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Abstract
This paper presents a formal proof of the Banach-Tarski theorem in ACL2(r). The Banach-Tarski
theorem states that a unit ball can be partitioned into a finite number of pieces that can be rotated
to form two identical copies of the ball. We have formalized 3D rotations and generated a free group
of 3D rotations of rank 2. In prior work, the non-denumerability of the reals was proved in ACL2
(r), and a version of the Axiom of Choice that can consistently select a representative element from
an equivalence class was introduced in ACL2 version 3.1. Using the free group of rotations, and
this prior work, we show that the unit sphere can be decomposed into two sets, each equivalent to
the original sphere. Then we show that the unit ball except for the origin can be decomposed into
two sets each equivalent to the original ball by mapping the points of the unit ball to the points
on the sphere. Finally, we handle the origin by rotating the unit ball around an axis such that the
origin falls inside the sphere. Seemingly paradoxically, the construction results in two copies of the
unit ball.
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1 Introduction

The Banach-Tarski theorem [11] states that we can break the unit ball into a finite number of
sets, then rotate the sets to form two identical copies of the unit ball. This seems impossible
because it breaks our intuition that when we partition the ball into finite sets, the total
volume of the pieces must be the same as the volume of the original ball. This would be
the case if all the pieces had a well-defined volume. The Banach-Tarski theorem is possible
because the construction breaks the ball into non-measurable sets [7], which means they
don’t have a well-defined volume. Such a partition of the unit ball is obviously subtle, and
the entire construction depends on the Axiom of Choice [7] and the non-denumerability of
reals [4]. Many properties of matrix algebra [5], modular arithmetic [1] and trigonometric
functions [3] that are needed for the proof have already been formalized in ACL2(r).

In this paper we present a complete proof of the Banach-Tarski theorem in ACL2(r) [6], a
variant of ACL2 that offers support for the real numbers by the way of non-standard analysis.
The ACL2(r) source files for this proof are in the ACL2 community books under the directory
nonstd/nsa/Banach-Tarski/. We begin in Section 2, with a free group of reduced words using
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lists. The lists in this group are decomposed in various ways, resulting in multiple ways
of reconstructing the free group. This is, in fact, a key step in the Banach-Tarski paradox.
Then, in Section 3, we present a free group of rotations that correspond to the free group
of reduced words, as shown in Section 4. We also formalize 3D rotations and prove some
crucial properties of rotations.

Using the free group of rotations, in Section 5 we show how almost all of the unit sphere
can be partitioned into sets, such that the sets can be rotated and rearranged to form two
copies of the unit sphere, almost. This works for all points on the sphere, except the points
that lie on the axis of rotation of one of the rotations in the free group. The set of such points
is countable, and this is shown by proving some basic facts about constructing countable sets.
This establishes the Hausdorff’s Paradox. The proof then proceeds by adding some extra
rotations that essentially wipe the poles of the rotations. This proves the Banach-Tarski
paradox on the unit sphere.

Finally, in Section 6 the construction is extended to the unit ball. Except for the origin,
this is done by projecting each point inside the unit ball onto the unit sphere, and using the
decomposition of the unit sphere constructed in Section 5. The final step is to account for
the origin by introducing a rotation around a point close enough to the origin that the origin
is always mapped to a point inside the unit sphere.

Throughout, the proof of the Banach-Tarski theorem involves proving a lot of equivalences
between various sets. In our proof of the Banach-Tarski theorem we use predicates and
Skolem functions to represent various sets, then prove equivalence between these predicates.

2 A Free Group of Reduced Words

In this section, we introduce the free group over the letters a and b. This group contains all
words that can be formed from a, b, a−1, and b−1 such that no letter and its inverse appear
together. For example, abba is a member of this free group but abb−1a is not.

We use lists in ACL2(r) to represent words. A weak word is an empty list or a list that
has characters a or a−1 or b or b−1. e.g., ’(a b b−1 a−1) is a weak word. The single quote in
the example means that it is a list, which would otherwise become a function call. In the
ACL2(r) source files, we have defined the functions wa, wa-inv, wb and wb-inv which return
the ACL2(r) characters #\a, #\b, #\c, and #\d respectively. e.g., (wa)=#\a. We use the
ACL2(r) characters #\a, #\b, #\c, and #\d to represent a, a−1, b, and b−1 respectively,
but in this paper we will simply refer to a, a−1, b, and b−1 to avoid confusion. The predicate
weak-wordp recognizes elements of the set of weak words, as shown in Listing 1. Since
ACL2(r) does not have support for infinite sets, such as the set of weak words, we represent
these sets implicitly using recognizers for their elements.

A reduced word is a weak word such that character a−1 does not appear beside the
character a and character b−1 does not appear beside the character b in the list. e.g., ’(a
b a−1) is a reduced word and ’(a a−1 b) is not a reduced word. The predicates a-wordp,
a-inv-wordp, b-wordp, and b-inv-wordp represent the set of reduced words that start with
characters a, a−1, b, and b−1 respectively. The predicate reducedwordp, shown in Listing 2,
represents the set of all reduced words. reducedwordp returns true if the argument belongs to
the set a-wordp or a-inv-wordp or b-wordp or b-inv-wordp or if it is an empty list.

