicting after
BCP (thus, it does not miss falsified clauses and ensures lowest conflict). To that end, BCP
registers all the falsified clauses for falsification by pushing them to AT, where, normally, all
the falsification-registered clauses are contradicting. They might cease being contradicting
on two occasions:

(a) if AT is non-empty and REIMPLY is invoked, since REIMPLY might lower the literals in
falsification-registered clauses, or

(b) after a new non-contradicting falsified clause is discovered and added to A¥.
In both these cases, we invoke the function F2C.

3.6.1 F2C

F2C, shown in Alg.2, line 1 makes every falsification-registered clause either BCP-Safe or
contradicting.

Line 2 returns, if all the falsification-registered clauses are already contradicting or no
falsification-registered clauses exist. Lines 3-5 watch two highest literals in every falsification-
registered clause to facilitate rendering them BCP-Safe following backtracking.

Assume there are no fake clauses. Line 7 backtracks to the lowest possible level, such
that at least one backtrack-contradicting clause still exists. Observe that this operation
renders every backtrack-contradicting clause either BCP-Safe (by unassigning both watches)
or contradicting. Hence, we can now remove any BCP-Safe clauses from Af and return
(line 9).

From now on, assume there is at least one fake clause. If any backtrack-contradicting
clauses exist, line 7 still backtracks rendering every backtrack-contradicting clause either
BCP-Safe or contradicting. After the backtracking, a fake clause may still be falsified;
otherwise, it may have become unit or BCP-Safe.

Assume any falsified fake clauses remain. Line 11 turns at least one of them unit and the
rest either unit or BCP-Safe by backtracking to the highest possible level ensuring no falsified
clauses in A¥. Backtracking also renders any contradicting clauses BCP-Safe. Line 12 flips
the now unassigned literal in every unit clause in A. At this point, all the clauses in F,
including those in A, become BCP-Safe. Hence, line 13 empties A, and F2C returns.

If no falsified fake clauses remain after backtracking at line 7, backtracking at line 11
is skipped. Hence, at least one contradicting clause remains. We still need to flip the now
unassigned literal in any fake-turned-unit clauses in A" at line 12, which also renders these
clauses BCP-Safe. Therefore, F2C returns with only contradicting clauses in A, the rest
having been turned BCP-Safe.

A. Nadel

Algorithm 2 Boolean Constraint Propagation (BCP).

1: function F2C

13:

if all the falsification-registered clauses are contradicting or A" is empty then return

for C e A¥ do
UpPDATEWATCHED(C, ¢1, ¢; € C : dl(¢;) = mazl(C))
UPDATEWATCHED(C, ¢z, ¢; € Cpa..] ¢ dl(c;) = maxl(Cha.. 7))
if 3C € AT : O is backtrack-contradicting then
BACKTRACK (lowest possible level, such that 3C' € A¥ : C is backtrack-

contradicting)

if there were no fake clauses in the beginning then
Remove any BCP-Safe clauses from A and return
if 3C e AT : C is falsified then
BACKTRACK (highest possible level, such that 4C e AF : C is falsified)
for C € AT : C is unit do ASSIGN(cq, C, dl(c2))
Remove any BCP-Safe clauses from AF

14: function BCP

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

REIMPLY()

while II is not empty do
I :=TL.back(); I1.pop()
if —![is non-falsified then continue
for (h,C) e WL(-I) do

if co # —l then SWAP(C, c1, ¢2) = Ensure ¢, = —I[for simplicity
if h is satisfied at di(h) < di(l) then continue
if #NF(Cs..7) > 0 then > A non-falsified unwatched literal exists

Let ¢; € CJ3..] be a non-falsified literal in Cf3..
UPDATEWATCHED(C, ¢, ¢;)
else = Now all the literals in C[. ; are falsified
if ¢ is falsified then > (' is falsified
AF .push__back(C)
if C is not contradicting then

F2C()
I.push__back(l)
break
else > C' is unit or unisat
UPDATEWATCHED(C, ¢z, ¢; € Cla..] & dl(c;) = maxl(Cla.. 7))
if ¢y is unassigned then > C' is unit
ASSIGN(cq, C, di(c2)) = Implication
else if dl(cq) > di(c2) then > Reimplication

AT push_back(C)
IT.push__back(l)
REIMPLY()
F2C()
break
if AT is empty return T else return any C € A¥

8:11

SAT 2022

8:12

Introducing Intel® SAT Solver

3.6.2 BCP

BCP (Alg. 2, line 14) starts by invoking REIMPLY to fix any reimplication-registered clauses.
The main while-loop (line 16) propagates literals in II. An iteration starts with fetching the
currently propagated literal [and skipping it if —[is non-falsified, followed by a for-loop
(line 19), which goes over WL(—l) to propagate .

Assume WLOG ¢y = —l (guaranteed by line 20). Every for-loop iteration ensures that,
by its end, the currently visited clause C' will either be co-stable or contradicting.

If the cached literal is satisfied not higher than [, the clause is skipped being co-stable
(line 21). Lines 22-24 handle the easy case, when there is a non-falsified unwatched literal.
Otherwise, all the literals, but possibly c;, are falsified.

If ¢; is falsified (line 26), C is falsified. We register C for falsification and, if C' is not
already contradicting, invoke F2C to render C' BCP-Safe (if C is fake) or contradicting (if C'
is backtrack-contradicting). F2C might modify WL(—!), hence it is safer to repropagate [
later. Thus, we re-register | for BCP and break the loop.

The only remaining case is when C' is either unit or unisat (line 32). Line 33 updates
¢z to the highest literal in Cpp. and assigns h(cz, C) := ¢1. If C is unit, we imply ¢; in C
rendering C' cp-stable. Otherwise, C' is unisat. If di(c;) < di(cq), C is already co-stable, in
which case we are done. Otherwise, C is a lower implication. We register C' for reimplication
(line 37) and invoke REIMPLY to fix it, but not before re-registering ! for BCP (line 38) to
guarantee correctness, since, otherwise, the yet unvisited clauses in WL(—!) would not be
BCP-Safe. Finally, we invoke F2C and break the loop, since [will be repropagated later.

