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Abstract
We significantly improve the performance of the E automated theorem prover on the Isabelle
Sledgehammer problems by combining learning and theorem proving in several ways. In particular,
we develop targeted versions of the ENIGMA guidance for the Isabelle problems, targeted versions of
neural premise selection, and targeted strategies for E. The methods are trained in several iterations
over hundreds of thousands untyped and typed first-order problems extracted from Isabelle. Our
final best single-strategy ENIGMA and premise selection system improves the best previous version
of E by 25.3% in 15 seconds, outperforming also all other previous ATP and SMT systems.
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1 Introduction

Formal verification in interactive theorem provers (ITPs) increasingly benefits from general
proof automation in the form of hammers [7] and guided tactical provers [4, 13, 36]. In
particular, the Sledgehammer system [8] for Isabelle is today perhaps the most widely
used strong general proof automation system in ITP. In the recent years, machine learning
and related AI methods for proof automation have also been significantly developed [48].
Such methods are relevant for hammers in at least three ways: (i) learning-based premise
selection [2, 3, 12,37,39,40] usually improves the heuristic filters used by the hammers, (ii)
learning-based internal guidance of the automated theorem provers (ATPs) used for the
heavy lifting in the hammers usually improves on heuristic guidance of ATPs [16,22,24,26,
27, 29, 41, 49], and (iii) targeted theorem proving strategies developed by automated strategy
invention systems often improve on manually designed ATP strategies [20,23,42,47].
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Most recent versions of such AI/TP methods have been developed mainly on a fixed
Mizar/MPTP corpus [28], to allow easy comparisons with previously developed methods.
In particular, there the strongest 3-phase single-strategy version of the ENIGMA system
(based on E [43, 44]) proves 56.35% of the holdout (test) toplevel theorems in 30s when
using human-selected premises [16]. In higher time limits and by combining human and
learning-based premise selection, ENIGMA and Vampire [32] today prove 75% of the toplevel
Mizar theorems.1 These are good reasons for transferring the methods to other ITP hammers.

A direct motivation for developing such AI/TP methods for Isabelle was a recent request
from the Sledgehammer developers for an optimized version of ENIGMA for their GRUNGE-
style [9] evaluation of multiple ATP systems and formats [11]. While it was not possible to
do the work described in this paper on a two-week’s notice, it prompted us to start exporting
and analyzing the Isabelle datasets and developing suitable methods and systems for them.

1.1 Contributions
We significantly improve the performance of the E automated theorem prover on the Isabelle
Sledgehammer problems by combining learning and theorem proving in several ways. First,
in Section 2 we extract two large datasets of untyped first-order (FOF) and many-sorted
first-order (TFF, TF0) Isabelle Sledgehammer problems, using the Isabelle tool Mirabelle.
This results in almost 300000 aligned problems in each of the exports, spanning in total
1902 Isabelle theory files and covering a large number of topics in mathematics and formal
verification. To our knowledge, these are so far the largest corpora of Isabelle Sledgehammer
problems available today for training and evaluation of AI/TP systems. Section 2.1 analyzes
the corpora, showing that they significantly differ from other large AI/TP datasets such as
the Mizar/MPTP toplevel theorems [28] and the HOL4/GRUNGE toplevel theorems [9].

In Section 3, we find optimized E strategies and parameters for the corpora, which
already improve on standard E on the problems. They are suitable also for combinations
with the ENIGMA guidance, which is introduced in Section 4. We also describe there
several extensions to ENIGMA that were developed to handle the Isabelle untyped and typed
problems. Section 5 discusses the neural premise selection that we use and its extensions
for the typed Isabelle setting. Section 6 evaluates the methods in several loops interleaving
proving and learning from the proofs. Our ultimate performance results are: (i) improving in
15s the original E auto-schedule with the MePo filter by 25.3%, when using a single ENIGMA
strategy with the best neural predictor, (ii) considerably improving over all other ATPs and
SMTs by a single ENIGMA strategy combined with the best neural predictor, (iii) improving
the performance of all other systems by using the neural predictor, and (iv) outperforming
with ENIGMA all other ATPs and SMTs even when they are combined with our predictor.

2 Isabelle Problems

To train and evaluate the Isabelle ENIGMA, we need a dataset of Sledgehammer problems,
which correspond to the proof obligations that users encounter when using Isabelle as an
interactive prover. We decided to focus on all proof-intermediate goals visible to the users.
This task has been tried as early as in the first versions of the MPTP system [46]. In Isabelle,
it has been known as the “Judgement Day” evaluation, based on the paper with that title [8].
We have used the Isabelle/Mirabelle infrastructure to export all the problems encountered

1 https://github.com/ai4reason/ATP_Proofs/blob/master/75percent_announce.md
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when building 179 Isabelle sessions. These sessions originate from 75 sessions distributed
with Isabelle 2021-1, 80 selected sessions from the AFP [6], as well as 24 sessions distributed
as part of IsaFoR [45]. All the sessions include in total 1902 Isabelle theory files. The sessions
with most problems can be categorized as Analysis, Algebra, Java Semantics, Category
Theory, Protocols, Term Rewriting, and Probability Theory with the largest 26 sessions
listed in Table 1.

Table 1 The largest included sessions and their respective problem numbers.