The function word-inverse finds the inverse of a reduced word. If the argument is a weak
word, word-inverse flips each character in the list to its inverse and then reverses the list. e.g.,
word-inverse(’(a a−1 b−1)) = ’(b a a−1). Listing 3 shows the definition of the flip function
and the inverse function.
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Listing 1 Definition of the set of weak words.
(defun weak -wordp (w)

(cond (( atom w) (equal w nil ))
(t (and (or (equal (first w) (wa))

(equal (first w) (wa -inv ))
(equal (first w) (wb))
(equal (first w) (wb -inv )))

(weak -wordp (rest w ))))))

Listing 2 Definition of the set of reduced words.
(defun reducedwordp (x)

(or (a-wordp x)
(a-inv -wordp x)
(b-wordp x)
(b-inv -wordp x)
(equal x ’())))

The group operation compose takes two arguments. If the arguments are weak words,
then the compose function first appends the two lists and then “fixes” the result by deleting
any letter and its inverse that appear beside each other. Thus, the final result of compose is
always a reduced word. e.g., compose(’(a b b), ’(b−1)) = ’(a b). Listing 4 shows the definition
of the fixing function and the group operation compose.

If w1 and w2 are reduced words, then (append w1 w2) is a weak word. If x is a weak
word, then word-fix(x) returns a reduced word. So, compose(w1, w2) = word-fix(append
w1 w2) is a reduced word. This establishes that compose is closed over the set of reduced
words. In fact, compose is a group operator over reduced words, as suggested earlier. A key
lemma required to prove that it satisfies the associative property and the inverse property is
that if x is a reduced word, then word-fix(rev(x)) = (rev(word-fix(x))), which we proved by
induction on x. This proves that, with the group operation compose and considering the
empty list as the identity element, the set of reduced words is a free group. Listing 5 shows
the group properties of this set.

Listing 3 Definition of the Inverse operation.
;; Definition of the flip function
(defun word -flip (x)

(cond (( atom x) nil)
(( equal (car x) (wa)) (cons (wa -inv) (word -flip (cdr x))))
(( equal (car x) (wa -inv )) (cons (wa) (word -flip (cdr x))))
(( equal (car x) (wb)) (cons (wb -inv) (word -flip (cdr x))))
(( equal (car x) (wb -inv )) (cons (wb) (word -flip (cdr x ))))))

;; Definition of the Inverse operation
(defun word - inverse (x)

(rev (word -flip x)))
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Listing 4 Definition of the group operation compose.
;; Definition of the fixing function
(defun word -fix (w)

(if (atom w)
nil

(let (( fixword (word -fix (cdr w))))
(let ((w (cons (car w) fixword )))

(cond (( equal fixword nil)
(list (car w)))

(( equal (car (cdr w)) (wa))
(if (equal (car w) (wa -inv ))

(cdr (cdr w))
w))

(( equal (car (cdr w)) (wa -inv ))
(if (equal (car w) (wa))

(cdr (cdr w))
w))

(( equal (car (cdr w)) (wb))
(if (equal (car w) (wb -inv ))

(cdr (cdr w))
w))

(( equal (car (cdr w)) (wb -inv ))
(if (equal (car w) (wb))

(cdr (cdr w))
w )))))))

;; Definition of the group operation
(defun compose (x y)

(word -fix ( append x y)))

Listing 5 Group properties of the set of reduced words.
;; Closure property
( defthmd closure -prop

( implies (and ( reducedwordp x)
( reducedwordp y))

( reducedwordp ( compose x y)))
:hints ...)

;; Associative property
( defthmd assoc -prop

( implies (and ( reducedwordp x)
( reducedwordp y)
( reducedwordp z))

(equal ( compose ( compose x y) z)
( compose x ( compose y z))))

:hints ...)

;; Inverse property
( defthmd reduced - inverse

( implies ( reducedwordp x)
(equal ( compose x (word - inverse x))

’()))
:hints ...)



J. Bapanapally and R. Gamboa 5:5

Denote the set of reduced words by W (a, b), the set of reduced words starting with
character a by W (a), and similarly for W (a−1), W (b), and W (b−1). Then clearly W (a, b) =
()

⊔
W (a)

⊔
W (a−1)

⊔
W (b)

⊔
W (b−1), where

⊔
denotes the union of disjoint sets. In

addition to this we can show two other equivalences of the set of reduced words:
W (a, b) = a−1W (a)

⊔
W (a−1) and

W (a, b) = b−1W (b)
⊔

W (b−1),
where xW (y) = {xw | w ∈ W (y)}.

