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—— Abstract

Stochastic approximation algorithms are iterative procedures which are used to approximate a
target value in an environment where the target is unknown and direct observations are corrupted
by noise. These algorithms are useful, for instance, for root-finding and function minimization
when the target function or model is not directly known. Originally introduced in a 1951 paper by
Robbins and Monro, the field of Stochastic approximation has grown enormously and has come
to influence application domains from adaptive signal processing to artificial intelligence. As an
example, the Stochastic Gradient Descent algorithm which is ubiquitous in various subdomains of
Machine Learning is based on stochastic approximation theory. In this paper, we give a formal proof
(in the Coq proof assistant) of a general convergence theorem due to Aryeh Dvoretzky [21] (proven
in 1956) which implies the convergence of important classical methods such as the Robbins-Monro
and the Kiefer-Wolfowitz algorithms. In the process, we build a comprehensive Coq library of
measure-theoretic probability theory and stochastic processes.
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1 Introduction

This paper presents a formal proof of Aryeh Dvoretzky’s 1956 result on stochastic approxim-
ation.

To motivate this result, let us consider a problem frequently occurring in various contexts
of statistical learning: Let Y be a real-valued random variable that depends on a parameter
x. We may say that P(Y|z) is the probability distribution of ¥ conditioned or dependent on
a parameter z. Next, suppose we are given a function f(y,x) and we want to find x that
solves the equation

Epf(Y,2) =0 (1)
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Moreover, assume that P(Y|z) is not available to us explicitly, but only in an implicit or
sampling form, that is, we are provided a sampling oracle which takes a parameter x and
returns a sample of Y drawn from z-dependent probability distribution P(Y|x).

» Example 1 (Kolmogorov's Strong Law of Large Numbers). Let f(y,z) =y — z, and let YV
be independent of x. To solve equation (1) in this situation means to solve E[Y] = z, that
is to find the expected value x of a random variable Y given an oracle from which we can
sample Y, in other words to construct a statistical estimator of E[Y'] given a series of samples

Y0, Y1, - - - - The following iterative algorithm does the job
Tntl = Tp + an(yn - xn) (2)
for n=0,1,2,... where ¢ := 0 and a,, = %—l—l Indeed, the iterations (2) are equivalent to

the standard sample mean estimator z,, = % Zz;é yr. Notice that the iterations (2) have the

form x,,41 = Tpn + an f(Yn, xn). The theorem that the estimator x,, converges almost surely
(with probability one) to the true expectation value is famously known as the “Kolmogorov’s
Strong Law of Large Numbers” (SLLN).

» Example 2 (Banach'’s fixed point and optimal control). Now consider the opposite example,
where Y that depends on x in a deterministic way, say Y = g(x) where g : R — R is a certain
function (and event space is a single point). In this case, when we pass = to the oracle, the
oracle deterministically returns to us the value of the function g evaluated at z. In this
case, solving the equation (1) for the function f(y,z) =y — x = g(z) — x means solving the
equation

g(x) == 3)

If g is a y-contraction map? the standard proof of the Banach fixed point theorem tells us
that the iterations

Tn+1 ‘= Tn + an(g(mn) - xn) (4)

for a suitable choice of a,,, for example a,, = n%rl, form a Cauchy sequence x1, x2, ... that
converges to the fixed point of the map g : R — R. A variation of this process is applied
to solve Bellman’s equation for optimal control of Markov Decision Process (MDP) where
~-contraction map g comes from Bellman’s optimality operator for MDPs with discount

parameter 0 < v < 1.

» Example 3 (Stochastic gradient descent). Now, as a variation of (1), suppose that we want
to find x that minimizes the expectation value E[L(Y, x)] of a certain loss function L(Y,x)
in a context where Y is sampled by an oracle from an z-dependent probability distribution.
Assuming that E[L(Y, z)] is a locally convex analytic function, finding a local minimum is
equivalent to solving the stationary point equation

V.E[L(Y,z)] =0 (5)
Since V, is a linear operator, the above equation is equivalent to E[V,L(Y,z)] = 0 and
therefore is again an example of the equation (1) with f(y,x) := —V,L(y, x). The iterative
sequence

Tp+1 = Tp — anva(yna an) (6)

2 this means that in some norm || e || it holds that ||g(z) — g(z')|| < ||z — 2'|| for all z, 2’ with v < 1
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is known as stochastic gradient descent. This algorithm is a typical component of most of
machine learning algorithms that search for a parameter x that minimizes the expected value
of the loss function L(Y,x) given samples of Y.* Under suitable conditions on f(y,z) =
—V.L(y,z) and the parameters a, (for example, a, = n%rl would satisfy all required
assumptions) one can prove convergence of (6) to the critical point of the loss function

L(Y,x).

These three examples demonstrate the ubiquity of the problem (1), and many more
applications could be mentioned in a longer report.
In all these cases the solution of the problem (1) has the form

Tpyl = Tp + anf(yna xn) (7)

and is called a stochastic approximation algorithm.

A large body of literature explored different versions of assumptions on the domain of
variables, on the function f(y,x) and on the step-sizes (learning rates) a,, under which the
convergence of x,, could be proven in various senses: as convergence in L?, as convergence in
probability, as convergence with probability 1.%

Robbins and Monro introduced in [30] the field of Stochastic Approximation by proving
the L? convergence of the process (7) for f(y,x) = b — y to the value = that solves the
equation E[Y](z) = b. Note that we write E[Y](z) to indicate that x occurs as a parameter
in the distribution of Y. For this theorem, Robbins and Monro assumed

o o0
ap — 0, Z an = 00, Z a2 < oo, (8)
n=1 n=1

that Y is bounded with probability 1, and that the function M (z) := E[Y](z) is (i) non-
decreasing, (ii) the solution z, of M (x) = b exists, and (iii) the derivative at the solution is
positive M’ (2)|z=z, > 0.

