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Abstract
The ring of adèles of a global field and its group of units, the group of idèles, are fundamental objects
in modern number theory. We discuss a formalization of their definitions in the Lean 3 theorem
prover. As a prerequisite, we formalize adic valuations on Dedekind domains. We present some
applications, including the statement of the main theorem of global class field theory and a proof
that the ideal class group of a number field is isomorphic to an explicit quotient of its idèle class
group.
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1 Introduction

Number theory is the branch of mathematics that studies the ring of integer numbers Z and
its field of fractions Q, the rational numbers. While this description may seem deceptively
simple, it is a very rich area, involving myriads of abstractions and techniques.

Consider for example the problem of finding all integer solutions to a polynomial equation
in several variables (a “Diophantine equation”). Perhaps the most famous of these equations
is xn + yn = zn, where n is an integer greater than 2. Fermat’s Last Theorem tells us
that this equation has no integer solutions for which the product xyz is nonzero. While
Fermat was able to state this conjecture around 1637, its proof was not concluded until 1995,
although some particular cases were established sooner.

The general proof, due to Wiles and Taylor, is built upon the combined work of hundreds
of mathematicians who over the last couple of centuries developed a rich arithmetic theory of
elliptic curves, modular forms and Galois representations. The key result is a special case of
the Taniyama–Shimura–Weil conjecture. If we want to be able to formalize a complete proof
of Fermat’s Last Theorem in a theorem prover, we first need to formalize all the necessary
ingredients.

In this paper we formalize the ring of adèles and the group of idèles of a global field
(a generalization of the field Q). As a consequence of our work we are able to state the
main theorem of global class field theory. Class field theory is needed for the proof of the

© María Inés de Frutos-Fernández;
licensed under Creative Commons License CC-BY 4.0

13th International Conference on Interactive Theorem Proving (ITP 2022).
Editors: June Andronick and Leonardo de Moura; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.de-frutos-fernandez@imperial.ac.uk
https://www.imperial.ac.uk/people/m.de-frutos-fernandez
https://orcid.org/0000-0002-5085-7446
https://doi.org/10.4230/LIPIcs.ITP.2022.14
https://github.com/mariainesdff/ideles-journal
https://mariainesdff.github.io/ideles-journal/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 Formalizing the Ring of Adèles of a Global Field

Taniyama–Shimura–Weil conjecture, which implies Fermat’s Last Theorem. Adèles and
idèles are used in many areas of current research, including the theory of automorphic forms
and the Langlands program, an ambitious group of conjectures that seek to establish deep
connections between geometry and number theory.

Our formalization was carried out using the Lean 3 theorem prover [9]. At the time of
writing this paper, the source code is in the process of being integrated in Lean’s mathematics
library mathlib. We provide a public repository1 containing the version of the code referred
to in this article and the associated documentation2 in HTML format. This is the first time
that adèles and idèles have been formalized in any theorem prover.

Before describing our formalization, we give a quick overview of the ring of adèles of Q.
When studying the rational numbers, both algebraic and analytic methods can be employed.
A natural way to do analysis over Q is by regarding it as a subspace of the real numbers
R, which are by definition the completion of Q with respect to the usual absolute value.
However, this is not the only absolute value that can be defined on Q: in fact, for every
prime number p, there is a p-adic absolute value | · |p and we can consider the corresponding
completion Qp of Q. Ostrowki’s theorem tells us that, up to equivalence, there are no more
nontrivial absolute values on the rational numbers.

We remark that while the field Qp of p-adic numbers is a basic object in number theory,
it was not formalized in any proof assistant until 2015, when Pelayo, Voevodsky, and Warren
formalized it in the Coq UniMath library [15]. The p-adic numbers were added to Lean’s
mathematical library mathlib in 2018, by R. Y. Lewis [12].

Since the various absolute values on Q provide us with different insights about the
rationals, a natural question is whether it is possible to study all of them simultaneously. A
first approximation would be to consider the product of the completions with respect to each
absolute value. However, for technical reasons it is better to work with the following subset
of the product:

AQ :=
∏′

p

Qp × R :=
{

(xp)p ∈
∏

p

Qp

∣∣∣∣∣ |xp|p ≤ 1 for all but finitely many p

}
× R.

AQ is a ring under component-wise addition and multiplication, it contains Q as a subring
via the diagonal map r 7→ ((r)p, r), and it can be endowed with a topology that makes it
into a locally compact topological ring. We call AQ the ring of adèles or adèle ring of Q and
AQ,f :=

∏′

p
Qp its finite adèle ring. The groups of units of these rings are respectively called

the idèle group IQ and finite idèle group IQ,f of Q.
The definitions of adèle ring and idèle group can be generalized to any global field K

[2]; see sections 3 and 4 for the details. Global fields are one of the main subjects of study
in algebraic number theory and they can be of two kinds: number fields, which are finite
extensions of the field Q, and function fields, which are finite extensions of the field Fq(t) of
rational functions over a finite field Fq.

Every global field is the field of fractions of a Dedekind domain, but the converse is not
true. However, the definition of finite adèle ring makes sense for any Dedekind domain, so
we have formalized it in that degree of generality.

1 https://github.com/mariainesdff/ideles-journal
2 https://mariainesdff.github.io/ideles-journal/
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1.1 Lean and mathlib
Lean 3 is a functional programming language and interactive theorem prover [9] based on
dependent type theory, with proof irrelevance and non-cumulative universes [7]. For an
introduction to Lean, see for instance [3].

This project is based on Lean’s mathematical library mathlib, which is characterized by
its decentralized nature with over 200 contributors. Due to the distributed organization of
mathlib, it is impossible to cite every author who contributed a piece of code that we used.
However, we remark that our formalization makes extensive use of the theory of Dedekind
domains [4] and of the theory of uniform spaces and completions, originally developed in the
perfectoid space formalization project [6].

In Lean’s core library and mathlib, type classes are used to handle mathematical
structures on types. For example, the type class ring packages two operations, addition and
multiplication, as well as a list of properties they must satisfy. Then, given a type R, we can
declare an instance [ring R], and Lean’s instance resolution procedure will infer that R has
a ring structure. Besides instance, whose behaviour we have just described, we use in this
paper the keywords variables, def, lemma and theorem, which have the evident meaning.