BCP returns either T (no conflict) or an arbitrary contradicting clause. Appendix A.3
argues for the correctness of BCP.

4 IntelSAT’s Algorithms and Heuristics

First, we mention some of the algorithms we are not using: we do not differentiate between
satisfiable and unsatisfiable stages [52], since we expect most of the queries to be satisfiable;
inprocessing [16] and vivification [35] are too heavy; rephasing [13,18] would be overridden by
anytime MaxSAT’s TORC polarity selection heuristic [41,44]; trail saving [29] and all-UIP
recording [23] had been implemented, but did not improve the performance in our setting.
Next, we describe some of IntelSAT’s algorithms and heuristics, including the novel
query-driven tuning, subsumption-based flipped clause filtering and incremental score reboot.

4.1 Query-driven Tuning

Modern SAT solvers often switch between different heuristics within the same solver
component, where the criterion for switching is carefully chosen, based on empirical data.
For example, [31] compares various criteria for switching between decision heuristics in a
MapleCOMSPS [36]-grounded SAT solver, driven by run-time, conflict count and propagation
count and converges to a deterministic conflict count-driven criterion. Another example is a
restart count-driven criterion regulating the all-UIP conflict clause recording algorithm [23].
We found that tuning various heuristics per SAT query type (that is, SOLVE query
type) is often beneficial in our setting. One can distinguish between three types of SAT
queries in SAT-based anytime unweighted MaxSAT algorithms: initial, short-incremental —
an incremental query with the conflict threshold of 1000 (used by Mrs. Beaver and Polosat),
and normal-incremental (used by LSU). Below, we provide several examples of choosing the
heuristic, based on the current SAT query type. Sect. 5 demonstrates the positive impact of
query-driven tuning on the performance of IntelSAT within the backtracking heuristic.

A. Nadel

4.2 Conflict Analysis

We always record the standard asserting 1UIP clause [38,55], enhanced by minimization [9,56]
and binary resolution [2,4]. We also apply on-the-fly subsumption [26,27] during the 1UIP
clause generation.

In addition, we apply an enhanced version of flipped recording [20,39,53]. Specifically,
we sometimes record the Latest-Flipped-1UIP (LF1) clause-the 1UIP clause w.r.t a fake
decision level, created by marking the latest literal flipped by conflict analysis as a decision.
Our algorithm is outlined below.

If a flipped literal exists, we generate (but not yet record) an LF1 clause L. Then, we
apply our subsumption-based flipped clause filtering—a seemingly minor but nevertheless
a performance-crucial improvement: we abandon LF1 recording, if L is subsumed by the
standard 1UIP clause (note that the standard 1UIP variable might belong to L). Otherwise,
L is recorded after it is enhanced by minimization and binary resolution.

4.3 Decision Heuristic

We apply the Exponential Variable State Independent Decaying Sum (EVSIDS) variable
decision heuristic [4,11,22] (see [14] for EVSIDS review). Recall that whenever a variable is
visited during conflict analysis, EVSIDS adds the value (1/f)* to its score, where f is the
so-called variable activity decay factor and 7 is the current conflict number. We increase f
by 0.01 every 5000th conflict starting at 0.95 until it reaches 0.99.

Furthermore, we apply the following new incremental score reboot heuristic: we re-
initialize f to 0.95 before every normal-incremental query (observe the query driven-tuning).
Our heuristic causes the scores to increase by a larger factor at the beginning of such queries,

which, intuitively, simulates a score reboot.

4.4 Backtracking and Restarting

Let score-based backtracking be the backtracking heuristic, which backtracks to the level
containing the variable with the highest EVSIDS score [37]. We apply score-based back-
tracking, if the gap between the current level d and the would-be Non-Chronological
Backtracking (NCB) level e is higher than T', where T' = 0 for normal-incremental queries and
T = 100 for the two other query types (observe the query driven-tuning again). Otherwise,
we apply NCB. In addition, if the resulting backtrack level is lower than that of the highest
assumption [,, we always backtrack to di(l,) instead.

We use local restarts [54] on top of a simple arithmetic restart strategy (with the conflict
threshold of 1000).

4.5 Clause Deletion

Since COMiniSatPS [52], most solvers divide the learnt clauses into 3 tiers-Core, Tier2 and
Local-based on their LBD score [3]. Clauses are considered for deletion only from Local,
where the clauses are sorted by activity: the lower the clause is, the more likely it is to be
deleted. Clauses are moved between the tiers, based on their activity; see [31] for details.

For simplicity, we maintain the learnt clauses in a single tier. We simulate a tiered
strategy by changing the sorting criterion as follows.

8:13

SAT 2022

8:14

Introducing Intel® SAT Solver

Let I(C) be the LBD score of clause C and a(C) be C’s activity score. Then C' > D iff:
(a) [(C) <16 and (D) = 16, or
(b) (C) =16 and (D) = 16 and o(C) > a(D), or
(c) I(C) < 16 and (D) < 16 and ({(C)/11 < I(D)/11 or ({(C)/11 = I(D)/11 and a(C) >
a(D))), where division is truncated.

AR\

Additionally, clauses with the LBD score of 2 or lower are never deleted.

5 Experimental Results

IntelSAT is available on github under the open-source MIT license [48]. We have integrated
IntelSAT into TT-Open-WBO-Inc-21 [46]-the runner-up in both the relevant (60- and 300-
second unweighted incomplete) categories at MSE’21 [7] (downloadable at [47]).

We used two benchmark sets from the incomplete unweighted categories of MSE’20 [6]
and MSE’21, respectively. Similarly to MSE’21, we compared solvers by their average score,
where, given the linear Pseudo-Boolean function to minimize ¥ and the model p, the score
per instance is: (1 + the best known result) / (1 + ¥(u)). Note that the higher the score is,
the better. We took the best known results for the MSE’20 and MSE’21 sets from [5] and [7]
(in the detailed per-benchmark results), respectively.