Kiefer and Wolfowitz [26] took a similar approach but considered the problem of estimating
the parameter z where the function M (z) has a maximum, and proved convergence in
probability.

Wolfowitz [42] weakened the assumption of Robbins-Monro about boundedness of Y:
instead his version assumes only that the variance of Y is bounded uniformly over x, and
M (z) is bounded, and with those assumptions Wolfowitz proves convergence in probability.

Blum [12] weakened further the assumptions of Robbins-Monro and Wolfowitz and proved
a substantially stronger result, namely that the iterative sequence (7) (with f(z,,yn) = b—yn)
converges with probability 1. Blum requires the variance of Y be uniformly bounded over z,
but he allows the expectation value M (xz) = E[Y](z) to be bounded by a linear function of x

M(2)| < Ale| + B A,B >0 (9)

instead of a constant. Blum’s proof is based on a version of Kolmogorov’s inequality adopted
in a suitable way by Loéve [28] where instead of series of independent random variables, a
certain dependence was allowed but constrained by a conditional expectation value. This

3 In the context of supervised learning, y will stand for (Yin, Yout) tuples sampled from training data,
and x stands for the model parameters, e.g. neural network weights. If N; : yin — Your is a neural
network, then with a quadratic supervised loss one normally takes L(y, z) := (Yout — Nz (ym))2 where
Y= (ym, yout)

4 The notion of “convergence with probability 1” is the same as the notion of “convergence almost surely”,
but different from the notion of “convergence in probability”, which is much weaker.

31:3

ITP 2022



31:4

Formalization of a Stochastic Approximation Theorem

extension of Kolomogorov’s inequality to the conditional situation was related to earlier
works of Borel, Lévy and Doob about convergence with probability 1 of certain stochastic
processes.

Finally, the most general form of stochastic approximation was formulated by Dvoretzky
[21]. In the original Robbins-Monro stochastic approximation (7), the next value 41 is
determined through the previous value xz,, and the sample y,. Dvoretzky allowed more
general estimator algorithms in which x,,4;1 is determined through a certain function that
can take as arguments complete history of all previous values z1,...,z, and the current
sample .

Concretely, let T,, : R — R be a real-valued function of n-variables. Consider the
stochastic process

Tpa1 = To(T1,. o 20) + W, (10)

where Wi, Ws,... are random variables, with W,, dependent on the previous history
X1,...,X, such that

E(Wn‘ xl,...,xn):() (11)

Another way to formulate Dvoretzky’s setup is to say that for any sequence of random

variables X7, Xs,... where we have conditional probability distribution of X,,; dependent
on the complete history x1,...,x,, and then define
def
T(21,...,20) =2 B[ X 1|z, ..., 20
(12)

def
Wn ; Xn+1 - E[Xn+1|$1; s 7xn]

in this way we automatically get the relation (10) with noise terms W, that satisfy (11).

For example, in the Robbins-Monro version we take (7) with f(y,z) = b — y which
gives X, 11 := X, + a,(b—Y,) and hence the Robbins-Monro process is a specialization of
Dvoretzky’s process with

T(Lll‘l, . ,.’I,‘n) =, + an(b - M(xn))

(13)
Wy = an(M(zy) — Yy)

whereas before in the context of Robbins-Monro we had M (z,,) := E(Yy,|z,).
To prove his result, Dvoretzky assumed that:
1. there exists a point x, such that

[T (21, .oy ) — 2] < max(an, (14 Bn)|Tn — | —n) (14)
where au,, B, Vn are sequences of non-negative real numbers with

a, — 0 (15)
> Bn <o (16)

Z'Yn = 0 (17)
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2. The cumulative variance of the noise terms W,, is bounded
S EW <00,  EWu|X1,...,X,]=0 (18)
n=1

and proved that the iterative sequence (10) converges with probability 1 to the fixed point ..

The Robbins-Monro theorem in its strongest form (that is, under the weakest assumptions
of Blum (9)) becomes an easy consequence of Dvoretzky theorem. We only have to check
that given the assumptions of Blum we can apply Dvoretzky. First, Blum’s assumption that
the variance of Y,, is bounded by, say, o2 for all x and n, given the relation (13), implies
Yoo JEW2] =307 a?0? < oo, and therefore Dvoretzky’s assumption (18) about limited
cumulative variance of his noise terms holds. Second, given Blum’s M (x) in equation (9),
we will construct ay,, By, v, that satisfy (15) and such that the bound on the operator T in
(14) holds. To do that, first choose a real-valued series {p,} with p, > 0 and p,, — 0 such
that? > Pnay = 00. For simplicity assume, by a change of coordinates, that the fixed point
x, = 0. Assuming that M (z) is regular and monotonic in a neighborhood of z, there is an
inverse map M ! and then we define the sequence {n,} = {M ~'(p,)} for sufficiently small
pn. Next, define (for sufficiently large n)

oy, = max(ny,, Ba,)
By =0 (19)
Tn ‘= AnPn

A case-by-case check for |z| < 7, and for || > 7, shows that Dvoretzky’s bound on (14)
holds given the relation (13).

