Formalization of Randomized Approximation
Algorithms for Frequency Moments

Emin Karayel =

Department of Computer Science, Technische Universitat Miinchen, Germany

—— Abstract

In 1999 Alon et al. introduced the still active research topic of approximating the frequency moments

of a data stream using randomized algorithms with minimal space usage. This includes the problem
of estimating the cardinality of the stream elements — the zeroth frequency moment. Higher-order
frequency moments provide information about the skew of the data stream which is, for example,
critical information for parallel processing. (The k-th frequency moment of a data stream is the
sum of the k-th powers of the occurrence counts of each element in the stream.) They introduce
both lower bounds and upper bounds on the space complexity of the problems, which were later
improved by newer publications. The algorithms have guaranteed success probabilities and accuracies
without making any assumptions on the input distribution. They are an interesting use case for
formal verification because their correctness proofs require a large body of deep results from algebra,
analysis and probability theory. This work reports on the formal verification of three algorithms for
the approximation of Fy, F> and Fj for k > 3. The results include the identification of significantly
simpler algorithms with the same runtime and space complexities as the previously known ones
as well as the development of several reusable components, such as a formalization of universal
hash families, amplification methods for randomized algorithms, a model for one-pass data stream
algorithms or a generic flexible encoding library for the verification of space complexities.

2012 ACM Subject Classification Theory of computation — Logic and verification; Theory of
computation — Higher order logic; Mathematics of computing — Probabilistic algorithms; Theory
of computation — Pseudorandomness and derandomization

Keywords and phrases Formal Verification, Isabelle/HOL, Randomized Algorithms, Frequency
Moments

Digital Object Identifier 10.4230/LIPIcs.ITP.2022.21

Supplementary Material Software (Isabelle/HOL Formalization): https://isa-afp.org/entries/
Frequency_Moments.html [33]

Acknowledgements Special thanks to Tobias Nipkow for all his support, guidance and feedback on
this work, to Manuel Eberl for advice and simplifications on the Isabelle/HOL formalization and to

the anonymous reviewers for their careful feedback and many helpful comments and suggestions.

1 Introduction

Flajolet and Martin [20] introduced one of the first modern big data algorithms to approximate
the number of distinct elements in a stream using a randomized algorithm with logarithmic
space usage. In 1999 Alon et al. [3] realize that the estimation of the number of distinct
elements is a special case of a more generic problem. They define frequency moments of an

input stream aq, as, ..., a,, € U with length m by:
Fp:=)_ C(u,a)" (1)
uelU
where C(u, a) is the count of occurrences of w in the stream a, i.e., C(u,a) := |{i | a; = u}|.

Then they provide randomized space-efficient algorithms for the estimation of all frequency
moments. They also overcome the need for idealized model assumptions about hash functions,

© Emin Karayel;
37 licensed under Creative Commons License CC-BY 4.0

13th International Conference on Interactive Theorem Proving (ITP 2022).
Editors: June Andronick and Leonardo de Moura; Article No. 21; pp.21:1-21:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:me@eminkarayel.de
https://orcid.org/0000-0003-3290-5034
https://doi.org/10.4230/LIPIcs.ITP.2022.21
https://isa-afp.org/entries/Frequency_Moments.html
https://isa-afp.org/entries/Frequency_Moments.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2

Formalization of Randomized Approximation Algorithms for Frequency Moments

which were used in previous work. Instead they provide concrete solutions using universal
hash families. Moreover, they establish lower bounds for the problems, which were later
improved and matched [7, 9, 12, 28, 30].

Note that Fy coincides with the number of distinct elements in the stream. Higher
frequency moments are useful to derive information about the skewness of the rank-size
distribution of the data stream. This is, for example, useful during query planning in database
applications [14] and predicting the speed-up factor in parallel data processing [25]. Using
estimates of both F» and Fj it is possible to compute several statistical dispersion measures,
such as variance, standard deviation or Gini’s index of homogeneity [3].

The verification of these algorithms is a distinct challenge that requires a large body of
mathematical results from probability theory, such as the Hoeffding, Chebyshev and Holder!
inequalities as well as algebraic results about finite fields and polynomials. However, the body
of existing strong theoretical results in Isabelle/HOL [40] is growing, both in the Archive of
Formal Proofs (AFP) [2] as well as Isabelle’s own libraries, such that showing the correctness
of such theory-heavy algorithms has become feasible.

On the other hand, it is very hard to gain confidence on the correctness of these algorithms
empirically and/or using traditional unit tests, because:

the correctness properties are probabilistic, and

the correctness properties are independent of the statistical properties of the input data —

however properties established using statistical test can only provide confidence for a

specified input distribution.

In the accompanying formalization [33], I verify the correctness of three distinct algorithms
for the estimation of frequency moments using the Isabelle/HOL theorem prover. Table 1
summarizes them together with their asymptotic space complexity in bits and the source
material they were based on. I have not been able to find any previous publications on the
formalization of these algorithms. They all return an approximation F} of Fj, with relative
error 6 > 0 with a probability of at least 1 — ¢, i.e.,

P(‘F,:—FMS&F]C)Zl—E, (2)

and require only one-pass over the stream of elements. They are all Monte-Carlo algorithms,
i.e., the established probability bounds hold for every input. The fact that the result has a
probability distribution stems only from the internal random choices of the algorithms.

Table 1 Formally verified algorithms: n denotes the size of the universe of the elements of the
stream, m is the length of the stream, € € (0,1) is the maximum failure probability, § € (0, 1) is the
required relative accuracy. See also Equation 2.

Approximation of Asymptotic Space Complexity for n, k,m — oo and €,§ — 0 Based on

Fo O (ln(s_l) (lnn +672(In(67") +Inln n))) [5]
F O (ln(s_1)5_2(1nn +In m)) [3, §2.2]
Fy, for® k>3 O (ln(671)572(1nn +1In m)knk%) [3, §2.1]

! The Holder inequality is part of the formalization of L, spaces by Gouezel [24].
2 The algorithm is actually correct even for k > 1 but the specialized algorithms for k < 2 are better in
terms of space complexity.

E. Karayel

A note about the case Fi: Since F; = m an exact solution for the problem only requires
O(Inm) bits of memory (which is just a counter). Alon et al. also discuss a randomized
algorithm requiring O (In(Inm)) bits using approximate counting [37]. Because it deviates a
lot from the more interesting cases k # 1, I did not formalize that case.

While the algorithm for Fj identically matches the source material, I made some improve-
ments to the Fy, F5 algorithms, but match the space and runtime complexity bounds of the
source material.

In particular, contrary to previous work in this field, the results are established using
simple prime fields GF(p) for p prime, instead of fields with a two power order: GF(2").
This is significant because on common machines computations in simple prime fields can be
implemented easily. On the other hand, especially fast multiplications in prime power fields
require advanced algorithms [38, 43]. As far as I can tell, the fact that simple prime fields
are sufficient to achieve the space complexity bounds in Table 1 has not been observed by
previous publications.

In the case of the approximation algorithm for Fpy, I could derive a new KMV-type
(k-minimum value) algorithm with a rounding component that matches the complexities of
Algorithm 3 by Bar-Yossef et al. [5], but its implementation (and hence verification) is simpler
than their solution. While there is considerable research on KMV-type algorithms [6, 22, 50],
I could not find any previous publications that verify the correctness of this variant.

Some of the results required for the formal verification are reusable general results, which
I have contributed as separate entries into the AFP [31, 32, 34, 35, 36]. The formalization of
the algorithms for the frequency moments are in the AFP entry: Formalization of Randomized
Approximation Algorithms for Frequency Moments [33]. I needed 7349 lines (not including
text or empty lines) overall, of which 4779 lines are reusable more general results.

The next section contains theoretical background used in these algorithms, a description
of how the randomized algorithms are modeled using the Giry-monad as a shallow-embedding
in Isabelle/HOL and how the space complexity is verified. The details about the algorithms
follow in Section 3. Related work is presented in Section 4 and Section 5 concludes with
future research opportunities.