HOL-Nonstandard-Analysis 1699 Groebner-Macaulay 4227
Category2 1776 HOL-ODE-Numerics 4422
Poincare-Bendixson 1983 HOL-MicroJava 5183
HOL-Number-Theory 2071 HOL-Auth 5304
MonoidalCategory 2238 HOL-Complex-Analysis 5489
HOL-Cardinals 2268 Groebner-Bases 5710
Core-DOM 2280 HOL-Computational-Algebra 6280
HOL-IMP 2324 Jordan-Normal-Form 6786
HOL-Data-Structures 2353 Category3 6818
Dirichlet-Series 2435 HOL-Probability 6954
Slicing 2517 HOL-Decision-Procs 7103
HOLCF 2524 CR 7341
Formal-SSA 2899 HOL-Bali 7804
HOL-UNITY 2938 HOL 7818
HOL-Homology 3022 Goedel-HFSet-Semanticless 8697
HOL-ex 3047 HOL-Algebra 9674
CTRS 3328 HRB-Slicing 10052
HOL-Hoare-Parallel 3733 Jinja 11520
Signature-Groebner 3762 HOL-Library 15627
Valuation 3786 Bicategory 16965
Ordinary-Differential-Equations 3885 HOL-Nominal-Examples 17145
Smith-Normal-Form 4045 Group-Ring-Module 19718
Differential-Dynamic-Logic 4158 HOL-Analysis 44172

The Sledgehammer export allows multiple encodings of types, lambdas, and other op-
tions [5]. Since we are interested in the performance of learning-based first-order ATPs, we
exported the problems in two first-order formats: TFF (also called TF0), i.e., many-sorted
first-order logic, and FOF, i.e. untyped first-order logic. For all problems we pre-selected 512
relevant premises using the heuristic MePo filter [35] before the translation. This slightly
overshoots the best performance (256 premises) obtained by most of the top systems2 on the
FOF and TFF problems in the recent Sledgehammer evaluation [11]. We use 512 premises
because the heuristic MePo filter is known to be weaker than state-of-the-art selection systems
(possibly pruning out some good premises too early), and also because the 512-premise results
of the best systems in [11] are nearly identical3 to the 256-premise results.4

2 Vampire is an exception: in [11] it is best with 512 premises, likely due to its optimized SInE filter [19].
3 In particular, CVC5 - the winner in [11] - is only 3.7% (2626/2533) stronger with 256 premises.
4 We could have used also 1024 premises, however already with 512 premises the datasets are becoming

very large, making also the training of the ML systems technically challenging.
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For the other parameters, for E and Vampire we used the ones corresponding to the slice
selected when no-slicing is used for a particular prover. Additionally, when extracting the
FOF problems, we used the parameters used for such a slice in first-order E in the previous
Isabelle version. These parameters have been optimized by the Isabelle/Sledgehammer
developers based on experiments described in previous papers, e.g., [5]. To ease comparison
with [11], we use the polymorphic g?? [11] encoding together with lambda-lifting [21] for
FOF and the native monomorphic encoding with lambda-lifting for TFF0.

Since the Mirabelle export has occasional problems with some theories and encodings
(theory compilation fails or does not terminate with a particular export), we initially get
different numbers of problems for the FOF (293587) and TFF (386619) exports. To align
the two exports, we remove the non-overlapping problems, thus obtaining 276363 problems
both in FOF and TFF that correspond to each other. As usual in machine learning, we
then divide this dataset into the training, development (validation) and holdout (ultimate
testing) parts. This is done by randomly shuffling the list of the problems and dividing the
shuffled list 90:5:5. This means that we have 248727 problems to train our systems on, 13818
development problems for controlling the hyperparameters of the learning and building the
best portfolios, and 13818 holdout problems on which the trained systems are ultimately
evaluated. We also sometimes use a 13818-big subset of the training set (small trains). The
total size of the FOF dataset is about 50G compressed by gzip to 5.4G, while for the TFF
dataset it is about 90G, compressed by gzip to 7.7G. The complete datasets are publicly
released at our accompanying repository.5

The translation of the Isabelle/HOL problems to TPTP does not preserve the names
across the problems. The naming inconsistency can be as simple as the naturals being
given the constant name nat or nat2 in an encoded TPTP problem (this one happens
because the projection int-to-nat is also called nat in Isabelle), depending on the order of
defined constants in a given problem. Additionally, Isabelle mangles names as part of the
encoding. For example in the basic theorem List.distinct, which states that an empty
list is not equal to an applied list constructor, an instance of the empty list can look like
nil_Pr1308055047at_nat for an empty list of products of pairs of naturals. This motivates
our use of anonymous methods for ENIGMA and premise selection in this work (Section 4,5).

2.1 Differences to Related ITP/ATP Datasets
The FOF and TFF Isabelle exports we use are intended to be sound but generally sacrifice
completeness to optimize ATP performance. The possible sources of incompleteness include:

The heuristic premise filter [35] pre-selecting only a fixed number of premises that are
generally not guaranteed to justify the conjecture in Isabelle.
In the encodings, polymorphic types (such as ’a list) are heuristically pre-instantiated
(monomorphized) by ground types. This is an established optimization going back at least
to Harrison’s implementation of the MESON tactic [18] in HOL Light [17], which can be
seen as a particular kind of an abstraction step when reasoning in large theories. Without
a full abstraction-refinement loop [34], this is an obvious source of incompleteness, in a
similar way as premise selection with a fixed premise limit.
Limited treatment of higher-order constructs such as lambda abstraction, typically not
fully encoded in the FOF and TFF problems. The encodings employ lambda-lifting,
which is usually improving the ATP performance in practice, but is generally incomplete.

5 https://github.com/ai4reason/isa_enigma_paper
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When developing new strategies, ATPs and premise selection methods, such optimizations
may be premature, having different beneficial or adverse effects on the methods. In particular,
in the experiments conducted by us, we detect small amount of incompleteness already with
the baseline systems. For example, CVC5 reports 256 problems in the whole TFF dataset to
be countersatisfiable. On the other hand, once a proof is found, it is typically comparatively
easy to replay from the minimized set of premises by any ATP.

In this sense, the monomorphized Isabelle datasets considerably differ from other datasets
used for large AI/TP experiments such as the toplevel theorems in the Mizar and HOL 4
libraries [9]. There, replaying the minimized proofs may still be quite hard for ATPs, and the
exports are typically striving for completeness, fully delegating various abstraction-refinement
methods such as monomorphization and premise selection to the AI/TP systems that may
implement more complicated procedures for them.

We measure this in more detail by comparing the clausified premise-minimized ATP
problems solved by Vampire and E on the Isabelle FOF dataset (88888 problems) and the
Mizar dataset (113332 problems) using several metrics computed in Table 2. The table

Table 2 Statistics of the Isabelle and Mizar clausified premise-minimized FOF problems solvable
by E and Vampire. AC is the average number of clauses per problem, VC is the average number of
clauses with variables per problem, EC is that for clauses with equality, iProver-10s is the number
of problems solved by iProver limited to inst-gen calculus in 10s, and iProver-10s ratio is the ratio of
that to the total number of problems.