As we mentioned previously, we use recognizers to represent sets, and since ACL2(r)
supports quantifiers via Skolem functions, we represent the set a−1W (a) = {x | ∃w ∈
W (a) s.t. x = compose(’(a−1), w)} and b−1W (b) = {x | ∃w ∈ W (b) s.t. x = compose(’(b−1)
, w)}. The formal proof follows the proof of the two equivalences given in [11]. If an element
x belongs to W (a) then compose(’(a−1), x) ⊂ ()

⊔
W (a)

⊔
W (b)

⊔
W (b−1), because the

compose function appends ’(a−1) and x and then deletes the first two characters a−1 and a

in the appended list as they are inverses of each other. Moreover, the first character of a−1x

is the second character of x, so it cannot be a−1, since x is a reduced word that starts with a.
Likewise, if an element x belongs to W (a) or W (b) or W (b−1) then there exists an element

word-a that belongs to the set W (a) such that x equals to (compose(’(a−1), word-a), namely
the element a−1x. So, we have a−1W (a) = ()

⊔
W (a)

⊔
W (b)

⊔
W (b−1). The same way

we prove b−1W (b) = ()
⊔

W (a)
⊔

W (a−1)
⊔

W (b). With these two equivalences of the
sets a−1W (a) and b−1W (b) we get two corollaries Corollary 2 and Corollary 3 which we use
to prove the Banach-Tarski theorem on S2.

▶ Corollary 1. W (a, b) = ()
⊔

W (a)
⊔

W (a−1)
⊔

W (b)
⊔

W (b−1)

▶ Corollary 2. W (a, b) = a−1W (a)
⊔

W (a−1)

▶ Corollary 3. W (a, b) = b−1W (b)
⊔

W (b−1)

Notice that these corollaries, while being about lists, already contain the key to the
Banach-Tarski paradox. The set W (a, b) is decomposed into five disjoint subsets, then it
can be reconstructed in two different ways by taking the union of two of those subsets after
prepending a letter to one of the subsets. In the same way, the sphere can be deconstructed
into a number of sets, which can then be rotated and reassembled in two different ways to
reconstruct a unit sphere.

3 A Free Group of 3D Matrices

Matrices in ACL2 are represented with the data structure array2p. We define a predicate
r3-matrixp that recognizes the set of 3D matrices: r3-matrixp returns true if the argument is
of type array2p and if its dimensions are 3 × 3, and if each element of the matrix is a real
number.

We define now the four matrices A+, A−, B+, and B− as

A± =

1 0 0
0 1

3 ∓ 2
√

2
3

0 ± 2
√

2
3

1
3

 B± =

 1
3 ∓ 2

√
2

3 0
± 2

√
2

3
1
3 0

0 0 1


and we associate these matrices with the letters a, a−1, b, and b−1 from the free group
respectively. Moreover, we associate a list (x1, x2, . . . , xn) ∈ W (a, b) with the matrix
X1 × X2 × · · · × Xn, where × denotes matrix multiplication, and Xi is the matrix associated
with letter xi. We have defined a recursive function rotation that performs this mapping
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from words in the free group to rotations. Denote the resulting set R(a, b). i.e., R(a, b) =
{rotation(w) | w ∈ W (a, b)}. By induction, it is easy to verify that every element of the set
R(a, b) belongs to r3-matrixp.

To show the set R(a, b) is a free group isomorphic to W (a, b), we show that if w ∈
W (a, b) and w is not the empty list, then rotation(w) is not equal to I, the identity matrix.
Equivalently, we show that (rotation(w))(0, 1, 0) ̸= (0, 1, 0) unless w is the empty list.

To do this, suppose that w ∈ R(a, b), and consider the rotation R(w). In particular,
suppose that R(w) rotates the point (0, 1, 0) to (x′, y′, z′). Define (x, y, z) as

(x, y, z) = 3n

(
x′
√

2
, y′,

z′
√

2

)
where n = |w|. Using induction, we showed that x, y, and z are integers.

So now, suppose that (rotation(w))(0, 1, 0) = (0, 1, 0) for some non-empty word w. It
follows that (x, y, z) = (0, 3n, 0), where n = |w| > 0, thus x ≡ y ≡ z ≡ 0 (mod 3). But
this cannot be the case. If |w| = 1, then rotation(w) is one of A± or B±, and considering
each of the four cases by brute force, it is clear that (x, y, z) ̸≡ (0, 0, 0) (mod 3). Using
induction, there are 16 cases to consider, but in all of these cases we again conclude that
(x, y, z) ̸≡ (0, 0, 0) (mod 3). This shows that if |w| > 0, then rotation(w) is not the identity
matrix.

Using this fact, the group properties of W (a, b), and the associativity of the matrix
multiplication, we then showed that there is a one-to-one relation between the set R(a, b)
and the set W (a, b). So defining R(a) = {rotation(w) | w ∈ W (a)}, R(a−1) = {rotation(w) |
w ∈ W (a−1)}, R(b) = {rotation(w) | w ∈ W (b)}, and R(b−1) = {rotation(w) | w ∈ W (b−1)},
then the set of rotations R(a, b) can be partitioned as

R(a, b) = I
⊔

R(a)
⊔

R(a−1)
⊔

R(b)
⊔

R(b−1).

That is, the paradoxical partition of the free words W (a, b) from Section 2 can be reproduced
in the set of rotations R(a, b).

4 A Free Group of Rotations of Rank 2

Before proceeeding directly into the Banach-Tarski construction, we need to prove some basic
facts from matrix algebra. As discussed previously, the matrix transpose operation (m-trans)
was formalized in prior work [5], and as part of that, it was shown that (A × B)T = BT × AT .

We extended that formalization by introducing the function r3-m-determinant that
computes the determinant of a matrix, the function r3-m-inverse that computes the inverse
of a 3D matrix (when possible). Using these functions, we defined the predicate r3-rotationp
that recognizes rotations in R3.