One universal theme passing through the various versions of stochastic approximation
convergence theorems is the choice of the scheduling of the step-sizes (or learning rates) a,,.

In the Robbins-Monro scheduling assumption (8), it is clear that the step-sizes have
to converge to zero (otherwise the model would fluctuate and never converge to the exact
solution). The second assumption Y > | a,, = oo that says that the rates should not converge
to zero too fast is also sensible, as otherwise it is easy to imagine a learning schedule with
a, dropping to zero so fast that the iterative process does not reach the fixed point .,
from an initial point 2y (for a concrete example, see [17, pp. 5]). The third assumption,
o> a? < oo, is more subtle and technical, it primarily ensures that even in situations
when the noise-terms have self-correlation they would not move the iterative process out of
its track of converging with probability 1 to the exact fixed point. In certain situations, a
slower decreasing of learning rate schedule still leads to convergence, and is faster in practice.

As the above discussion has shown, the Robbins-Monro paper spawned a huge literature
on the analysis and applications of such stochastic algorithms. This is because the problem
of estimating unknown parameters of a model from observed data is quite a fundamental one,
with variants of this problem appearing in one form or another in control theory, learning
theory and other fields of engineering.

Because of the pervasive reach of stochastic approximation methods, any serious formal-
ization effort of an algorithm involving parameter estimation when the underlying model is
unknown will eventually have to contend with formalizing tricky stochastic convergence proofs.
We chose to formalize Dvoretzky’s theorem as it implies the convergence of both the Robbins-
Monro and Kiefer-Wolfowitz algorithms, various stochastic gradient descent agorithms and
various reinforcement learning algorithms such as Q-learning based on Bellman’s optimality
operator.

5 for example, if we start with a, = #—1 take pp = m, in general take p;, ' = Zzzl an, (see [1]).
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» Remark. Throughout the text which follows, hyperlinks to theorems, definitions and
lemmas which have formal equivalents in the Coq development are indicated by a $¢. Our
formalization is open-source and is available at https://github.com/IBM/FormalML.

2 Dvoretzky’s Theorem

After Dvoretzky’s original publication [21] of his theorem and several very useful extensions,
several shorter proofs have been proposed. A simplified proof was published by Wolfowitz [43]
who like Blum relied on the conditional version of Kolmogorov’s law exposed by Loéve [28]. A
third, more simplified proof was published by Derman and Sacks [20], who again relied on the
conditional version of Kolomogorov’s law, streamlined the chain of inequality manipulations
with Dvoretzky’s bounding series parameters (a,, Bn,7n) and used Chebyshev’s inequality
and the Borel-Cantelli lemma to arrive at a very short proof. Robbins and Siegmund
generalized the theorem to the context where the variables take value in generic Hilbert
spaces using the methods of supermartingale theory [29], as did Venter [40]. For a survey see
Lai [27]. Dvoretzky himself published a revisited version in [22].

We have chosen to formalise the proof following Derman and Sacks [20] as this version
appeared to us as being the shortest and most suitable to formalize using constructions from
our library of formalized probability theory.

In this paper we present complete formalization of the scalar version of Dvoretzky’s
theorem, with random variables taking value in R.

Here is a full statement of Dvoretzky’s theorem:

» Theorem 4 (Regular Dvoretzky's Theorem €¢). Assuming the following:

Hy : Let (Q,F, P) be a probability space

Hy : Forn=1,2,...

Hs : Let F,, be an increasing sequence of sub o-fields of F

Hy : Let X,, be F,,-measurable random variables taking values in R.

Hs : Let T,, : R®™ — R be a measurable function

Hg : Let W, be F,,1-measurable random variables taking values in R such that

Xn+1 = T(.I‘l, s 73;71) + W,

H7 : E(W,|F,) =0
Hg : ZZO:1 EW,,% < 0
Hg : Let au,, B, vn be a series of real numbers such that

Hio: ap, >0
Hii: 3, >0
Hiz: 7 >0

Hqis : limy—s a,, =0

Hig : limy—oo >y Br < 00

His : limp—oo D py Yk = 00

Hig : Let x, be a point in R such that for alln =1,2,... and for all x1,...,x, € R,

|Tn (21, .oy @) — 2] < max(an, (L4 Bn)lzn — 2| — 70)
Then the sequence of random variables X1, Xo,... converges with probability 1 to x:

P{lim X, =z.} =1
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An increasing sequence F,, of sub-o-fields of F (a filtration) formalizes a notion of a
discrete stochastic process moving forward in time steps n, where F,, formalizes the history
of the process up to the time step n. Assuming an F,,-measurable random variable X,, means
assuming a stochastic variable X, that is included into the history up to the time step n.

We have also formalized the extended version of Dvoretzky’s theorem in which «y,, By, Vn
are promoted to real valued functions and 7;, is promoted to be an JF,,-measurable random
variable. The hypotheses that have been modified in the extended version are marked by the
symbol *x below:

» Theorem 5 (Extended Dvoretzky's theorem €¢). Assuming the following:
Hy : Let (Q,F, P) be a probability space

Hy : Forn=1,2,...

Hs : Let F,, be an increasing sequence of sub o-fields of F

Hy : Let X,, be F,,-measurable random variables taking values in R.