Dataset Problems AC VC EC iProver-10s iProver-10s ratio

Isabelle FOF 88888 10.15 4.51 2.63 83015 0.93
Mizar 113332 35.55 23.16 10.31 65679 0.58

Ratio Miz/Isa 3.50 5.14 3.92 0.62

shows that the number of clauses per minimized problem is 3.5 times higher in Mizar. This
may indicate the difference between the (generally harder) toplevel ITP problems and the
intermediate goals. The most interesting difference is that about two thirds of the clauses
in the Mizar problems contain variables, while in Isabelle this is only 44.4% of the clauses.
Combined with the much higher number of clauses in the Mizar problems, this leads to 5.14
times more clauses with variables in the Mizar problems. For clauses with equality, this ratio
is 3.92, i.e., also slightly higher than the ratio of the clauses. This means that the Isabelle
problems are (after minimization) much more ground and non-equational, and thus likely
much more amenable to instantiation-based methods than the Mizar problems. We confirm
this by running iProver [31] on both sets of minimized problems using only its Inst-Gen
calculus. In Mizar it solves 58% of the problems while in Isabelle 93%, i.e., 60% more.

3 Strategy Optimization for E and ENIGMA

ATP strategies play a critical role when proving theorems. Their targeted invention, op-
timization, and construction of their portfolios (schedules) may significantly improve the
performance of the ATPs in different domains. We have also found that some ATP strategies
behave better in combination with learning-based guidance of the ATPs than others, and that
it often seems preferable to use a single strategy to produce the training data for ENIGMA.6

6 The use of single vs multiple strategies in combination with ENIGMA is not yet strongly experimentally
explored. See, e.g., [15] for a recent related analysis.

ITP 2022
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Our initial goals are thus to (i) find a strong set of E strategies for the datasets, and
in particular, to (ii) find a single strong E strategy that behaves well in combination with
the ENIGMA guidance. We start exploring this on the FOF dataset, evaluating our 550
BliStr/Tune [23, 47] strategies previously invented on the Mizar, Sledgehammer, HOL, AIM
and TPTP problems. This is done in two rounds. In the first round, we run all the 553
strategies on a smaller sample of 500 randomly selected FOF problems solvable by Vampire’s
CASC mode in 30 seconds.7 After that, the 76 most performing and orthogonal strategies
from the first run are evaluated on a bigger sample of 2000 Vampire-solvable problems. This
yields the following top 2 strategies in the greedy cover:

protokoll_X----_auto_sine13 :995
protocol_eprover_f171197f65f27d1ba69648a20c844832c84a5dd7 :198

The first strategy uses E’s auto-mode with a strong SInE filter, selecting up to 100
premises. Unlike in the Mizar problems, the hypos parameter of SInE is used here, giving the
same importance to the local assumptions (TPTP role hypothesis) as to the conjecture. We
have confirmed that this performs better than SInE without the parameter on the problems.
This leads us to construct the ENIGMA features differently for Isabelle problems in Section 4.

The second strategy in the greedy cover (f1711) is the one working best in the
Mizar/MPTP setting, where it also performs well when combined with the ENIGMA
guidance. It is however significantly weaker (921 vs 995 solved problems) than the first
auto-mode strategy. We conjecture that this is because it does not use SInE. Adding a strong
SInE filter (with the “hypos” parameter) indeed improves its performance to 1022 problems,
making it the strongest E strategy on the problems. Since it is also well behaved with the
ENIGMA guidance, we use it in all further experiments. The base strategy (f1711) without
any SInE filter will be denoted as Bbase, while the version with the SInE as Bsine. With the
clausification changes explained next we obtain two more strategies Bbase3 and Bsine3.

3.1 Clausification
Clausification can have a large influence on the operation and performance of ATPs. In a
setting with many complicated formulas, naive clausification can lead to exponential blow-ups.
State-of-the-art ATPs counter that by introducing definitions for subformulas. E’s clausifier
uses heuristic counting of the occurrences of each subformula to decide when to introduce
a new definition. The default factor (called definitional-cnf, dc for short) for this used
by E has been experimentally optimized to be 24 many years ago on the TPTP benchmark.
This may be however suboptimal for newer large-theory corpora, especially in encodings with
type guards. Also, a possible explanation for the relatively large improvement of E by the
aggressive SInE filter is that the clausification explodes quite frequently on the unfiltered
problems. We investigate this in several ways.

First, we simply try to clausify all FOF problems with the default E options and a timeout
of 60s. This results in a gzipped total size of 21G, i.e. four times the size of the gzipped FOF
problems. This is however without 28212 (10% of all) problems that fail to get clausified
within 60s. This is a lot, because ITP hammers typically give the ATPs a timeout of 15-30s
to solve the whole problem.

7 We use here Vampire as a quick pre-filter for targeting the solvable problems by E strategies because in
our preliminary experiments Vampire performed significantly better than E.
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Table 3 Influence of the dc values on the clausification timeouts and size of the clausal problems.

definitional-cnf (dc) 1 2 3 4 24

clausifications timed out in 60s (out of 1000) 0 0 0 51 125
gzipped size of all clausified problems (MB) 36 47 163 120 77

Table 4 15s Bbase runs with/out SInE with different dc values on 1000 sample problems.

definitional-cnf (dc) 1 2 3 4 24

problems solved with SInE 242 268 271 266 263
problems solved without SInE 219 251 243 241 218

This leads us to an experiment with smaller values for the definitional-cnf (dc) parameter
on a sample of 1000 training problems. We use a 60s timeout for the clausification, measure
the total size of gzipped cnfs, and the number of files where the clausification timed out. The
results are shown in Table 3. The dc value of 3 is the last one where there are no timeouts,
but it already gives a 4-time blowup over dc = 2.

