
Refinement of Parallel Algorithms down to LLVM
Peter Lammich #

University of Twente, Enschede, The Netherlands

Abstract
We present a stepwise refinement approach to develop verified parallel algorithms, down to efficient
LLVM code. The resulting algorithms’ performance is competitive with their counterparts imple-
mented in C/C++. Our approach is backwards compatible with the Isabelle Refinement Framework,
such that existing sequential formalizations can easily be adapted or re-used. As case study, we
verify a parallel quicksort algorithm, and show that it performs on par with its C++ implementation,
and is competitive to state-of-the-art parallel sorting algorithms.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Theory of computation → Semantics and reasoning; Computing methodologies → Parallel algorithms

Keywords and phrases Isabelle, Concurrent Separation Logic, Parallel Sorting, LLVM

Digital Object Identifier 10.4230/LIPIcs.ITP.2022.24

Supplementary Material Software (Isabelle Formalization): https://www21.in.tum.de/~lammich/
isabelle_llvm_par/

1 Introduction

We present a stepwise refinement approach to develop verified and efficient parallel algorithms.
Our method can verify total correctness down to LLVM intermediate code. The resulting
verified implementations are competitive with state-of-the-art unverified implementations.
Our approach is backwards compatible to the Isabelle Refinement Framework (IRF), a
powerful tool to verify efficient sequential software, such as model checkers [10, 7, 38], SAT
solvers [24, 25, 11], or graph algorithms [22, 28, 29]. This paper adds parallel execution to
the IRF’s toolbox, without invalidating the existing formalizations, which can now be used
as sequential building blocks for parallel algorithms, or be modified to add parallelization.

As a case study, we verify total correctness of a parallel quicksort algorithm, re-using
an existing verification of state-of-the-art sequential sorting algorithms [27]. Our verified
parallel sorting algorithm is competitive to state-of-the-art parallel sorting algorithms.

1.1 Overview
This paper is based on the Isabelle Refinement Framework, a continuing effort to verify efficient
implementations of complex algorithms, using stepwise refinement techniques. Figure 1
displays the components of the Isabelle Refinement Framework.

The back end layer handles the translation from Isabelle/HOL to the actual target
language. The instructions of the target language are shallowly embedded into Isabelle/HOL,
using a state-error (SE) monad. An instruction with undefined behaviour, or behaviour
outside our supported fragment, raises an error. The state of the monad is the memory,
represented via a memory model. The code generator translates the instructions to actual
code. These components form the trusted code base, while all the remaining components
of the Isabelle Refinement Framework generate proofs. In the back-end, the preprocessor
transforms expressions to the syntactically restricted format required by the code generator,
proving semantic equality of the original and transformed expression. While there exist back
ends for purely functional code [30, 21], and sequential imperative code [23, 26], this paper
describes a back end for parallel imperative LLVM code (Section 2).

© Peter Lammich;
licensed under Creative Commons License CC-BY 4.0

13th International Conference on Interactive Theorem Proving (ITP 2022).
Editors: June Andronick and Leonardo de Moura; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.lammich@utwente.nl
https://orcid.org/0000-0003-3576-0504
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://www21.in.tum.de/~lammich/isabelle_llvm_par/
https://www21.in.tum.de/~lammich/isabelle_llvm_par/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Refinement of Parallel Algorithms down to LLVM

Algorithms and Data Structures

NE-Monad Low-Level Algorithms
and Data StructuresSepref

Program Logic and VCG

Back
End

Trusted Code Base

Code GeneratorInstructionsPreprocessor

Memory Model

SE-Monad

Figure 1 Components of the Isabelle Refinement Framework, with focus on the back end.

On top of the back-end, a program logic is used to prove programs correct. It uses
separation logic, and provides automation like a verification condition generator (VCG). In
Section 3, we describe our formalization of concurrent separation logic [33], and our VCG.

At the level of the program logic and VCG, our framework can already be used to
verify simple low-level algorithms and data structures, like dynamic arrays and linked lists.
More complex developments typically use a stepwise refinement approach, starting at purely
functional programs modelled in a nondeterminism-error (NE) monad [30]. A semi-automatic
refinement procedure (Sepref [23, 26]) translates from the purely functional code to imperative
code, refining abstract functional data types to concrete imperative ones. In Section 4, we
describe our extensions to support refinement to parallel executions, and a fine-grained
tracking of pointer equalities, required to parallelize computations that work on disjoint
parts of the same array.

Using our approach, complex algorithms and data structures can be developed and refined
to optimized efficient code. The stepwise refinement ensures a separation of concerns between
high-level algorithmic ideas and low-level optimizations. We have used this approach to
verify a wide range of practically efficient algorithms [10, 7, 38, 24, 25, 11, 22, 28, 29, 27].
In Section 5, we use our techniques to verify a parallel sorting algorithm, with competitive
performance wrt. unverified state-of-the-art algorithms.

Section 6 concludes the paper and discusses related and future work.

2 A Back End for LLVM with Parallel Execution

We formalize a semantics for parallel execution, shallowly embedded into Isabelle/HOL. As
for the existing sequential back ends [23, 26], the shallow embedding is key to the flexibility
and feasibility of the approach. The main idea is to make an execution report the memory
that it accesses, and use this information to raise an error when joining executions that would
have exhibited a data race. We use this to model an instruction that calls two functions in
parallel, and waits until both have returned.

P. Lammich 24:3

2.1 State-Nondeterminism-Error Monad with Access Reports
We define the underlying monad in two steps. We start with a nondeterminism-error monad,
and then lift it to a state monad and add access reports. Defining a nondeterminism-error
monad is straightforward in Isabelle/HOL:
′a neM ≡ spec (′a ⇒ bool) | fail
return x ≡ spec (λr. r=x)
bind fail f ≡ fail
bind (spec P) f ≡ if ∃x. P x ∧ f x = fail then fail

else spec (λr. ∃x Q. P x ∧ f x = spec Q ∧ Q r)

A program either fails, or yields a possible set of results (spec P), described by its charac-
teristic function P. The return operation yields exactly one result, and bind combines all
possible results, failing if there is a possibility to fail.

Now assume that we have a state (memory) type ′µ, and an access report type ′ρ, which
forms a monoid (0,+). With this, we define our state-nondeterminism-error monad with
access reports, just called M for brevity:
′x M ≡ ′µ ⇒ (′x × ′ρ × ′µ) neM
returnM x µ ≡ returnne (x,0,µ)
bindM m f µ ≡ (x1,r1,µ) ← m µ; (x2,r2,µ) ← f x1 µ; returnne (x2,r1+r2,µ)

Here, return does not change the state, and reports no accesses (0), and bind sequentially
composes the executions, threading through the state µ, and adding up the access reports r1
and r2.