~Hs ¢ Let T}, be F,-measurable R-valued random variable

Hg : Let W,, be F,,+1-measurable R-valued random variables such that:

Xn+1 = T(xh...,xn) +Wn

Hy @ E(W,|F,) =0

Hs : Y200 EW2 < 0o

*Hg : Let ap, By yn 1 Q — R be functions® such that:
Hio: a, >0

Hii: 8,20

Hiz: v, >0

*H13 ¢ lim, o v, = 0 with probability 1

*Hia 2 limy, o0 > p_y Br < 00 with probability 1
*Hys : limy, o0 Y opy Yk = 00 with probability 1

Hig: Let x, be a point in R such that for alln =1,2,... and for all x1,...,x, € R we have:
T (@1, oy @p) — 2| < max(an, (14 B)|Tn — 24| — 1) (20)
Then the sequence of random variables X1, Xo, ... converges with probability 1 to x,:

P{nll)rrgo Xp=a.}=1

We now turn to describing the formalization of the above theorems. First, we give a
description of our comprehensive supporting Probability Theory library in Section 3 (which
may be of independent interest), then we shall give an overview of the proof of Theorem 4 in

Section 4.1, and finally detail the variants of this theorem we have formalized in Section 4.2.

3 Formalized Probability Library

Our formalization of both Dvoretzky theorems is built on top of our general library of
formalized Probability Theory. In particular, we are not restricted to discrete probability
measures.

6§ Technically, Dvoretzky in his revisited paper [22] requires am, Bn,Yn to be Fn-measurable, but this
assumption wasn’t actually used in the proof, so we have omitted it.
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3.1 o-Algebras and Probability Spaces

We first introduce pre_events € which are just subsets of a type T i.e., maps T — Prop. Then
we define o-algebras, SigmaAlgebra(T) €, as collections of pre_events which are closed under
countable union and complement and include the full subset of all elements in T:

Class SigmaAlgebra (T : Type) :=

{

sa_sigma : pre_event T — Prop;
sa_countable_union (collection: nat — pre_event T) :
(forall n, sa_sigma (collection n)) —
sa_sigma (pre_union_of_collection collection);
sa_complement (A:pre_event T) :
sa_sigma A — sa_sigma (pre_event_complement A) ;
sa_all : sa_sigma pre_()

1.

Then, we label pre_events which are members of a o-algebra as events $. Special
o-algebras, like that generated by a set of pre_events € and the Borel o-algebra €2, are
constructed as usual.

One interesting feature of the formalization of both of these is that they are both provided
with alternative characterizations, which is useful for using the definitions. For the borel
o-algebra, we define two variants: borel_sa €, defined as the o-algebra generated by the
half-open intervals, and open_borel_sa €, defined as the o-algebra generated by the open
sets. After proving that the definitions yield the same o-algebra €8, we can choose which
definition is simpler to work with in a given context, simplifying some proofs.

For the definition of o(X), the o-algebra generated by a set X, we start with the standard
definition $¢: the intersection € of the set of o-algebras that contain X €. This is useful,
but as it is non-constructive, it lacks a convenient induction principle. As an alternative, we
define the explicit closure of a set of events €, built by starting with the set (augmented by
), and repeatedly adding in complements and countable unions. In Coq, this is naturally
defined using an inductive data type. This closure is then shown to be (a o-algebra € and)
equivalent to o(X) €.

While definitions generally use the standard definition of o(X), some theorems are more
easily proven by switching to the equivalent closure-based characterization. This enables
induction, providing an easy way to extend a property on the generating set to the generated
o-algebra, by showing that complements and countable unions preserve the property in
question.

Next, we introduce probability spaces € over a g-algebra, equipped with a measure
mapping each event to a real number r, such that 0 <r <1.

Class ProbSpace {T : Type} (o : SigmaAlgebra T) :=
{
ps_P : event 0 — R;
ps_proper :> Proper (event_equiv ==>eq) ps_P ;
ps_countable_disjoint_union (collection: nat — event 0‘) :
(* Assume: collection is a subset of Sigma and
its elements are pairwise disjoint. *)
collection_is_pairwise_disjoint collection —
sum_of_probs_equals ps_P collection (ps_P (union_of_collection collection));
ps_one : ps_P 2= R1;
ps_pos (A:event 0): (0 <= ps_P A)

).


https://FormalML.github.io/ITP22/documentation/html/FormalML.ProbTheory.Event.html#pre_event
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The usual properties of probability spaces, such as monotonicity €, complements €, and
non-disjoint unions %, are verified.

3.2 Almost Everywhere

Having defined probability spaces, we can introduce a commonly used assertion in probabilistic
proofs: that a certain property holds almost everywhere on a probability space. By this we
mean the set of points where the property holds includes a measurable event of measure 1.
We define a predicate almost €8 to indicate propositions which hold almost everywhere. It is
parameterized by a probability space and proposition on that space.

Definition almost {Ts:Type} {dom: SigmaAlgebra Ts}(prts: ProbSpace dom) (P:Ts — Prop)
:= exists E, ps_ PE =1 A forall x, Ex — P x.

We have introduced machinery to make it more convenient to reason about almost
propositions. For example, if we want to show that almost P — almost @ — almost R, we
reduce the proof to showing that almost (P — Q — R) €, which itself is implied by P — Q — R €®.
Usual theorem proving tools can then be used.

On top of the basic almost definition, we defined almostR2 %8, which says that a binary
relation holds almost everywhere.

Definition almostR2 (R:Td— Td— Prop) (rl r2:Ts — Td) : Prop
:= almost (fun x = R (rl x) (r2 x)).

This is useful, since it inherits many properties from the base relation (e.g. it is a preorder
if the base relation is €¢), and simplifies definitions.

