
Dandelion: Certified Approximations of Elementary
Functions
Heiko Becker #

MPI-SWS, Saarland Informatics Campus (SIC), Germany

Mohit Tekriwal #

University of Michigan, Ann Arbor, MI, USA

Eva Darulova #

Uppsala University, Sweden

Anastasia Volkova #

Nantes Université, France

Jean-Baptiste Jeannin #

University of Michigan, Ann Arbor, MI, USA

Abstract
Elementary function operations such as sin and exp cannot in general be computed exactly on
today’s digital computers, and thus have to be approximated. The standard approximations in
library functions typically provide only a limited set of precisions, and are too inefficient for many
applications. Polynomial approximations that are customized to a limited input domain and output
accuracy can provide superior performance. In fact, the Remez algorithm computes the best possible
approximation for a given polynomial degree, but has so far not been formally verified.

This paper presents Dandelion, an automated certificate checker for polynomial approximations
of elementary functions computed with Remez-like algorithms that is fully verified in the HOL4
theorem prover. Dandelion checks whether the difference between a polynomial approximation and
its target reference elementary function remains below a given error bound for all inputs in a given
constraint. By extracting a verified binary with the CakeML compiler, Dandelion can validate
certificates within a reasonable time, fully automating previous manually verified approximations.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases elementary functions, approximation, certificate checking

Digital Object Identifier 10.4230/LIPIcs.ITP.2022.6

Supplementary Material Software (Source Code): https://github.com/HeikoBecker/Dandelion
archived at swh:1:dir:2098ee54478f916e1898fb4732b0b4156f2d94d8

Funding This work was supported in part by the University of Michigan.

Acknowledgements The authors would like to thank John Harrison for the insightful discussion and
for providing the source code for his paper that inspired the Dandelion work. Further, we thank
Magnus Myreen and Michael Norrish for their help with improving the HOL4 implementation of
Dandelion. We also thank Samuel Coward for helping us with the MetiTarski evaluation. Finally,
we thank the anonymous ITP reviewers for their feedback on the paper.

1 Introduction

Exact computation in real-number arithmetic is in general too inefficient for most appli-
cations [5], and is thus typically replaced by finite-precision (floating-point or fixed-point)
arithmetic. While arithmetic operations such as addition and multiplication are well-
supported and efficient, real-world code often also needs to support elementary functions
such as sin and exp. Such functions cannot be computed exactly on today’s digital hardware
and thus necessarily have to be approximated. For floating-point arithmetic, libraries provide

© Heiko Becker, Mohit Tekriwal, Eva Darulova, Anastasia Volkova, and Jean-Baptiste Jeannin;
licensed under Creative Commons License CC-BY 4.0

13th International Conference on Interactive Theorem Proving (ITP 2022).
Editors: June Andronick and Leonardo de Moura; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hbecker@mpi-sws.org
mailto:tmohit@umich.edu
mailto:eva.darulova@it.uu.se
mailto:anastasia.volkova@univ-nantes.fr
mailto:jeannin@umich.edu
https://doi.org/10.4230/LIPIcs.ITP.2022.6
https://github.com/HeikoBecker/Dandelion
https://archive.softwareheritage.org/swh:1:dir:2098ee54478f916e1898fb4732b0b4156f2d94d8;origin=https://github.com/HeikoBecker/Dandelion;visit=swh:1:snp:74ef0be8efe22c9a55623b38464b160446a5c4eb;anchor=swh:1:rev:405b118a81db2f4443042751973cbaf9891bdb94
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Dandelion: Certified Approximations of Elementary Functions

general-purpose approximations for a limited set of formats, e.g. correctly rounded to single
or double precision [27, 13]. However, these can be inefficient for applications that do not
need quite as much accuracy, or that only need to work for a limited set of inputs [14, 25].
Furthermore, many applications, especially in the embedded systems domain, operate with
fixed-point arithmetic, for which efficient library approximations do not exist [24].