2 Background

2.1 Universal Hash Families

Universal hash families are a critical component in the algorithms for Fy and F». They are
used to randomize the input data such that statistical methods can be employed even without
any assumptions about the input distribution. To give a rough idea why randomization is
useful, Figure 1 depicts the probability density function of the third smallest element of
independent uniformly distributed random variables. It is visible that information about
the count of random variables can be deduced by the value of order statistics of the random
variables. A first idea would be applying a fully random function i : U — {0,...,n — 1} on
the values of the input stream before processing it.> However, choosing and storing such a
function requires O(nlnn) bits of memory, which is far above the space complexity of the
algorithms.

3 The application of such a function to the input stream may obviously with some extent and probability
affect the frequency moment itself, which needs to be taken into account in the design of the algorithms.

21:3

ITP 2022

21:4

Formalization of Randomized Approximation Algorithms for Frequency Moments

]—5(3;40“—3) \

02 04 06 08 1
X X

Figure 1 The probability density function for the distribution of the third-smallest element of 10
[left] (resp. 40 [right]) independent uniformly distributed random variables with range [0, 1]. The
distributions are instances of the S-distribution.

The key insight from Alon et al. [3] was that it is possible to make headway even if the
family of functions h is chosen from is only k-universal (where k = 2 in their Fy approximation
algorithm and k& = 4 in their algorithm for the approximation of Fy). If a function h is chosen
from a k-universal hash family than the restriction of h to any k elements of its domain is
like a random function. More precisely:

» Definition 1. If we regard a finite family H of hash functions U — V as a uniform discrete
probability space, then H is k-universal, if
for each uw € U the evaluation function h — h(u) is a random variable with uniform
distribution on V., i.e., P({h € H|h(u) =v}) = |V|~! and
for any k or fewer distinct domain elements u1,...,u; the evaluation functions h +—
h(uy),...,h+ h(u;) are independent random variables.*
A different way of stating the second requirement in the definition is that the evaluation
functions must be k-wise independent random variables. Bienaymé’s identity is an example
where pairwise independence is useful. With it the variance of a sum of pairwise independent
variables X1, X5, ..., X,, can be computed as the sum of the variances of the summands, i.e.

Var (i XZ-) = zn:Var(Xi).
k=1 k=1

A generic construction for k-universal hash families was described by Wegman and Carter [49,
§1] for the case where the domain and range of the hash family is a finite field GF(q).
(In the following I refer to this hash family as the Carter—Wegman hash-family.) The
result essentially follows from the fact that given k key-value pairs there exists exactly one
polynomial with degree strictly less than k interpolating those points. The k-universal hash
family consists of the polynomials with coefficients in GF'(¢q) with degree less than k, where
the evaluation of the polynomial is the hash function. Let us see how the results are stated
in the formalization [36]:

definition (in prob-space) k-wise-indep-vars where
k-wise-indep-vars k M’ X' I = (VJ C I. card J < k — finite J — indep-vars M’ X' J)

* This definition closely follows the definition from [48, §3.5.5], with the minor modification that inde-
pendence is required not only for exactly k, but also for fewer than k distinct domain elements. The
modification only has an effect in the corner case, where |U| < k and helps avoid unnecessary special
cases in the formalization.

E. Karayel

This statement introduces a new definition for indexed sets of random variables, where any
subset with no more than k elements is independent. The notation (in prob-space) means
that the definition is in the context of all probability spaces. The function card denotes
the number elements of a finite set. The predicate indep-vars M’ X' J is true if X' is a
J-indexed set of independent random variables from the probability space to the J-indexed
set of measurable spaces M.

definition hash where hash F © w = ring.eval F w z

This definition introduces the abbreviation hash for the evaluation of a polynomial over a
ring F.5

lemma hash-prob-single:®
assumes field F' A\ finite (carrier F)
assumes {z, y} C carrier F
assumes 1 < n
shows P(w in pmf-of-set (bounded-degree-polynomials F n). hash F z w = y)
= 1/(card (carrier F))

This lemma implies that the Carter—Wegman hash-family fulfills the first condition of
Definition 1: Assuming F' is a finite field then the hash function is a random variable with
uniform distribution on the probability space pmf-of-set (bounded-degree-polynomials F n),
i.e., the set of polynomials with coefficients in F' and degree less than n. The expression
carrier F denotes the underlying set of the field and the notation in the last line, P(w in M.
P w), denotes the probability of the event {w | Pw} in the probability space M.

lemma hash-k-wise-indep:
assumes field F' A finite (carrier F)
assumes 1 < n
shows prob-space.k-wise-indep-vars (pmf-of-set (bounded-degree-polynomials F n)) n
(A-. pmf-of-set (carrier F')) (hash F) (carrier F')

This lemma implies that the Carter—Wegman hash-family fulfills the second condition of
Definition 1, i.e., if F' is a finite field, then the hash functions are k-wise independent random
variables.

Besides polynomials there is also a method called tabulation hashing to construct k-
universal hash families for £ < 5 [47]. In the case where V has only two values, orthogonal
arrays of strength k [11] can also be interpreted as k-universal hash families. However, because
of the generic nature of Carter and Wegman’s solution, I formalized their construction.

As noted in the introduction, T use the simple prime fields GF(p) where p is prime. In
particular, if the universe size is n, then the smallest prime p > n is chosen to construct a
k-universal hash-family for the stream elements. Because of Bertrand’s postulate” p < 2n +2,
which is used to bound the space used for the coefficients of the polynomial as well as the
hashed values.

Some of the results in the theory file require only that F' is a ring. Currently the lemmas are only
applied in the context of finite fields, but there is a good reason to avoid the field assumption when it is
not necessary. An example is the use of approximate primality tests where F' would be a field only with
high probability but it would be unconditionally a ring.

To improve readability embeddings between natural numbers, integers, rational, floating point and
(extended) real numbers are omitted.

Bertrand’s postulate was formalized in Isabelle/HOL by Biendarra and Eberl [8].

6

7

21:5

ITP 2022

21:6

Formalization of Randomized Approximation Algorithms for Frequency Moments

median

| Xo) | Xo(2) | Xo(3) | Xo(a) | Xo(5) | X (6) | Xo(7) |

Figure 2 An example for 7 random variables (sorted via the permutation o). The variables that
are inside the desired interval [a,b] are shaded gray.

In some publications in this field standard (or cryptographic) hash functions are assumed
to be independent random variables. See for example in the context of Fy-estimation:
[19, 20, 22, 26]. While there is also empirical evidence, that practically useful conclusions can
be drawn under such model assumptions, in this work I have followed the approach by Alon
et al. [3] and use universal hash families to avoid unjustified statistical model assumptions.

2.2 The Median Method

The reader may have observed that a common factor of the space complexities of the
algorithms is In(e~!). The factor stems from the application of the median method to amplify
the success probability [3]. To understand the method let us consider 2n + 1 independent
random variables X1, Xo,..., Xo,t1, that are in an interval [a, b] with a probability of 2/3.
In the case of the algorithms a (resp. b) denote the minimal (respectively maximal) value
the algorithm may return given the desired accuracy parameter. The interesting result is
that the median of the random variables will be in the interval [a,b] with a considerably
higher probability of 1 — exp (# .

To see why this works, let us make a preliminary observation:

» Observation 2. If at least n 4+ 1 of the random variables are in the desired interval, then
the median will be as well. This is because if we sort the random variables X; the random
variables that are in the interval form a consecutive subsequence in the sorted sequence. If
its length is at least n + 1, it will necessarily contain the median. See also Figure 2 for an
example.

Hence we are left with estimating the probability that at least n + 1 of the X; are in the
range [a,b]. Let us introduce a second set of random variables, indicating whether each of
the above random variables X; are within the desired interval:

3)

i

_{lﬁ&GMM

0 otherwise.