3.3 Measurability and Expectation

We next introduce the concept of measurable functions with respect to two o-algebras. Since
we are focusing on probability spaces, we call these measurable functions RandomVariables %¥.

(* A random variable is a mapping from a probability space to a sigma algebra. *)
Class RandomVariable {Ts:Type} {Td:Type}

(dom: SigmaAlgebra Ts)

(cod: SigmaAlgebra Td)

(rv_X: Ts — Td)

:= (x for every element B in the sigma algebra, the preimage
of rv_X on B is an event in the probability space *)
rv_preimage_sa: forall (B: event cod), sa_sigma (event_preimage rv_X B).

In order to define the Expectation of a RandomVariable, we follow the usual technique of
first treating the case of finite range functions €, then extending to nonnegative functions ¢
(resulting in an extended real) and then to general random variables. In the general case, the
expectation is the difference of the expectation of the positive and negative parts of a random
variable. €¢ Exceptions are handled using the Coq option type. For example, the difference
of the expectations of the positive and negative parts of a random variable is not defined if
they are both the same infinity. This exception is captured by allowing the difference to be
None in that case. A well defined Expectation yields Some r, for some value in Coquelicot’s
Rbar type [16]. This represents a value in the extended reals: either a Finite real value, or
positive or negative infinity (p_infty or m_infty).

Definition Expectation (rv_X : Ts — R) : option Rbar :=
Rbar_minus’ (NonnegExpectation (pos_fun_part rv_X))
(NonnegExpectation (neg_fun_part rv_X)).
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Originally our results about Expectation were for random variables taking images in the
reals, but as we introduced limiting processes we needed to extend our definition to random
variables taking values in the extended reals (Rbar).

This requires extending the support for limits in Coquelicot, allowing for sequences of
functions over the extended reals €. The approach we took was to copy over all the definitions
and lemmas in Coquelicot’s Lim_seq module, extending them as appropriate, and re-proving
them. A few changes were made, such as defining the extended version of is_lim_seq
to hold when the inf and sup sequence limits coincide. The original definition uses filters,
and is problematic to extend to the extended reals, since they do not form a uniform space.
Pleasantly, however, almost all of the lemmas continue to hold with minor modification.

The above construction of Expectation and its properties (including linearity $¢€¢, the
monotone convergence theorem €, and other standard results) are then generalized and
proven for this generalization to functions whose image is the extended reals €.

On top of our general definition of Expectation, we define the IsFiniteExpectation
property, which asserts that a function has a well-defined, finite expectation €¢$¢. For
functions that satisfy this property, we can define their FiniteExpectation %%, which
returns their (real) expectation. This simplifies working with such functions, and avoids
otherwise necessary side-conditions on properties such as linearity $e%®.

3.4 LP Spaces

Using these building blocks, we can define LP spaces, which are the space of measurable
functions where the p-th power of its absolute value has finite expectation €.

Definition IsLp {Ts} {dom: SigmaAlgebra Ts} (prts: ProbSpace dom) (n:R) (rv_X:Ts— R)
:= IsFiniteExpectation prts (rvpower (rvabs rv_X) (comnst n)).

This space is then quotiented, identifying functions that are equal almost everywhere
(see Section 3.2) 8. We use a quotient construction € that avoids needing axioms beyond
those already proposed in Coq’s standard libraries”. This quotienting operation is required
in order to define a norm on the space (defined as the p-th root of the Expectation of the
absolute value of the p-th power of the function), as having a zero Expectation only implies
that a non-negative function is zero almost everywhere.

For nonnegative p, L? is shown to be a module space €. For 1 < p < oo, it is shown to
be a Banach space (complete normed module space) € €.

Furthermore, the important special case of L? is proven to be a Hilbert space %, where
the inner product of z and y is defined as the Expectation of the product of z and y.

3.5 Conditional Expectation

Building on top of this work, we turn to the definition of conditional expectation, defining
it with respect to a general o-algebra dom2 (the ambient o-algebra being dom). We first
postulate a relational definition €¢, characterized by the universal property of conditional
expectations: for any event P that is in the sub o-algebra dom2, if we multiply the original
function and its conditional expectation by that event’s associated indicator function, we get
equal expectations.

7 Specifically, we use functional and propositional extensionality as well as constructive definite description
(also known as the axiom of unique choice).
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Definition is_conditional_expectation {Ts:Type} {dom: SigmaAlgebra Ts}
(prts: ProbSpace dom) (dom2 : SigmaAlgebra Ts)
(f: Ts = R) (ce: Ts — Rbar)
{rvf : RandomVariable dom borel_sa f}
{rvce : RandomVariable dom2 Rbar_borel_sa ce}
:= forall P (dec:dec_pre_event P),
sa_sigma (SigmaAlgebra := dom2) P —
Expectation (rvmult f (EventIndicator dec)) =
Rbar_Expectation (Rbar_rvmult ce (EventIndicator dec)).

Using this definition, we can show uniqueness (where equality is almost everywhere) €,
and many standard properties of conditional expectation, such as linearity &€, preservation
of Expectation %2, (almost) monotonicity €, and the tower law €. We also show the “factor
out” property €, which enables factoring out of a conditional expectation a random variable
that is measurable with respect to the sub o-algebra. In addition, we verify its interactions
with limits (e.g. the conditional version of the monotone convergence theorem $¢), and prove
Jensen’s lemma ¢, bounding how convex functions affect the conditional expectation.

After having proven these properties for the is_conditional_expectation relation, we
still need to show that the conditional expectation generally exists (at least for functions
that are non-negative or have finite expectation).