1.2 Structure of the paper
We start Section 2 with some background on Dedekind domains and their nonarchimedean
absolute values, which we then use to define the finite adèle ring and the finite idèle group
and explore how the latter is related to the group of invertible fractional ideals. In Section 3,
we build on this work to define the adèle ring, the idèle group and the idèle class group of a
number field, while in Section 4 we treat the function field case. In Section 5 we discuss two
applications of the idèle group to class field theory. Finally, we conclude Section 6.1 with
some implementation remarks and a discussion of future work connected to this project.

2 The finite adèle ring of a Dedekind domain

2.1 Dedekind domains and adic valuations
There are several equivalent definitions of Dedekind domain, three of which have been
formalized in mathlib [4]. We work with the one formalized in is_dedekind_domain : a
Dedekind domain R is an integrally closed Noetherian integral domain with Krull dimension
0 or 1 [14].

A Dedekind domain of Krull dimension 0 is a field. In this project we will only consider
Dedekind domains of Krull dimension 1, for which the maximal ideals are exactly the nonzero
prime ideals. Some examples are the integers Z, the Gaussian integers Z[i] := {a + bi |
a, b ∈ Z}, or the ring of univariate polynomials k[X] over a field k. All of these examples
are unique factorization domains; however, not every Dedekind domain is. For instance,
Z[
√
−5] := {a + b

√
−5 | a, b ∈ Z} is a Dedekind domain but not a unique factorization

domain, since elements like 6 = 2 · 3 = (1 +
√
−5) · (1−

√
−5) admit two genuinely distinct

factorizations.
The maximal spectrum of R is the set of its maximal ideals (implemented as a type

in Lean). The fraction field K of R is the smallest field containing R; its elements can be
represented by fractions r/s, where r and s are in R and s is nonzero. For example, the
fraction fields of Z, Z[i], and k[X] are respectively Q, Q(i) := {a + bi | a, b ∈ Q}, and the
field k(X) of rational functions over k.

ITP 2022



14:4 Formalizing the Ring of Adèles of a Global Field

variables (R : Type*) [comm_ring R] [is_domain R] [is_dedekind_domain R]
{K : Type*} [field K] [algebra R K] [is_fraction_ring R K]

-- Note : not the maximal spectrum if R is a field
structure maximal_spectrum :=
(as_ideal : ideal R)
(is_prime : as_ideal.is_prime)
(ne_bot : as_ideal ̸= ⊥)
variable (v : maximal_spectrum R)

Let R be a Dedekind domain (of Krull dimension 1). Then every nonzero ideal of R can be
written as a product of maximal ideals, and this factorization is unique up to reordering. In
particular, given an element r ∈ R and a maximal ideal v of R, we can count how many times
v appears in the factorization of the principal ideal (r), and this defines a nonarchimedean
additive valuation on R [10, Chapter II], that is, a function valv : R→ Z ∪ {∞} such that
1. valv(r) =∞ if and only if r = 0,
2. valv(rs) = valv(r) + valv(s) for all r, s in R, and
3. valv(r + s) ≥ min{valv(r), valv(s)} for all r, s in R.
The function valv is called the v-adic valuation on R. It can be extended to a valuation
on the fraction field K of R by defining valv(r/s) := valv(r)− valv(s). For example, when
R = Z and v = (p) is the ideal generated by a prime number, valv is the p-adic valuation on
Z and Q.

For both theoretical and implementation reasons, it is more convenient to work with the
multiplicative version of the valuation: given any real number nv > 1, we define a function
| · |v : R → n

Z∪{−∞}
v = nZ

v ∪ {0} sending r to n
−valv(r)
v . From the definition of valv, we

immediately deduce that | · |v has the following properties:
(i) |r|v = 0 if and only if r = 0,
(ii) |rs|v = |r|v|s|v for all r, s in R, and
(iii) |r + s|v ≤ max{|r|v, |s|v} for all r, s in R.
A function | · |v satisfying conditions (i) – (iii) is called a nonarchimedean absolute value
(note that the third condition is stronger than |r + s|v ≤ |r|v + |s|v). The choice of nv used
in the definition is not relevant, in the sense that any two choices of nv will yield equivalent
absolute values. If, instead of property (iii), the function | · |v satisfies only the weaker
condition |r + s|v ≤ |r|v + |s|v, we say that it is an archimedean absolute value.

We formalized the v-adic absolute value on R in mathlib using the structure valuation,
which consists on a function |·| from a ring R to a linear_ordered_comm_monoid_with_zero
Γ0 satisfying conditions (ii) and (iii), plus |0| = 0 and |1| = 1. We chose Γ0 equal to with_zero
(multiplicative Z), which is a way to represent nZ

v∪{0} in Lean : if T is a type that carries
some additive structure, then multiplicative T carries the corresponding multiplicative
structure. The definition with_zero is used to add a new element 0 to a given type.

In the code below, if r is a nonzero element of R, we use (associates.mk (ideal.span
r : ideal R)).factors to obtain the multiset of factors of the ideal (r) and we count
how many times the maximal ideal v appears in this factorization with (associates.mk
v.as_ideal).count. This count is returned as a natural number; after coercing to Z and
taking its negative, we use multiplicative.of_add to get the corresponding element of
multiplicative Z.

Let us briefly explain why we use associates.mk in this definition. Two elements of
a monoid are associated if they differ by multiplication by a unit, and this defines an
equivalence relation. In mathlib, given a monoid M, associates M is the quotient of M by
this equivalence relation, and associates.mk is the canonical map sending an element to its
equivalence class.
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Two ideals of a commutative ring are associated if and only if they are equal, so from a
mathematical point of view, the associated relation is trivial in this case. However, from an
implementation point of view, it is more convenient to work with associates than to work
directly with ideals, since the corresponding factorization API (that is, the collection of
available definitions and lemmas) is more extensive.

def int_valuation_def (r : R) : with_zero (multiplicative Z) :=
if r = 0 then 0 else multiplicative.of_add (-(associates.mk v.as_ideal).count