Note that the values of random variables Y; are either 0 or 1 and the expectation of each
is bounded from below by 2/3 because of our assumption about the probability that each
X; is in [a,b] is 2/3, i.e., E(Y;) > 2/3. Now, Hoeffding’s inequality [27] implies for the sum
S =Y+ ...+ Yony1 — the number of random variables X; whose values lie within the
interval [a, b]:

P(S <E(S) —t) < exp (2;?_21) .

The case we are interested in is t = % + % Thus

pis < < (202 (202,

E. Karayel

Le. the probability that n or fewer of the X; are inside of [a, b] decreases exponentially with
n. With Observation 2 this implies, that the probability that the median of the random
variables X is outside the interval [a, b] decreases exponentially with n.

In the design of the algorithms for Fj, F> and F}, this result is used to amplify the
probabilities of the algorithms. To achieve this, the algorithms run 181In(e~!) copies of the
same estimation algorithm in parallel (with fully independent random choices). Each copy

obtains a result which approximates Fj with a relative error of § with a probability of 2/3.

In the final step the algorithm returns the median of the results of the copies, which then is
in the desired interval with probability 1 — e. The formalization [35] includes a generalized
version of this result:

lemma (in prob-space) median-bound-1:
assumes o > 0
assumes ¢ € {0<..<1}
assumes indep-vars (A-. borel) X {0..<n}
assumes n > — Ine / (2 * o?)
assumes Vi € {0..<n}. P(w in M. X i w € ({a..b} :: real set)) > 1/2+«
shows P(w in M. median n (Ai. X i w) € {a..b}) > 1—¢

Assuming M is a probability space, « >0,0<e <1, n > %ln(zs_l)a_2 and Xo,..., X1
are independent Borel-measurable random variables: If the probability for each X; to be in
the interval [a,b] C R is % + o then the probability that the median is in the same interval is
at least 1 —e.

» Note. The formalization [35] contains an even more general lemma median-bound where
the above result is shown for all convex sets in second-countable linearly ordered Borel spaces
instead of just finite closed intervals of the form [a,b] C R. The generalized version might be
useful, if the codomain of the random variables is of another type than the real numbers, such
as the rational numbers, or if the interval is not finite and closed. The lemma median-bound-1
above is a specialization of median-bound.

» Note. Observation 2 is missing in previous publications. That it is necessary for a rigorous
proof became apparent during the formalization. The argument starting from Eq. 3 can be
found in [3, §2.1]; it is included here for completeness.

» Note. The requirement that the variables are Borel measurable in the lemma is essential.

Without the assumption, the median of the random variables would not necessarily be
measurable. For interested readers: The measurability proof in the formalization for the
median relies on the existence of branch-free comparison-sort algorithms.® Given the number
of elements in the sequence, such an algorithm performs compare-swap operations in a
pre-defined order on pre-defined indices. The results of each compare swap operation can be
represented as the pair of functions: min(X;, X;), max(X;, X;), which are Borel-measurable
if X;,X; are. And the entire sorting operation can, using a branch-free comparison sort
algorithm, be represented as a repeated application of such compare-swap operations. Thus
the median — and any other order statistic — of the random variables is still measurable. °

8 Sometimes these algorithms are also called sorting networks or oblivious comparison sort algorithms [41].

9 It may be possible to proof the measurability of order statistics directly by verifying that the existing
sort operation in Isabelle is measurable. However the approach using a branch-free sorting algorithm is
more concise, in particular, it circumvents the need for introducing a o-algebra on lists.

21:7

ITP 2022

21:8

Formalization of Randomized Approximation Algorithms for Frequency Moments

2.3 Formalization of Randomized Algorithms

Eberl et al. [16] built a library in Isabelle/HOL for the formalization of randomized algorithms,
in particular a formalization of the Giry monad. To introduce the notation, let us first
consider a few minimal examples:

example!® =
do {
a < pmf-of-set {0, 1};
return-pmf (a+1)

}

This example represents an algorithm, where a is uniformly chosen from the set {0,1} and
the successor of a is then returned. On the other hand from the probabilistic perspective, it
makes sense to think of a — a + 1 as a random variable on the probability space {0,1} and
the entire expression represents the distribution of that random variable. Indeed it is easy to
show that:

lemma'® ezample = pmf-of-set {1, 2}

Note in general, the term pmf-of-set A is a probability space, which assigns the same
probability to each element of A if it is a finite, non-empty set. The abbreviation PMF
stands for probability mass function, which are a subtype of probability spaces in Isabelle
with the condition that the o-algebra is discrete, more precisely, the o-algebra must be the
universe of the type forming the events. They have the advantage that all functions defined
on these probability spaces are automatically measurable. The disadvantage is that the
support of a measure defined on a discrete o-algebra must necessarily be a countable set.
Hence, probability mass functions are a well-suited model for randomized algorithms, where
the probability spaces will be discrete anyway.
Let us investigate the case when multiple random operations are composed:

d010 {
a < pmf-of-set {0, 1};
b < pmf-of-set {2, 3};
return-pmf (a, b)

}

The resulting probability space is the product space {0,1} x {2,3}, again with uniform
probability. This means independent sequential composition can be though of as the
construction of the product probability space. However, things can become more complex,
when earlier random variables influence later random operations:

d010 {
a < pmf-of-set {1, 2};
b < pmf-of-set {0..<a};
return-pmf (a, b)

}

Here, the resulting probability space is a dependent sum: {J,¢ gy 03{a} x {0,..,a — 1}. The
probability of the pair (0,1) is 4 while the probability of the pairs {(0,2), (1,2)} is 1. Note
that the components are not independent random variables any more. On a deeper level,
these probability spaces are expressions with two combinators:

10This is example code. It is not part of the accompanying formalization [33].

E. Karayel

return-pmf: This operation returns the Dirac measure, the probability of an event is 1
exactly if it contains the argument of return-pmf.
bind-pmf: This operation builds a new probability space, using a first probability space
Q; and a function that maps each element of z € Q; to a new probability space Qs (x).
We can write this as 1 >=)5, where the probability of an event F in Q; >=), is:
le Po,) (E) dw.'' Note: In the do-notation the bind operator is implicitly inserted,
whenever there is a semicolon.
Because the algorithms for the frequency moments are one-pass streaming algorithms, they
are represented using three functions over the Giry monad. First, an initialization function
that sets up the initial state based on the parameters: the desired relative accuracy ¢, the
desired success probability €, the size of the universe of the stream elements n. For simplicity,
we assume the stream elements are represented as natural numbers in {0,..,n — 1}. Note: A
state of these algorithms is also called sketch or synopsis in the context of frequency moments.
Second an update function that processes a single stream element and updates the state.
And finally a result function that computes an approximation of the frequency moment.
We can then describe the distribution of the algorithm for the stream elements aq, ..., an,
like:

dolo {
S0 <init § € n;
s1 <—update aop So;
s2 <—update a1 S1;

Sm <—update Gm—1 Sm—1;
result s,

}

which can be written more succinctly as:
fold (Aa s. s >= update a) as (init § € n) >= result (4)

The following snippet is the theorem in the formalization that establishes the correctness
property for the Fy estimation algorithm. The theorems for the correctness of the F» and Fj
estimation algorithms are analogous:

theorem f0-alg-correct:®
assumes ¢ € {0<..<I}
assumes 6 € {0<..<1}
assumes set as C {0..<n}
defines M = fold (\a state. state >= fO-update a) as (f0-init 6 € n) >= fO-result
shows P(w in measure-pmf M. |w — F 0 as| < d * FOas) > 1 — ¢

The first two assumptions establish that € and ¢ are strictly between 0 and 1. The next
assumption is the requirement that the stream elements are elements in {0,...,n —1}. M is
defined — as discussed above (Equation 4) — as the distribution of the estimation algorithm,
described by the three functions f0-init, f0-update and fO-result after processing the stream
elements as. The final line establishes that the relative error of the estimate is less than §
with probability 1 —e. The term F k as refers to the actual k-th frequency moment of the
stream as as defined in Equation 1. While this is exciting, it is also necessary to verify the
space usage of the algorithms, which is going to be discussed in the next section.