Both more aggressive premise selection and more aggressive introduction of new definitions
can be used to counter the clausification blowup on the Isabelle problems. Since the SInE
filter is only heuristic and usually inferior to trained premise selection, we prefer more
aggressive use of new definitions. To measure how much the two methods interact, we
evaluate our chosen strategy Bbase with and without SInE and with various dc values in 15s
on our sample of 1000 problems. The results are summarized in Table 4. They confirm that
the two methods interact a lot. Setting dc = 2 replaces a lot of the improvement obtained
by SInE with the default dc = 24. Since the SInE and non-SInE versions peak at dc = 3
and dc = 2 respectively, we experiment with these values of dc in our further experiments.
We denote Bbase3 and Bsine3 the strategies obtained from Bbase and Bsine by setting dc = 3.

4 ENIGMA for Isabelle

State-of-the-art automated theorem provers (ATP), such as E, Prover9, and Vampire [32],
are based on the saturation loop paradigm and the given clause algorithm [38]. The input
problem, in first-order logic (FOF), is translated into a refutationally equivalent set of
clauses, and a search for contradiction is initiated. The ATP maintains two sets of clauses:
processed (initially empty) and unprocessed (initially the input clauses). At each iteration,
one unprocessed clause is selected (given), and all of the possible inferences with all the
processed clauses are generated (typically using resolution, paramodulation, etc.), extending
the unprocessed clause set. The selected clause is then moved to the processed clause set.
Hence the invariant holds that all inferences among processed clauses have been computed.

The selection of the “right” given clause is known to be vital for the success of the proof
search. The first ENIGMA systems [14, 24–26] successfully implemented various ways of
machine learning guidance for the clause selection based on gradient boosting decision trees
(GBDT). Next generation ENIGMA [10,22] abstracts from symbol names with anonymization
methods and additionally employs graph neural network models (GNN) for clause selection.
The latest ENIGMA [16] additionally implements clause filtering of generated clauses (parental
guidance), and overcomes a slower speed of GNN models with amortizing evaluation server.

ITP 2022
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4.1 Model Training and Given Clause Guidance
The training of ENIGMA models is usually done in a training/evaluation loop. This general
approach applies both to clause guidance and when filtering the generated clauses.

1. The training data T are gathered from a number of previous successful proof searches.
From each proof search, the training data consists of clauses processed during the proof
search, labeled by flags positive or negative depending on whether they appear in the
final proof. These labeled clauses are translated to a suitable format for the underlying
selection model (vectors for GBDT models, and tensors for GNNs).

2. Based on data T , a GBDT (or a GNN model) M is trained. This model is capable of
recognizing positive clauses from negatives by assigning a score to an arbitrary clause.

3. The model M can be combined with an ordinary E’s strategy S in a cooperative way,
yielding the ENIGMA strategy S ⊕ M. The ENIGMA strategy S ⊕ M uses the model
M to guide the given clause selection inside E, and it inherits other behaviour from S .
In the cooperative setting, about 50% of the given clauses are selected as suggested by
M, while the remaining clauses are selected by the standard clause selection mechanism
inherited from S . Thus, ENIGMA compensates for a possible mistaken predictions of M.

4. With new training data from new strategies, this process can be iterated.

4.2 Parental Guidance and Generated Clause Filtering
ENIGMA models are applied within E in two capacities: (1) given clause selection and (2)
parental guidance for filtering of the generated clauses. Clausal parental guidance evaluates
a new clause C based only on the features of the parents of C. Parental guidance thus serves
as a fast rejection filter: generated clauses with scores below a chosen threshold are put
into the freezer set and are only revived if E runs out of unprocessed clauses. Furthermore,
such frozen clauses are never evaluated by other (possibly more expensive) heuristics. This
mechanism thus effectively (and in a complete way) curbs the typically quadratic growth
of the set of generated clauses. Full details can be found in previous work [16] where it
was found that the the parental guidance is most effective when the concatenated feature
vectors of the parents are used as an input to the machine learning model. The data for
training parental guidance is generated by classifying parents of proof clauses as positive and
all other generated clauses during a proof search as negative. To balance the data, the ratio
of negative to positive examples is a valuable hyperparameter.

4.3 Experiments with ENIGMA
ENIGMA was so far used only with first-order logic (FOF) data in the TPTP format. In
this work, we extend the usability of ENIGMA models also to simply typed first-order
formulas (TFF) of the TPTP format. In the case of GBDTs models, we simply forget the
type annotations. Because GBDT ENIGMA models perform symbol name anonymization by
replacing symbol names by their arities, all the simple type names would get translated to
the same name anyway. In the case of GNN models, we embed the type information in the
clause graphs by giving nodes representing variables of the same type by the same trained
numerical representation (see Section 5).

ENIGMA models embed information about the conjecture being proved inside clause vec-
tors/tensors. In this way, ENIGMA provides conjecture-specific suggestions. The conjectures
are marked in the input format with the TPTP role conjecture. In these experiments, we
additionally treat clauses with the TPTP role hypothesis just like conjectures. This helps
to further differentiate among various Isabelle problems.
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In this work, we use ENIGMA GBDT models for clause guidance inside E (for given
clause selection and filtering of generated clauses), and we use the GNN models only for the
task of premise selection. Section 5 describes how the GNN models are used for premise
selection. The experimental evaluation described in Section 6 presents the results of training
ENIGMA models for clause selection and parental guidance.

5 Premise Selection for Isabelle via Graph Neural Networks

A number of learning-based premise selection methods have been developed for large ITP
corpora and hammers in the last two decades. See [2, 7, 33, 48] for their overviews. In a
large evaluation done over the Mizar corpus,8 the strongest method turned out to be a
property-invariant graph neural network (GNN) based on the architecture previously used in
several settings [22, 37, 50]. We use this algorithm also for the Sledgehammer problems here.

GNNs, and in particular this architecture preserve several invariants of theorem proving
data, such as insensitivity to clause ordering and literal ordering. The inference (decisions)
about which premises are relevant for a conjecture are based on several rounds of neural
message passing in a special graph constructed from the clauses corresponding to the formulas.
The property invariant architecture also strives to be fully anonymous, in the sense that
it is invariant to all symbol names: the representations of symbols are only based on their
connectivity with other elements in the formula. It also has a specific encoding for argument
order that allows the network to partially preserve this information and it has a special
handling of negation: terms of opposite polarity are related by the corresponding operation
∗ − 1 in the float based representation of the network.