To do this, we build on our work on L? spaces (Section 3.4), and in particular our proof
that that L? is a Hilbert space. Given an L? function, this implies that the subset of functions
which are measurable with respect to a smaller o-algebra dom2 forms a linear subspace.

The L? conditional expectation % of an L? random variable X with respect to dom2 is
then defined as the orthogonal projection $ of X onto that subspace. For this construction
and definitions of Hilbert spaces we use the library from the formal development of the
Lax-Milgram theorem [14]. Note that this definition is for a function in the quotiented space
(recall that L? is quotiented to identify functions that are equal almost everywhere).

We can then define conditional expectation on the unquotiented space by injecting the
inputs into the quotiented space, using the conditional expectation operator just defined
on L? functions, and then choosing a representative from the equivalence class of functions
it returns €. This unquotienting gives insight into why most theorems about conditional
expectations only almost hold, as it is defined on equivalence classes of almost equal functions.

Next, we extend our notion of conditional expectation to nonnegative functions whose
usual expectation is finite using the property that L? functions are dense in L'. In particular,
given a nonnegative L! function f, we can define an L? sequence g, = min(f,n). The
conditional expectation of f is defined as the limit of the conditional expectation of the g, .

Using this definition directly has some disadvantages: it forces essentially all theorems,
including simple ones such as the result being non-negative, or that the conditional expectation
is the identity operation on functions that are already measurable with respect to the sub
o-algebra dom2, be only almost valid. To address this, we wrap this definition in a wrapper %
that takes the function returned by the original (limit based) definition and tweaks it
slightly, producing a “fixed” function almost equivalent to the original, but where such simple
properties hold unconditionally.

Finally, we extend this to all measurable functions by taking the difference of the
nonnegative conditional expectation of its positive and negative parts €. While this function
is defined for all measurable functions, it can only be shown to be a conditional expectation
(the is_conditional_expectation relation defined above) for functions that are either non-
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negative $¢ or have finite expectation €¢. Using this property, we now lift all of the properties
proven above for the relational version to our explicitly defined version, verifying that it
satisfies all the expected properties. For convenience, we also provide a wrapper definition
FiniteConditionalExpectation €, which assumes that the function has finite expectation,
and returns a function whose image is in R (insted of the extended reals), and lift all the
expected properties to it.

Connecting back to LP spaces, we can use Jensen’s lemma about convex functions to
show that if a function is in L? then its conditional expectation is as well €, allowing us to
view conditional expectation as a (contractive €¢) operation on LP spaces. Furthermore, we
show that it minimizes the L2-loss for an L? function %¥.

We chose this approach to defining conditional expectation (via an orthonormal projection
on L?) since we could rely on an existing library of Hilbert space theory [14], thus avoiding
other tedious constructions involving Radon-Nikodym derivatives etc.

3.6 Filtrations and Martingales

We next introduce a notion of g-algebra filtrations €, which are an increasing sequence
of o-algebras. We say that a sequence of random variables X,, IsAdapted $¢ to a filtration
F,,, if each random variable of the sequence is measurable with respect the corresponding
o-algebra.

Building on these definitions and our development of conditional expectation, we started
developing the basics of martingale theory .

Additionally, the language of filtrations and adapted processes enables us to represent
the history of a stochastic process, which is critical for stating and verifying properties of
stochastic approximation methods.

3.7 Additional results

There are many other results proven in the library; here we highlight two that are used in

the Derman-Sacks proof: Chebyshev’s inequality and the Borel-Cantelli lemma.
Chebyshev’s inequality € which states that given a random variable X and a positive

constant a, the probability of || X|| > a is less that or equal to the expectation of X?2/a?.

Lemma Chebyshev_ineq_div_meanO
(X : Ts — R) (rv : RandomVariable dom borel_sa X) (a : posreal) :
Rbar_le (ps_P (event_ge dom (rvabs X) a))

(Rbar_div_pos

(NonnegExpectation (rvsgr X))

(mkposreal _ (rsqr_pos a))).

Another is the Borel-Cantelli lemma € which states that if the sum of probabilities of a
sequence of events is finite, then the probability of all but finitely many of them occuring
is 0.

Theorem Borel_Cantelli (E : nat — event dom) :
(forall (n:nat), sa_sigma (En)) —
ex_series (funn = ps_P (En)) —
ps_P (inter_of_collection
(fun k = union_of_collection
(funn = E (n + k)))) = 0.

In this theorem statement, ex_series f, defined in Coquelicot, assert that the infinite
series of partial sums lim,, o0 D <, <, f(i) converges to a finite limit.
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3.8 Retrospective design decisions

In this section we discuss some of the design choices we made (and revisited), and our
retrospective opinion on their impact. This may be of benefit to those seeking to pursue
similar projects.

Initially, we modeled events as sets (now called pre_events), accompanying them with
proofs that the set was in a given c-algebra. This resulted in a lot of code threading

and transforming these proofs, which was particularly painful when reasoning about lists.

Revisiting that decision, we built up events as a subset type: a dependent pair of a pre_event
and a proof that it belongs in a relevant o-algebra €. For many simple uses, this obviates
the need for reasoning explicitly about being in a o-algebra. There are still cases where
explicit reasoning is required, but this change definitely simplified the code.