Typically, the access report will contain read and written addresses, such that data races
can be detected. Moreover, if parallel executions can allocate memory, we must detect those
executions where the memory manager allocated the same block in both parallel strands.
As we assume a thread safe memory manager, those infeasible executions can safely be
ignored. Let norace :: ′ρ ⇒ ′ρ ⇒ bool and feasible :: ′ρ ⇒ ′ρ ⇒ bool be symmetric predicates,
and let combine :: (′ρ × ′µ) ⇒ (′ρ × ′µ) ⇒ (′ρ × ′µ) be a commutative operator to compose
two pairs of access reports and states. Then, we define a parallel composition operator for M:

(m1 || m2) µ ≡
(x1,r1,µ1) ← m1 µ; (x2,r2,µ2) ← m2 µ; – execute both strands
assume feasible ρ1 ρ2; – ignore infeasible combinations
assert norace ρ1 ρ2; – fail on data race
returnne ((x1,x2), combine (ρ1,µ1) (ρ2,µ2)) – combine results

assume P ≡ if P then return () else spec (λ . False)
assert P ≡ if P then return () else fail

Here, we use assume to ignore infeasible executions, and assert to fail on data races.
Note that, if one parallel strand fails, and the other parallel strand has no possible results
spec (λ . False), the behaviour of the parallel composition is not clear. For this reason,
we fix an invariant invarM :: (′µ ⇒ (′x × ′ρ × ′µ) neM) ⇒ bool, which implies that every
non-failing execution has at least one possible result. We define the actual type M as the
subtype satisfying invarM . Thus, we have to prove that every combinator and instruction
of our semantics preserves the invariant, which is an important sanity check. As additional
sanity check, we prove symmetry of parallel composition:

m1 || m2 = mswap (m2 || m1) where mswap m ≡ (x1,x2)←m; return (x2,x1)

ITP 2022

24:4 Refinement of Parallel Algorithms down to LLVM

2.2 Memory Model
Our memory model supports blocks of values, where values can be integers, structures, or
pointers into a block:

datatype addr ≡ ADDR (bidx: nat) (idx: nat)
datatype ptr ≡ PTR NULL | PTR ADDR (the addr: addr)
datatype val ≡ LL INT lint | LL STRUCT val list | LL PTR ptr

datatype block ≡ FRESH | FREED | is alloc: ALLOC (vals: val list)
typedef memory ≡ { µ :: nat ⇒ block. finite {b. µ b ̸= FRESH} }

A block is either fresh, freed, or allocated, and a memory is a mapping from block indexes
to blocks, such that only finitely many blocks are not fresh. Every block’s state transitions
from fresh to allocated to freed. This avoids ever reusing the same block, and thus allows
us to semantically detect use after free errors. Every program execution can only allocate
finitely many blocks, such that we will never run out of fresh blocks1. An allocated block
contains an array of values, modelled as a list. Thus, an address consists of a block number,
and an index into the array.

To access and modify memory, we define the functions valid, get, and put:

valid µ (ADDR b i) ≡ is alloc (µ b) ∧ i<|vals (µ b)|
get µ (ADDR b i) ≡ vals (µ b) ! i
put µ (ADDR b i) x ≡ µ(b := ALLOC ((vals (µ b))[i:=x]))

where |xs| is the length of list xs, xs!i returns the ith element of list xs, and xs[i:=x] replaces
the ith element of xs by x.

Note that our LLVM semantics does not support conversion of pointers to integers, nor
comparison or difference of pointers to different blocks. This way, a program cannot see the
internal representation of a pointer, and we can choose a simple abstract representation,
while being faithful wrt. any actual memory manager implementation.

2.3 Access Reports
We now fix the state of the M-monad to be memory, and the access reports to be sets of
read and written addresses, as well as sets of allocated and freed blocks:

acc ≡ (r :: addr set; w :: addr set; a :: nat set; f :: nat set)
0 ≡ ({},{},{},{})
(r1,w1,a1,f1) + (r2,w2,a2,f2) ≡ (r1∪ r2, w1∪ w2, a1∪ a2, f1∪ f2)

Two parallel executions are feasible if they did not allocate the same block, and they
have a data race if one strand accesses addresses or blocks modified by the other strand:

feasible (r1,w1,a1,f1) (r2,w2,a2,f2) ≡ a1 ∩ a2 = {}

norace (r1,w1,a1,f1) (r2,w2,a2,f2) ≡
let m1 = w1 ∪ { ADDR b i. b ∈ a1 ∪ f1 } in
let m2 = w2 ∪ { ADDR b i. b ∈ a2 ∪ f2 } in

(r1 ∪ m1) ∩ m2 = {} ∧ m1 ∩ (r2 ∪ m2) = {}

1 If the actual system does run out of memory, we will terminate the program in a defined way.

P. Lammich 24:5

The invariant for M states that blocks transition only from fresh to allocated to free, allocated
blocks never change their size, and the access report matches the observable state change
(consistent). It also states, that for each finite set of blocks B, there is an execution that
does not allocate blocks from B. The latter is required to show that we always find feasible
parallel executions:

invarM c ≡ ∀µ P. c µ = spec P =⇒
(∀x ρ µ′. P (x,ρ,µ′) =⇒ consistent µ ρ µ′)
∧ (∀B. finite B =⇒ (∃x ρ µ′. P (x,ρ,µ′) ∧ ρ.a ∩ B = {}))

The combine function joins the access reports and memories, preferring allocated over fresh,
and freed over allocated memory. When joining two allocated blocks, the written addresses
from the access report are used to join the blocks. We skip the rather technical definition of
combine, and just state the relevant properties: Let ρ1=(r1,w1,a1,f1) and ρ2=(r2,w2,a2,f2) be
feasible and race free access reports, and µ1, µ2 be memories that have evolved from a common
memory µ, consistently with the access reports ρ1, ρ2. Let (ρ′,µ′) = combine (ρ1,µ1) (ρ2,µ2),
and addr a valid address in µ′. Then

(1) µ′ b = FRESH ←→ µ b = FRESH ∧ b /∈ a1 ∪ a2
(2) is alloc (µ′ b) ←→ (is alloc (µ b) ∨ b ∈ a1 ∪ a2) ∧ b /∈ f1 ∪ f2
(3) µ′ b = FREED ←→ µ b = FREED ∨ b ∈ f1 ∪ f2

(4) a ∈ w1 ∨ b ∈ a1 =⇒ get addr µ′ a = get addr µ1 a
(5) a ∈ w2 ∨ b ∈ a2 =⇒ get addr µ′ a = get addr µ2 a
(6) a /∈ w1∪w2 ∨ b /∈ a1∪a2 =⇒ get addr µ′ a = get addr µ a

The properties (1)–(3) define the state of blocks in the combined memory: a fresh block in
µ′ was fresh already in µ, and has not been allocated (1); an allocated block was already
allocated or has been allocated, but has not been freed (2); and a freed block was already
freed, or has been freed (3). The properties (4)–(6) define the content: addresses written or
allocated in the first or second execution get their content from µ1 (4) or µ2 (5) respectively.
Addresses not written or allocated at all keep their original content (6).