We ran the solvers for 300 seconds and measured the average score at the following
intervals (to simulate different timeouts): 60, 120, 180, 240 and 300 seconds. For all the
experiments we used machines with 32Gb of memory running Intel® Xeon® processors of
3Ghz CPU frequency.

The first goal of our experiments was to analyze the impact of IntelSAT on the
performance of TT-Open-WBO-Inc-21 and compare the resulting MaxSAT solver to other
leading unweighted anytime MaxSAT solvers. To that end, we launched the following solvers:
(a) the default TT-Open-WB0O-Inc-21 with Glucose 4.1 (TT21G),

(b) TT-Open-WBO-Inc-21 with IntelSAT (TT21I),
(c) SATLike-c (SL21): the winner of MSE’21,
(d) SATLike-c-20 (SL20): the winner of MSE’20.

Our second goal was to study the impact of a number of heuristics on TT21I by disabling

each and running the resulting TT21I version, including:

(a) NoILB: disable ILB by backtracking to 0 before SOLVE and ADDCLAUSE,

(b) NoFLP: disable flipped recording,

(c) NoFLPFilt: disable subsumption-based flipped clause filtering,

(d) NoInSR: disable incremental score reboot,

(e) BtTO and BtT100: apply backtracking with 7' = 0 and T' = 100, respectively, for all the
queries (to study the impact of query-driven tuning; recall that the default version uses
different T’s for normal-incremental queries vs. the other two query types).

The results are summarized in Table 1. Our main conclusions are as follows:

1. TT21I outperforms TT21G and both the MSE’20 and MSE’21 winners SL20 and SL21,
respectively, on the MSE’20 set for every timeout and on the MSE’21 set starting with
the 180 second timeout.

To understand the results, recall that all the solvers we have used apply the following

high-level flow:

(a) Run SAT to the get the initial model p.

(b) Invoke SATLike—a Stochastic Local Search (SLS) algorithm [17]-to improve p (where
SL20, TT21G and TT21I use an identical version of SATLike, while SL21 has some
undocumented novelties).

(c) Switch to the main SAT-based flow to improve p further.

A. Nadel

Table 1 Experimental Results Summary.

Solver MSE’20 MSE’21

300 [240 [180 [120 [60 300 [240 [180 [120 [60
TT21I 1953 .944 1933 914 .880 .941 1933 .901 .874 .837
TT21G 1933 .923 911 .899 .874 912 1901 .888 872 .837
SL21 918 913 .900 .887 .866 913 910 .897 .874 .843
SL20 .908 .900 .890 877 .849 .908 .892 .884 .863 .815
NoILB 931 .925 916 .902 .870 .922 911 .886 .865 .839
NoFLP 1950 .938 1924 .901 .868 915 903 .882 .862 .826
NoFLPFilt 1931 .925 918 .899 .869 915 1902 .882 .857 .818
NoInSR 1941 .935 1925 .909 871 .926 917 .893 .875 .833
BtTO .935 921 915 .901 .864 921 901 .885 .867 .821
BtT100 .943 .936 .928 913 .874 .924 910 .888 .867 .836

For the smaller timeouts, the relatively mild impact of IntelSAT on MSE’20 set and the
lack of impact on MSE’21 set is observed because, initially, the performance and quality
are dominated by SLS, where the arbitrary quality of the initial SAT model is also a
factor. As the time goes by, the SAT solver performance is becoming the dominant factor,
hence our results are an evidence that IntelSAT improves the state-of-the-art in SAT for
unweighted anytime MaxSAT.

2. ILB is essential, though, surprisingly, NoILB slightly outperforms the default TT21TI for
the 60-second timeout on the MSE’21 set.

3. Flipped recording is helpful across the board, where the contribution of subsumption-based
flipped clause filtering is crucial.

4. Incremental score reboot is useful everywhere, with one surprising exception of the
120-second timeout on the MSE’21 set.

5. The results of BtTO and BtT100 demonstrate the critical contribution of query-driven
tuning to the performance of our backtracking heuristic and TT211I.

6 Conclusion

We introduced Intel® SAT Solver (IntelSAT) — a new open-source SAT solver, written
from scratch, optimized for applications generating many mostly satisfiable incremental SAT
queries, such as anytime unweighted MaxSAT.
IntelSAT applies Incremental Lazy Backtracking (ILB), based on a novel reimplication
procedure, which can reimply an assigned literal at a lower level without backtracking.
With reimplication, we were able to restore the following two properties, lost in modern
solvers with the introduction of chronological backtracking:
(a) lowest implication: no assigned literal can be implied at a lower level (that is, no missed
lower implications exist after BCP), and
(b) lowest conflict: in case of a conflict, a clause falsified at the lowest possible level is
returned.

In addition, we applied and empirically verified the usefulness of new heuristics, including

query-driven tuning, subsumption-based flipped clause filtering and incremental score reboot.

Integrating IntelSAT into the MaxSAT solver TT-Open-WBO-Inc resulted in boosting
TT-Open-WBO-Inc’s performance on incomplete unweighted MaxSAT Evaluation benchmarks
and improving the state-of-the-art in anytime unweighted MaxSAT solving.

8:15

SAT 2022

8:16

Introducing Intel® SAT Solver

—— References

1

10

11

12

13
14

15

16

Carlos Ansétegui, Felip Manya, Jesus Ojeda, Josep M. Salvia, and Eduard Torres. Incomplete
maxsat approaches for combinatorial testing. CoRR, abs/2105.12552, 2021. arXiv:2105.12552.
Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar Sais. RCL: Reduce learnt
clauses. https://baldur.iti.kit.edu/sat-race-2010/descriptions/solver_10.pdf, 2010.
Online; accessed 23 December 2021.

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference
on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 399-404, 2009.
URL: http://ijcai.org/Proceedings/09/Papers/074.pdf.