1 Egpecially, in the case, where the probability spaces are not countable, the construction of the resulting
probability space is non-trivial. See also Eberl et al. [16] for more details on this and the Giry Monad.

21:9

ITP 2022

21:10

Formalization of Randomized Approximation Algorithms for Frequency Moments

2.4 Verification of the space complexity

Because the algorithms are shallowly embedded as functions in the logic, it is not directly
possible to verify the memory-complexity of the algorithms. A possible solution would be to
represent the algorithm within a formalized machine model and show its equivalence to the
high-level representations in the logic. This is for example discussed by Myreen [39, §1].

However — because of the representation of the streaming algorithms using the three
functions as described above — it is still possible to rigorously establish a bound on the
memory requirements of the states the algorithms reach before and after processing each
element, i.e., the sketch size.'? For this, I decided to build an encoding of the states into bit
sequences and use the length of it as a measure of the size of the data structure. In general
any injective function from the state space to lists of booleans would form such an encoding
and thus would provide an upper bound on the space usage, i.e., an idea would be to show a
statement of the form:

If.injf AVse Sedn length (fs) < Fedn 510

where S € § n denotes the set of states the algorithm may reach for all possible inputs and
internal random operations with the provided parameters ¢, §, n and F' denotes the upper
bound on the space usage in bits to be shown.!'3

It turns out that this is too restrictive. The condition inj f requires the function to be
injective on the entire universe, i.e., all possible elements of the type of the state space, even
though the reachable states might be a smaller set. An example where this is an issue is
when the type of the state is not a countable set. For example coefficients of the finite field
GF(p) can be encoded using In p bits, but their type is: int set, representing each element of
the field as a congruence class. A fix for this problem is allowing the encoding to be a partial
function, which still needs to be injective on its domain, and requiring that the reachable
states are in the domain of the function:

3f. inj-on f (dom f) ANVs € Sedn. s domfAlength (the (fs)) < Fedn #0 (5)

Note: Partial functions are represented using the option type: ’a = ’b option. If z is outside
of the domain of f then fx = None. If fz = Some y then z is in the domain and the value
of f at z is y. Moreover, dom f denotes the domain and the (f x) is the value of the partial
function if z € dom f. With the introduction of the new function bit-count:

fun bit-count :: bool list option = ereal where®
bit-count None = oo |
bit-count (Some z) = length x

the conjunction on the right hand side of Equation 5 can be expressed more concisely as
bit-count (f s) < F e ¢ n, i.e., a finite upper bound on bit-count automatically implies that
s must have been in the domain of f.'* The following snippet is the actual result for the
space-complexity of the Fy-Algorithm in the formalization [33]:

121t is informally easy to see that the capacity bounds are not exceeded even during an update operation.
13 Note that the order of the quantifiers is important.
4 Subsection 2.5 contains a second reason for setting the bit-count of unencodable values to co.

E. Karayel

definition encode-f0-state :: fO-state = bool list option where [omitted ... |
fun f0-space-usage :: (nat x rat X rat) = real where [omitted . ..]

lemma inj-on encode-f0-state (dom encode-f0-state)

theorem f0-exact-space-usage:
assumes ¢ € {0<..<1}
assumes 6 € {0<..<1}
assumes set as C {0..<n}
defines M = fold (\a state. state >= fO-update a) as (f0-init 6 € n)
shows AE w in M. bit-count (encode-f0-state w) < f0-space-usage (n, €, §)

Instead of showing an existence result like in Equation 5, the encoding function encode-f0-state
is defined explicitly and that it is injective on its domain is verified in a separate lemma. The
function f0-space-usage is a pure arithmetic expression in terms of n, € and §. The theorem
establishes that the reachable states are encodable using the encoding function and meet the
memory bounds of f0-space-usage. The syntax AE w in M stands for almost everywhere,
this means the predicate must be true up to a set of probability 0. Since the states of the
algorithms are probability distributions, the reachable states constitute the elements of M
that have a non-zero probability. Besides providing an explicit bound using the function
f0-space-usage, the next theorem concludes with the asymptotic space complexity.

theorem f0-asymptotic-space-complexity:S
f0-space-usage € Olat-top X p at-right 0 xp at-right 0)(A (n, €, 9). In (1 / €) *
(lnn+1/6%x(n(Inn)+In(1/50))))

This means that the space usage is bounded by C'ln(e™!) (Inn + 6~%(In(Inn)) + In(6~1))
for some constant C for sufficiently large n, ! and 6.

2.5 A flexible encoding library

As noted in the previous section, the memory requirement of the states the algorithms
reach is measured by encoding them into bit strings. To achieve this, I have built a small
flexible encoding library [31] for Isabelle data structures comprised of encoding functions
for primitive types and a set of combinators to handle structured data types. The encoding
functions are prefiz-free, i.e., if fz is a (not necessarily strict) prefix of f y then z=y. This
implies in particular that they are injective, which implies that the resulting bit strings
can be decoded. Moreover prefix-freeness has the useful property that it is preserved under
concatenation, i.e., if f, g are prefix-free, then A\(z, y). fz @ g y is also.'® The symbol @
stands for the concatenation of two bit strings. To see why this works, let us observe another
characterization of prefix-free functions:

fr1 @y =fa2 Qyas = 21 =22 N y1 = Y2 #10

with which it is easy to conclude, for example if f, g are prefix-free:

fr1 Qguy1 Q21 = fxe Q gy2 Q 20 —
1 =T2 ANgy1 @z = gys Q20 =

10
T1 = T2 AN y1 = Y2 N 21 = 22 *

15The approach of using prefix-free codes [on the byte-level] is commonly utilized in many serialization
libraries. See for example [10, §4.2.1].

21:11

ITP 2022

21:12 Formalization of Randomized Approximation Algorithms for Frequency Moments

Table 2 Encoding functions for primitive types and combinators.

Sym Description Bit Count
N Natural numbers'® bit-count (Ne n) < 2 % log 2 (real n+1) + 1
I. Integers bit-count (I.) < 2 % log 2 (Jz|+1) + 3
F. Floating point num- bit-count (F. (float-of (m % 2 powr e)) <

bers 6+ 2% (log 2 (|m| + 2) 4+ log 2 (le] + 1))
Xe Tuples bit-count ((e xc f) (z,y)) = bit-count (e z) + bit-count (f y)
Me Dependent tuples bit-count ((e Xe f) (z,y)) = bit-count (e) + bit-count (f z y)
L. Lists bit-count (Le fxs) =3z + =s. bit-count (f z)+1) + 1
Se Finite sets finite S —>

bit-count (Se e S) = Oz € S. bit-count (e z)+1)+1

—e Functions defined on f € extensional (set zs) =

set s bit-count ((zs —e €) f) = Oz « zs. bit-count (e (f z)))

Table 2 summarizes the encoding functions and combinators that are used to build encodings
for the states. An interesting property about the definition of bit-count is that the equation:

bit-count ((e1 Xe e2) (z1,z2)) = bit-count (e1 z1) + bit-count (e2 z2)

holds unconditionally, e.g., even if 21 and/or xs are not in the domain of e;/es. This is
because of the facts: co +z = 00, x + 0o = oo if £ > 0 in the extended reals, and that a pair
is in the domain of e; X, eg if and only if its first component is in the domain of e; and its
second component in the domain of e;. Similar equations hold unconditionally for the other
combinators, which means that in the proof of the theorems for space usage it was possible
to show the property that the state is part of the domain of the encoding function, as well as
the actual space bound using the same reasoning step.