This set of properties allows the architecture to perform well in various theorem-proving
settings. On our Isabelle datasets, the symbol and name anonymity of the GNN is particularly
important. As mentioned in Section 2, the symbol names and the formula names are not used
consistently here, which would make the use of non-anonymous premise selection methods
difficult. In this work, a 10-layer GNN was used. The sizes of the first layer embeddings were
4, 1, 4 for the term, symbol and clause nodes respectively. For the rest of the layers, the
term, symbol and clause nodes were represented by vectors of size 32, 64 and 32 respectively.
The last, non-message passing layer that has the task of predicting a probability for each
premise had 128 neurons.

The GNN was newly modified to parse and make use of the typed TFF input. To
take advantage of the type information, we train separate embeddings for all types (2539
in Section 6.4) that occur more than 10.000 times in the data. The GNN uses this type
embedding when reading in a variable, and the type embedding can contain information
about the type of the variable. Here, for simplicity, we chose to directly learn the embeddings
(initial GNN values before the start of the message passing) for the typed variable nodes.
This however does not fully preserve the anonymity of the symbols in the GNN, which is
one the core design principles of this neural architecture. Adding instead an extra node in
the GNN for each type would allow us to preserve the anonymity also for types. In this
setting the GNN would learn to understand the types based only on their use in the current
problem, possibly thus generalizing better. This approach is however more complicated than
our current solution and is left as future work here.

The Isabelle problems are big and their clausification by our GNN parser may result in
graphs with many clauses, even when we heuristically pre-reduce the initial set of formulas
proposed by the MePo filter. This poses problems with the GPU memory (32 GB on our
machines) both during training the GNN and when using it for predicting the relevant clauses.

8 https://github.com/ai4reason/ATP_Proofs
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To counter that, we have introduced several limits related to the number of nodes in the
clause graphs that allow us to skip very large clausified problems. The limit that we currently
use skips any problem that contains more than 50000 term nodes after clausification (this
corresponds roughly to the 95th percentile for the amount of term nodes in the problems).

6 Evaluation

We experiment with four variants of Isabelle problems. The first two are (1) FOF and (2)
TFF without premise selection. Then there are two versions result from the GNN premise
selector applied to the TFF data: (3) PRE1 and (4) PRE2.

First, Section 6.1 describes experiments with given clause guidance, and Section 6.2
describes experiments with adding parental guidance. These two experiments were partially
used to obtain the training data for premise selection described in Section 6.3 and Section 6.4.

6.1 Evaluation of ENIGMA Given Clause Guidance
We perform three separate evaluations of the GBDT (LightGBM [30]) ENIGMA clause
selection models on three different presentations of Isabelle problems. (1) On the FOF
translation (without premise selection) in Section 6.1.1, (2) on the TFF translation (without
premise selection) in Section 6.1.2, and (3) on the TFF translation with GNN premise
selection in Section 6.1.3. The second premise selection dataset PRE2 is not used here.

We experiment with combining training samples from different strategies. Different
E strategies might use different term orderings affecting the clause normalization. Since
the ENIGMA models are syntax based, we only combine training samples from compatible
strategies, which perform equivalent clause normalization. At this point, we consider strategies
to be compatible when they use the same term ordering and literal selection function.

6.1.1 Experiment FOF: First-Order Translation
Setup. First, we experiment with the FOF translations of Isabelle problems without any
premise selection method applied. E supports sine filters to reduce the number of axioms of
large problems. Since the problems have no premise selection applied, we use two versions of
the E strategy to obtain training problems: Bsine uses a manually selected sine filter9 and
Bbase does not use a sine filter. We perform three training/evaluation loops as follows.
1. Initial training data T0: Evaluation of Bbase and Bsine on the training problems.
2. Train the model L on the current data T .
3. Evaluate Bbase ⊕ L and Bsine ⊕ L on the training problems.
4. Extend data T and continue with step 2.
We combine the two base strategies with model L in a cooperative way. With model L we
obtain two strategies with ENIGMA guidance, that is, Bbase ⊕ L and Bsine ⊕ L.

Learning Statistics. Table 5 presents training data statistics and models evaluation for the
three training/evaluation loops performed in this FOF experiments. There is:

training: The column probs is the number of training problems in the training data,
while the column proofs is the number of different successful proof runs, where we can
have multiple proofs for a single problem. The column rows signifies the number of
vectors in the training data, each vector corresponding to one clause in the proofs. The
column filesize is the file size of the compressed training samples.

9 –sine=’GSinE(CountFormulas,hypos,1.1„03,20000,1.0)’
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Table 5 Experiment FOF: Learning statistics (Section 6.1.1).

notation training accuracy[%] model

l trains model probs proofs rows filesize acc pos neg time filesize

0 T FOF
0 LFOF

0 70K 114K 8M 1.1G 92.8 89.8 93.4 0:12 54.8M

1 T FOF
1 LFOF

1 81K 255K 16M 2.3G 87.8 82.1 89.0 0:20 54.9M

2 T FOF
2 LFOF

2 84K 400K 23M 3.2G 85.6 81.9 86.5 0:31 55.1M

Table 6 Experiment FOF: ATP performance (Section 6.1.1).

strategy trains solved by devels solved by

l base sine base sine both total base sine both total

- Sbase Ssize 56 921 65 124 75 080 75 080 3114 3567 4084 4084

0 S⋆ ⊕ LFOF
0 77 084 72 869 85 903 86 661 3888 3886 4552 4784

1 S⋆ ⊕ LFOF
1 80 613 74 191 87 734 89 886 3933 3851 4516 4947

2 S⋆ ⊕ LFOF
2 81 640 74 878 88 566 91 261 3963 3894 4558 5036

accuracy: Columns acc, pos, neg show testing accuracies of each model on the testing
set in percents. Column acc show the overall model accuracy, while columns pos and neg
show testing accuracy on positive and negative testing samples separately.
model: The column time shows the time needed for model training (in hours and
minutes), and the column size shows the LightGBM model file size. Model file size is an
important suggestion of the model ATP performance, since the model size influences the
model loading time and prediction times in E.