(associates.mk (ideal.span {r} : ideal R)).factors : Z)
def int_valuation : valuation R (with_zero (multiplicative Z)) :=
{ to_fun := v.int_valuation_def,

map_zero’ := int_valuation.map_zero’ v,
map_one’ := int_valuation.map_one’ v,
map_mul’ := int_valuation.map_mul’ v,
map_add_le_max’ := int_valuation.map_add_le_max’ v }

We extended int_valuation to a valuation on the fraction field K, by setting the
valuation of a fraction to be the valuation of the numerator divided by the valuation of the
denominator. We checked in lemma valuation_well_defined that this definition does not
depend on the choice of fraction used to represent an element of K.

def valuation_def (x : K) : (with_zero (multiplicative Z)) :=
let s := classical.some (classical.some_spec (is_localization.mk’_surjective

(non_zero_divisors R) x)) in
(v.int_valuation_def (classical.some (is_localization.mk’_surjective
(non_zero_divisors R) x)))/(v.int_valuation_def s)

lemma valuation_well_defined {r r’ : R} {s s’ : non_zero_divisors R}
(h_mk : is_localization.mk’ K r s = is_localization.mk’ K r’ s’) :
(v.int_valuation_def r)/(v.int_valuation_def s) =
(v.int_valuation_def r’)/(v.int_valuation_def s’)

We proved several properties of the valuation3, of which we remark the fact that for every
maximal ideal v of R, there exists a uniformizer πv ∈ K for the v-adic valuation, that is, an
element having absolute value |πv|v = n−1

v , or equivalently additive v-adic valuation 1.

lemma valuation_exists_uniformizer :
∃ (π : K), v.valuation_def π = multiplicative.of_add (-1 : Z)

We also provide some examples4 of explicit computations of 2-adic valuations of elements
of Z and Q.

Since | · |v is an absolute value on the Dedekind domain R and its field of fractions K, we
can complete R and K with respect to | · |v. We denote the respective completions by Rv

and Kv, and recall that Rv is an integral domain with field of fractions Kv.
We first formalize the definition of Kv using the theory of completions of valued fields

available in mathlib, which was originally developed as part of the formalization of perfectoid
spaces [6]. Among the possible ways to define Kv, this one was chosen because of its powerful
API : we can use the field_completion instance to recover the fact that Kv is a field, and
valued.extension_valuation to extend the v-adic valuation on K to a valuation on the
completion Kv. We denoted by adic_completion K v the completion of K with respect to
the v-adic valuation.

3 https://github.com/mariainesdff/ideles-journal/blob/master/src/valuation.lean
4 https://github.com/mariainesdff/ideles-journal/blob/master/src/examples.lean
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14:6 Formalizing the Ring of Adèles of a Global Field

def adic_valued : valued K (with_zero (multiplicative Z)) := ⟨v.valuation⟩

def adic_completion := @uniform_space.completion K (us’ v)
instance : field (v.adic_completion K) :=
@field_completion K _ (us’ v) (tdr’ v) _ (ug’ v)
instance valued_adic_completion :

valued (v.adic_completion K) (with_zero (multiplicative Z)):=
⟨@valued.extension_valuation K _ _ _ v.adic_valued)⟩

It can be shown that Rv is equal to the ring of integers of Kv, that is, the subring of Kv

consisting of elements of absolute value less than or equal to one. In our formalization, we
actually use this characterization to define Rv (which we called adic_completion_integers),
so that we automatically have an inclusion of Rv in Kv.

def adic_completion_integers : subring (v.adic_completion K) :=
@valuation.integer (v.adic_completion K) (with_zero (multiplicative Z)) _ _

v.valued_adic_completion.v

2.2 The finite adèle ring
Now that we have defined nonarchimedean absolute values on a Dedekind domain R and
their extension to K, we can attempt to simultaneously study all of them. In order to do
so, we define the finite adèle ring AR,f of R as the restricted product of the completions Kv

with respect to their ring of integers Rv, i. e.,

AR,f :=
∏

v

′

Kv :=
{

(xv)v ∈
∏

v

Kv

∣∣∣∣∣ xv ∈ Rv for all but finitely many v

}
,

where v runs over the set of maximal ideals of R. Recall that xv ∈ Rv is equivalent to
|xv|v ≤ 1, so AR,f is an immediate generalization of AQ,f .

Since AR,f is a subset of the product
∏

v Kv, it is easy to prove that it is a commutative
ring with component-wise addition and multiplication (one just needs to check that it is
closed under addition, negation and multiplication).

def K_hat := (Π (v : maximal_spectrum R), v.adic_completion K )
def finite_adele_ring’ := { x : (K_hat R K) // ∀f (v : maximal_spectrum R) in

filter.cofinite, (x v ∈ v.adic_completion_integers K) }
instance : comm_ring (finite_adele_ring’ R K) := . . .

In Lean, the notation {t : T // p t} is used to define the type of pairs ⟨t, p t⟩
where t is a term of type T that satisties some predicate p : T → Prop. Since we use this
construction to define finite_adele_ring’, given a finite adèle x : finite_adele_ring’
R K, we can use x.val to get the corresponding term of the product K_hat R K, and
x.property to access a proof that the component x.val v belongs to Rv for all but finitely
many maximal ideals v. Lean’s syntax to indicate that a certain property p holds for all but
finitely many terms of a type is ∀f (t : T) in filter.cofinite, p t.

We endow AR,f with the topology generated by the collection of sets {ΠvUv | Uv is open
and Uv = Rv for all but finitely many v} and prove that addition and multiplication on
AR,f are continuous for this topology, which makes AR,f into a topological ring. While these
proofs are not conceptually hard, their formalization turned out to be quite long. The main
reason is that, while on paper we can express that a subset U of AR,f is equal to a product
of subsets Vv of Kv by writing U =

∏
v Vv, this cannot be an equality in the formalization



M. I. de Frutos-Fernández 14:7

since the two sides of the equation have different types. Instead, we are forced to say that
there exists a collection of subsets Vv of Kv such that a finite idèle x = (xv)v belongs to U if
and only if xv belongs to Vv for all v, which adds some extra bookkeeping to the proof. A
second reason is that, when checking that addition (or multiplication) is continuous at the
pair of adèles (x, y), the argument has to be split in several cases depending on whether the
v components of x and y are integers, and whether the open sets Vv equal Rv.