Gilles Audemard and Laurent Simon. On the glucose SAT solver. Int. J. Artif. Intell. Tools,
27(1):1840001:1-1840001:25, 2018. doi:10.1142/50218213018400018.

Fahiem Bacchus. MaxSat Lib. https://www.cs.toronto.edu/maxsat-1ib/. Online; accessed
5 January 2022.

Fahiem Bacchus, Jeremias Berg, Matti Jarvisalo, and Ruben Martins, editors. MazSAT
FEvaluation 2020: Solver and Benchmark Descriptions, Department of Computer Science
Report Series B. University of Helsinki, 2020.

Fahiem Bacchus, Jeremias Berg, Matti Jarvisalo, and Ruben Martins, editors. MazSAT
Evaluation 2021: Solver and Benchmark Descriptions, Department of Computer Science
Report Series B. University of Helsinki, 2021.

Fahiem Bacchus, Matti Jarvisalo, and Ruben Martins. Maximum satisfiabiliy. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume
336 of Frontiers in Artificial Intelligence and Applications, pages 929-991. IOS Press, 2021.
doi:10.3233/FAIA201008.

Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing
the potential of clause learning. CoRR, abs/1107.0044, 2011. arXiv:1107.0044.

Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. JSAT, 7(2-3):59-6,
2010. URL: http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_4_LeBerre.pdf, doi:
10.3233/sat190075.

Armin Biere. Adaptive restart strategies for conflict driven SAT solvers. In Hans Kleine
Biining and Xishun Zhao, editors, Theory and Applications of Satisfiability Testing - SAT 2008,
11th International Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Proceedings,
volume 4996 of Lecture Notes in Computer Science, pages 28-33. Springer, 2008. doi:
10.1007/978-3-540-79719-7_4.

Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCal., Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Jarvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 — Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51-53. University of Helsinki, 2020.

Armin Biere and Mathias Fleury. Chasing target phases. In Pragmatics of SAT (PoS), 2020.
Armin Biere and Andreas Frohlich. Evaluating CDCL variable scoring schemes. In Marijn
Heule and Sean A. Weaver, editors, Theory and Applications of Satisfiability Testing - SAT
2015 - 18th International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings,
volume 9340 of Lecture Notes in Computer Science, pages 405—422. Springer, 2015. doi:
10.1007/978-3-319-24318-4_29.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. I0OS Press,
2021.

Armin Biere, Matti Jarvisalo, and Benjamin Kiesl. Preprocessing in sat solving. In Armin
Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, pages 391-435. 10S Press,
2021. doi:10.3233/FAIA200992.

http://arxiv.org/abs/2105.12552
https://baldur.iti.kit.edu/sat-race-2010/descriptions/solver_10.pdf
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1142/S0218213018400018
https://www.cs.toronto.edu/maxsat-lib/
https://doi.org/10.3233/FAIA201008
http://arxiv.org/abs/1107.0044
http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_4_LeBerre.pdf
https://doi.org/10.3233/sat190075
https://doi.org/10.3233/sat190075
https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.3233/FAIA200992

A. Nadel

17

18

19

20

21

22

23

24

25

26

27

28

29

Shaowei Cai and Zhendong Lei. Old techniques in new ways: Clause weighting, unit propagation
and hybridization for maximum satisfiability. Artif. Intell., 287:103354, 2020. doi:10.1016/j.
artint.2020.103354.

Shaowei Cai and Xindi Zhang. Deep cooperation of CDCL and local search for SAT. In
Chu-Min Li and Felip Manya, editors, Theory and Applications of Satisfiability Testing -
SAT 2021 - 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings,
volume 12831 of Lecture Notes in Computer Science, pages 64-81. Springer, 2021. doi:
10.1007/978-3-030-80223-3_6.

Geoffrey Chu, Aaron Harwood, and Peter J. Stuckey. Cache conscious data structures
for boolean satisfiability solvers. J. Satisf. Boolean Model. Comput., 6(1-3):99-120, 2009.
doi:10.3233/sat190064.

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. Towards a better understanding of the
functionality of a conflict-driven SAT solver. In Jodo Marques-Silva and Karem A. Sakallah,
editors, Theory and Applications of Satisfiability Testing - SAT 2007, 10th International
Conference, Lisbon, Portugal, May 28-31, 2007, Proceedings, volume 4501 of Lecture Notes in
Computer Science, pages 287-293. Springer, 2007. doi:10.1007/978-3-540-72788-0_27.
Rohit Dureja, Arie Gurfinkel, Alexander Ivrii, and Yakir Vizel. IC3 with internal signals. In
Formal Methods in Computer Aided Design, FMCAD 2021, New Haven, CT, USA, October
19-22, 2021, pages 63-71. IEEE, 2021. doi:10.34727/2021/isbn.978-3-85448-046-4_14.
Niklas Eén and Niklas Sorensson. An extensible sat-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, volume 2919 of Lecture Notes in Computer Science, pages 502-518. Springer, 2003.
do0i:10.1007/978-3-540-24605-3_37.

Nick Feng and Fahiem Bacchus. Clause size reduction with all-uip learning. In Luca Pulina
and Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd
International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture
Notes in Computer Science, pages 28—45. Springer, 2020. doi:10.1007/978-3-030-51825-7_3.
Andrea Formisano and Flavio Vella. On multiple learning schemata in conflict driven solvers.
In Stefano Bistarelli and Andrea Formisano, editors, Proceedings of the 15th Italian Conference
on Theoretical Computer Science, Perugia, Italy, September 17-19, 2014, volume 1231 of
CEUR Workshop Proceedings, pages 133-146. CEUR-WS.org, 2014. URL: http://ceur-ws.
org/Vol-1231/1ongl0.pdf.

Alberto Griggio and Marco Roveri. Comparing different variants of the ic3 algorithm for
hardware model checking. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 35(6):1026—
1039, 2016. doi:10.1109/TCAD.2015.2481869.

Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Learning for dynamic subsumption. Int. J.
Artif. Intell. Tools, 19(4):5117529, 2010. doi:10.1142/80218213010000303.

HyoJung Han and Fabio Somenzi. On-the-fly clause improvement. In Oliver Kullmann, editor,
Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference,
SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes
in Computer Science, pages 209-222. Springer, 2009. doi:10.1007/978-3-642-02777-2_21.
Randy Hickey and Fahiem Bacchus. Speeding up assumption-based SAT. In Mikolds Janota
and Inés Lynce, editors, Theory and Applications of Satisfiability Testing - SAT 2019 -
22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings,
volume 11628 of Lecture Notes in Computer Science, pages 164—182. Springer, 2019. doi:
10.1007/978-3-030-24258-9_11.

Randy Hickey and Fahiem Bacchus. Trail saving on backtrack. In Luca Pulina and Martina
Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd International
Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in
Computer Science, pages 46—61. Springer, 2020. doi:10.1007/978-3-030-51825-7_4.

8:17

SAT 2022

https://doi.org/10.1016/j.artint.2020.103354
https://doi.org/10.1016/j.artint.2020.103354
https://doi.org/10.1007/978-3-030-80223-3_6
https://doi.org/10.1007/978-3-030-80223-3_6
https://doi.org/10.3233/sat190064
https://doi.org/10.1007/978-3-540-72788-0_27
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_14
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-030-51825-7_3
http://ceur-ws.org/Vol-1231/long10.pdf
http://ceur-ws.org/Vol-1231/long10.pdf
https://doi.org/10.1109/TCAD.2015.2481869
https://doi.org/10.1142/S0218213010000303
https://doi.org/10.1007/978-3-642-02777-2_21
https://doi.org/10.1007/978-3-030-24258-9_11
https://doi.org/10.1007/978-3-030-24258-9_11
https://doi.org/10.1007/978-3-030-51825-7_4

8:18

Introducing Intel® SAT Solver

30

31

32

33

34

35

36

37

38

39

40

41

42

Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Learning optimal
decision trees with maxsat and its integration in adaboost. In Christian Bessiere, editor,
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
LJCAI 2020, pages 1170-1176. ijcai.org, 2020. doi:10.24963/ijcai.2020/163.

Stepan Kochemazov. Improving implementation of SAT competitions 2017-2019 winners.
In Luca Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing
- SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings,
volume 12178 of Lecture Notes in Computer Science, pages 139-148. Springer, 2020. doi:
10.1007/978-3-030-51825-7_11.

Stepan Kochemazov, Alexey Ignatiev, and Jodo Marques-Silva. Assessing progress in SAT
solvers through the lens of incremental SAT. In Chu-Min Li and Felip Manya, editors,
Theory and Applications of Satisfiability Testing - SAT 2021 - 24th International Conference,
Barcelona, Spain, July 5-9, 2021, Proceedings, volume 12831 of Lecture Notes in Computer
Science, pages 280—-298. Springer, 2021. doi:10.1007/978-3-030-80223-3_20.

Zhendong Lei, Shaowei Cai, Fei Geng, Dongxu Wang, Yongrong Peng, Dongdong Wan, Yiping
Deng, and Pinyan Lu. SATLike-c: Solver description. In Fahiem Bacchus, Jeremias Berg, Matti
Jarvisalo, and Ruben Martins, editors, MaxzSAT Evaluation 2021, Department of Computer
Science Report Series B, pages 19-20. University of Helsinki, 2021.

Alexandre Lemos, Pedro T. Monteiro, and Inés Lynce. Minimal perturbation in university
timetabling with maximum satisfiability. In Emmanuel Hebrard and Nysret Musliu, editors,
Integration of Constraint Programming, Artificial Intelligence, and Operations Research -
17th International Conference, CPAIOR 2020, Vienna, Austria, September 21-24, 2020,
Proceedings, volume 12296 of Lecture Notes in Computer Science, pages 317-333. Springer,
2020. doi:10.1007/978-3-030-58942-4_21.

Chu-Min Li, Fan Xiao, Mao Luo, Felip Manya, Zhipeng Lii, and Yu Li. Clause vivification
by unit propagation in CDCL SAT solvers. Artif. Intell., 279, 2020. doi:10.1016/j.artint.
2019.103197.

Jia Hui Liang, Chanseok Oh, Vijay Ganesh, Krzysztof Czarnecki, and Pascal Poupart.
MapleCOMSPS, MapleCOMSPS_LRB, MapleCOMSPS__CHB. In Matti Juhani Jéarvisalo,
editor, Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, Department
of Computer Science Series of Publications B, page 52, Finland, 2016. University of Helsinki.
Sibylle M6hle and Armin Biere. Backing backtracking. In Mikolds Janota and Inés Lynce,
editors, Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, volume 11628 of Lecture
Notes in Computer Science, pages 250—-266. Springer, 2019. doi:10.1007/978-3-030-24258-9_
18.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530-535. ACM, 2001.
doi:10.1145/378239.379017.

Alexander Nadel. Understanding and Improving a Modern SAT Solver. Dissertation, Tel
Aviv University, 2009. URL: https://tau-primo.hosted.exlibrisgroup.com/permalink/f/
bqa2g2/972TAU_ALMA21235249890004146.

Alexander Nadel. Solving maxsat with bit-vector optimization. In Olaf Beyersdorff and
Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT
2018 - 21st International Conference, SAT 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Ozford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in
Computer Science, pages 54—72. Springer, 2018. doi:10.1007/978-3-319-94144-8_4.
Alexander Nadel. Anytime weighted maxsat with improved polarity selection and bit-vector
optimization. In Clark W. Barrett and Jin Yang, editors, 2019 Formal Methods in Computer
Aided Design, FMCAD 2019, San Jose, CA, USA, October 22-25, 2019, pages 193-202. IEEE,
2019. doi:10.23919/FMCAD.2019.8894273.