▶ Definition 4. A matrix M is a rotation matrix if it satisfies these conditions [10]:
M is a 3D matrix,
M−1 = MT , and
det(M) = 1.

Another important detail is that every element of R(a, b) must be a rotation of R3. Given
the correspondence between R(a, b) and W (a, b) established in Section 3, what we need to
show is that for any w ∈ W (a, b), rotation(w) satisfies the axioms in Definition 4. This was
done using induction on the list w. It is easy to verify that the base cases are rotations; i.e.,
I, A+, A−, B and B− are all rotation matrices. For the induction to go through, the lemma
we need to prove rotation(xw) is a rotation in R3 given that rotation(w) is a rotation, is that
the product of two rotation matrices M1 and M2 is also a rotation matrix.
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The final lemma from matrix algebra that we needed was to show that every rotation
matrix preserves distances [9]; i.e., that ||Mx|| = ||x|| whenever M is a rotation matrix and x

is a vector. Since the focus of this project was on the Banach-Tarski paradox and not matrix
algebra, we proceeded to prove these results as directly as possible, without using deeper
results from linear algebra, such as the geometric meaning of determinants. In the end, we
proceeded using the roadmap suggested by the following lemmas, all proved in ACL2(r):

▶ Lemma 5. r3-matrixp(m1) ∧ r3-matrixp(m2) =⇒ r3-matrixp(m1 × m2)

▶ Lemma 6. r3-matrixp(m1) ∧ r3-matrixp(m2) =⇒ det(m1 × m2) = det(m1) · det(m2)

▶ Lemma 7. r3-matrixp(m) =⇒ m × I = I × m = m

▶ Lemma 8. r3-matrixp(m) ∧ det(m) ̸= 0 =⇒ m × m−1 = m−1 × m = I

▶ Lemma 9. r3-matrixp(m1) ∧ det(m1) ̸= 0 ∧ r3-matrixp(m2) ∧ det(m2) ̸= 0
=⇒ (m1 × m2)−1 = m−1

2 × m−1
1

▶ Lemma 10. r3-rotationp(m1) ∧ r3-rotationp(m2) =⇒ r3-rotationp(m1 × m2)

▶ Lemma 11. r3-rotationp(m) =⇒ r3-rotationp(m−1)

▶ Lemma 12. Rotations preserve distances.

Proof. Let p1 = (x1, y1, z1) and R be a rotation matrix, and consider p2 = Rp1 = (x2, y2, z2).
Using the previous lemmas,

x2
1 + y2

1 + z2
1 = pT

1 × p1

= pT
1 × (I × p1)

= pT
1 × ((R−1 × R) × p1)

= pT
1 × ((RT × R) × p1)

= (pT
1 × RT ) × (R × p1)

= (R × p1)T × (R × p1)
= pT

2 × p2

= x2
2 + y2

2 + z2
2 . ◀

5 Banach-Tarski Theorem on the Unit Sphere

Before finishing the proof of the Banach-Tarski theorem for the unit sphere, we want to
mention two key lemmas needed to carry out the proof. First, if w1, w2 ∈ W (a, b), then by the
definition of rotation and compose, rotation(w1) × rotation(w2) = rotation(compose(w1, w2)).
Second, if r ∈ R(a, b), then ∃w ∈ W (a, b) such that r = rotation(w), and by the previous
lemma r−1 = rotation(w−1). Moreover, since w−1 ∈ W (a, b), r−1 ∈ R(a, b).

Returning to the main proof, let D be the set of poles of all of the rotations belonging to
the set R(a, b) − I; i.e., D = {p ∈ S2 | ∃r. r ∈ R(a, b) ∧ r ̸= I ∧ r(p) = p}.

Now, consider a point p ∈ S2 − D and r ∈ R(a, b). It follows that r(p) ∈ S2 − D as
well. Otherwise, r(p) ∈ D and by the definition of D there exists a witness rw ∈ R(a, b) − I

such that rw(r(p)) = r(p). But then r−1(rw(r(p))) = p. By the previous lemmas, r−1rwr ̸=
I =⇒ p ∈ D. This proves if r ∈ R(a, b) and p ∈ S2 − D, then r(p) ∈ S2 − D.

ITP 2022
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Define the orbit of a point p ∈ S2 − D as {r(p) | r ∈ R(a, b)}. Using the Axiom of Choice,
implemented as defchoose in ACL2, we can choose one representative of each of these orbits.
Let M be the set of all of the chosen points from each of the orbits. In Section 5.1 we will
show how we used the Axiom of Choice in our proof and how we decomposed S2 − D into
two sets each equivalent to S2 − D. Then in Section 5.2 we’ll show the set D is countable;
i.e., we will show all the poles of rotations belonging to R(a, b) can be enumerated. Since
S2 is not countable, there exists a point Ps2 ∈ S2 − D. Then in Section 5.3 we find an
angle as2 ∈ [0, 2π) such that the rotation of any point in D around the axis from the origin
to Ps2 by an angle that is a multiple of as2, the resulting point does not lie in the set D.
The remainder of the proof decomposes S2 into two sets each equivalent to S2 by proving
equivalences between different sets as suggested in Section 1.