A tempting design question is whether it would be possible to derive such an encoding
fully automatically. However, in this use case, it is important to choose an efficient encoding
for the reachable states of the algorithms.

A key benefit of this approach is that it allows verification of the space complexity of
data structures used in high-level specifications of algorithms close to the mathematical
representation, for example, using cosets and indexed products.

3 The Algorithms

3.1 Frequency Moment 0

The original plan I had was to formalize Algorithm 3 from Bar-Yossef et al. [5]. It is the
solution with the best space-time trade-off in the paper. The authors describe it as a
modification of the Gibbons-Tirthapura algorithm. Briefly, it stores only the elements of the
stream that have a given count [of leading zeros (or more) in the binary representation of
their hash values. The value [is initialized to 0 at the beginning and is incremented during
the run of the algorithm, such that the set of filtered elements fit in the allocated space. The
modification by Bar-Yossef is to avoid storing the elements themselves in the state, but only
a hash of them, for that purpose they introduce a second hash function.

16 Prefix free codes for natural numbers are also called universal codes. See for example Elias [17].

E. Karayel

During the formalization, it became apparent that a simpler algorithm is possible with

the same space and amortized runtime cost as that one and an improved worst-case runtime.

It uses only a single hash function and does not require its range to be a 2 power. It is based
on the first algorithm described in the same paper but with an added rounding operation to
the hashed values. Since that kind of algorithm is called KMV synopsis or sketch in newer
publications [6, 42, 44], where the abbreviation KMV stands for k-minimum value'”, it makes
sense to call the new algorithm Rounding-KMYV. The general principle of KMV algorithms is
to use the t-th smallest element of the hashed stream elements, where t is chosen according
to the required accuracy parameter. This can be done by keeping track of the smallest ¢
hashed stream elements during the course of the algorithm and using the maximum for the
estimation step. Table 3 summarizes the algorithms discussed in this subsection.

Table 3 Algorithms mentioned in this subsection.

Algorithm Space usage with respect to 8, n'® Hash space Based on
Gibbons-Tirthapura [21] O (67> Inn) GF(2°) -

Algorithm 3 [5] (0] (6_2(111 Inn+1nd™t) +1n n) GF(2°) Gibbons-T.
Algorithm 1 [5] - 0,1]CR -

Standard KMV (below) O (67 *Inn) GF(p) Algorithm 1 [5]
Rounding KMV (below) O (6 *(Inlnn +1In(5~")) + Inn) GF(p) Standard KMV

Let us first review the correctness proof for the standard KMV algorithm!® (without
rounding operation) with the Carter—Wegman hash family. This means we need to investigate
the distribution of the ¢-th smallest element. For that let aq,...,a,, be the elements of the
stream and a; € {0,..,n — 1}, let A = {a1,...,a;,} be the set of distinct elements in the
stream. Note that: Fy = |A|, but m > Fp, since the a; are not necessarily distinct. Let
p > max(n, 11) be a prime and let h be uniformly chosen from the 2-universal Carter—Wegman
hash family.

It makes sense to investigate the two closely related random variables X; and X f# denoting
the ¢-th smallest element of the hashed stream elements H = {h(a) | a € A}, where the
second one treats distinct elements of A mapped to the same value by the hash function as
separate elements, while the first one does not. See also Figure 3 for an example, where X;
and Xt# differ. More precisely X; and Xt# are the unique random variables fulfilling the
following conditions:

X, e H X' eH
HeeH|z< X} =k-1 {aeA|h(z) < XY =k—1

While it is more space-efficient to compute X;; it is mathematically easier to investigate
the distribution of X7, in particular, if [and only if] there are at least ¢ elements a € A such
that h(a) < u, then Xt# must be strictly smaller than u as well.

17Since k is being used to denote the order of the frequency moment in this work; the letter ¢ is for the
index of the rank instead.

181f £ is not assumed to be constant all complexities need to be multiplied by another factor of in(e™*)

19 Bar-Yossef et al. provide a proof for the idealized case, where the hash family maps into [0,1]. The
proof here differs from theirs to cover the more realistic case with the Carter—Wegman hash family.

21:13

ITP 2022

21:14

Formalization of Randomized Approximation Algorithms for Frequency Moments

X Xu
AV V4
Lol 2] afs 5]s]

Figure 3 An example for a collision in the application of the hash function, leading to a difference
between X; and X7. The numbers in the boxes denote hash values of distinct elements of A.

The expectation and variance of the random variable (), that counts the number of
elements a € A hashed to a value strictly less than u is easy to determine:

1 ifh
Zu,a = { ' (a) < Qu = Z Zu,a

0 otherwise. vy

Note that Var(Z,) < % and E(Z, ,) = %. Because the Z, , are pairwise independent, we
can apply Bienaymé’s identity to conclude that Var(Q,) < % and E(Q,) = %.

Now, using our observation from above, we can estimate the probability that Xt# is less
than u by the probability that @, > t. Since we know expectation and variance of @Q,,
Chebyshev’s inequality bounds the probability of @, > t. A similar reasoning also works for
a lower bound on X;.

Another observation, we can make is that Xt# = X, if h is injective. The probability that
h is not injective is % < % with the 2-universal Carter—-Wegman hash family and the lower
limit for p. The overall proof works by estimating the probabilities of the following events:
Case 1 The function h is not injective.

Case 2 Less than t elements are hashed to values below v = Ltp(l — (5)_1F0_1J, ie @, <t
Case 3 At least t elements are hashed to values below u = (tp(l + 5)_1F0_1L ie. Q. >t.
and showing that the probability of each of these are strictly less than %. On the other hand
if neither of these events occur, i.e., with probability at least %: h is injective and tpX, Lis
an approximation of Fy with a relative error of §.

For the curious reader: This works for ¢ > 6672. The case, where |A| < t - i.e., if
there is no ¢-th smallest element — needs to be handled separately. But in that case, an
implementation would simply return the count of distinct elements observed so far.

The above strategy requires O(6-2Inn) bits of memory to store the state. Using a
rounding operation, it is possible to improve the space complexity to O(6~2(Ind ! +In(Inn))+
Inn) bits of memory?®, which is the new rounding-KMV variant. Let us denote this rounding
operation by |-|,, which can be defined by:

||, = 7(r — |logy|z||, x) where T(e,x) = 27°|2°]|

if # 0, otherwise: |0], := 0. In particular: |z, < x < |z], + |2|(1 + 27"). Expressed
differently ||, is the largest binary floating point number with a mantissa of at most r bits
smaller or equal to x.

Now the new variant uses h(a) = |h(a)|, instead of h. The proof is similar to the above
version, however the following issues need to be taken into account:
1. the additional accuracy error introduced by the rounding operation,
2. even if h is injective, collisions due to rounding are possible, i.e., h may still not be

injective and hence f(t# may differ from X.

20 Note that if 6=2 > n, the trivial algorithm which tracks for each element of U whether it occurred in
the stream using n bits outperforms either of these randomized algorithms. Hence, when judging which
complexity is better it makes sense to assume 62 € O(n).

E. Karayel

The first issue can be solved by choosing 7 and f large enough such that the combined
relative error due to rounding and the statistics of the ¢-th smallest element remain below
0. My initial idea for solving the second problem was to choose 7 large enough, such that
the probability of a collision due to rounding is bounded. It however turns out, that that
condition would require a choice of # € O(Inn), which is too high.

A closer look at the problem reveals that X, = X7 as long as there is no collision within
the smallest ¢ hashed values. Estimating the probability of the latter event, requires another
insight: It is actually not necessary to bound the probabilities of the events Case 1 to 3
separately.

In particular it is enough, if the probability of Case 2 and 3 happening is bounded by %
and if the probability of Case 1 happening under the condition that Case 2 and 3 are not is
bounded by %

Stated differently, it is enough to bound the probability of X, # X't# only in the case
X’t# < v. Thus it is enough to estimate the probability of a collision due to rounding within
[0,v) — the range the first ¢ elements will be hashed to when Q, > t. In the formalized proof,
this is accomplished by making sure p > 18 and 7 = 4[log,(6~2)] + 23 and bounding the
probability that h is injective by Tls and the probability of a collision due to rounding in the
range [0,v) by the same value.