Alexander Nadel. Anytime algorithms for maxsat and beyond. In 2020 Formal Methods in
Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020, page 1. IEEE,
2020. doi:10.34727/2020/isbn.978-3-85448-042-6_1.

https://doi.org/10.24963/ijcai.2020/163
https://doi.org/10.1007/978-3-030-51825-7_11
https://doi.org/10.1007/978-3-030-51825-7_11
https://doi.org/10.1007/978-3-030-80223-3_20
https://doi.org/10.1007/978-3-030-58942-4_21
https://doi.org/10.1016/j.artint.2019.103197
https://doi.org/10.1016/j.artint.2019.103197
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1145/378239.379017
https://tau-primo.hosted.exlibrisgroup.com/permalink/f/bqa2g2/972TAU_ALMA21235249890004146
https://tau-primo.hosted.exlibrisgroup.com/permalink/f/bqa2g2/972TAU_ALMA21235249890004146
https://doi.org/10.1007/978-3-319-94144-8_4
https://doi.org/10.23919/FMCAD.2019.8894273
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_1

A. Nadel

43

44

45

46

47

48

49

50

51

52

53
54

55

56

57

Alexander Nadel. On optimizing a generic function in SAT. In 2020 Formal Methods in

Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020, pages 205-213.

IEEE, 2020. doi:10.34727/2020/isbn.978-3-85448-042-6_28.

Alexander Nadel. Polarity and variable selection heuristics for SAT-based anytime MaxSAT.

J. Satisf. Boolean Model. Comput., 12:17-22, 2020.

Alexander Nadel. TT-Open-WBO-Inc-20: an anytime maxsat solver entering MSE’20. In
Fahiem Bacchus, Jeremias Berg, Matti Jarvisalo, and Ruben Martins, editors, MazSAT
Evaluation 2020, Department of Computer Science Report Series B, pages 32—-33. University
of Helsinki, 2020.

Alexander Nadel. TT-Open-WBO-Inc-21: an anytime maxsat solver entering MSE’21. In
Fahiem Bacchus, Jeremias Berg, Matti Jarvisalo, and Ruben Martins, editors, MazSAT
FEvaluation 2021, Department of Computer Science Report Series B, pages 21-22. University
of Helsinki, 2021.

Alexander Nadel. TT-Open-WBO-Inc-21 with Intel® SAT Solver. https://drive.google.

com/file/d/1taWT1Kp16xzXp9FWKHzQwjwo80v_Ohoh/view?usp=sharing, 2022.

Alexander Nadel. Intel® SAT Solver. https://github.com/alexander-nadel/intel_sat_
solver, 2022.

Alexander Nadel and Vadim Ryvchin. Efficient SAT solving under assumptions. In Alessandro
Cimatti and Roberto Sebastiani, editors, Theory and Applications of Satisfiability Testing
- SAT 2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings,
volume 7317 of Lecture Notes in Computer Science, pages 242-255. Springer, 2012. doi:
10.1007/978-3-642-31612-8_19.

Alexander Nadel and Vadim Ryvchin. Chronological backtracking. In Olaf Beyersdorff and
Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT
2018 - 21st International Conference, SAT 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Ogford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in
Computer Science, pages 111-121. Springer, 2018. doi:10.1007/978-3-319-94144-8_7.
Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo
theories: From an abstract davis—putnam-logemann—loveland procedure to dpll(T). J. ACM,
53(6):937-977, 2006. doi:10.1145/1217856.1217859.

Chanseok Oh. Between SAT and UNSAT: the fundamental difference in CDCL SAT. In
Marijn Heule and Sean A. Weaver, editors, Theory and Applications of Satisfiability Testing
- SAT 2015 - 18th International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, volume 9340 of Lecture Notes in Computer Science, pages 307-323. Springer,
2015. doi:10.1007/978-3-319-24318-4_23.

Vadim Ryvchin and Alexander Nadel. Flipped recording. In Pragmatics of SAT (PoS), 2019.

Vadim Ryvchin and Ofer Strichman. Local restarts. In Hans Kleine Biining and Xishun
Zhao, editors, Theory and Applications of Satisfiability Testing - SAT 2008, 11th International
Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Proceedings, volume 4996
of Lecture Notes in Computer Science, pages 271-276. Springer, 2008. doi:10.1007/
978-3-540-79719-7_25.

Joao P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for
satisfiability. In Rob A. Rutenbar and Ralph H. J. M. Otten, editors, Proceedings of the
1996 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1996, San

Jose, CA, USA, November 10-14, 1996, pages 220-227. IEEE Computer Society / ACM, 1996.

doi:10.1109/ICCAD.1996.569607.

Niklas Sorensson and Armin Biere. Minimizing learned clauses. In Oliver Kullmann, editor,
Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference,
SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes
in Computer Science, pages 237-243. Springer, 2009. doi:10.1007/978-3-642-02777-2_23.
Peter van der Tak, Antonio Ramos, and Marijn Heule. Reusing the assignment trail in CDCL
solvers. J. Satisf. Boolean Model. Comput., 7(4):133-138, 2011. doi:10.3233/sat190082.

8:19

SAT 2022

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_28
https://drive.google.com/file/d/1taWT1Kp16xzXp9FWKHzQwjwo80v_0hoh/view?usp=sharing
https://drive.google.com/file/d/1taWT1Kp16xzXp9FWKHzQwjwo80v_0hoh/view?usp=sharing
https://github.com/alexander-nadel/intel_sat_solver
https://github.com/alexander-nadel/intel_sat_solver
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1007/978-3-319-24318-4_23
https://doi.org/10.1007/978-3-540-79719-7_25
https://doi.org/10.1007/978-3-540-79719-7_25
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1007/978-3-642-02777-2_23
https://doi.org/10.3233/sat190082

8:20

Introducing Intel® SAT Solver

A Correctness Proofs

Lemma 11 captures the following assumption we have been and continue to use implicitly:
every clause C' € F' appears once and only once in the WL of each of its watched literals
¢1 and ¢, and there is nothing else is the WL’s (assuming that clauses of size < 2 are not
added to F).