2.4 LLVM Instructions
Based on the M-monad, we define shallowly embedded LLVM instructions. For most
instructions, this is analogous to the sequential case [26]. The exceptions are memory alloca-
tion, which nondeterministically allocates some available block (the original formalization
deterministically counted up the block indexes), and an instruction for parallel function call:

l lc par f g a b ≡ f a || g b

The code generator only accepts this, if f and g are constants (i.e., function names). It then
generates some type-casting boilerplate, and a call to an external parallel function, which we
implement using the Threading Building Blocks [36] library:

void parallel(void (∗f1)(void∗), void (∗f2)(void∗), void ∗x1, void ∗x2) {
tbb::parallel invoke([=]{f1(x1);}, [=]{f2(x2);}); }

I.e., the two functions f1(x1) and f2(x2) are called in parallel. The generated boilerplate code
sets up x1 and x2 to point to both, the actual arguments and space for the results.

ITP 2022

24:6 Refinement of Parallel Algorithms down to LLVM

3 Parallel Separation Logic

In the previous section, we have defined a shallow embedding of LLVM programs into
Isabelle/HOL. We now describe how to reason about these programs, using separation logic.

3.1 Separation Algebra
In order to reason about memory with separation logic, we define an abstraction function
from the memory into a separation algebra [8]. Separation algebras formalize the intuition of
combining disjoint parts of memory. They come with a zero (0) that describes the empty
part, a disjointness predicate a#b describing that the parts a and b do not overlap, and a
disjoint union a + b that combines two disjoint parts. For the exact definition of a separation
algebra, we refer to [8, 20]. We note that separation algebras naturally extend over functions
and pairs, in a pointwise manner.

▶ Example 1. (Trivial Separation Algebra) The type α option = None | Some α forms a
separation algebra with:

0 ≡ None a # b ≡ a=0 ∨ b=0 a + 0 ≡ a 0 + b ≡ b

Intuitively, this separation algebra does not allow for combination of contents, except if one
side is zero. While it is not very useful on its own, the trivial separation algebra is a useful
building block for more complex separation algebras.

For our memory model, we define the following abstraction function:

α :: memory → (addr → val option) × (nat → nat option)
α µ ≡ (αm µ, αb µ)

αm µ addr ≡ if valid µ addr then Some (get µ addr) else 0
αb µ b ≡ if is alloc (µ b) then Some (|vals (µ b)|) else 0

An abstract memory α µ consists of two parts: αm µ is a map from addresses to the values
stored there. It is used to reason about load and store operations. αb µ is a map from
block indexes to the sizes of the corresponding blocks. It is used to ensure that one owns all
addresses of a block when freeing it.

We continue to define a separation logic: assertions are predicates over separation algebra
elements. The basic connectives are defined as follows:

false a ≡ False true a ≡ True □ a ≡ a=0
(P∗Q) a ≡ ∃ a1 a2. a1 # a2 ∧ a = a1 + a2 ∧ P a1 ∧ Q a2

That is, the assertion false never holds and the assertion true holds for all abstract memories.
The empty assertion □ holds for the zero memory, and the separating conjunction P∗Q holds
if the memory can be split into two disjoint parts, such that P holds for one, and Q holds for
the other part. The lifting assertion ↑ϕ holds iff the Boolean value ϕ is true:

↑ϕ ≡ if ϕ then □ else false

It is used to lift plain logical statements into separation logic assertions owning no memory.
When clear from the context, we omit the ↑-symbol, and just mix plain statements with
separation logic assertions.

P. Lammich 24:7

3.2 Weakest Preconditions and Hoare Triples
We define a weakest precondition predicate directly via the semantics:

wp m Q µ ≡ case m µ of spec Q′⇒ ∀x ρ µ′. Q′ (x,ρ,µ′) =⇒ Q x ρ µ′ | fail ⇒ False

That is, wp m Q µ holds, iff program m run on memory µ does not fail, and all possible
results (return value x, access report ρ, new memory µ′) satisfy the postcondition Q.

To set up a verification condition generator based on separation logic, we standardize the
postcondition: the reported memory accesses must be disjoint from some abstract memory
amf, called the frame. We define the weakest precondition with frame:

wpf amf c Q µ ≡ wp c (λx ρ µ′. Q x µ′ ∧ disjoint ρ amf) µ

disjoint (r,w,a,f) (m,b) ≡ (∀addr. m addr ̸= 0 =⇒ addr /∈ r ∪ w ∧ addr.bidx /∈ f)
∧ (∀i. b i ̸= 0 =⇒ i /∈ f)

that is, when executed on memory µ, the program c does not fail, every return value x and
new memory µ′ satisfies Q, and no memory described by the frame amf is accessed.

Equipped with a weakest precondition with access restrictions, we define a Hoare-triple:

ABS amf P µ ≡ ∃am. am # amf ∧ α µ = am+amf ∧ P am

ht P c Q ≡ ∀µ amf. ABS amf P µ =⇒ wpf amf c (λx µ′. ABS amf (Q x) µ′) µ

The predicate ABS amf P µ specifies that the abstract memory α µ can be split into a
part am and the given frame amf, such that am satisfies the precondition P . A Hoare-
triple ht P c Q specifies that for all memories and frames for which the precondition holds
(ABS amf P µ), the program will succeed, not using any memory of the frame, and every
result will satisfy the postcondition wrt. the original frame (ABS amf (Q x) µ′).

3.3 Verification Condition Generator
The verification condition generator is implemented as a proof tactic that works on subgoals
of the form:

ABS amf P µ ∧ . . . =⇒ wpf amf c Q µ

The tactic is guided by the syntax of the command c. Basic monad combinators are broken
down using the following rules:

Q r µ =⇒ wpf amf (return r) Q µ

wpf amf m (λx. wpf amf (f x) Q) µ =⇒ wpf amf ({x ← m; f x}) Q µ

For other instructions and user defined functions, the VCG expects a Hoare-triple to be
already proved. It then uses the following rule:

ht P c Q ∧ ABS amf P′ µ – match Hoare triple and current state
∧ P′ ⊢ P∗F – infer frame
∧ (

∧
r µ. ABS amf (Q r ∗ F) µ =⇒ Q′ r µ) – continue with postcondition

=⇒ wpf amf c Q′ µ

ITP 2022

24:8 Refinement of Parallel Algorithms down to LLVM

To process a command c, the first assumption is instantiated with the Hoare-triple for c, and
the second assumption with the assertion P′ for the current state. Then, a simple syntactic
heuristics infers a frame F and proves that the current assertion P′ entails the required
precondition P and the frame. Finally, verification condition generation continues with the
postcondition Q and the frame as current assertion.