When training a model, we set aside 5% of the training data in order to compute the
testing accuracy. The model is trained on the remaining 95%. 10 This split is done on the
level of solved problem names rather than on proofs or vectors so that all the proofs of a
single problem will appear either in the 95% training subset, or all in the 5% testing subset.
This is important to keep the testing set unbiased. Otherwise, the testing data can partially
overlap with the training data, since two proofs of the same problem tend to be quite similar.
This split on solved problem names is computed independently in every loop iteration. This
split is done only on the training problems of the global training/development/holdout split
used for further experiment in this paper.

From the numbers in Table 5, we can see that the number of solved problems (column
probs) in the data increases with every loop iteration but much more slowly than the value
in the column proofs. This means that we are obtaining duplicate proofs for already solved
problems, since we include all the proofs for all solved problems in the training data in this
experiment. Note that the testing accuracies decrease with increasing training data size. All
the models have been built in less than 30 minutes and result in a similarly sized model file.
Also note that number of proofs grows much faster than the problems solved (probs). It
shows that we often prove the same problems.

10 The numbers in the training columns are only on the training 95% subset.
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Table 7 Experiment TFF: Learning statistics (Section 6.1.2).

notation training accuracy[%] model

l trains model probs proofs rows size acc pos neg time size

0 T TFF
0 LTFF

0 108K 186K 10,3M 1.2G 89.6 86.2 90.2 12:36 54.8M

1 T TFF
1 LTFF

1 114K 383K 19,6M 2.2G 85.0 78.8 86.2 20:29 55.0M

2 T TFF
2 LTFF

2 117K 587K 27,9M 3.1G 82.6 77.4 83.8 20:52 55.1M

3 T TFF
3 LTFF

3 122K 822K 39,3M 4.3G 81.4 77.8 82.2 23:17 55.2M

4 T TFF
4 LTFF

4 123K 1.03M 48,6M 5.3G 80.9 77.6 81.7 29:46 55.3M

ATP Evaluation. Table 6 shows the ENIGMA models performance separately on training
(trains) and on development problems (devel). Since the development problems were not
used during the training in any way, this evaluation tells how much are the ENIGMA model
over-fitting on the training files.

Every row describes the performance of two strategies specified in the column strategy.
Problems solved by the two strategies individually are in the first two bold columns. Italics
values display a total cover of set of strategies. The column both shows the number of problems
solved both by the two strategies together. This is helpful to estimate the complementarity
of base and sine strategies. Two strategies are complementary, when they solve different
problems. The column total shows the cumulative number of problems solved by all the
current strategies (above in the table).

In Table 6, we see that the sine strategy performed better than base initially. However,
from the first learning the base strategy dominates. This suggests that ENIGMA learns
to do premise selection on its own to some extent (when trained on the samples from the
sine strategy). All base and sine strategies are, however, quite complementary. In total, we
start with 75 080 solved problems and we end up with 91 261 after the learning, almost 22%
improvement on trains (23% on devels). The best single strategy is improved by 25% on
trains (and by 11% on devels).

It is interesting to observe, how the base strategies in one iteration improves on both base
and sine from the previous iteration, as if merging the two strategies into one. It suggests
that additional proof samples from compatible but complementary strategies could lead to an
additional improvement. We further investigate this in the next experiment (Section 6.1.2).

6.1.2 Experiment TFF: Typed First-Order Formulae

Setup. We perform a similar experiment as for the FOF, but this time targeted to the TFF
Isabelle translation.
1. Again, we start with the training data obtained by the evaluation of Bbase and Bsine.
2. We run three iterations of the training/evaluation loop.
3. After the three iterations, we additionally evaluate two more pure E strategies Bbase3 and

Bsine3 which improve on Bbase and Bsine by adjusting E’s clausification algorithm (switch
E’s option “definitional-cnf” from 24 to 3).

4. We perform two more training/evaluation loops with the expanded training data.
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Table 8 Experiment TFF: ATP performance (Section 6.1.2).

strategy trains solved by devels solved by

l base sine base sine both total base sine both total

- Sbase Ssize 100 259 98 317 114 838 114 838 5532 5403 6347 6347

0 S⋆ ⊕ LTFF
0 108 377 101 271 118 262 121 353 5468 5347 6222 6692

1 S⋆ ⊕ LTFF
1 113 729 103 382 121 995 124 795 5788 5471 6466 6894

2 S⋆ ⊕ LTFF
2 115 790 104 270 123 400 126 344 5934 5505 6547 6894

* Sbase3 Ssine3 106 132 100 904 118 925 132 552 5881 5522 6515 7160

3 S⋆3 ⊕ LTFF
3 122 492 107 035 127 955 133 222 6293 5673 6785 7280

4 S⋆3 ⊕ LTFF
4 122 931 107 316 128 339 133 762 6277 5704 6812 7326

Learning Statistics. Table 7 presents the machine learning evaluation (in the same format
as Table 5 described in Section 6.1.1). Before the fourth loop (l = 3), we additionally evaluate
all the strategies S ⊕ L, for S ranging over Bbase3 and Bsine3, and for L ranging over the
models of the first three loops. This gives us additional training data for the fourth iteration,
reflected in the table by a sudden increase in both solved problems (probs) and proof count
(in the row l = 3). We see similar training times and model sizes as in the FOF experiment.

ATP Evaluation. Table 8 presents the ATP evaluation (in the same format as Table 6
described in Section 6.1.1). As opposed to the FOF experiment, the base strategies dominate
from the beginning. Both strategies are still highly complementary. The evaluation of Bbase3
and Bsine3 strategies boosts the number of solved trains from 126 344 to 132 552. This highly
improves the performance of the best strategy (base) in the fourth iteration (l = 3) from
115 790 to 122 492, that is, by 5.8%. It shows that additional external training data can be
quite useful during the training. We further investigate this issue in the next experiment
(Section 6.1.3).