When library function implementations are suboptimal, a possible solution is to generate
approximations of elementary functions on demand with custom accuracy – exactly the
accuracy that is needed by the application and its context. Indeed, automated algorithms exist
for generating polynomial approximations of elementary functions with a given polynomial
degree or given bound on the approximation error. For instance, Remez-like algorithms [36]
generate the best polynomial approximation, i.e. the one with the smallest approximation
error for a given polynomial degree. We can, for example, approximate exp on [0, 0.5] by
0.999 + 1.001 × x + 0.484 × x2 + 0.215 × x3 with an approximation error of 2.63 × 10−5.

Remez-like algorithms are used in several automated tools for generating custom approxi-
mations [8, 25], however, these implementations are not formally verified. This is especially
problematic because the algorithms are generally tricky to get right [32]1.

In this paper, we implement and prove correct Dandelion, a fully automated and formally
verified certificate checker for polynomial approximations computed by Remez-like algorithms.
Dandelion is implemented and fully verified inside the HOL4 theorem prover [37]. A certificate
for Dandelion consists of an elementary function f , an input interval I, and a polynomial
approximation p and an approximation error ϵ returned by a Remez-like algorithm. We
prove once and for all the correctness theorem that if Dandelion returns true for a certificate,
the encoded error is a true upper bound to the difference between the elementary function
and the encoded polynomial: maxx∈I |f(x) − p(x)| ≤ ϵ.

Dandelion’s certificates are minimal, requiring only inputs and outputs of the approxi-
mation algorithm to be recorded. Additionally, Dandelion certifies the known best possible
approximations of Remez-like algorithms, together, making it widely applicable. Previous
work focused on manual proofs [18]; certifies only results of Chebyshev approximations, which
are not as accurate as those computed by Remez-like algorithms [6]; or their verification-
technique is mainly based on interval arithmetic [28]. Dandelion is the first tool that
automates the approach of Harrison [18], and thus the key challenge that Dandelion solves
is automation; Dandelion requires no user interaction, making it the first fully automated
validator for results of Remez-like algorithms based on polynomial zero finding.

One may think that verifying an implementation of a Remez-like algorithm should be
favored over validating each run separately. However, correctness proofs for one implementa-
tion generally do not apply to other implementations, and thus would have to be re-done
with every change. In contrast, by certifying only the end-result, Dandelion is indifferent to
the implementation choices and thus immediately more widely applicable.

Harrison [18] has manually verified a polynomial approximation of the exponential
function in HOL-Light [20]. The methodology presented is general, but was never automated.
Dandelion borrows the high-level approach from Harrison’s manual proof, automating the
key ideas to validate results of Remez-like algorithms.

While the idea of automating an existing development may seem simple, we faced two
major challenges to make automated certification practical. First, computations in theorem
provers are generally slower than those in unverified tools, making certain designs impractical.
Second, some definitions of Harrison use non-computable functions and thus cannot be

1 Muller warns: “[..] even if the outlines of the [Remez] algorithm are reasonably simple, making sure
that an implementation will always return a valid result is sometimes quite difficult.” ([32], page 52).

H. Becker, M. Tekriwal, E. Darulova, A. Volkova, and J.-B. Jeannin 6:3

used in an automated approach. To speed-up the computations, we extract Dandelion as
a verified binary using the CakeML compiler [39]. The extracted binary enjoys the same
correctness guarantees as our in-logic implementation, and makes checking a certificate
fast: a single certificate is checked on average within 6 minutes. We overcome the problem
of non-computable functions by identifying computable versions and proving equivalence
between the computable and non-computable functions.

Dandelion can be used as a verifier for any Remez-like algorithm. In our evaluation, we use
Dandelion to certify a number of approximations generated from FPBench [12] and the work
by Izycheva et al. [24]. Our evaluation shows that certificate checking in Dandelion is fast,
and that Dandelion certifies, for an elementary function f and polynomial p, approximation
errors on the same order of magnitude as the infinity norm (maxx∈I(x) |f(x) − p(x)|). We
also encode the original proof-goal of Harrison as a certificate – Dandelion reduces its proof
to a single line of code.

Contributions

In summary, this paper provides the following contributions:
a HOL4 implementation of Dandelion2, a verified certificate checker for polynomial
approximations
a verified binary extracted using CakeML to make certificate checking fast, and
an evaluation of Dandelion’s performance on a set of benchmarks, comparing it with the
state-of-the-art.