3.4 Hoare-Triples for Instructions
To use the VCG to verify LLVM programs, we have to prove Hoare triples for the LLVM
instructions. For parallel calls, we prove the well-known disjoint concurrency rule [33]:

ht P1 c1 Q1 ∧ ht P2 c2 Q2 =⇒ ht (P1 ∗ P2) (par c1 c2) (λ(r1,r2). Q1 r1 ∗ Q2 r2)

That is, commands with disjoint preconditions can be executed in parallel.
For memory operations, we prove:

|= {n ̸=0} l l malloc TYPE(α) n {λp. range {0..<n} (λ . init) p ∗ b tag n p}
|= {range {0..<n} xs p ∗ b tag n p} l l free p {λ . □}
|= {pto x p} l l load p {λr. r=x ∗ pto x p}
|= {pto y p} l l store x p {λ . pto x p}

Here b tag n p asserts that p points to the beginning of a block of size n, and range I f p
describes that for all i ∈ I, p + i points to value f i. Intuitively, l l malloc creates a block of
size n, initialized with the default init value, and a tag. If one possesses both, the whole block
and the tag, it can be deallocated by free. The rules for load and store are straightforward,
where pto x p describes that p points to value x.

4 Refinement for Parallel Programs

At this point, we have described a separation logic framework for parallel programs in
LLVM. It is largely backwards compatible with the framework for sequential programs
described in [26], such that we could easily port the algorithms formalized there to our
new framework. The next step towards verifying complex programs is to set up a stepwise
refinement framework. In this section we describe the refinement infrastructure of the Isabelle
Refinement Framework, focusing on our changes to support parallel algorithms.

4.1 Abstract Programs
Abstract programs are shallowly embedded into the nondeterminism error monad ′a neM (cf.
Section 2.1). They are purely functional, not modifying memory, or differentiating between
sequential and parallel execution. We define a refinement ordering on neM:

spec P ≤ spec Q ≡ ∀x. P x =⇒ Q x fail ̸≤ spec Q m ≤ fail

Intuitively, m1 ≤ m2 means that m1 returns fewer possible results than m2, and may only
fail if m2 may fail. Note that ≤ is a complete lattice, with top element fail.

We use refinement and assertions to specify that a program m satisfies a specification
with precondition P and postcondition Q:

m ≤ assert P; spec x. Q x

If the precondition is false, the right hand side is fail, and the statement trivially holds.
Otherwise, m cannot fail, and every possible result x of m must satisfy Q.

For a detailed description on using the ne-monad for stepwise refinement based program
verification, we refer the reader to [30].

P. Lammich 24:9

4.2 The Sepref Tool
The Sepref tool [23, 26] symbolically executes an abstract program in the ne-monad, keeping
track of refinements for every abstract variable to a concrete representation, which may
use pointers to dynamically allocated memory. During the symbolic execution, the tool
synthesizes an imperative Isabelle-LLVM program, together with a refinement proof. The
synthesis is automatic, but requires annotations to the abstract program.

The main concept of the Sepref tool is refinement between an abstract program c in the
ne-monad, and a concrete program c† in the M monad, as expressed by the hnr-predicate:

hnr Γ c† Γ′ R CP c ≡
c ̸= fail =⇒ ht Γ c† (λx†. ∃x. Γ′ ∗ R x x† ∗ ↑(return x ≤ c ∧ CP x†))

That is, either the abstract program c fails, or for a memory described by assertion Γ, the
LLVM program c† succeeds with x†, such that the new memory is described by Γ′ ∗ R x x†,
for a possible result x of the abstract program c. Moreover, the predicate CP holds for the
concrete result. Note that hnr trivially holds for a failing abstract program. This makes
sense, as we prove that the abstract program does not fail anyway. Moreover it allows us to
assume that assertions actually hold during the refinement proof:

(ϕ =⇒ hnr Γ c† Γ′ R CP c) =⇒ hnr Γ c† Γ′ R CP (assert ϕ; c)

▶ Example 2. (Refinement of lists to arrays) We define abstract programs for indexing and
updating a list:

lget xs i ≡ assert (i<|xs|); return xs!i lset xs i x ≡ assert (i<|xs|); return xs[i:=x]

These programs assert that the index is in bounds, and then return the accessed element
(xs!i) or the updated list (xs[i:=x]) respectively. The following assertion links a pointer to a
list of elements stored at the pointed-to location:

arrA xs p = range {0..<|xs|} (λi. xs!i) p

That is, for every i < |xs|, p + i points to the ith element of xs. On arrays, indexing and
updating of arrays is implemented by:

aget p i ≡ l l ofs ptr p i; ll load p aset p i x ≡ l l ofs ptr p i; ll store x p; return p

And the abstract and concrete programs are linked by the following refinement theorems:

hnr (arrA xs xs† ∗ idxA i i†) (aget xs† i†) (arrA xs xs† ∗idxA i i†) idA (λ . True) (lget xs i)
hnr (arrA xs xs† ∗ idxA i i†) (aset xs† i† x) (idxA i i†) arrA (λr. r=xs†) (lset xs i x)

That is, if the list xs is refined by array xs†, and the natural number i is refined by the
fixed-width2 word i† (idxA i i†), the aget operation will return the same result as the lget
operation (idA). The resulting memory will still contain the original array. Note that there
is no explicit precondition that the array access is in bounds, as this follows already from the
assertion in the abstract lget operation. The aset operation will return a pointer to an array
that refines the updated list returned by lset. As the array is updated in place, the original
refinement of the array is no longer valid. Moreover, the returned pointer r will be the same
as the argument pointer xs†. This information is important for refining to parallel programs
on disjoint parts of an array (cf. Section 4.3).

2 We use Isabelle’s word library here, which encodes the actual width as a type variable, such that our
functions work with any bit width. For code generation, we will fix the width to 64 bit.