6.1.3 Experiment PRE1: First GNN Premise Selection
Setup. Here we experiment with GNN premise selection data PRE1 obtained by applying
GNN premise selection to the TFF problems. The GNN premise selection produces several
collections of the training problems (called slices) with a slightly different clause selection
criterion. We experiment with two slices PRE−1

1 and PRE64
1 , which were experimentally

found well performing and complementary. Our first experiment is aimed at generating a
large collection of training samples.
1. We perform three loops of training/evaluation, just as in the TFF experiment, separately

on PRE−1
1 and PRE64

1 . We loop with the base strategies Bbase3 and Bsine3.
2. We merge the training data from the previous two separate experiments and perform

three more loops on the merged data. However, we drop the sine strategies and evaluate
only the strategy Bbase3 ⊕ L on the two PRE1 slices.

3. From the above we collect a large database of 108K proved training problems. Since the
collection can contain duplicate proofs of a single problem, we select just three proofs per
problem. We use the proof pos/neg ratios as a measure of proof similarity, and select
proofs thusly different.

4. The training data from the last step, denoted T PRE1
three , gives us one final model LPRE1

three .
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Table 9 Experiment PRE1: Learning statistics (Section 6.1.3).

notation training accuracy[%] model

trains model probs proofs rows size acc pos neg time size

T PRE1
three LPRE1

three 108K 186K 10,3M 1.2G 89.6 86.2 90.2 12:36 54.8M

T PRE1
six LPRE1

six 133K 763K 28,6M 3.26G 77.6 76.8 78.0 25:44 77.9M

Table 10 Experiment PRE1: ATP performance (Section 6.1.3).

trains solved by devels solved by

strategy PRE−1
1 PRE64

1 both total PRE−1
1 PRE64

1 both total

S = Sbase3 122 196 117 341 126 323 126 323 6706 6462 6955 6955

S ⊕ LPRE1
three 127 606 120 248 129 971 132 431 6800 6495 6994 7251

S ⊕ LPRE1
six 132 063 123 229 134 544 135 823 6994 6591 7153 7380

Next experiment tries to gather even more training samples.
1. We additionally consider training data from the previous TFF experiments.
2. We gather even more valuable training samples from ENIGMA parental guidance experi-

ments on slices PRE−1
1 and PRE64

1 .
3. We select three proofs per problem from TFF samples.
4. We select three proofs per problem from PRE1 samples.
5. The training data T PRE1

sixes contain six proofs per problem and yield model LPRE1
sixes .

Learning Statistics. Table 9 presents the machine learning evaluation (in the same format
as Table 5 described in Section 6.1.1). Note the huge difference in the number of proofs,
resulting in much larger training data size. The second training data include proofs of more
than 25K additional problems (probs). Training times and model sizes clearly reflect the
training file size.

ATP Evaluation. Table 10 presents the ATP evaluation (in the same format as Table 6
described in Section 6.1.1). Here, however, we evaluate the single strategy Bbase3 ⊕ L on
slices PRE−1

1 and PRE64
1 , instead of using two base and sine strategies.

Firstly, we note the effect of the premise selection itself. The performance on Bsine3
improved by more than 15% from the previous experiment (from 106 132 to 122 196). The
model LPRE1

three performs quite well, being trained on proofs 108K problems, it solves almost
128K problems. The model LPRE1

six further boosts the performance, showing that combining
of training data from various compatible sources might be beneficial. Comparing the
performance on trains with the performance on devels, we can conclude that ENIGMA
LightGBM clause selection models slightly overfit but they are still capable of generalization.

6.2 Evaluation of the Parental Guidance
Setup. Parental guidance models are co-trained with clause selection models in a series of
loops over the training data. In each loop iteration, the LightGBM parameters for parental
guidance models are tuned using a series of grid searches with Optuna [1]. These are the
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Table 11 Parental guidance iterations on small trains, devel, and holdout (13 818 problems in
15s). Loops L1 and L2 are run on TFF data, L3 to L8 on PRE−1

1 , and L9 and L10 on PRE−1
2 .

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

small trains 6475 6718 7081 7140 7312 7351 7407 7417 7647 7705

devel 6241 6462 6928 6892 6566 6850 7070 7115 7277 7379

holdout 6251 6459 6886 6843 6581 6816 7015 7062 7352 7395

number of leaves, the bagging fraction and frequency, the minimum number of samples to
create a new leaf, and L1 and L2 regularization. The learning rate is fixed at 0.15, the
maximum tree depth is capped at 256 and the number of trees is 250. The number of
leaves is varied between 256 and 3333. The best result of each grid search is used for the
next parameter’s grid search. Accuracy on positive training examples is considered twice as
important as the accuracy on negatives when choosing which parameters perform best. There
are multiple reasons for this. A primary reason is that the confidence in positive examples is
higher than confidence for the classification of negatives because a negative clause in one
successful proof search could be positive in another proof search. The resulting model is
evaluated with the nine parental filtering thresholds, {0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7},
over a set of 300 problems from the development set for 30 seconds. This is done for the
vanilla TFF problems as well as the problems with premise selection slices. The best run (as
evaluated by a greedy cover) on each version of the problems is then run on the full training
set. Then the problems from runs in the total greedy cover are used as data for the next
iteration of looping. This means that some problems can have over 10 proofs in the training
data.

Iterations. The training of parental guidance was done with the aim to develop as strong a
performance as possible, using diverse data. The models for loops L1 and L2 are run and
trained on the TFF data that do not use premise selection. Models L3 and L4 are only
run on the small trains set. The models L3 to L8 are run on PRE1. Finally, models L9
and L10 are run on PRE−1

2 . The largest performance jumps correspond to the addition of
premise selection (Table 11). The strongest parental guidance models are always on the
PRE−1 premise selection data and the PRE64

1 slices provide fewer complementary problems
than the baseline TFF problems.