» Lemma 11 (WL Correctness). If L is the set of all the literals, then:
(a) VCe F:VYie{l,2}:I3(h#¢; e C,C)e WL(c;), and
(b) e IWL(D] = 2 % |F].

Proof. By construction. |

Lemma 12 states that the set of c¢;-stable clauses is closed under our straightforward
backtracking implementation BACKTRACK (Alg. 1, line 11).

» Lemma 12 (¢;-Stable Set Closure under BACKTRACK). For i€ {1,2}, a ¢;-stable clause C
remains c;-stable after BACKTRACK.

Proof. The only non-trivial case is when the watch ¢; (WLOG, let it be ¢;) is falsified, in
which case the cached literal h(cy, C') must be satisfied not higher than ¢;. Since BACKTRACK
unassigns literals in decreasing order, it is guaranteed that it either unassigns c; or, otherwise,
h(c1, C) remains satisfied at di(cy). <

A.1 Reimply
Lemmas 13 and 14 argue for termination and soundness of REIMPLY.

» Lemma 13 (REmmPLY Termination). If every C € AT is reimplication-registered, REIMPLY
terminates and empties AT

Proof. Consider one iteration of the loop in Alg. 1, line 15. If it is discontinued at line 17, the
iteration reduces the size of Af. Otherwise, R is not BCP-Safe and, by Cor. 7, REASSIGN()
at line 18 lowers r;. The size of AT and the level of every literal are lower bounded by 0,
where literal levels are never increased. Hence, eventually, A% will be emptied and REIMPLY
will terminate. <

» Lemma 14 (REIMPLY Soundness). If every clause C € F is either BCP-Safe or falsification-
registered or reimplication-registered and every C € AT is reimplication-registered at the
beginning of REIMPLY, then every clause C € F will be BCP-Safe or falsification-registered
after REIMPLY.

Proof. Implied by Lemma 9 (recall Sect. 3.5), since:

1. Our condition ensures that Lemma 9’s loop invariants hold at the beginning of the first
while-loop iteration, and

2. By Lemma 13, A® is emptied, hence all the clauses, except for any falsification-registered
clauses, must become BCP-Safe. <

A.2 F2C

We start off with Cor. 15, which follows from Lemma 12 and the fact that BACKTRACK does
not change the status of ¢;-BCP-Registered clauses.

A. Nadel

» Corollary 15 (BCP-Safe Closure under BACKTRACK). Any BCP-Safe clause remains
BCP-Safe after BACKTRACK.

Lemma 16 argues about the soundness of F2C, while the remaining lemmas will be useful
for proving BCP correctness.

» Lemma 16 (F2C Soundness). Every BCP-Safe clause remains BCP-Safe after F2C. Every
falsification-registered clause becomes either BCP-Safe or contradicting.

Proof. Any BCP-Safe clauses will remain BCP-Safe, since F2C does not modify such clauses
explicitly, while backtracking is safe by Cor. 15. As we have demonstrated while presenting
F2C, F2C renders any falsification-registered clauses removed from A¥ BCP-Safe, while the
remaining falsification-registered clauses are contradicting. |

» Lemma 17 (Backtracking in F2C). If there is at least one non-contradicting falsification-
registered clause at the beginning of F2C, then F2C decreases the current decision level d.

Proof. Line 2 is skipped, since there is at least one non-contradicting falsification-registered
clause. If some of the falsification-registered clauses are non-fake, backtracking at line 7
decreases d. Otherwise, backtracking at line 11 decreases d. |

» Lemma 18 (F2C Properties). If Af is non-empty at the beginning of an F2C invocation,

then, by the end of F2C, it is either that:

1. There exists at least one contradicting clause, or

2. There exists a lowered flipped literal I, that is, an assigned literal | which was assigned
—o(l) at a higher level at the beginning of F2C.

Proof. Assume AT is non-empty at the beginning of an F2C invocation.

If all the falsification-registered clauses are contradicting, the algorithm returns at line 2
meeting our lemma’s condition 1. Otherwise, if there are no fake clauses, it backtracks so as
to leave at least one contradicting clause in A and returns, as required.

Assume now there are some fake clauses.

If after backtracking at line 7 any falsified clauses remain, line 11 renders at least one of
them unit. Line 12 completes the flipping of the now unassigned literal in that unit clause,
which is now assigned lower than previously by construction, as required by condition 2.

Finally, if no falsified fake clauses remain after backtracking at line 7, backtracking at
line 11 is skipped. Hence, at least one contradicting clause remains, fulfilling condition 1. <

A.3 BCP

The next two lemmas establish invariants for BCP’s for-loop and while-loop, respectively.
In both lemmas, we show that if the corresponding invariants hold at the beginning of an
iteration, they also hold at its end.

» Lemma 19 (BCP For-Loop Invariant). The following are two loop invariants for the for-loop

in Alg. 2, line 19:

1. Every C € F is either BCP-Safe or contradicting, except that any unvisited C' : {_,C) €
WL(=l) might be —l-unstable (where, if the algorithm breaks the loop, all the clauses
C:{_,C)ye WL(—I) are considered visited), and

2. AT is empty.

8:21

SAT 2022

8:22

Introducing Intel® SAT Solver

Proof. While presenting the algorithm, we have demonstrated that the currently visited
clause C' becomes BCP-Safe or contradicting by the end of the for-loop iteration. The rest of
the clauses are modified only during F2C and REIMPLY.

Consider the F2C invocation at line 29. By Lemma 16, it leaves BCP-Safe clauses
BCP-Safe and renders any falsification-registered clauses either BCP-Safe or contradicting.
The remaining potentially —l-unstable unvisited clauses in WL(—I) are rendered —I-BCP-
Registered (thus —I-BCP-Safe) explicitly at line 30, so one can safely break the loop.