In the accompanying formalization [33, Appendix A] I have included a detailed “hand-
written” proof with the same reasoning as the formalized proof for interested readers.

3.2 Formalization of the Fj algorithm

The following snippet contains the formalized version of the full algorithm:

fun f0-init :: rat = rat = nat = f0-space pmf where®
f0-init 6 € n =
do {
let s =[—18 * In €];
lett = [80 / 6%];
let p = prime-above (maz n 19);
let 7 = 4 * [log 2 (1 /&)] + 23;
h + prod-pmf {0..<s} (A-. pmf-of-set (bounded-degree-polynomials (ZFact p) 2));
return-pmf (s, t, p, v, h, (A\- € {0..<s}. {}))

}

fun fO-update :: nat = fO-space = f0-space pmf where
fO-update z (s, t, p, r, h, sketch) = return-pmf (s, t, p, v, h, Xi € {0..<s}.
least t (insert (float-of (truncate-down r (hash p = (h 7)))) (sketch 7)))

fun f0-result :: fO-space = rat pmf where
fO-result (s, t, p, r, h, sketch) = return-pmf (median s (\i € {0..<s}.
(if card (sketch i) < t then (card (sketch ©)) else t x p / (Maxz (sketch t)))))

As explained in Subsection 2.3 the algorithm is formalized using three functions, an initial-
ization function that sets up the state of the algorithm, an update function that updates
the state processing a stream element and the result function that returns an estimate for
the frequency moment using the state. The parameters of the initialization algorithm are:
0 the required relative accuracy; € the required success probability; and an upper bound n
on the stream elements. As explained in Subsection 2.2 the algorithm runs s = [18In(e™!)]
independent copies of the rounding KMV algorithm to achieve the desired success probability,
and computes the median of the individual estimates in the f0-result function. The algorithm

21:15

ITP 2022

21:16

Formalization of Randomized Approximation Algorithms for Frequency Moments

determines the t-th smallest hashed stream element, where t = [80§~2]. The function
prime-above returns a prime in the range {x, ..., 2z + 2} and is used to select the field over
which the polynomials for hashing are chosen. The term ZFuact p refers to the simple prime
field GF(p). The function truncate-down r is the rounding method |- |, that was described
above. To understand the algorithm a little bit better. The initialization function determines
the parameters s, ¢, p, 7 and randomly selects s polynomials hy, ..., hs_1 of degree less than 2
over the field GF(p). And sets up s empty sets, which will later contain the ¢ smallest hashed
stream elements. The state is a 6-tuple composed of the parameters, the hash functions and
the sets. In the update step, for each of the hash polynomials, the function computes the
rounded hashed value of the stream element and inserts the element into the corresponding
set. If the set contains more than ¢ elements, the largest element from the set will be removed.
For the estimation, the function checks each of the s sets, if it contains at least ¢ elements,
it returns the inverse of the maximal element multiplied by tp, i.e., tp times the inverse of
the t-th smallest element. If the set does not contain ¢ elements — there is no ¢-th smallest
element — but in that case the cardinality of the set is a good approximation of Fjy hence the
cardinality is used as an approximation.

3.3 Frequency Moment 2

The formalized algorithm for the second frequency moment is based on the solution described
in Section 2.2 by Alon et al. [3]. The key idea is to choose h from a 4-universal hash-family
with (equiprobable) values {—1,1} € Z. The algorithm then returns:

X = (Z h(ai)> . (6)
Note that:

EX

2
E(Z C’(u,a)h(u)) = Z C(u,a)C(v,a) Eh(u)h(v)

uelU u,velU

> C(u,a)’Eh(u)®+ Y C(u,a)C(v,a) Eh(u) Eh(v) = F,

uelU u,velU

where C'(u, a) is the count of occurrences of u in the stream a. The last equality follows from
Eh(u)? =1 and Eh(u) = 0 for u € U. An interesting fact is that the sum over u,v € U
could only be evaluated by splitting it into two sums, where the first sum is comprised of the
cases where the indices are equal and the second sum is comprised of the cases where the
indices are distinct. This is because h(u) and h(v) are independent only if u # v.

A similar split has to be done for the evaluation of the variance of X where the summation
is over four variables. This results in 15 possible ways the indices can form equivalence
relations. For the latter I have built a library with which it is possible to automatically split
such a sum into terms for each partition of its index variables [32, §5]. With that approach
the estimation of the variance happens automatically through symbolic evaluation within
Isabelle.

By running independent copies of the algorithm in parallel and computing the median of
means, it is possible to return an approximation with the required success probability and
accuracy.

The only difference between the method presented by Alon et al. [3] and the formalization
in this work is that the algorithm is adapted to work with simple prime fields. While it is
impossible to obtain a two-valued uniform distribution (if p > n > 3) a closer look at the
proof from Alon et al. reveals that the actual requirements for the hash family are:

E. Karayel

1. E h(a) =0, E(h(a))®> =1 and E (h(a))* < 3.
2. The hash family is 4-wise independent.
If A/ is uniformly chosen from the 4-universal Carter—Wegman hash family then A defined by:

h : U—=R

ha) = {(pj—l)‘f(p—l) i () is even
(p*—1)"2(—p—1) otherwise

fulfills the above requirements. Since the factor (p> — 1)~ 2 is constant, it can be factored
out of the sum and the squaring operation in Equation 6, so that the resulting algorithm can
be implemented without using real arithmetic.

3.4 Frequency Moment k for k£ > 3

The formalization of the algorithm for the k-th frequency moment for k£ > 3 is exactly the
same as the solution described in Section 2.1 by Alon et al. [3]. Contrary to the previous
algorithms it does not rely on hash families. Instead a random position ¢ € {1,...,m} of the
stream aq,...,a,, is selected and the count of occurrences of that stream element from that
point on is counted, whose value is described by the following random variable:

X)) =g ed{i....m}|a; = a}|

The estimate for the k-th frequency moment is then R(i) := m(X (i)* — (X (i) — 1)*). Note
that:

ER = E(mX'—(X-1%)=> X0 (X@-1"
i=1
C(u,a)
= Z Z P — (v —-1)F = ZC’(u,a)k = Fy,
welU v=1 uelU
where C'(u, a) denotes the count of occurrences of u in the stream aq, ..., a,,. The evaluation

of the variance of the random variable is a longer calculation resulting in Var R < Fkn
Similar to the previous algorithm by running independent copies of the algorithm in parallel
and computing the median of means, it is possible to improve the accuracy and success
probability.

A remaining problem to solve is that the algorithm has to choose a random index uniformly
from the stream, without knowing the length of the stream in advance.

Alon et al. [3] describe a refined version of the algorithm that solves the problem: A
random boolean is chosen at every update step, which is true with probability H%l, where [
is the number of elements that were processed before. If the boolean is true the algorithm
resets the counter to 1 and chooses the element at the current index to count. They then

show, that the position of the last reset is uniformly distributed over the length of the stream.

The accompanying formalization [33] verifies this second version of the algorithm.

4 Related Work

In 2019 Affeldt et al. [1] formalized two tree-based succinct data structures in Coq, one of
them being dynamic. They achieve their results by defining the operations on a high-level
inductive data structure and a low-level version implemented on bit arrays and establish
correspondence. A similar approach could also be applied here to avoid the need of the
encoding functions as discussed in Subsection 2.5.

1-1/k

21:17

ITP 2022

21:18

Formalization of Randomized Approximation Algorithms for Frequency Moments

Efimann et al. [18] formally verify non-deterministic approximation algorithms for NP-
complete problems in Isabelle, such as maximum independent set. In their work, they do
not need to reason with probability distributions, as the correctness of the investigated
algorithms follows from combinatorial arguments.