ITP 2022

24:10 Refinement of Parallel Algorithms down to LLVM

Given refinement assertions for the parameters, and hnr-rules for all operations in a
program, the Sepref tool automatically synthesizes an LLVM program from an abstract neM
program. The tool tries to automatically discharge additional proof obligations, typically
arising from translating arithmetic operations from unbounded numbers to fixed width
numbers. Where automatic proof fails, the user has to add assertions to the abstract program
to help the proof. The main difference of our tool wrt. the existing Sepref tool [26] is the
additional condition (CP) on the concrete result, which is used to track pointer equalities.
We have added a heuristics to automatically synthesize and discharge these equalities.

4.3 Array Splitting
An important concept for parallel programs is to concurrently operate on disjoint parts of
the memory, e.g., different slices of the same array. However, abstractly, arrays are just lists.
They are updated by returning a new list, and there is no way to express that the new list is
stored at the same address as the old list. Nevertheless, in order to refine a program that
updates two disjoint slices of a list to one that updates disjoint parts of the array in place,
we need to know that the result is stored in the same array as the input. This is handled by
the CP argument to hnr. To indicate that operations shall be refined to disjoint parts of the
same array, we introduce the combinator with_split for abstract programs:

with_split i xs f ≡
assert (i < |xs|);
(xs1,xs2) ← f (take i xs) (drop i xs);
assert (|xs1| = i ∧ |xs2| = |xs| − i);
return (xs1@xs2)

Abstractly, this is an annotation that is inlined when proving the abstract program correct.
However, Sepref will translate it to the concrete combinator awith split:

awith split i xs† f† ≡ xs†2 ← l l ofs ptr xs† i; f† xs† xs†2; return xs†

hnr (arrA xs1 xs†1 ∗ arrA xs2 xs†2) (f† xs†1 xs†2) □
(arrA × arrA) (λ(xs†1

′,xs†2
′). xs†1

′=xs†1 ∧ xs†2
′ = xs†2)

(f xs1 xs2)
=⇒
hnr (arrA xs xs† ∗ idxA i i†) (awith split i† xs† f†)

(idxA i i†) (λxs xs†. arrA xs xs†) (λxs†
′. xs†

′=xs†)
(with_split i xs f)

The refinement of the function f to f† requires an additional proof that the returned pointers
are equal to the argument pointers (xs†1

′=xs†1 ∧ xs†2
′ = xs†2). Sepref tries to prove that

automatically, using a simple heuristics.

4.4 Refinement to Parallel Execution
The purely functional abstract programs have no notion of parallel execution. To indicate
that refinement to parallel execution is desired, we define an abstract annotation npar:

npar f g a b ≡ x ← f a; y ← g b; return (x,y)

hnr Ax (f† x†) Ax′ Rx CP1 (f x) ∧ hnr Ay (g† y†) Ay′ Ry CP2 (g y)
=⇒
hnr (Ax ∗ Ay) (l lc par f† g† x† y†) (Ax′ ∗ Ay′) (Rx × Ry)

(λ(x′
†,y†

′). CP1 x†
′ ∧ CP2 y†

′) (npar f g x y)

P. Lammich 24:11

This rule can be used to automatically parallelize any (independent) abstract computations.
For convenience, we also define nseq. Abstractly, it’s the same as npar, but Sepref translates
it to sequential execution.

5 A Parallel Sorting Algorithm

To test the usability of our framework, we verify a parallel sorting algorithm. We start with
the abstract specification of an algorithm that sorts a list:

sort spec xs = spec xs′. mset xs′=mset xs ∧ sorted xs

That is, we return a sorted permutation of the original list. Note that this is a standard
specification of sorting in Isabelle. Reusing the existing development of an abstract introsort
algorithm [27], we easily prove with a few refinement steps that the following abstract
algorithm implements sort spec:

1 psort xs n ≡ assert n=|xs|; if n≤1 then return xs else psort aux xs n (log2 n ∗ 2)
2
3 psort aux xs n d ≡
4 assert n=|xs|
5 if d=0 ∨ n<100000 then sort spec xs
6 else
7 (xs,m) ← partition spec xs;
8 let bad = m<n div 8 ∨ (n−m < n div 8)
9 (,xs) ← with_split m xs (λxs1 xs2.

10 if bad then nseq psort aux psort aux (xs1,m,d−1) (xs2,n−m,d−1)
11 else npar psort aux psort aux (xs1,m,d−1) (xs2,n−m,d−1)
12);
13 return xs
14
15 lemma psort xs |xs| ≤ sort spec xs

This algorithm is derived from the well-known quicksort and introsort algorithms [32]: like
quicksort, it partitions the list (line 7), and then recursively sorts the partitions in parallel
(l. 11). Like introsort, when the recursion gets too deep, or the list too short, we fall back to
some (not yet specified) sequential sorting algorithm (l. 5). Similarly, when the partitioning is
very unbalanced (l. 8), we sort the partitions sequentially (l. 10). These optimizations aim at
not spawning threads for small sorting tasks, where the overhead of thread creation outweighs
the advantages of parallel execution. A more technical aspect is the extra parameter n that
we introduced for the list length. Thus, we can refine the list to just a pointer to an array,
and still access its length3.

5.1 Implementation and Correctness Theorem
Next, we have to provide implementations for the fallback sort spec, and for partition spec.
These implementations must be proved to be in-place, i.e., return a pointer to the same array.
It was straightforward to amend our existing formalization of pdqsort [27] with the in-place
proofs: once we had amended the refinement statements, and bug-fixed the pointer equality
proving heuristics that we added to Sepref, the proofs were automatic.

3 Alternatively, we could refine a list to a pair of array pointer and length.

ITP 2022

24:12 Refinement of Parallel Algorithms down to LLVM

Given the implementations of sort spec and partition spec, the Sepref tool generates an
LLVM program psort† from the abstract psort, and proves a corresponding refinement lemma:

hnr (arrA xs xs† ∗ idxA n n†) (psort† xs† n†) (idxA n n†) arrA (λr. r = xs†) (psort xs n)

Combining this with the correctness lemma of the abstract psort algorithm, and unfolding
the definition of hnr, we prove the following Hoare-triple for our final implementation:

ht (arrA xs xs† ∗ idxA n n† ∗ n = |xs|)
(psort† xs† n†)
(λr. r=xs† ∗ ∃ xs′. arrA xs′ xs† ∗ sorted xs′ ∗ mset xs′ = mset xs)

That is, for a pointer xs† to an array, whose contents are described by list xs (arrA), and a
fixed-size word n† representing the natural number n (idxA), which must be the number of
elements in the list xs, our sorting algorithm returns the original pointer xs†, and the array
contents are now xs′, which is sorted and a permutation of xs. Note that this statement uses
our semantically defined Hoare triples (cf. Section 3.2). In particular, its correctness does
not depend on the refinement steps, the Sepref tool, or the VCG.