5.1 Decomposing the Unit Sphere minus the Set of Poles

ACL2 supports existential quantification by the way of the defun-sk event [8]. We have
defined the orbit of a point point = {o-point | ∃w. w ∈ W (a, b) ∧ o-point = rotation(w) ×
point} as a Skolem function using defun-sk as shown below.

( defun-sk orbit-point-p-q ( o-point point)
( exists w

(and ( reducedwordp w)
(m-= (m-* ( rotation w ( acl2-sqrt 2))

point)
o-point ))))

The function orbit-point-p-q returns true if the point o-point belongs to the orbit of point
and it chooses a witness reduced word w such that o-point = rotation(w) × point.

Now using the Axiom of Choice we want to choose one representative from each of the
orbits of the points in the set S2 − D. The Axiom of Choice in ACL2 is implemented using
defchoose which was previously used in the proof of the Vitali’s theorem [2]. So the choice
set M is defined as follows:

( defchoose choice-set-s2-d-p ( c-point ) (p)
(and ( point-in-r3 c-point )

( orbit-point-p-q c-point p))
: strengthen t)

In the definition of choice-set-s2-d-p, point-in-r3 is the predicate that recognizes points in
R3. If p ∈ S2, then choice-set-s2-d-p(p) picks a point c-point in R3 that is in the orbit of
the point p. The strengthen option in the choice function ensures that the same canonical
witness is chosen for any other point p1 in the same equivalence class as p.

Since M contains one representative from each of the orbits of the points belonging to the
set S2 −D, S2 −D = R(a, b)M . For example, below is how we define the set R(a, b)M = {p |
∃p1. p1 ∈ S2 − D ∧ cp1 is the chosen point from the orbit of p1 ∧ ∃r ∈ R(a, b). r × cp1 = p}.
Similarly, we define the sets M , R(a)M , R(a−1)M , R(b)M , R(b−1)M , a−1R(a)M , and
b−1R(b)M .
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( defun-sk diff-s2-d-p-q-1 (cp1 p)
( exists w

(and ( reducedwordp w)
(m-= (m-* ( rotation w ( acl2-sqrt 2)) cp1) p))))

( defun-sk diff-s2-d-p-q (p)
( exists p1

(and ( s2-d-p p1)
( diff-s2-d-p-q-1 ( choice-set-s2-d-p p1)

p))))

;; Definition of the set R(a,b)M
( defun diff-s2-d-p (p)

(and ( point-in-r3 p)
( diff-s2-d-p-q p)))

If the sets M , R(a)M , R(a−1)M , R(b)M , R(b−1)M are disjoint, and the sets a−1R(a)M ,
R(a−1)M are disjoint, and b−1R(b)M , R(b−1)M are disjoint, then we have our decomposition
of S2 − D. Suppose that R(a)M and R(b)M are not disjoint. To simplify the discussion,
define p̂ as the point chosen for the orbit of p, and Rw as the rotation matrix of the word w.

Now, let p be a point in the intersection, i.e., p ∈ R(a)M and p ∈ R(b)M . Then
∃pa ∈ S2−D and ∃wa ∈ W (a) such that Rwa

×p̂a = p and ∃pb ∈ S2−D and ∃wb ∈ W (b) such
that Rwb

× p̂b = p. Since p̂a lies in the orbit of pa, ∃wpa ∈ W (a, b) such that Rwpa × pa = p̂a

and ∃wpb ∈ W (a, b) such that Rwpb
× pb = p̂b. So, Rwa

× Rwpa
× pa = p = Rwb

× Rwpb
× pb,

which implies pa and pb belong to the same orbit. In other words, p̂a = p̂b, since those are
the representatives points for their (one) orbit. Since, Rwa

× p̂a = Rwb
× p̂b, we have that

Rw−1
b

wa
× p̂a = Rw−1

b
× Rwa

× p̂a = p̂b = p̂a. Notice that compose(w−1
b , wa) ̸= ’(), since w−1

b

ends with b−1 and wa starts with a. Thus, Rw−1
b

wa
̸= I which implies that p̂a ∈ D. But this

is a contradiction since p̂a is in the orbit of pa. So, the sets R(a)M and R(b)M must be
disjoint. Similar arguments show that the other sets are also disjoint. By the definition of
R(a, b) and by Corollary 2, Corollary 3 we can transfer the decomposition of W (a, b) into the
following decompositions of the set S2 − D. Thus, the set S2 − D can be decomposed into
two disjoint copies of itself. Listing 6 shows the proof of these decompositions of S2 − D in
ACL2(r) where s2-d-p is the recognizer for the set S2 − D, diff-n-s2-d-p is the recognizer for
the set M , diff-a-s2-d-p is the recognizer for the set R(a)M , diff-a-inv–s2-d-p is the recognizer
for the set R(a−1)M , diff-b-s2-d-p is the recognizer for the set R(b)M , diff-b-inv-s2-d-p is the
recognizer for the set R(b−1)M , a-inv-diff-a-s2-d-p is the recognizer for the set a−1R(a)M ,
and b-inv-diff-b-s2-d-p is the recognizer for the set b−1R(b)M .