def finite_adele_ring’.generating_set : set (set (finite_adele_ring’ R K)) :=
{ U : set (finite_adele_ring’ R K)

∃ (V : Π (v : maximal_spectrum R), set (v.adic_completion K)),
(∀ x : finite_adele_ring’ R K, x ∈ U ↔ ∀ v, x.val v ∈ V v) ∧
(∀ v, is_open (V v)) ∧
∀f v in filter.cofinite, V v = v.adic_completion_integers K }

instance : topological_space (finite_adele_ring’ R K) :=
topological_space.generate_from (finite_adele_ring’.generating_set R K)

For every element k ∈ K, there are finitely many maximal ideals v of R such that the
v-adic absolute value of k is greater than 1; hence (k)v is a finite adèle of R. The map
injK : K → AR,f sending k to (k)v is an injective ring homomorphism, which allows us to
regard K as a subring of AR,f . Note that we are using the fact that R has Krull dimension 1
to conclude the injectivity of this map, since if R had Krull dimension 0, then AR,f would
be the trivial ring, and injectivity would fail.

def inj_K : K → finite_adele_ring’ R K :=
λ x, ⟨(λ v : maximal_spectrum R, (coe : K → (v.adic_completion K)) x),

inj_K_image R K x⟩

One might wonder why we defined AR,f , instead of just working with the full product∏
v Kv. The main reason for this is that, while both AR,f and

∏
v Kv are topological rings

containing K as a subring, only the former is locally compact and contains K as a discrete
and co-compact subring. Since AR,f is in particular a locally compact topological group,
it is possible to define a (unique up to scalars) Haar measure on AR,f , which allows us to
integrate functions over AR,f . Tate famously used this integration theory in his thesis to
study the properties of Hecke L-functions of number fields. Note that Haar measures have
recently been formalized in mathlib [17].

2.2.1 Alternative definition of the finite adèle ring
There is a second characterization of the ring of finite adèles of R which is also widely used
in number theory. We start with the product R̂ :=

∏
v Rv over all maximal ideals of R and

observe that it contains R via the diagonal inclusion r 7→ (r)v. Hence, we can consider the
localization (

∏
v Rv)[ 1

R\{0} ] of R̂ at R \ {0}, consisting of tuples of the form ( rv

s )v where
rv ∈ Rv for all v and s ∈ R \ {0} ⊆ Rv \ {0}.

To define the topological ring structure on R̂[ 1
R\{0} ], we use the fact that for any ring S,

ring topologies on S form a complete lattice. In particular, given any map f : T → S from a
topological space T to a ring S, one can define the coinduced ring topology on S to be the
finest topology such that S is a topological ring and f is continuous. The complete lattice
structure was formalized as part of this project and is already a part of mathlib. We give
R̂[ 1

R\{0} ] the ring topology coinduced by the localization map (rv)v 7→ ( rv

1 )v from R̂ with
the product topology to R̂[ 1

R\{0} ].

ITP 2022



14:8 Formalizing the Ring of Adèles of a Global Field

It is well known that AR,f is isomorphic to (
∏

v Rv)[ 1
R\{0} ] as topological rings. Given an

element ( rv

s )v ∈ (
∏

v Rv)[ 1
R\{0} ], the absolute value | rv

s |v will be less than or equal to one,
except possibly at the finitely many v dividing the denominator s; hence ( rv

s )v is a finite
adèle and one easily sees that this map is an isomorphism of rings. Checking that it is also a
homeomorphism requires more work.

We formalized this second definition of the adèle ring in finite_adele_ring, but we have
not yet formalized the proof that the two definitions yield isomorphic topological rings. A
strategy to verify that the map described above is a homeomorphism boils down to checking
that the localization maps R̂ → R̂[ 1

R\{0} ] and R̂ → AR,f sending (rv)v to ( rv

1 )v are both
continuous and open; however, formalizing this would take some time and, since we do not
have immediate plans to use this second definition of the finite adèle ring, we leave it as
future work.

The finite_adele_ring definition has the advantage that, being defined as a localization,
finite_adele_ring R automatically inherits a commutative topological ring structure, while
for finite_adele_ring’ R this has to be proven by hand. However, we found that for
proving results such as the one described in Section 5.1, our first definition was easier to
work with.

def finite_adele_ring := localization (diag_R R K)
instance : comm_ring (finite_adele_ring R K) := localization.comm_ring
instance : algebra (R_hat R K) (finite_adele_ring R K) := localization.algebra
instance : is_localization (diag_R R K) (finite_adele_ring R K):=
localization.is_localization
instance : topological_space (finite_adele_ring R K) :=
localization.topological_space
instance : topological_ring (finite_adele_ring R K) :=
localization.topological_ring

2.3 The finite idèle group

The finite idèle group IR,f of R is the unit group of the finite adèle ring AR,f . It is a
topological group with the topology induced by the map IR,f → AR,f × AR,f sending x to
(x, x−1). This topology is finer than the subspace topology induced by the inclusion of IR,f

in AR,f , which is not a group topology since inversion fails to be continuous.

def finite_idele_group’ := units (finite_adele_ring’ R K)
instance : topological_space (finite_idele_group’ R K) := units.topological_space
instance : comm_group (finite_idele_group’ R K) := units.comm_group
instance : topological_group (finite_idele_group’ R K) := units.topological_group

Note that for every nonzero k ∈ K, the finite adèle (k)v is invertible, with inverse
(k−1)v. It follows that IR,f contains K∗ = K \ {0} as a subgroup. We formalize this fact by
defining a function inj_units_K from K∗ to IR,f and proving that it is an injective group
homomorphism. As in Section 2.2, the injectivity of this map requires the fact that R has
Krull dimension 1.

def inj_units_K : units K → finite_idele_group’ R K :=
λ x, ⟨inj_K R K x.val, inj_K R K x.inv, right_inv R K x, left_inv R K x⟩
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2.4 Relation to fractional ideals

The finite idèle group of R is closely related to its group of invertible fractional ideals. A
fractional ideal of R is an R-submodule I of K for which there exists an a ∈ R such that aI

is an ideal J of R. We say that I is invertible if there exists another fractional ideal I ′ such
that II ′ = R.