5.2 A Sampling Partitioner

While we could simply re-use the existing partitioning algorithm from the pdqsort formaliza-
tion, which uses a pseudomedian of nine pivot selection, we observe that the quality of the
pivot is particularly important for a balanced parallelization. Moreover, the partitioning in
the psort aux procedure is only done for arrays above a quite big size threshold. Thus, we
can invest a little more work to find a good pivot, which is still negligible compared to the
cost of sorting the resulting partitions. We choose a sampling approach, using the median of
64 equidistant samples as pivot. The highly optimized partitioning algorithms that we use
swap the pivot to the front of the partition, such that we need to determine its index, rather
than just its value. We simply use quicksort to find the median4:

sample xs ≡ is ← equidist |xs| 64; is ← sort wrt (λi j. xs!i < xs!j) is; return (is!32)

Proving that this algorithm finds a valid pivot index is straightforward. More challenging is to
refine it to purely imperative LLVM code, which does not support closures like λi j. xs!i < xs!j.

We resolve such closures over the comparison function manually: using Isabelle’s locale
mechanism [19], we parametrize over the comparison function. Moreover, we thread through
an extra parameter for the data captured by the closure:

locale pcmp =
fixes lt :: ′p ⇒ ′e ⇒ ′e ⇒ bool and lt† :: ′p† ⇒ ′e† ⇒ ′e† ⇒ bool

and parA :: ′p ⇒ ′p† ⇒ assn and elemA :: ′e ⇒ ′e† ⇒ assn
assumes ∀p. weak ordering (lt p)
assumes hnr (parA p pi ∗ elemA a ai ∗ elemA b bi) (lt† pi ai bi)

(parA p pi ∗ elemA a ai ∗ elemA b bi) (boolA) (λ . True) (lt p a b)

4 We leave verification of efficient median algorithms, e.g., quickselect, to future work. Note that the
overhead of sorting 64 elements is negligible compared to the large partition that has to be sorted.

P. Lammich 24:13

This defines a context in which we have an abstract compare function lt for the abstract
elements of type ′e. It takes an extra parameter of type ′p (e.g. the list xs), and forms a
weak ordering5. Note that the strict compare function lt also induces a non-strict version
le p a b ≡ ¬lt p b a. Moreover, we have a concrete implementation lt† of the compare
function, wrt. the refinement assertions parA for the parameter and elemA for the elements.

Our sorting algorithm is developed and verified in the context of this locale (to avoid
confusion, our presentation has, up to now, just used <, ≤, and sorted instead of lt p, le p,
and sorted wrt (le p)). To get a sorting algorithm for an actual compare function, we have
to instantiate the locale, providing an abstract and concrete compare function, along with a
proof that the abstract function is a weak ordering, and the concrete function refines the
abstract one. For our example of sorting indexes into an array, where the array elements are,
themselves, compared by a parametrized function lt, we get:

interpretation idx: pcmp lt idx lt idx† (parA × arrA) idxA ⟨proof⟩

lt idx (p,xs) i j ≡ lt p (xs!i) (xs!j)
lt idx† (p†,xs†) i† j† ≡ x†←aget xs† i†; y†←aget xs† j†; lt† p† x† y†

this yields sorting algorithms for sorting indexes, taking an extra parameter for the array to
index into. For our sampling application, we use idx.introsort xs.

5.3 Code Generation
Finally, we instantiate the sorting algorithms to sort unsigned integers and strings:

interpretation unat: pcmp (λ . <) (λ . ll icmp ult) unat64
A ⟨proof⟩

interpretation str: pcmp (λ . <) (λ . strcmp) str64
A ⟨proof⟩

This yields implementations unat.psort† and str.psort†, and automatically proves instantiated
versions of the correctness theorems.

In a last step, we use our code generator to generate actual LLVM text, as well as a C
header file with the signatures of the generated functions6:

export llvm
unat.psort† is uint64 t∗ psort(uint64 t∗, int64 t)
str.psort† is l lstring∗ str psort(l lstring∗, int64 t)
defines typedef struct {int64 t size; struct {int64 t capacity; char ∗data;};} l lstring;
file psort.ll

This checks that the specified C signatures are compatible with the actual types, and then
generates psort.ll and psort.h, which can be used in a standard C/C++ toolchain.

5.4 Benchmarks
We have benchmarked our verified sorting algorithm against a direct implementation of the
same algorithm in C++. The result was that both implementations have the same runtime,
up to some minor noise. This indicates that there is no systemic slowdown: algorithms
verified with our framework run as fast as their unverified counterparts implemented in C++.

5 A weak ordering is induced by a mapping of the elements into a total ordering. It is the standard
prerequisite for sorting algorithms in C++ [17].

6 For technical reasons, we represent the array size as non-negative signed integer, thus the C signature
uses int64 t. Moreover, we use a string implementation based on dynamic arrays, rather than C’s zero
terminated strings.

ITP 2022

24:14 Refinement of Parallel Algorithms down to LLVM

0

500

1,000

1,500
Laptop, uint64

0

500

1,000 Server, uint64

500

1,000 Laptop, string

re
v-s

ort
ed-e

nd-1
0

re
v-s

ort
ed-e

nd-1

so
rt

ed-e
nd-.1

alm
ost

-s
ort

ed-5
0

ra
ndom

-b
oole

an

org
an-p

ip
e

so
rt

ed-e
nd-1

0
equal

re
v-s

ort
ed-m

id
dle

-.1

re
v-s

ort
ed

so
rt

ed-m
id

dle
-1

re
v-s

ort
ed-m

id
dle

-1
0

ra
ndom

alm
ost

-s
ort

ed-.1

so
rt

ed

re
v-s

ort
ed-m

id
dle

-1

so
rt

ed-m
id

dle
-.1

alm
ost

-s
ort

ed-1
0

alm
ost

-s
ort

ed-1

so
rt

ed-m
id

dle
-1

0

re
v-s

ort
ed-e

nd-.1

so
rt

ed-e
nd-1

ra
ndom

-d
up-1

0

200

400

600

800

1,000
Server, string verified

std::sort(par-unseq)
sample sort

Figure 2 Runtimes in milliseconds for sorting various distributions of unsigned 64 bit integers
and strings with our verified parallel sorting algorithm, C++’s standard parallel sorting algorithm,
and Boost’s parallel sample sort algorithm. The experiments were performed on a server machine
with 22 AMD Opteron 6176 cores and 128GiB of RAM, and a laptop with a 6 core (12 threads)
i7-10750H CPU and 32GiB of RAM.