In 2020 Gopinathan and Sergey [23] formally verified Bloom Filters using Coq. They
rely on a deep embedding and similar to this work rely on probability theory and reasoning
about independent random variables.

Tassarotti et al. [46] formally verify an ML procedure learning a classifier using Lean. As
in this work, they also represent their algorithms using the Giry-monad.

Bao et al. [4] also tackle Bloom Filters as an application of their separation logic for reas-
oning about negative dependence. Negative dependence is a weaker property about random
variables than independence, i.e., more sets of random variables are negatively dependent, but
fewer results about independent random variables apply to negatively dependent variables.
For example the property is preserved by composition with monotone functions only. They
realize that the random variables induced on the bit vector are negatively dependent; greatly
simplifying the proofs about the false-positive rate of bloom filters.

Eberl et al. [15] verify the average runtime of randomized quicksort and derive the
expected structure of binary tree structures. They rely on the formalization of the Giry
monad in Isabelle/HOL. The formalization approach for randomized algorithms in this work
is based on their work.

As far as I can tell there is no prior publication on the formalization of randomized
algorithms where derandomization and/or amplification techniques are used.

5 Conclusion and Future Work

While the primary focus of this work, was the formal verification of the algorithms for
frequency moments — I could obtain simpler versions of the known algorithms. In particular it
was possible to avoid higher order prime fields. The algorithm for Fjy matches the complexity
of the best solution from [5] but its design is considerably simpler. Requiring only one hash
family instead of two. Most solutions in current production database systems are verified
empirically and/or rely on unverified statistical model assumptions, because of the complexity
of the known correct solutions [26]. These simplifications may lead to industrial applications
of these rigorously verified algorithms.

An interesting direction for future work would be the formalization of the newer results
that match the lower bounds [28, 30]. Another interesting problem is the extension of the
frequency moments to fractional powers, for which algorithms have been derived in [13, 29)].

The algorithms presented here for Fj and F» can be augmented with a merge operation,
i.e., it would be possible to run the algorithm in parallel for different sections of the data
stream and merge the sketches to obtain an approximation of the frequency moment for the
entire stream. It would make sense to extend the obtained theorems to include the merge
operation.

Another improvement would be to use probable primes?! instead of requiring exact primes.
For this, the algorithms would need to be reparameterized such that the combined failure
probability of the algorithm and the false-positive rate of the primality test remains below
the required maximum failure probability e.

21 Probabilistic primality tests have been formalized in Isabelle by Stiiwe and Eberl [45].

E. Karayel

—— References

1

10

11

12

13

14

15

16

Reynald Affeldt, Jacques Garrigue, Xuanrui Qi, and Kazunari Tanaka. Proving Tree Algorithms
for Succinct Data Structures. In 10th International Conference on Interactive Theorem
Proving (ITP 2019), volume 141 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 5:1-5:19, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ITP.2019.5.

Archive of Formal Proofs. https://isa-afp.org. Accessed: 2021-11-13.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. Journal of Computer and System Sciences, 58(1):137-147, 1999.
doi:10.1006/jcss.1997.1545.

Jialu Bao, Marco Gaboardi, Justin Hsu, and Joseph Tassarotti. A separation logic for
negative dependence. Proceedings of the ACM on Programming Languages, 6:57:1-57:29, 2022.
doi:10.1145/3498719.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct
elements in a data stream. In Randomization and Approximation Techniques in Computer
Science, pages 1-10. Springer Berlin Heidelberg, 2002. doi:10.1007/3-540-45726-7_1.
Kevin Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer Gemulla. On
synopses for distinct-value estimation under multiset operations. In Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data, pages 199-210, New York,
2007. doi:10.1145/1247480.1247504.

Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Simpler
algorithm for estimating frequency moments of data streams. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm, SODA 06, pages 708-713, USA, 2006.
Society for Industrial and Applied Mathematics. doi:10.5555/1109557.1109634.

Julian Biendarra and Manuel Eberl. Bertrand’s postulate. Archive of Formal Proofs, Janu-
ary 2017. , Formal proof development. URL: https://isa-afp.org/entries/Bertrands_
Postulate.html.

Jarostaw Blasiok. Optimal streaming and tracking distinct elements with high probability.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, pages 2432-2448, 2018. doi:10.1137/1.9781611975031.156.

Carsten Bormann and Paul E. Hoffman. Concise Binary Object Representation (CBOR).
RFC 8949, December 2020. doi:10.17487/RFC8949.

R. C. Bose and K. A. Bush. Orthogonal arrays of strength two and three. The Annals of
Mathematical Statistics, 23(4):508-524, 1952. doi:10.1214/A0MS/1177729331.

Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. An
Optimal Algorithm for Large Frequency Moments Using O(nlfQ/k) Bits. In Approxim-
ation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 201/), volume 28 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 531-544, Germany, 2014. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.APPROX-RANDOM.2014.531.

Vladimir Braverman, Emanuele Viola, David P. Woodruff, and Lin F. Yang. Revisiting
Frequency Moment Estimation in Random Order Streams. In 45th International Colloguium on
Automata, Languages, and Programming (ICALP 2018), volume 107 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 25:1-25:14, Germany, 2018. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2018.25.

David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and Sridhar Seshadri. Practical
skew handling in parallel joins. In Proceedings of the 18th VLDB conference, 1992.

Manuel Eberl, Max W. Haslbeck, and Tobias Nipkow. Verified analysis of random binary tree
structures. J. Autom. Reason., 64(5):879-910, 2020. doi:10.1007/s10817-020-09545-0.
Manuel Eberl, Johannes Holzl, and Tobias Nipkow. A verified compiler for probability density
functions. In Programming Languages and Systems, pages 80-104. Springer Berlin Heidelberg,
2015. doi:10.1007/978-3-662-46669-8_4.

21:19

ITP 2022

https://doi.org/10.4230/LIPIcs.ITP.2019.5
https://doi.org/10.4230/LIPIcs.ITP.2019.5
https://isa-afp.org
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1145/3498719
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1145/1247480.1247504
https://doi.org/10.5555/1109557.1109634
https://isa-afp.org/entries/Bertrands_Postulate.html
https://isa-afp.org/entries/Bertrands_Postulate.html
https://doi.org/10.1137/1.9781611975031.156
https://doi.org/10.17487/RFC8949
https://doi.org/10.1214/AOMS/1177729331
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.531
https://doi.org/10.4230/LIPIcs.ICALP.2018.25
https://doi.org/10.1007/s10817-020-09545-0
https://doi.org/10.1007/978-3-662-46669-8_4

21:20

Formalization of Randomized Approximation Algorithms for Frequency Moments

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory, 21(2):194-203, 1975. doi:10.1109/TIT.1975.1055349.

Robin Efimann, Tobias Nipkow, and Simon Robillard. Verified approximation algorithms.
Automated Reasoning, 12167:291-306, 2020. doi:10.46298/1mcs-18(1:36)2022.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the analysis
of a near-optimal cardinality estimation algorithm. Discrete Mathematics € Theoretical
Computer Science, pages 137-156, 2007.

Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182-209, 1985. doi:10.1016/
0022-0000(85)90041-8.

Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of data
streams. In Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’01, pages 281-291, 2001. doi:10.1145/378580.378687.

Frédéric Giroire. Order statistics and estimating cardinalities of massive data sets. Discrete
Applied Mathematics, 157(2):406-427, 2009. doi:10.1016/j.dam.2008.06.020.

Kiran Gopinathan and Ilya Sergey. Certifying certainty and uncertainty in approximate
membership query structures. Computer Aided Verification, 12225:279-303, 2020. doi:
10.1007/978-3-030-53291-8_16.

Sebastien Gouezel. Lp spaces. Archive of Formal Proofs, October 2016. , Formal proof
development. URL: https://isa-afp.org/entries/Lp.html.