S2 − D = R(a, b)M = M
⊔

R(a)M
⊔

R(a−1)M
⊔

R(b)M
⊔

R(b−1)M

S2 − D = a−1R(a)M
⊔

R(a−1)M

S2 − D = b−1R(b)M
⊔

R(b−1)M

5.2 The Set of Poles is Countable
We have seen that S2 − D can be decomposed, and that the pieces can be recombined in
two different ways to create two copies of S2 − D. We now want to show set D is countable.
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Listing 6 Decompositions of the set S2 − D in ACL2(r).
;; Unit sphere minus the set of poles broken down into 5 sets
( defthmd s2 -d-p- equivalence -1

(iff (s2 -d-p p)
(or (diff -n-s2 -d-p p)

(diff -a-s2 -d-p p)
(diff -a-inv -s2 -d-p p)
(diff -b-s2 -d-p p)
(diff -b-inv -s2 -d-p p)))

:hints ...)

;; A copy of the unit sphere minus the set of poles
( defthmd s2 -d-p- equivalence -2

(iff (s2 -d-p p)
(or (a-inv -diff -a-s2 -d-p p)

(diff -a-inv -s2 -d-p p)))
:hints ...)

;; Another copy of the unit sphere minus the set of poles
( defthmd s2 -d-p- equivalence -3

(iff (s2 -d-p p)
(or (b-inv -diff -b-s2 -d-p p)

(diff -b-inv -s2 -d-p p)))
:hints ...)

Let p be a point in D. Then, there exists a non-empty word w ∈ W (a, b) such that
Rwp = p. Rw is a rotation matrix, so it has the form

Rw =

m11 m12 m13
m21 m22 m23
m31 m32 m33

 .

If Rw is symmetric, then Rw = RT
w = R−1

w . But since R−1
w = Rw−1 , we have that Rw−1 = Rw.

But this is not possible, since we have also shown that the mapping from W (a, b) to R(a, b)
is one-to-one. So Rw can not be symmetric, thus at least one of m32 ̸= m23, m13 ̸= m31, or
m21 ̸= m12 must be true.

Let K =
√

(m32 − m23)2 + (m13 − m31)2 + (m21 − m12)2. Since Rw is not symmetric,
K ̸= 0. So consider the point

fp = 1
K

(m32 − m23, m13 − m31, m21 − m12).

By computation, it is easy to verify that Rwfp = fp and Rw(−fp) = −fp. So indeed, fp

and −fp are poles of Rw. Now we show these are the only poles of the rotation Rw; i.e.,
we show the original point p ∈ D is either equal to fp or −fp. By construction, Rwp = p,
and this implies that p = R−1

w p, hence p = RT
wp. This means that p satisfies the equations

Rwx = RT
wx and ||x|| = 1. Geometrically, the solutions to the first equation lie on a line

through the origin, and the solutions to the second equation lie on the unit sphere, so the
intersection of these results in two points. Algebraically, we proved that the only solutions
to these equations are x = fp and x = −fp.

Using this fact, we can now define an enumeration of all the poles; i.e., we define a sequence
that contains all the poles of any rotation Rw corresponding to a non-empty reduced word
w ∈ W (a, b).
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The first step is to enumerate all the words in W (a, b). We do this by defining the
function generate-words-main that returns all the possible words (including weak words,
like ’(a a−1 b)) up to a given input length. It is straightforward to prove that all words in
W (a, b) eventually appear in this sequence. Using this enumeration, we then enumerate all
the poles by replacing a word w in the sequence with its corresponding pair of poles. The
function poles-list returns the nth pole, and we proved that all poles appear somewhere in
this sequence.

This establishes that the poles are countable, and since the points on the sphere are not,
there is at least one point p on the sphere that is not a pole. In the next section, we will use
this point to decompose the entire unit sphere.

5.3 Decomposing the Unit Sphere
Up to this point, we have been working with rotations of the form Rw where w is a reduced
word. Now, we consider general rotations around a line that passes through the origin and
an arbitrary point in the sphere S2. We defined the function rotation-3d that takes an angle
θ ∈ [0, 2π) and a point p in S2 and returns the matrix corresponding to that general rotation.
We will use Rp,θ to denote this general rotation matrix.

Recall from Section 5.2 that there is a point p that lies on the unit sphere but is not
one of the poles; i.e., there is a point p such that p ∈ S2 − D. We would like to choose
θ ∈ [0, 2π) such that for any p′ ∈ D, Rp,θp′ ̸∈ D; i.e., the rotation Rp,θ rotates D away from
D. More than that, we want to choose θ so that even if we rotate multiple times by θ the
result is still not in D; i.e., for any p′ ∈ D, Rn

p,θp′ ̸∈ D for any n > 1. Before finding this θ,
we observe (and proved formally in ACL2(r)) that Rp,θ1 × Rp,θ2 = Rp,θ1+θ2 and by induction
Rn

p,θ = Rp,nθ.
So consider the set of all angles α such that they rotate some element of D to an element

of D, perhaps by rotating multiple times; i.e., consider the set

A =
{

α | α ∈ [0, 2π) ∧ n ∈ Z+ ∧ ∃p′. p′ ∈ D ∧ Rp,nαp′ ∈ D
}

.