We support general random variables using a typeclass which specifies the sigma algebras
for the domain and range along with the function $¢. An initial version of our probability
library developed expectation and properties of random variables whose codomain was
the reals €. However as we proved more properties, especially limiting and convergence
properties, it became clear that we needed to allow infinite values, thus to allow random
variables with R (the extended real numbers) as codomain €. However the native support
for limits in the Coquelicot package allows the limiting value to be infinite, but restricts to
sequences taking values in R. In order to be able to take limits of random variables to R,
we developed our own limit package extending the Coquelicot definitions and lemmas to
sequences taking values in R $¢. In the end, some results about R valued random variables
become simpler since one doesn’t need to make unnatural finiteness restrictions, but on the
other hand, one needs to be extra careful, since R is not a field as sums and products are not
always defined and operations are not associative.

As in the standard development of expectation, we first defined it for functions whose
range is a finite subset of R (or R). We decided to represent them as a typeclass which
includes a field containing a finite list of values which includes all the values in the range of
the function €.

Class FiniteRangeFunction
(xv_X:Ts— Td)

={
frf_vals : 1list Td ;
frf_vals_complete : forall x, In (rv_X x) frf_vals;

1.

We decided to allow this list to have duplicates and to contain additional values not in the
range. This made several definitions more convenient, for example when defining the sum of
two finite range functions, the new list of values is just the sum of all pairs of values, which
is guaranteed to contain all the actual values, but can contain values which are not in the
image of the sum and can contain duplicated values $®.

One simplification our code makes is that we deal only with probability spaces, rather
then general measures. This was a pragmatic decision, as it simplifies some of the proofs
(since, for example, measures must be finite). As our intended use is probability theory, this
mostly sufficed. In order to define (dependent) product spaces, we did define the rudiments of
measure theory (measures, outer measures, and inner measures) ¢, but the final construction
of the product is defined only for probability spaces, since the proof crucially relies on the
monotone convergence theorem, which we have not proven for general measure spaces. It
would clearly have been nicer to define things more generally, and we may go back and change
things in the future, however this simplification allowed us to use our limited resources to
greater effect.
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4 Formalization Challenges/Overview

We will now sketch the key pieces which go into the formalization of the Derman-Sacks proof.

4.1 Overview of the proof

The Derman-Sacks proof relies on a number of prerequisites in Probability Theory and
Real Analysis. For example, the proof begins by stating that we may replace the series

2
>on EW?2 < oo by the series >on E:;" < oo where o, — 0. This statement invokes a classical

theorem of du Bois-Reymond [13] which states:

» Theorem 6 (). Let (ay) be a sequence of nonnegative real numbers. The series Y, an,
converges if and only if there is another sequence of positive real numbers (b,) such that
b, = 00 and Y, apb, < 0.

In other words, this theorem states that no worst convergent series exists (see [5]). This
elementary theorem did require some effort to formalize, in part because existing proofs
such as the one in [5] require the sequence (a,) to consist only of positive terms, while our
application (Dvoretzky’s theorem) needed them to be non-negative. Additionally, we had
to prove convergence of the product series without using the integral test (as used in [5]),
because it was unavailable in our library. Our final proof of Theorem 6 involved a case
analysis in which we case on whether the sequence (a,,) was eventually positive or not €, and
we bypassed the need to use the integral test by using an exercise from Rudin’s Principles of
Mathematical Analysis [31].

The main workhorse of the Derman-Sacks proof is the sequence Z,, := W,, sgn T,,. First,
they apply the following theorem® to the sequence of random variables (Z,,):

» Theorem 7 (Loeve [28] €¢). Let X1, Xo,... be a sequence of random variables adapted to
a filtration (F,)nen. Assume that E[ X, 11 | F,] = 0 almost surely for all n and also that
Sooo EX2 converges. Then we have that Y- | X,, converges almost surely.

to conclude that the series ) Z, converges almost surely. To apply this theorem we
need to prove that (Z,,) is adapted to the filtration F, which critically uses the fact that
T, : H" — H is a measurable function. (Here we take H = R.) The proof of the theorem
uses E[X,, 41 | F»] = 0 to show that since the sequence is adapted, we have E[X;X,] = 0
for all ¢ # j. This depends on the “factor out” property of conditional expectation € (see
Section 3.5).

Next, it is shown that |Z,| < «,, almost surely for sufficiently large n. This argument
uses the Borel-Cantelli lemma €8 and the Chebyshev inequality €, both of which needed a
significant amount of probability theory to be set up (see Section 3.7). Using this bound for
Z,, and the bound for |T,| in the hypothesis, an elementary argument shows that

|Xn+1‘ < maX(2an7 |Tn| + Zn) < max(2ana (1 + ﬁn)|Xn‘ + Zn - ’Yn)
almost surely for sufficiently large n.

Now, the conclusion X, 11 — 0 almost surely follows by applying the following lemma:

8 the proof of this theorem is a modification of Theorem 6.2.1 in Ash’s Probability and Measure Theory [6]
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> Lemma 8 (). Let {an}, {bn}, {cn}, {0n} and {&.} be sequences of real numbers such that

1. {an}, {bn},{cn}, {&} are non-negative

2. limy o0 an =0, >, by <00, > ¢ =00, » . 0n converges.

3. For all n larger than some Ny, &1 < max(an, (14 bp)&n + 6 — ¢n)
then, lim,,_,~ &, = 0.

The proof of the lemma is somewhat unusual since it involves running an iteration
backwards: the property (3) is applied repeatedly to derive an inequality between &,41
and &y for n > N > N; €. Besides using several properties of infinite products and list
maximums, the final convergence result is an application of Abel’s descending convergence
criterion ¢ which says if the series ) b, converges, and a,, is a bounded descending sequence,
then the series >, a,b, also converges.