P. Lammich 24:15

0 2 4 6 8 10 12

1

2

3

4

5 Laptop

verified
sample sort
std::sort(par-unseq)

0 5 10 15 20

2

4

6

8

10 Server

verified
sample sort
std::sort(par-unseq)

Figure 3 Speedup of the various implementations, for sorting unsigned 64 bit integers with a
random distribution, on a server with 22 AMD Opteron 6176 cores and 128GiB of RAM, and a
laptop with a 6 core (12 threads) i7-10750H CPU and 32GiB of RAM. The x axis ranges over the
number of cores, and the y-axis gives the speedup wrt. the same implementation run on only one
core. The thin black lines indicate linear speedup.

We also benchmarked against the state-of-the-art implementations std::sort with execution
policy par unseq from the GNU C++ standard library [12], and sample sort from the Boost
C++ libraries [4, 5]. We have benchmarked the algorithm on two different machines, and
various input distributions. The results are shown in Figure 2. While our verified algorithm
is clearly competitive for integer sorting on the less parallel laptop machine, it’s slightly less
efficient for sorting strings on the highly parallel server machine. Nevertheless, we believe
that our verified implementation is already useful in practice, and leave further optimizations
to future work.

Finally, we measured the speedup that the implementations achieve for a certain number
of cores. The results are displayed in Figure 3. While the speedup on the moderately parallel
laptop is comparable to the one of the C++ standard library, our implementation achieves
lower speedups than the state-of-the-art on the highly parallel server. Again, we leave further
optimizations to future work.

6 Conclusions

We have presented a stepwise refinement approach to verify total correctness of efficient
parallel algorithms. Our approach targets LLVM as back end, and there is no systemic
efficiency loss in our approach when compared to unverified algorithms implemented in C++.

The trusted code base of our approach is relatively small: apart from Isabelle’s inference
kernel, it contains our shallow embedding of a small fragment of the LLVM semantics, and
the code generator. All other tools that we used, e.g., our Hoare logic, Sepref tool, and
Refinement Framework for abstract programs, ultimately prove a correctness theorem that
only depends on our shallowly embedded semantics.

As a case study, we have implemented a parallel sorting algorithm. It uses an existing
verified sequential pdqsort algorithm as a building block, and is competitive with state-of-
the-art parallel sorting algorithms, at least on moderately parallel hardware.

The main idea of our parallel extension is to shallowly embed the semantics of a parallel
combinator into a sequential semantics, by making the semantics report the accessed memory
locations, and fail if there is a potential data race. We only needed to change the lower

ITP 2022

24:16 Refinement of Parallel Algorithms down to LLVM

levels of our existing framework for sequential LLVM [26]. Higher-level tools like the VCG
and Sepref remained largely unchanged and backwards compatible. This greatly simplified
reusing of existing verification projects, like the sequential pdqsort algorithm [27].

6.1 Related Work
While there is extensive work on parallel sorting algorithm (e.g. [9, 1]), there seems to be
almost no work on their formal verification. The only work we are aware of is a distributed
merge sort algorithm [16], for which ”no effort has been made to make it efficient”[16, Sec. 2],
nor any executable code has been generated or benchmarked. Another verification [34] uses
the VerCors deductive verifier to prove the permutation property (mset xs′ = mset xs) of
odd-even transposition sort [13], but neither the sortedness property nor termination.

Concurrent separation logic is used by many verification tools such as VerCors [3], and also
formalized in proof assistants, for example in the VST [37] and IRIS [18] projects for Coq [2].
These formalizations contain elaborate concepts to reason about communication between
threads via shared memory, and are typically used to verify partial correctness of subtle
concurrent algorithms (e.g. [31]). Reasoning about total correctness is more complicated
in the step-indexed separation logic provided by IRIS, and currently only supported for
sequential programs [35]. Our approach is less expressive, but naturally supports total
correctness, and is already sufficient for many practically relevant parallel algorithms like
sorting, matrix-multiplication, or parallel algorithms from the C++ STL.

6.2 Future Work
An obvious next step is to implement a fractional separation logic [6], to reason about parallel
threads that share read-only memory. While our semantics already supports shared read-only
memory, our separation logic does not. We believe that implementing a fractional separation
logic will be straightforward, and mainly pose technical issues for automatic frame inference.

Another obvious next step is to verify a state-of-the-art parallel sorting algorithm, like
Boost’s sample sort. Like our current algorithm, sample sort does not require advanced
synchronization concepts, and can be implemented only with a parallel combinator.

Finally, the Sepref framework has recently been extended to reason about complexity of
(sequential) LLVM programs [14, 15]. This line of work could be combined with our parallel
extension, to verify the complexity (e.g. work and span) of parallel algorithms.

Extending our approach towards more advanced synchronization like locks or atomic
operations may be possible: instead of accessed memory addresses, a thread could report a
set of possible traces, which are checked for race-freedom and then combined.

Finally, our framework currently targets multicore CPUs. Another important architecture
are general purpose GPUs. As LLVM is also available for GPUs, porting our framework to
this architecture should be possible. We even expect that barrier synchronization, which is
important in the GPU context, can be integrated into our approach.

References
1 Mikhail Asiatici, Damian Maiorano, and Paolo Ienne. How many cpu cores is an fpga worth?

lessons learned from accelerating string sorting on a cpu-fpga system. Journal of Signal
Processing Systems, pages 1–13, 2021.

2 Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions. Springer Publishing Company, Incorporated,
1st edition, 2010.

P. Lammich 24:17

3 Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. The vercors tool set:
Verification of parallel and concurrent software. In Nadia Polikarpova and Steve Schneider,
editors, Integrated Formal Methods, pages 102–110, Cham, 2017. Springer International
Publishing.

4 Boost C++ libraries. URL: https://www.boost.org/.
5 Boost C++ libraries sorting algorithms. URL: https://www.boost.org/doc/libs/1_77_0/

libs/sort/doc/html/index.html.
6 Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission

accounting in separation logic. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’05, pages 259–270, New York, NY, USA,
2005. ACM. doi:10.1145/1040305.1040327.

7 Julian Brunner and Peter Lammich. Formal verification of an executable LTL model
checker with partial order reduction. J. Autom. Reasoning, 60(1):3–21, 2018. doi:
10.1007/s10817-017-9418-4.

8 C. Calcagno, P.W. O’Hearn, and Hongseok Yang. Local action and abstract separation logic.
In LICS 2007, pages 366–378, July 2007.

9 Jatin Chhugani, Anthony D Nguyen, Victor W Lee, William Macy, Mostafa Hagog, Yen-Kuang
Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey. Efficient implementation of sorting
on multi-core simd cpu architecture. Proceedings of the VLDB Endowment, 1(2):1313–1324,
2008.

10 Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and
Jan-Georg Smaus. A fully verified executable LTL model checker. In CAV, volume 8044 of
LNCS, pages 463–478. Springer, 2013.