Now, any angle γ can be written uniquely as γ = 2πk + β, where k is an integer and
β ∈ [0, 2π). In particular, we showed in ACL2(r) that for the positive angle nα, there is a
unique non-negative integer k and an angle β ∈ [0, 2π) such that nα = 2πk + β.

Moreover, suppose p1 and p2 are in D, and that there is an angle α ∈ [0, 2π) and a
positive integer n such that Rp,nαp1 = p2. As observed, nα can be written uniquely as
nα = 2πk + β, which means that the angle α itself can be written as 2πk+β

n . Moreover, the
angle β is uniquely determined by nα, and α is uniquely determined by the choice of p1,
p2, and n. So enumerating the possible values of n (positive integer) and k (non-negative
integer) will also enumerate all the possible values of α ∈ A.

We formalized the proof in ACL2(r) that the Cartesian product of two countable sets
is also countable, and we used this result to show that the set A is countable since the
sets of possible n and k values as well as pairs (p1, p2) are countable. As before, since A

is a countable set of angles in [0, 2π) there must be some angle θ ∈ [0, 2π) that is not in
A. This angle θ satisfies the desired condition, namely that for any p′ ∈ D and n ≥ 1,
Rn

p,θp′ = Rp,nθp′ ̸∈ D.
What we have at this point is a rotation matrix Rp,θ that maps the set of poles P to

somewhere in S2 − D. It is easy to verify that if m ≠ n, then Rp,nθ ̸= Rp,mθ. Now, consider
the set E = D

⊔
Rp,θD

⊔
Rp,2θD

⊔
Rp,3θD

⊔
· · · . From the definition of E, it follows easily

that Rp,θE = E − D. Thus, the set S2 − D can be decomposed as

S2 − D = (S2 − E)
⊔

(E − D) = (S2 − E)
⊔

Rp,θE.
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With a bit of tedious algebraic manipulation, this formula can be used to find a disjoint
decomposition of the entire surface S2:

S2 =
(
(S2 − D) ∩ (S2 − E)

) ⊔
Rp,−θ

(
(S2 − D) ∩ E

)
.

S2 − E is just a set, so this equality has the form

S2 =
(
(S2 − D) ∩ F

) ⊔
Rp,−θ

(
(S2 − D) ∩ E

)
.

In Section 5.1, we showed how S2 − D could be decomposed into disjoint sets such that the
pieces could be rotated and recombined to create two copies of S2 −D. Replacing (S2 −D) in
the equality above with those two decompositions of S2 −D results in a similar decomposition
of S2 (but with many more terms). This establishes the Banach-Tarski theorem for the
entire sphere S2. Listing 7 shows the proof of the Banach-Tarski theorem on S2 in ACL2(r)
where s2-def-p is the recognizer for the set S2.

Listing 7 Decompositions of S2 in ACL2(r).
;; Unit sphere broken down into 14 sets
( defthmd s2 -equiv -1

(iff (s2 -def -p p)
(or (set -a1 p)

(set -a2 p)
(set -a3 p)
(set -a4 p)
(set -a5 p)
(set -a6 p)
(set -a7 p)
(set -a8 p)
(set -a9 p)
(set -a10 p)
(set -a11 p)
(set -a12 p)
(set -a13 p)
(set -a14 p)))

:hints ...)

;; A copy of the unit sphere
( defthmd s2 -equiv -2

(iff (s2 -def -p p)
(or (set -a-inv -a3 p)

(set -a-inv -r-a4 p)
(set -r-1-a-inv -a5 p)
(set -r-1-a-inv -r-a6 p)
(set -a7 p)
(set -a8 p)))

:hints ...)

;; Another copy of the unit sphere
( defthmd s2 -equiv -3

(iff (s2 -def -p p)
(or (set -b-inv -a9 p)

(set -b-inv -r-a10 p)
(set -r-1-b-inv -a11 p)
(set -r-1-b-inv -r-a12 p)
(set -a13 p)
(set -a14 p)))

:hints ...)
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6 Banach-Tarski Theorem on the Unit Ball

In Section 5, we showed how the unit sphere S2 can be decomposed into a finite collection of
disjoint sets such that the subsets can be rotated and recombined to construct two copies of
S2. In this section, we use that fact to define a similar construction for the unit ball B3.

First, we will decompose the unit ball except the origin. Suppose that p ∈ B3 − {0}, and
let r = ||p||. Define the point p′ = p/r. It is easy to show that p′ ∈ S2. Geometrically, it is
obvious that if we rotate a point on S2, then all the points along the line from the origin to
that point will be rotated by the same angle and direction. We proved this fact algebraically
in ACL2(r). Using this fact, it is trivial to generalize the Banach-Tarski decomposition of S2

into a similar decomposition of B3 − {0}.
Generalizing the decomposition to the entire unit ball B3 is conceptually similar to the

way the decomposition of S2 −D was extended to cover all of S2. The trick, then, was to find
a rotation that would essentially erase the points in D, and this was possible because D is
countable. The origin is just a single point, so the same strategy of rotating the origin away
should work. The major complication is that any rotation with an axis that passes through
the origin will map the origin to itself. So we need to consider rotations along arbitrary axes,
and these are not linear transformations, so they cannot be simply encoded as matrices.