Benjamin Gufler., Nikolaus Augsten., Angelika Reiser., and Alfons Kemper. Handling data
skew in MapReduce. In Proceedings of the 1st International Conference on Cloud Computing
and Services Science - CLOSER, pages 574-583. INSTICC, SciTePress, 2011. doi:10.5220/
0003391105740583.

Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: Algorithmic
engineering of a state of the art cardinality estimation algorithm. In Proceedings of the 16th
International Conference on Extending Database Technology, EDBT 13, pages 683-692, New
York, 2013. ACM. doi:10.1145/2452376.2452456.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13-30, 1963. doi:10.1007/978-1-4612-0865-5_
26.

Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of
data streams. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of
Computing, STOC 05, pages 202-208, New York, 2005. doi:10.1145/1060590.1060621.
Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity of
sketching and streaming small norms. In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’10, pages 1161-1178, USA, 2010. Society for
Industrial and Applied Mathematics. doi:10.1137/1.9781611973075.93.

Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’10, pages 41-52, New York, 2010.
doi:10.1145/1807085.1807094.

Emin Karayel. A combinator library for prefix-free codes. Archive of Formal Proofs, April
2022. , Formal proof development. URL: https://isa-afp.org/entries/Prefix_Free_Code_
Combinators.html.

Emin Karayel. Enumeration of equivalence relations. Archive of Formal Proofs, February 2022.
, Formal proof development. URL: https://isa-afp.org/entries/Equivalence_Relation_
Enumeration.html.

Emin Karayel. Formalization of randomized approximation algorithms for frequency moments.
Archive of Formal Proofs, April 2022. , Formal proof development. URL: https://isa-afp.
org/entries/Frequency_Moments.html.

https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.46298/lmcs-18(1:36)2022
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1145/378580.378687
https://doi.org/10.1016/j.dam.2008.06.020
https://doi.org/10.1007/978-3-030-53291-8_16
https://doi.org/10.1007/978-3-030-53291-8_16
https://isa-afp.org/entries/Lp.html
https://doi.org/10.5220/0003391105740583
https://doi.org/10.5220/0003391105740583
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1145/1060590.1060621
https://doi.org/10.1137/1.9781611973075.93
https://doi.org/10.1145/1807085.1807094
https://isa-afp.org/entries/Prefix_Free_Code_Combinators.html
https://isa-afp.org/entries/Prefix_Free_Code_Combinators.html
https://isa-afp.org/entries/Equivalence_Relation_Enumeration.html
https://isa-afp.org/entries/Equivalence_Relation_Enumeration.html
https://isa-afp.org/entries/Frequency_Moments.html
https://isa-afp.org/entries/Frequency_Moments.html

E. Karayel

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Emin Karayel. Interpolation polynomials (in hol-algebra). Archive of Formal Proofs, January
2022. , Formal proof development. URL: https://isa-afp.org/entries/Interpolation_
Polynomials_HOL_Algebra.html.

Emin Karayel. Median method. Archive of Formal Proofs, January 2022. , Formal proof
development. URL: https://isa-afp.org/entries/Median_Method.html.

Emin Karayel. Universal hash families. Archive of Formal Proofs, February 2022. , Formal
proof development. URL: https://isa-afp.org/entries/Universal_Hash_Families.html.
Robert Morris. Counting large numbers of events in small registers. Communications of the
ACM, 21(1()):84078427 1978. doi:10.1145/359619.359627.

R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson. Optimal normal bases in
GF(p™). Discrete Applied Mathematics, 22(2):149-161, 1988. doi:10.1016/0166-218X(88)
90090-X.

Magnus O. Myreen. The CakeML Project’s Quest for Ever Stronger Correctness Theorems.
In 12th International Conference on Interactive Theorem Proving (ITP 2021), volume 193
of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1-1:10, Germany, 2021.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.ITP.2021.1.
Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Heidelberg, 1 edition, 2002.

Vaughan R. Pratt. Shellsort and sorting networks. In Outstanding Dissertations in the
Computer Sciences, 1972.

Pedro Reviriego, Alfonso Sanchez-Macian, Shanshan Liu, and Fabrizio Lombardi. On the
security of the k minimum values (KMV) sketch. IEEE Transactions on Dependable and
Secure Computing, 2021. doi:10.1109/TDSC.2021.3101280.

Joseph H. Silverman. Fast multiplication in finite fields GF(2"). In Cryptographic Hardware
and Embedded Systems, pages 122-134. Springer Berlin Heidelberg, 1999. doi:10.1007/
3-540-48059-5_12.

Hagen Sparka, Florian Tschorsch, and Bjorn Scheuermann. P2KMV: A privacy-preserving
counting sketch for efficient and accurate set intersection cardinality estimations. Cryptology
ePrint Archive, Report 2018/234, 2018. doi:10.14279/DEPOSITONCE-8374.

Daniel Stiiwe and Manuel Eberl. Probabilistic primality testing. Archive of Formal
Proofs, February 2019. , Formal proof development. URL: https://isa-afp.org/entries/
Probabilistic_Prime_Tests.html.

Joseph Tassarotti, Koundinya Vajjha, Anindya Banerjee, and Jean-Baptiste Tristan. A formal
proof of PAC learnability for decision stumps. In CPP ’21: 10th ACM SIGPLAN International
Conference on Certified Programs and Proofs, Virtual Event, Denmark, January 17-19, 2021,
pages 5-17, 2021. doi:10.1145/3437992.3439917.

Mikkel Thorup and Yin Zhang. Tabulation based 5-universal hashing and linear probing.
In Proceedings of the Meeting on Algorithm Engineering € Expermiments, ALENEX ’10,
pages 62-76, USA, 2010. Society for Industrial and Applied Mathematics. doi:10.1137/1.
9781611972900.7.

Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1-3):1-336, 2012. doi:10.1561/0400000010.

Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22(3):265-279, 1981. doi:
10.1016/0022-0000(81)90033-7.

Yang Yang, Ying Zhang, Wenjie Zhang, and Zengfeng Huang. GB-KMV: An augmented
KMYV sketch for approximate containment similarity search. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 458-469, 2019. doi:10.1109/ICDE.2019.
00048.

21:21

ITP 2022

https://isa-afp.org/entries/Interpolation_Polynomials_HOL_Algebra.html
https://isa-afp.org/entries/Interpolation_Polynomials_HOL_Algebra.html
https://isa-afp.org/entries/Median_Method.html
https://isa-afp.org/entries/Universal_Hash_Families.html
https://doi.org/10.1145/359619.359627
https://doi.org/10.1016/0166-218X(88)90090-X
https://doi.org/10.1016/0166-218X(88)90090-X
https://doi.org/10.4230/LIPIcs.ITP.2021.1
https://doi.org/10.1109/TDSC.2021.3101280
https://doi.org/10.1007/3-540-48059-5_12
https://doi.org/10.1007/3-540-48059-5_12
https://doi.org/10.14279/DEPOSITONCE-8374
https://isa-afp.org/entries/Probabilistic_Prime_Tests.html
https://isa-afp.org/entries/Probabilistic_Prime_Tests.html
https://doi.org/10.1145/3437992.3439917
https://doi.org/10.1137/1.9781611972900.7
https://doi.org/10.1137/1.9781611972900.7
https://doi.org/10.1561/0400000010
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1109/ICDE.2019.00048
https://doi.org/10.1109/ICDE.2019.00048

	1 Introduction
	2 Background
	2.1 Universal Hash Families
	2.2 The Median Method
	2.3 Formalization of Randomized Algorithms
	2.4 Verification of the space complexity
	2.5 A flexible encoding library

	3 The Algorithms
	3.1 Frequency Moment 0
	3.2 Formalization of the F_0 algorithm
	3.3 Frequency Moment 2
	3.4 Frequency Moment k for k > = 3

	4 Related Work
	5 Conclusion and Future Work