The best model L10, with the second premise selection slices, PRE−1
2 , proves 168 problems

(56%) in 30s on the parameter tuning development set, and 137 893 problems (55.4%) on
the training set in 15s. In 30s, L10 proves 7472 problems (54.1%) on the development set
and 7466 problems (54%) on the holdout. Without premise selection, L10 proves 133 390
training problems (53.6%), which indicates that training on the premise selection data
transfers back to the original problems. The remaining results are presented in Table 11.
This parental+ENIGMA model is our final product. It solves 7395 holdout problems in 15s,
thus significantly improving over unguided E and also over all other ATPs and SMTs. It also
outperforms all other ATPs and SMTs even when they use our best premises (Table 12).
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6.3 First Training of Premise Selection on TFF Problems (PRE1)
We have done several large experiments with the GNN-based premise selection (Section 5),
first in the untyped and then in the typed setting. For lack of space we include below only
the two final experiments on the TFF data, where most of the ENIGMA runs were done.

For the first round of training the GNN on the TFF data we are using the proof data
produced only by the base sine/nosine TFF runs of unguided E and the first three ENIGMA
iterations on the TFF training set. Altogether these runs produce 1701284 proof dependencies.
These dependencies are first deduplicated to 353875, and then we also for every problem P

remove all premise sets subsumed by a smaller premise set. This further decreases the size
of the dataset to 242432 proof dependencies, for 131309 unique solved problems. Most of
the solved problems (80993) have after this redundancy elimination only one solution, while
for the remaining ones we get from 2 to 16 different solutions. Since problems with 1 to
3 solutions dominate the dataset (163650 out of the total 242432 solutions), we do not do
further pruning of over-represented proofs for the training (as in the next training run).

For this first training and prediction we do not yet use the new typed extensions of the
GNN. Instead, all TFF formulas are stripped of their type information and given to the
network as untyped FOF. Each problem uses its original conjecture, the positives are the
premises used in a given proof and the negatives are all other premises for that problem (i.e.,
all the MePo premises). This sometimes leads to large training inputs, so we normalize them
to have size at most 500KB by randomly removing negatives. The whole training dataset
has size 46GB. We then train the GNN on it with batch size 10, learning rate 0.005, and
with balancing the loss on the positive and negative premises.

The training for two full epochs on an NVIDIA Volta 100 takes about 12 hours, saving
the weights 16 times. The balanced accuracy increases from 0.8533 to the final 0.9067 (0.9061
vs 0.9073 on positives vs negatives) in our final snapshot, which we then use for prediction
over all 276363 problems. This is parallelized over four GPUs, taking several hours. For each
problem we use the predictions to produce 5 premise selections based on the GNN score
threshold (1,0,-1,-2,-3,-4), and 5 premise selections based on old-style top slices of the ranked
premises (16,32,64,128,256). We do a small search with 200 development problems and the
base strategy over this grid, which is won by the -1-based predictions, best complemented by
the 64-based predictions. These premise selections are denoted PRE−1

1 and PRE64
1 in the

other parts of this paper. E/ENIGMA are then evaluated on both of them, while we also
evaluate other systems only on the -1-based predictions (Table 12).

6.4 Second Training of Premise Selection on TFF Problems (PRE2)
The second premise selection training is done by the typed version of the GNN (Section 5),
using explicitly 2539 types that occur with frequency higher than 10000 in the training
data. The remaining types (over 300000 in the training set) are mapped to the same generic
embedding, which means that the GNN treats them all as the same type. The overhead for
the 2539 distinguished most frequent types increases the size of the GNN only by 100kb.
The training uses again a batch size of 20 and a learning rate of 0.0005. The training
dataset is created from all TFF training problems solved in the previous loops, both by
E/ENIGMA and CVC5 and Vampire. This gives 823141 unique premise selections for 146576
solved problems. The 823141 unique premise selections are again minimized with respect to
subsumption, reducing them to 488186 minimal premise selections. To address the imbalance
caused by having various numbers of proofs for a single problem in the training set, we keep
at most three proofs for each problem. This further reduces the set to 292080 examples. The
examples are again all reduced to a size of at most 500KB.
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Table 12 Final comparison with non-ENIGMA systems: E2.6 with its auto-schedule, CVC5, and
Vampire-CASC (master 4909). Each run standalone (MePo predictions) and with the first/second -1
GNN TFF predictions. The last entry is the final/best Loop10 (parental) ENIGMA (Section 6.2).

method E auto-sched. CVC5 Vampire L10 ENIGMA

15s devel, no premsel 5891 7053 6452 7133
15s holdout, no premsel 5903 7051 6454 7139
30s holdout, no premsel 6089 7140 6945 7170
15s devel, preds -1 (1st round) 6968 7211 7023 7191
15s holdout, preds -1 (1st round) 6956 7158 6978 7155
15s devel, preds -1 (2nd round) 7074 7394 7132 7379
15s holdout, preds -1 (2nd round) 7066 7372 7118 7395
30s holdout, preds -1 (2nd round) 7139 7398 7397 7466

This results in our final training set with an overall size of about 60GB. Since the reduction
of the TFF inputs does not generally guarantee to prevent a blow-up during the clausification,
we also further use here a size limit of 50000 nodes inside the GNN parser (Section 5) and
filter out such large graphs which may otherwise deplete the GPU memory. The GNN is
trained for full two epochs on the data, taking about one day on a single NVIDIA V100
GPU and storing the weight files 15 times per epoch. For producing the final predictions,
we take the 28th weights with the highest balanced accuracy of 0.9221 (0.9391 / 0.9051 for
positives/negatives). We produce the same grid of predictions as in the first round for all
problems. The -1-based predictions are again the winner, best complemented by the 0-based
predictions. These premise selections are denoted PRE−1

2 and PRE0
2 in the other parts of this

paper. Table 12 shows that also all non-ENIGMA systems benefit from the GNN predictions,
and that the second round improves over the first round of predictions for all of them.

7 Conclusion

We have developed versions of the ENIGMA systems and neural premise selectors for
the Isabelle Sledgehammer problems. Our best single-strategy system using the parental
ENIGMA guidance and the typed GNN premise selection solves 7395 holdout problems in
15s, improving on original E’s auto-schedule performance (5903) by 25.3%. It also improves
on all other ATPs and SMTs, both when used standalone and when used in conjunction
with our best neural premise selection. To achieve this, we have produced large corpora of
Isabelle problems for training and evaluation of the AI/TP methods, and developed new
extensions of our systems, especially for the typed setting.
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