For a Dedekind domain R, every nonzero fractional ideal is invertible and can be factored
as a product vn1

1 · · · vnm
m of maximal ideals of R where the ni are integers, uniquely up to

reordering of the factors. We formalize this definition in fractional_ideal.factorization,
where we express I as a finprod over all maximal ideals of R, as follows.

The finprod of a function f : T → M from a type T to a commutative monoid M is
defined to be the product of all values f t as t ranges over T, if f t = 1 for all but finitely
many t; otherwise finprod f is defined to be one. The notation Πf t, f t can be used in
place of finprod f. Given a fractional ideal I, denote by nv the exponent of the maximal
ideal v in the factorization of I and let f : maximal spectrum(R) → fractional ideals(R)
be the function sending v to vnv . Since all but finitely many of the nv are zero, I is equal to
finprod f. Besides proving this, we provide some API to work with the exponents appearing
in the factorization.

lemma fractional_ideal.factorization (I : fractional_ideal (non_zero_divisors R) K)
(hI : I ̸= 0) {a : R} {J : ideal R}
(haJ : I = fractional_ideal.span_singleton (non_zero_divisors R)

((algebra_map R K) a)−1 * ↑J) :
Πf (v : maximal_spectrum R),

(v.as_ideal : fractional_ideal (non_zero_divisors R) K)^ ((associates.mk
v.as_ideal).count (associates.mk J).factors - (associates.mk
v.as_ideal).count (associates.mk (ideal.span{a})).factors : Z) = I

We can define a group homomorphism from IR,f to the group of invertible fractional
ideals by sending (xv)v ∈ IR,f to the product Πvvvalv(xv). Since for every (xv)v ∈ IR,f there
are finitely many maximal ideals v such that valv(xv) is nonzero, this product is actually
finite, so it indeed defines a nonzero fractional ideal of R.

def finite_idele.to_add_valuations (x : finite_idele_group’ R K) :
Π (v : maximal_spectrum R), Z :=

λ v, -(with_zero.to_integer ((valuation.ne_zero_iff valued.v).mpr
(v_comp.ne_zero R K v x)))

lemma finite_add_support (x : finite_idele_group’ R K ) :
∀f (v : maximal_spectrum R) in filter.cofinite,

finite_idele.to_add_valuations R K x v = 0 := . . .

def map_to_fractional_ideals.val :
(finite_idele_group’ R K) → (fractional_ideal (non_zero_divisors R) K) :=

λ x, Πf (v : maximal_spectrum R), (v.as_ideal : fractional_ideal
(non_zero_divisors R) K)^(finite_idele.to_add_valuations R K x v)

We show that this homomorphism is surjective and its kernel is the set IR,∞ of elements
(xv)v in IR,f having additive valuation zero at all v. Moreover, this map is continuous when
the group of invertible fractional ideals is given the discrete topology.
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3 Adèles and idèles of number fields

3.1 Number fields and their rings of integers
A number field K is a finite extension of the field Q of rational numbers [10]. Every finite
extension is algebraic, so every element k ∈ K is the root of a polynomial with coefficients
in Q. If moreover k is the root of a monic polynomial with integer coefficients, we say that
k is an algebraic integer. The algebraic integers of K form a subring OK , called the ring
of integers of K, which is a Dedekind domain of Krull dimension 1 in which every nonzero
ideal is of finite index.

Remember from the introduction that one motivation for defining the adèles of K was
to simultaneously study all the (equivalence classes of) nontrivial absolute values on K.
These absolute values can be split into two kinds: nonarchimedean and archimedean. The
nonarchimedean ones are exactly the v-adic absolute values associated to maximal ideals of
the ring of integers OK , discussed in section 2.1.

To obtain the archimedean absolute values, we first recall that we can find a Q-vector
space basis of K of the form {1, α, . . . , αn−1}, where n is the dimension of K over Q and
α is an element of K. This α is a root of a degree n polynomial fα with coefficients in Q.
For each real root r of fα, we get an embedding of K into the real numbers R (the map
sending α to r), and restricting the usual absolute value on R to the image of K, we get
an archimedean absolute value on K. Similarly, for every pair of complex conjugate roots
(s1, s2) of fα, we get a pair of embeddings of K into the complex numbers C, and we can
restrict the complex absolute value to the image of K under one of them to get an absolute
value on K. Note that the two embeddings coming from a conjugate pair yield equivalent
absolute values.

3.2 The ring of adèles
Let K be a number field. We define the ring of adèles of K as the restricted product of the
completions Kv of K with respect to each absolute value | · |v on it: AK :=

∏′

|·|v

Kv. That

is, AK is the subring of the product
∏

|·|v

Kv consisting on tuples (av)v such that |av|v ≤ 1
for all but finitely many v. Since each nonarchimedean absolute value | · |v corresponds to a
maximal ideal v of OK , and there are finitely many archimedean absolute values, we can
rewrite this definition as

AK :=
∏′

v max.
Kv ×

∏
|·|v arch.

Kv =
∏′

v max.
Kv × (R⊗Q K),

where we have used a theorem from algebraic number theory to get the second equality. Note
that

∏′

v
Kv is the finite adèle ring associated to the Dedekind domain OK ; we will denote

it by AK,f and call it the finite adèle ring of K. We formalize these definitions as follows:
variables (K : Type) [field K] [number_field K]
def A_K_f := finite_adele_ring’ (ring_of_integers K) K
def A_K := (A_K_f K) × (R ⊗[Q] K)

We proved in Section 2.2 that A_K_f is a topological commutative ring. The product
and tensor product of commutative rings are commutative rings, so A_K is a commutative
ring. To prove that it is a topological commutative ring, it therefore suffices to show that
R ⊗Q K is a topological ring. We do this by using the fact that there are isomorphisms
Rn ≃ R⊗Q Qn ≃ R⊗Q K, where n is the dimension of K over Q.
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Note that Rn is represented in Lean by the type fin n → R of functions from {1, . . . , n}
to R, and it is a topological commutative ring when endowed with the product topology
Pi.topological_space:
variables (n : N)
instance : ring (fin n → R) := pi.ring
instance : topological_space (fin n → R) := Pi.topological_space
instance : has_continuous_add (fin n → R) := pi.has_continuous_add’
instance : has_continuous_mul (fin n → R) := pi.has_continuous_mul’
instance : topological_semiring (fin n → R) := topological_semiring.mk
instance : topological_ring (fin n → R) := topological_ring.mk