Consider the REIMPLY invocation at line 39. We render all the remaining clauses in
WL(—1) BCP-Safe explicitly just before invoking REIMPLY by registering | for BCP (line 38).
In addition, by our loop invariant, AT is empty before adding C' at line 37, and C' becomes
reimplication-registered by construction. Hence, by Lemma 14, all the clauses are either
BCP-Safe or falsification-registered after REIMPLY, which is immediately followed by an
F2C invocation (line 40) to make all the clauses BCP-Safe or contradicting. By Lemma 13,
REIMPLY empties A as required. <

» Lemma 20 (BCP While-Loop Invariant). The following are two loop invariants for the
while-loop in Alg. 2, line 16:

1. Every C € F is either BCP-Safe or contradicting, and

2. A% is empty.

Additionally, any single while-loop iteration terminates.

Proof. If our iteration is discontinued at line 18, the invariants still hold, since, although
clauses in WL(—l) become non-—I-BCP-Registered, they are —l-stable and thus BCP-Safe,
since —[is non-falsified. Other clauses and A are not modified.

Otherwise, the algorithm reaches the for-loop, where Lemma 19’s invariants hold, since
our lemma ensures that AT is empty and every C € F is either BCP-Safe or contradicting
with the exception of the clauses in WL(—I), which might have become —I-unsafe, as required.
Hence, Lemma 19’s invariants still hold at the end of the for-loop iteration.

The for-loop terminates, since only REIMPLY and F2C might modify WL(—l), but we
break the for-loop immediately after applying these functions. By construction, the for-loop
terminates after visiting all the clauses in WL(—I) (if the algorithm breaks the for-loop, all
the clauses in WL(—!) are considered visited by Lemma 19). Therefore, by Lemma 19, all
the clauses are either BCP-Safe or contradicting and A is empty by the end of the for-loop,
and thus by the end of our while-loop iteration, which also terminates, as required. |

Our main Theorem 21 argues that BCP is correct.

» Theorem 21 (BCP Correctness). If every C € F\AT is BCP-Safe and every C € A® is
reimplication-registered, then BCP terminates when every clause C € F is either stable or
contradicting.

Proof. BCP starts with invoking REIMPLY. REIMPLY terminates and empties AT by
Lemma 13. It also renders all the clauses BCP-Safe or falsification-registered by Lemma 14.
In our case, all the clauses must be BCP-Safe, since REIMPLY does not modify the assignment
o, and there are no falsification-registered clauses before REIMPLY. Hence, Lemma 20’s
invariants hold at the beginning of the first while-loop iteration.

If the while-loop terminates, our theorem holds, since applying Lemma 20 iteratively
renders all the clauses BCP-Safe or contradicting, where, for the loop to terminate, IT must
be empty, thus all the clauses are stable or contradicting.

It is left to show that the while-loop terminates, where every single iteration terminates
by Lemma 20.

A. Nadel

Observe that the algorithm might reduce the current decision level d and unassign
variables only when BACKTRACK is applied by F2C. However, this can occur only a finite
number of times, since d is never increased and is lower bounded by 0.

Assume the algorithm reached the point, when d does not change and no variable is
unassigned anymore. Each iteration decreases |II] at line 17. We show that |II| can only
be increased for a finite number of times. ASSIGN pushes to II, but the variables are not
unassigned anymore, hence there is a finite number of potential assignments. Line 30 could
push to II, but only after invoking F2C in the presence of a non-contradicting falsification-
registered clause, which, by Lemma 17, would decrease d. Finally, line 38 might push to II,
however the number of such operations is also finite, since REIMPLY is bound to lower ¢; to
fix the reimplication-registered clause C, but the levels of variables are never increased and
are lower bounded by 0. <

Theorem 21 guarantees that, if every clause is either BCP-Safe or a reimplication-registered
missed lower implication at the beginning, there are no missed unit clauses and no missed
lower implications (since all the non-falsified clauses after BCP are stable). In addition, every
falsified clause must be contradicting, therefore the lowest conflict property is guaranteed.
Any falsified clause must belong to AF, therefore falsified clauses are not missed.

One could argue that the above properties would have held if BCP, e.g., had simply
backtracked to level 0. We sketch a proof that BCP makes progress.

By Theorem 21, there are no unit clauses after BCP, hence, if BCP does not backtrack,
it propagates all the unit clauses. By construction, BCP may backtrack only in F2C.
Hence, by Lemma 18, each time BCP backtracks, it either flips a literal at a lower level
(and propagates it by Theorem 21) or maintains at least one contradicting clause. These
arguments demonstrate that every time BCP backtracks, it makes progress by either flipping
a literal at a lower level and propagating (similarly to conflict analysis loop) or by simply
maintaining a contradicting clause C, where, in the latter case, if no backtracking and flipping
occurs later in BCP, the conflict analysis loop will use C' to backtrack, flip at a lower level
and invoke BCP once again to propagate. Formalizing the arguments further would require
extending our formal framework to reason about the whole CDCL SAT solving algorithm,
which is outside of the scope of this paper.

8:23

SAT 2022

	1 Introduction
	2 Preliminaries
	2.1 Incremental CDCL SAT Solving Review
	2.1.1 Boolean Constraint Propagation (BCP)
	2.1.2 Solve

	3 Core CDCL Algorithms in Intel® SAT Solver
	3.1 Solve
	3.2 AddClause
	3.3 The Case for Reimplication
	3.3.1 AddClause
	3.3.2 BCP

	3.4 Formal Framework
	3.5 Reimplication
	3.6 Boolean Constraint Propagation (BCP)
	3.6.1 F2C
	3.6.2 BCP

	4 IntelSAT's Algorithms and Heuristics
	4.1 Query-driven Tuning
	4.2 Conflict Analysis
	4.3 Decision Heuristic
	4.4 Backtracking and Restarting
	4.5 Clause Deletion

	5 Experimental Results
	6 Conclusion
	A Correctness Proofs
	A.1 Reimply
	A.2 F2C
	A.3 BCP