11 Mathias Fleury, Jasmin Christian Blanchette, and Peter Lammich. A verified SAT solver with
watched literals using Imperative HOL. In Proc. of CPP, pages 158–171, 2018.

12 The GNU C++ library 3.4.28. URL: https://gcc.gnu.org/onlinedocs/libstdc++/.
13 A. Nico Habermann. Parallel neighbor-sort, June 1972. doi:10.1184/R1/6608258.v1.
14 Maximilian P. L. Haslbeck and Peter Lammich. For a few dollars more - verified fine-grained

algorithm analysis down to LLVM. TOPLAS, S.I. ESOP’21, 2021. to appear.
15 Maximilian P. L. Haslbeck and Peter Lammich. For a few dollars more - verified fine-grained

algorithm analysis down to LLVM. In Nobuko Yoshida, editor, Programming Languages
and Systems - 30th European Symposium on Programming, ESOP 2021, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg
City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume 12648 of Lecture Notes in
Computer Science, pages 292–319. Springer, 2021. doi:10.1007/978-3-030-72019-3_11.

16 Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: Session-type
based reasoning in separation logic. Proc. ACM Program. Lang., 4(POPL), December 2019.
doi:10.1145/3371074.

17 Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison-Wesley
Professional, 2nd edition, 2012.

18 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. J. Funct. Program., 28:e20, 2018. doi:10.1017/S0956796818000151.

19 Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales a sectioning concept
for isabelle. In Yves Bertot, Gilles Dowek, Laurent Théry, André Hirschowitz, and Christine
Paulin, editors, Theorem Proving in Higher Order Logics, pages 149–165, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg.

20 Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Mechanised separation algebra. In ITP,
pages 332–337. Springer, August 2012.

21 Peter Lammich. Automatic data refinement. In ITP, volume 7998 of LNCS, pages 84–99.
Springer, 2013.

ITP 2022

https://www.boost.org/
https://www.boost.org/doc/libs/1_77_0/libs/sort/doc/html/index.html
https://www.boost.org/doc/libs/1_77_0/libs/sort/doc/html/index.html
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-017-9418-4
https://gcc.gnu.org/onlinedocs/libstdc++/
https://doi.org/10.1184/R1/6608258.v1
https://doi.org/10.1007/978-3-030-72019-3_11
https://doi.org/10.1145/3371074
https://doi.org/10.1017/S0956796818000151

24:18 Refinement of Parallel Algorithms down to LLVM

22 Peter Lammich. Verified efficient implementation of gabow’s strongly connected component
algorithm. In International Conference on Interactive Theorem Proving, pages 325–340.
Springer, 2014.

23 Peter Lammich. Refinement to Imperative/HOL. In ITP, volume 9236 of LNCS, pages 253–269.
Springer, 2015.

24 Peter Lammich. Efficient verified (UN)SAT certificate checking. In Proc. of CADE. Springer,
2017.

25 Peter Lammich. The GRAT tool chain - efficient (UN)SAT certificate checking with formal
correctness guarantees. In SAT, pages 457–463, 2017.

26 Peter Lammich. Generating Verified LLVM from Isabelle/HOL. In John Harrison, John
O’Leary, and Andrew Tolmach, editors, 10th International Conference on Interactive Theorem
Proving (ITP 2019), volume 141 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 22:1–22:19, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ITP.2019.22.

27 Peter Lammich. Efficient verified implementation of introsort and pdqsort. In Nicolas
Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th International
Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume
12167 of Lecture Notes in Computer Science, pages 307–323. Springer, 2020. doi:10.1007/
978-3-030-51054-1_18.

28 Peter Lammich and S. Reza Sefidgar. Formalizing the Edmonds-Karp algorithm. In Proc. of
ITP, pages 219–234, 2016.

29 Peter Lammich and S. Reza Sefidgar. Formalizing network flow algorithms: A refine-
ment approach in Isabelle/HOL. J. Autom. Reasoning, 62(2):261–280, 2019. doi:10.1007/
s10817-017-9442-4.

30 Peter Lammich and Thomas Tuerk. Applying data refinement for monadic programs to
Hopcroft’s algorithm. In Lennart Beringer and Amy P. Felty, editors, ITP 2012, volume 7406
of LNCS, pages 166–182. Springer, 2012.

31 Glen Mével and Jacques-Henri Jourdan. Formal verification of a concurrent bounded queue in
a weak memory model. Proc. ACM Program. Lang., 5(ICFP), August 2021. doi:10.1145/
3473571.

32 DAVID R. MUSSER. Introspective sorting and selection algorithms. Software: Practice
and Experience, 27(8):983–993, 1997. doi:10.1002/(SICI)1097-024X(199708)27:8<983::
AID-SPE117>3.0.CO;2-\#.

33 Peter W. O’Hearn. Resources, concurrency and local reasoning. In Philippa Gardner and
Nobuko Yoshida, editors, CONCUR 2004 - Concurrency Theory, pages 49–67, Berlin, Heidel-
berg, 2004. Springer Berlin Heidelberg.

34 Mohsen Safari and Marieke Huisman. A generic approach to the verification of the permutation
property of sequential and parallel swap-based sorting algorithms. In International Conference
on Integrated Formal Methods, pages 257–275. Springer, 2020.

35 Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek
Dreyer, and Lars Birkedal. Transfinite iris: Resolving an existential dilemma of step-indexed
separation logic. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages 80–95, 2021.

36 Intel oneapi threading building blocks. URL: https://software.intel.com/en-us/
intel-tbb.

37 Verified software toolchain project web page. URL: https://vst.cs.princeton.edu/.
38 Simon Wimmer and Peter Lammich. Verified model checking of timed automata. In TACAS

2018, pages 61–78, 2018.

https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3473571
https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-
https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb
https://vst.cs.princeton.edu/

	1 Introduction
	1.1 Overview

	2 A Back End for LLVM with Parallel Execution
	2.1 State-Nondeterminism-Error Monad with Access Reports
	2.2 Memory Model
	2.3 Access Reports
	2.4 LLVM Instructions

	3 Parallel Separation Logic
	3.1 Separation Algebra
	3.2 Weakest Preconditions and Hoare Triples
	3.3 Verification Condition Generator
	3.4 Hoare-Triples for Instructions

	4 Refinement for Parallel Programs
	4.1 Abstract Programs
	4.2 The Sepref Tool
	4.3 Array Splitting
	4.4 Refinement to Parallel Execution

	5 A Parallel Sorting Algorithm
	5.1 Implementation and Correctness Theorem
	5.2 A Sampling Partitioner
	5.3 Code Generation
	5.4 Benchmarks

	6 Conclusions
	6.1 Related Work
	6.2 Future Work