We then define the topology on R ⊗Q K as the ring topology coinduced by the map
Rn → R⊗Q K. Finally, A_K becomes a topological ring with the product topology.
def linear_map.Rn_to_R_tensor_K :

(fin (finite_dimensional.finrank Q K) → R) →l[R] (R ⊗[Q] K) :=
linear_map.comp (linear_map.base_change K) (linear_map.Rn_to_R_tensor_Qn _)
def infinite_adeles.ring_topology : ring_topology (R ⊗[Q] K) :=
ring_topology.coinduced (linear_map.Rn_to_R_tensor_K K)
instance : topological_space (R ⊗[Q] K) :=
(infinite_adeles.ring_topology K).to_topological_space
instance : topological_ring (R ⊗[Q] K) :=
(infinite_adeles.ring_topology K).to_topological_ring
instance : topological_space (A_K K) := prod.topological_space
instance : topological_ring (A_K K) := prod.topological_ring

We end this section by recalling that AK,f contains the field K as a subring via the
diagonal map sending k ∈ K to the finite adèle (k)v, which is injective due to the fact that
the ring of integers of a number field is not a field5. Combining this with the natural inclusion
k 7→ 1⊗ k of K in R⊗Q K, we can also view K as a subring of AK .
def inj_K_f : K → A_K_f K := inj_K (ring_of_integers K) K
def inj_K : K → A_K K :=
λ x, ⟨inj_K_f K x, algebra.tensor_product.include_right x⟩

3.3 The group of idèles and the idèle class group
We define the group IK of idèles of K as the unit group of the ring of adèles AK , and the
group IK,f of finite idèles as the unit group of AK,f .
def I_K_f := units (A_K_f K)
def I_K := units (A_K K)

For every nonzero k ∈ K, the finite adèle (k)v is a unit (with inverse (k−1)v), and so is the
adèle ((k)v, 1⊗ k). Therefore, we can regard K∗ as a subgroup of the (finite) idèle group,
which allows us to define the idèle class group CK of K as the quotient of IK by K∗. CK is
a topological group with the quotient topology.
def C_K := (I_K K) / (inj_units_K.group_hom K).range

The name idèle class group is justified by the close relation between CK and the ideal
class group of K, which we discuss in section 5.1.

5 https://mariainesdff.github.io/ideles-journal/adeles_number_field.html#number_field.
ring_of_integers.not_field
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4 Adèles and idèles of function fields

Let k be a field, k[t] be the ring of polynomials in one variable over k and k(t) be the field
of rational functions (quotients of polynomials) over k. A function field F is a finite field
extension of k(t) [16].

variables (k F : Type) [field k] [field F] [algebra (polynomial k) F]
[algebra (ratfunc k) F] [function_field k F]
[is_scalar_tower (polynomial k) (ratfunc k) F] [is_separable (ratfunc k) F]

All of the absolute values that can be defined over k(t) are nonarchimedean: there is one
v-adic absolute value for each maximal ideal v of k[t], plus one extra absolute value, called
the place at infinity | · |∞, defined by setting

∣∣∣ f
g

∣∣∣
∞

= qdeg(f)−deg(g), where q > 1 is a fixed
real number. The completion of k(t) with respect to this absolute value is the field k((t−1))
of formal Laurent series in t−1.

Following the strategy from Section 2.1, we formalize | · |∞ in Lean under the name
infty_valuation and we let kt_infty denote the completion of k(t) with respect to | · |∞.

def infty_valuation_def (r : ratfunc k) : with_zero (multiplicative Z) :=
if (r = 0) then 0 else

(multiplicative.of_add ((r.num.nat_degree : Z) - r.denom.nat_degree))
def kt_infty := @uniform_space.completion (ratfunc k) (usq’ k)

More generally, all of the absolute values on a function field F over k are nonarchimedean.
Most of them correspond to maximal ideals of the integral closure of k[t] in F . The finite
adèle ring of F is the restricted product

AF,f :=
∏′

v

Fv :=
{

(xv)v ∈
∏

v

Fv

∣∣∣∣∣ |xv|v ≤ 1 for all but finitely many v

}
,

where v runs over these maximal ideals. However, F also contains a finite collection of
nonarchimedean absolute values coming from the absolute value | · |∞ on k(t). In order to
include these absolute values as well, we define the adèle ring of F as the product

AF := AF,f × (k((t−1))⊗k(t) F ).

def A_F_f := finite_adele_ring’ (ring_of_integers k F) F
def A_F := (A_F_f k F) × ((kt_infty k) ⊗[ratfunc k] F)

The (finite) adèle ring of F is a topological commutative ring. We define the (finite) idèle
group of F to be its group of units, respectively denoted IF,f and IF , with the topology
induced by the map x 7→ (x, x−1) as in Section 2.3.

The idèle class group CF of F is the quotient of IF by F ∗. Since, as in the number field
case, the ring of integers of F is not a field6 and hence the diagonal inclusion of F ∗ in IF is
injective, CF is a topological group with the quotient topology.

def I_F_f := units (A_F_f k F)
def I_F := units (A_F k F)
def C_F := (I_F k F) / (inj_units_F.group_hom k F).range

6 https://mariainesdff.github.io/ideles-journal/adeles_function_field.html#function_
field.not_is_field
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Note that in number theory one is usually interested in the adèle ring of a function field
over a finite field k = Fq. However, AF can be defined for any choice of field k, so we do not
require k to be finite in our formalization; instead, this finiteness assumption will have to be
included in the lemmas that need it.

5 Class Field Theory

Class field theory is a branch of number theory whose goal is to describe the Galois abelian
extensions of a local or global field K, as well as their corresponding Galois groups, in terms
of the arithmetic of the field K [1, 8, 13]. Recall from the introduction that a global field is
either a number field or a function field over a finite field Fq. A local field is the completion
of a global field with respect to an absolute value. Examples of local fields include the real
numbers R, the complex numbers C, the p-adic numbers Qp, or the field Fq((X)) of formal
Laurent series over a finite field.