We note that our formalization is firmly within the Classical territory for a number of
reasons: first of all, the theory of Real numbers within the Coq standard library (which we
use) uses non-computable axioms [23]. Secondly, while constructive measure theory and
constructive analysis are both actively researched topics (see [19, 18, 11]) we are unaware
if our main result (Dvoretzky’s theorem) is constructively valid. Thirdly, as we remarked
above, our proof of Theorem 6 requires a case split on whether a particular sequence of real
numbers is eventually zero or not, for which we use the axiom of constructive indefinite
description.

4.2 Variants of Dvoretzky’s Theorem

While Dvoretzky’s theorem admits generalizations in many different ways, we chose to focus

on formalizing the ones most suited for applications.

1. As already mentioned, we prove Theorem 5 which is a generalization of Theorem 4 in
which the sequences of numbers «,,, B,, 7, are replaced by sequences of functions on

the probability space. This generalization is called the extended Dvoretzky theorem €.

All conditions on the sequences oy, B, v, now hold pointwise, almost everywhere.

2. To apply Theorem 7 in the proof of Theorem 4 we needed to prove that (Z,,) is adapted
to the filtration F, which needed us to make assumptions on the functions T,,. These
assumptions on T}, can be modified and generalized as:

a. in the regular (non-extended) case, T,, : R™ — R are deterministic and measurable. €
b. in the extended case, T}, : R™ x 2 — R are stochastic and F,,-adapted.

Since Derman-Sacks do not explicitly state either assumption, we formalized Dvoretzky’s
theorem under both assumptions. It should be noted that Dvoretzky’s original paper [21]
and his revisited paper [22] treat both the above cases.

3. We have also formalized a corollary of the extended Dvoretzky’s theorem € which proves
that the theorem holds in the context where the bound on 7" in (14) is assumed as follows
with all other assumptions intact:

[T (@1, .oy @) — @] < max(an, (14 Bn — Tn)|Tn — Zi|)

While this formulation is weaker compared to the original, it is convenient to have it for
several applications of stochastic approximation theorems. A proof of this corollary used
a classical analysis result of Abel [1] on the fact that the terms in a divergent sum-series
could be multiplied by infinitesimally small series and the sum-series would still diverge
€. This was addressed in Dvoretzky’s paper [21, (5.1)].
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5 Related work

While our results are general, our intended application was formalizing machine learning
theory, on which there is a growing body of work [34, 35, 37, 24, 32, 9, 10]. Our work is a step
in this direction, providing future developers of secure machine learning systems a library
of formalized stochastic approximation results. Keeping this in mind, we have formalized
different versions of our main result (Dvoretzky’s theorem) to facilitate ease of use (see
Section 4.2).

For the formalization itself, we make extensive use of the Coquelicot library of Boldo et
al. [16] and the library which proved the Lax-Milgram theorem [14] which includes definitions
and basic properties of hilbert spaces. There have also been quite a few formalizations of
probability theory in Coq: see Polaris [33], Infotheo [4], and Alea [7]. Alea is an early work
and to the best of our knowledge incompatible with latest versions of Coq while Infotheo
and Polaris either fundamentally focus on discrete probability theory (see [3]) or do not have
the results we needed to prove Dvoretzky’s theorem.

More recently there have been two projects in Coq which formalize measure theory and
Lebesgue integration. The MathComp-Analysis project has general measure theory and
integration developed on top of their library which is an alternative to Coquelicot [2]. The
Numerical Analysis in Coq (cog-num-analysis) project is built on top of Coquelicot and
includes support for Lebesgue integration of nonnegative functions [15]. Neither of these
were available at the time we began to develop our probability library. Since we depend
on Coquelicot, we could have developed on top of the cog-num-analysis library if it were
available earlier. This would have given us the added benefit of supporting general measures
instead of our restriction to probability measures. Refactoring our library to build on top of
one or more of these formalizations might be a possible direction for future work.

Formal proofs about convergence of random variables (the Central Limit Theorem) have
been given in Avigad et al [8] using the Isabelle/HOL system. Parts of Martingale theory
and stochastic processes have also recently made their way into the Lean math library [36].

To the best of our knowledge, our work presents the first formal proof of correctness of
any theorem in Stochastic Approximation.

6 Applications & Future Work

Our own interest in stochastic approximation began with an attempt to extend our work on
convergence proofs of (model-based) Reinforcement Learning (RL) algorithms [39] to include
the model-free case. Model-based RL algorithms converge to an optimal policy (a sequence
of actions which an agent should probabilistically perform so as to maximize its expected
long-term reward) by making full use of the given transition probability structure of the
agent. The term model-free refers to the fact that we have no information on how the agent
performs it’s transitions but can only observe its transitions. As we have emphasized above,
this situation is perfectly suited for stochastic approximation techniques. Indeed, convergence
proofs of Q-Learning (a prominent model-free RL algorithm) appeal to standard results of
stochastic approximation (see Watkins & Dayan [41], Jaakkola et al. [25]), Tsitsiklis [38].
We plan to use our formalization of Dvoretzky’s theorem to complete a convergence proof of
the Q-learning algorithm.

Additionally, as part of this process, we have built up a large library for basic results on
(general) probability spaces in Coq, including a general definition of conditional expectation.
This library is publically available at https://github.com/IBM/FormalML and open source.
We invite others to use our library and collaborate with us on extending and enhancing it.


https://github.com/IBM/FormalML
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