Besides the linear transformation of rotation, we also need translation. We defined the
function, rotation-about-arbitrary-line that accepts an arbitrary point p, an angle θ, and an
axis of rotation l (defined using two points), and returns the result of rotating p around l by
θ. We proved that this operation satisfies the expected properties of rotations in 3D.

Four of these properties were needed to complete the proof. First, the result of rotating a
point p by an angle θ around an axis l is always a point in R3. Second, if θ = 0, rotation
around any axis l by θ is the identity transformation. Third, rotating a point p by an angle
θ1 about an axis l and then rotating the result by an angle θ2 about the same axis l, is the
same as rotating the point p by θ1 + θ2 around l. Finally, the result of rotating the origin
around a specific axis l that is close to the origin results in a point that is inside the unit
ball B3. The last two properties combine to show that repeatedly rotating the origin around
this specific axis by θ will always yield a result that is inside B3.

The rest follows the same strategy presented in Section 5.3. Fix the axis of rotation l as
above, so that origin is always mapped to some point inside B3. Now we want to find an angle
α ∈ [0, 2π) such that if we rotate the origin by an angle nα around l, the result is never the
origin; i.e., let Rl,θp be the result of rotating p around l by θ. Then Rl,θ0, Rl,2θ0, Rl,3θ0, . . .

is a countably infinite sequence of points that are all inside B3.
We find a suitable α by partially solving the equation Rl,nθ0 = 0. In particular, we

showed that this requires that cos(nθ) = 1, and this means that θ must have the form
θ = 2πk

n , where n is a positive integer and k ∈ Z . Similar to the construction in Section 5.3,
the set of possible θ can be enumerated, so there must be at least one angle α ∈ [0, 2π) that
is not one of the θ. Thus, Rl,nα0 ̸= 0 for any positive integer n.

Exactly as before, let Z = {Rl,nα0 | n ∈ N}. Then B3 − {0} = (B3 − Z)
⊔

Rl,αZ. This
is then used to show that

B3 =
(
(B3 − {0}) ∩ (B3 − Z)

) ⊔
Rl,−α

(
(B3 − {0}) ∩ Z

)
.

And just as before, replacing (B3 − {0}) with the decompositions found above yields a
decomposition of all of B3 that satisfies the Banach-Tarski paradox. Listing 8 shows the
decompositions of B3 in ACL2(r) where b3 is the recognizer of the set B3.
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Listing 8 Decompositions of B3 in ACL2(r).
;; Unit ball broken down into 52 sets
( defthmd b3 -equiv -1

(iff (b3 p)
(or (b3 -00 p)

(b3 -01 p)
...
...
(b14 -00 p)
(b14 -01 p)
(set -b20 p)
(set -b10 p)
(rota -1-b3 -10 p)
...
...
(rota -1-b14 -11 p)
(rota -1- b21 p)
(rota -1- b11 p)))

:hints ...)

;; A copy of the unit ball
( defthmd b3 -equiv -2

(iff (b3 p)
(or (rot -3-b3 -00 p)

(rot -3-b3 -10 p)
...
...
(rot -8-b8 -00 p)
(rot -8-b8 -10 p)
(rota -1-rot -3-b3 -11 p)
(rota -1-rot -3-b3 -01 p)
...
...
(rota -1-rot -8-b8 -11 p)
(rota -1-rot -8-b8 -01 p)))

:hints ...)

;; Another copy of the unit ball
( defthmd b3 -equiv -3

(iff (b3 p)
(or (rot -9-b9 -00 p)

(rot -9-b9 -10 p)
...
...
(rot -14-b14 -00 p)
(rot -14-b14 -10 p)
(rota -1-rot -9-b9 -11 p)
(rota -1-rot -9-b9 -01 p)
...
...
(rota -1-rot -14 -b14 -11 p)
(rota -1-rot -14 -b14 -01 p)))

:hints ...)



J. Bapanapally and R. Gamboa 5:15

7 Conclusion

In this paper we have presented a formalization of the Banach-Tarski theorem in ACL2(r).
Although ACL2(r) may not be the obvious choice to formalize such an abstract theorem,
it turns out that the key step in the proof is reasoning about free groups, and since this is
tantamount to reasoning about lists, it is perfectly natural for theorem provers in the Boyer-
Moore family of provers, like ACL2(r). Moreover, even though there is very limited support
for quantification in ACL2(r), we have shown that we can define complex structures and
prove properties about them. The proof also makes use of 3D rotations, and we formalized
these rotations and proved many key properties about them. We have formalized the proof
for the Cartesian product of two countable sets is countable, and used this proof in the
decomposition of S2 and B3. The proven properties of 3D rotations from section 4 and
countable sets are readily available to use by anyone who chooses to do so, and these are
available in rotations.lisp and countable-sets.lisp in the ACL2(r) source files. We have used
many properties of modular arithmetic and trigonometric functions, and these were previously
formalized in ACL2(r). Also critical in a few steps was the fact that certain sets can be
enumerated, but that no non-trivial interval of reals can be – and this had also been proved
in prior work. The end result is a proof of the Banach-Tarski paradox: The unit ball B3

in R3 can be decomposed into finitely many pieces that can be rotated and reassembled to
form two copies of B3.
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