In this section we discuss two class field theory results involving the definition of the idèle
class group. The first one is a proof that the ideal class group of a global field is isomorphic
to a quotient of its idèle class group, which we describe explicitly. The second one is a
formalization of the statement of the main theorem of global class field theory.

5.1 The ideal class group is a quotient of the idèle class group
We have seen in Section 2.4 that, for any Dedekind domain R, there is a continuous surjective
group homomorphism from the finite idèle group IR,f to the group Fr(R) of invertible
fractional ideals of R, sending (xv)v to

∏
v vvalv(xv).

If K is a number field with ring of integers R, we can extend this map to a group
homomorphism IK → Fr(R) by pre-composing with the natural projection IK → IK,f ,
obtaining again a continuous surjection. It is easy to see that an idèle ((xv)v, r ⊗Q k) ∈ IK

belongs to the kernel of this map, which we denote IK,∞, if and only if valv(xv) is equal to
zero for every maximal ideal v of R. We wrote this map in Lean and formalized proofs of
each of the listed properties.

-- For a Dedekind domain R with fraction field K :
def map_to_fractional_ideals.val :

(finite_idele_group’ R K) → (fractional_ideal (non_zero_divisors R) K) :=
λ x, Πf (v : maximal_spectrum R), (v.as_ideal : fractional_ideal

(non_zero_divisors R) K)^(finite_idele.to_add_valuations R K x v)

lemma I_K.map_to_fractional_ideals.surjective :
function.surjective (I_K.map_to_fractional_ideals K) := . . .

lemma I_K.map_to_fractional_ideals.continuous :
continuous (I_K.map_to_fractional_ideals K) := . . .

lemma I_K.map_to_fractional_ideals.mem_kernel_iff (x : I_K K) :
I_K.map_to_fractional_ideals K x = 1 ↔ ∀ v : maximal_spectrum

(ring_of_integers K), finite_idele.to_add_valuations (ring_of_integers K) K
(I_K.fst K x) v = 0 := . . .

Now, we want to show that this map induces a homomorphism at the level of class
groups. The ideal class group Cl(K) of K is defined as the quotient of the group of invertible
fractional ideals of K by the subgroup of principal fractional ideals. It is an important object
in algebraic number theory, since it can be interpreted as a measure of how far the ring of
integers of K is from being a unique factorization domain.
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Note that the idèle ((k)v, 1 ⊗Q k) corresponding to a nonzero k ∈ K gets mapped to∏
v vvalv(k), which is the principal fractional ideal generated by k. Hence, we get an induced

map from the idèle class group CK to the ideal class group Cl(K). Using the universal
property of the quotient topology, we conclude that this map CK → Cl(K) is a continuous
surjective homomorphism, with kernel IK,∞K∗/K∗. Therefore, by the first isomorphism
theorem for topological groups, Cl(K) is isomorphic to the quotient of CK by IK,∞K∗/K∗.

The complete formalization of this proof can be found in the file ideles_number_field7.
The theorem also holds in the function field case, with a completely analogous proof available
in the file ideles_function_field8. By providing this proof, we show that our formalization
of the adèles and idèles of a global field can be effectively used in practice to prove graduate-
level number theoretic results.

5.2 The main theorem of global class field theory

Let K be a number field, K an algebraic closure of K and GK := GalK/K the Galois
group of the extension K/K. The topological group GK is isomorphic to the inverse limit
lim←−L

Gal(L/K) over all finite extensions L/K, with the inverse limit topology. We consider
the topological abelianization Gab

K := GK/[GK , GK ] of GK , defined as the quotient of GK by
the topological closure of the commutator subgroup of GK . The group Gab

K is a topological
group with the quotient topology, because [GK , GK ] is a normal subgroup of GK .

An exercise in infinite Galois theory shows that Gab
K is the Galois group of the maximal

abelian extension Kab of K. The main theorem of global class field theory allows us to
describe this Galois group in terms of the idèle class group of K :

▶ Theorem 1 (Main Theorem of Global Class Field Theory). Let K be a number field. Denote
by π0(CK) the quotient of CK by the connected component of the identity. There is an
isomorphism of topological groups π0(CK) ≃ Gab

K .

We formalized the statement of this theorem in two parts: we first claimed the existence of
a group isomorphism main_theorem_of_global_CFT.group_isomorphism between π0(CK)
and Gab

K and then in main_theorem_of_global_CFT.homeomorph we stated that this map
is also a homeomorphism. Note that a complete pen-and-paper proof of this theorem spans
hundreds of pages, so we have not attempted to formalize it.

variables (K : Type) [field K] [number_field K]
theorem main_theorem_of_global_CFT.group_isomorphism : (number_field.C_K K) /

(subgroup.connected_component_of_one (number_field.C_K K)) ≃* (G_K_ab K) :=
sorry
theorem main_theorem_of_global_CFT.homeomorph :
homeomorph ((number_field.C_K K) / (subgroup.connected_component_of_one

(number_field.C_K K))) (G_K_ab K) :=
{ continuous_to_fun := sorry,

continuous_inv_fun := sorry,
..(main_theorem_of_global_CFT.group_isomorphism K) }

7 https://github.com/mariainesdff/ideles-journal/blob/master/src/ideles_number_field.lean
8 https://github.com/mariainesdff/ideles-journal/blob/master/src/ideles_function_field.

lean

https://github.com/mariainesdff/ideles-journal/blob/master/src/ideles_number_field.lean
https://github.com/mariainesdff/ideles-journal/blob/master/src/ideles_function_field.lean
https://github.com/mariainesdff/ideles-journal/blob/master/src/ideles_function_field.lean
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6 Discussion

6.1 Design choices
Now that we have described all of the number theoretical content of the paper, we can say a
few words about the choices we had to make in the formalization process. When a number
theorist defines the ring of adèles, they will typically let K be a global field and define its
ring of adèles as the restricted product AK :=

∏′

v
Kv, where v runs over the set of places of

K, that is, over the equivalence classes of nontrivial absolute values on K.
The first thing that we observe is that, in Lean, we need to treat number fields and

function fields separately. Suppose first that K is a number field. The next observation is
that we cannot currently construct the type of all places of K, and we need to use different
tools to work with the archimedean and nonarchimedean places.

Similarly, while in the function field case all places are nonarchimedean, we do not yet
have a convenient way to obtain the set of all places of a function field (this would require
an algebraic geometric interpretation not yet formalized); instead, we have to distinguish
between the places coming from the ring of integers of the field place, and the places at
infinity (those coming from the absolute value | · |∞ on k(t)).

However, these descriptions show that, regardless of whether K is a number field or a
function field, its finite adèle ring can be described as the restricted product AK,f :=

∏′

v
Kv,

where v runs over the maximal ideals of the ring of integers of K. In both cases, this ring of
integers is a Dedekind domain. Moreover, the definition AR,f :=

∏′

v
Frac(R)v makes sense

for any Dedekind domain R with field of fractions Frac(R), regardless of whether Frac(R) is
a global field.

We therefore chose to define finite_adele_ring’ for any Dedekind domain R. This
allowed us to unify the number and function field cases in a big part of the theory, and to
show that some properties of AR,f hold in greater generality than the one typically considered
in informal mathematics.

6.2 Implementation comments
In this section we discuss some technical details of our formalization. The first one has to do
with the universe in which the Dedekind domain R and its function field K are defined. Lean
is based on a version of dependent type theory with a countable hierarchy of non-cumulative
universes: Type (short for Type 0) is the universe of small or ordinary types, Type 1 is a
larger universe of types which contains Type as an element, and, in general, for any natural
number n > 0, there is a Type n which contains Type n - 1 as an element. There is an
extra type, called Prop, which has some special properties. We can declare universe variables
explicitly, or use Type* to avoid naming the arbitrary universe.

universe u
variables {T : Type u} {S : Type*}

Dedekind domains and their fields of fractions can be defined over any universe, as we
did at the beginning of Section 2.1.

variables (R : Type*) [comm_ring R] [is_domain R] [is_dedekind_domain R]
{K : Type*} [field K] [algebra R K] [is_fraction_ring R K]
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However, the ring Z has type Type, and hence so does with_zero (multiplicative Z).
When we started to formalize adic valuations on Dedekind domains, mathlib’s definition of
the class valued required the ring R and the linear_ordered_comm_group_with_zero Γ0
to live in the same universe:

universe u
class valued (R : Type u) [ring R] :=
(Γ0 : Type u)
[grp : linear_ordered_comm_group_with_zero Γ0]
(v : valuation R Γ0)

This forced us to require our Dedekind domain R and its field of fractions K to live in Type.
However, we observed that the definition of valued could be generalized to allow Γ0 to have
a different type than the ring R, without any negative consequences to the library. After this
observation and some input from the mathlib community, in March 2022 the definition of
valued was changed to the following:

class valued (R : Type u) [ring R] (Γ0 : out_param (Type v))
[linear_ordered_comm_group_with_zero Γ0] :=

(v : valuation R Γ0)

which in particular allows R and Γ0 to live in different universes. With this design, we can
use the variable declaration below to indicate that the ring R has a canonical valuation with
values on Γ0. The out_param in the definition of the class valued has the effect that, when
proving lemmas about the valued structure on R, Lean will pick Γ0 based on the valued
instance it found.

universes u v
variables {R : Type u} [ring R] {Γ0 : Type v }

[linear_ordered_comm_group_with_zero Γ0] [valued R Γ0]

Secondly, we ran into a computability issue in Lean 3. A function is computable if
there is an algorithm that can produce the output corresponding to every possible input.
Every computable definition in Lean 3 is compiled to bytecode at definition time. However,
functions that rely on the axiom of choice and therefore do not admit a computational
interpretation are also allowed in Lean. These functions have to be declared using the
noncomputable modifier.

When a definition is stated in Lean 3, a computability check is deployed, even if the
definition has been marked as noncomputable. If a computable definition has been labeled
as noncomputable, or a noncomputable definition is missing the label, an error will be raised.

We found that in some definitions, the computability check was causing unexpected
timeouts. We would like to thank Gabriel Ebner for finding the cause of these errors and
providing a first solution to it, the force_noncomputable definition, with a corresponding
simp lemma.

noncomputable def force_noncomputable {α : Sort*} (a : α) : α :=
function.const _ a (classical.choice ⟨a⟩)
@[simp] lemma force_noncomputable_def {α} (a : α) : force_noncomputable a = a :=
rfl

The trick is that, given a value a, force_noncomputable uses the axiom of choice to return an
element of the singleton {a}. That is, it returns the original value; however, since the axiom
of choice is explicitly invoked, the definition is noncomputable. When force_noncomputable
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is pre-composed with any definition in Lean, the new definition is noncomputable (regardless
of whether the original definition was), and the computability check is able to identify this
without timing out.

In March 2022, the Lean mantainers added a new noncomputable! modifier. Definitions
with this label do not have their computability checked, get marked as noncomputable when
added to the environment, and do not get compiled at definition time. Hence this modifier
can be used to solve the issue we found above (in which the computability check was timing
out), and it also helps in the case where a definition is correctly identified as computable but
the compiler times out when producing the corresponding bytecode.

As an example, the definition of the coercion map from AR,f to
∏

v Kv was causing an
“deterministic timeout” error, which was solved by using the noncomputable! modifier.

noncomputable! def coe’ : (finite_adele_ring’ R K) → K_hat R K := λ x, x.val

6.3 Future work
There are several natural directions for future formalization work stemming from this project.
We list some of them, starting with the most immediate goals.

Show that the two definitions of the finite adèle ring formalized in Section 2.2 give
isomorphic topological rings. Constructing an isomorphism of rings between them will be
easy, but checking that it is a homeomorphism will require some work.
Formalize topological results about the adèle ring and the idèle group, such as the proof
that AK is locally compact and contains K as a discrete co-compact subring.
Given a finite extension L/K of global fields, formalize the isomorphism AL ≃ L⊗ AK

and its consequences.
Keep stating, and eventually proving, results from class field theory.
Formalize Tate’s thesis.

More generally, having the definitions of AK and IK opens the door to formalizing concepts
and results used in state-of-the-art number theory, including the definition of automorphic
forms [5] and the statement of the Langlands correspondence [11]. Note that only some cases
of the Langlands correspondence have been proven, and the Langlands program is currently
one of the main research areas in number theory.
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