2 Overview

Before we dive into the technical details of Dandelion, we give an overview of our toolchain
and the proofs that Dandelion performs automatically using the example in Figure 1. The
starting point is the code in Figure 1a that converts polar to cartesian coordinates, and
returns the resulting x component. This code could for example be part of an autonomous
car or a drone, and inaccuracies in the conversion of coordinates may have catastrophic
effects [33]. Chip sizes and energy budgets in these devices are usually small, and thus
using a fully-fledged floating-point unit is not always possible. As an alternative, code is
often implemented in fixed-point arithmetic, which, however, does not come with standard
and efficient library implementations of elementary functions [24]. Hence, an engineer may
approximate the function cos on line 8 in Figure 1a with a custom polynomial approximation
shown in Figure 1b, for instance using the state-of-the-art synthesis tool Daisy [24]3.

Daisy internally calls a Remez-like algorithm to generate the polynomial approximation
of cos, but the approximation algorithm and Daisy itself are not (formally) verified. With
Dandelion, we can straight-forwardly instrument Daisy to generate the certificate shown
in Figure 1c that encodes the elementary function to be approximated (f), the approximating
polynomial (p), the approximation error (ε), and the range on which the approximation is
supposed to be valid (I), and an additional parameter n which we explain later. Note that
the input interval I recorded in the certificate captures the direct inputs to the elementary
function cos and is thus different from the input interval in the require clause that captures
inputs to the overall function polToCart_x. Dandelion validates this certificate in 31 seconds
and proves the HOL4 theorem

2 The source code of Dandelion is publicly available at https://github.com/HeikoBecker/Dandelion.
3 Daisy can also synthesize suitable finite-precision types for the polynomial (not shown here), and

generate certificates that formally verify the roundoff error bound of this polynomial implementation [4].

ITP 2022

https://github.com/HeikoBecker/Dandelion

6:4 Dandelion: Certified Approximations of Elementary Functions

def polToCart_x(radius: Real,
theta: Real): Real = {

require(((1.0 <= radius) &&
(radius <= 10.0) && (0.0 <= theta) &&
(theta <= 360.0)))

val pi = 3.14159265359
val radiant = (theta * (pi / 180.0))
(radius * cos(radiant))

}

(a) Example kernel using a elementary function.

def polToCart_x(radius: Fixed,
theta: Fixed): Fixed = {
val pi = 3.14159265359
val radiant = (theta * (pi / 180.0))
val _tmp = (1.3056366443634033 +
(radiant * (-1.2732393741607666 +
(radiant * (0.2026423215866089 +
(radiant * 3.3222216089257017e-09))))))

(radius * _tmp)
}

(b) Example with polynomial approximation for cos.
cos_cert = <| f := Fun Cos (Var "radiant"); n := 32;

(* p (x) ~ 1.305 - 1.273 * x + 0.202 * x2 + 3.322 * 10−9 * x3 *)
p := [5476237/4194304; -5340353/4194304; 1699887/8388608; 3740489/1125899906842624];
ε := 7661335245848499811609873770389478739611431267987/(25 * 10^48); (* ~0.306 *)
I := [("radiant", (0, 314159265359/50000000000))]; (* ~ x in [0, 6.284] *) |>

(c) Certificate for the approximation of cos in the example.

Figure 1 Example kernel using a elementary function (top-left), the kernel with a polynomial
approximation (top-right), and the certificate for Dandelion (bottom).

▶ Theorem 1. ∀x. x ∈ I(x) ⇒ | cos(x)−p(x)| ≤ ε

If the approximation error had not been correct, the binary would emit an error message,
explaining which part of the validation failed.

The certificate in Figure 1c uses only a single elementary function. In general, Dandelion
supports more complicated elementary function expressions, like exp(x × 1

2), and sin(x −
1) + cos(x + 1). Like Remez-like algorithms, we only require the functions to be univariate,
i.e. the certificate can only have a single free variable. Any approximation tool that can
generate these certificates can be used to generate inputs for Dandelion, and Dandelion can
be used independently of a particular approximation algorithm implementation.

The approach used by Dandelion has been laid out previously in a manual proof for the
exponential function by Harrison [18] (Subsection 2.1 overviews the main theorems and ideas).
The presented high-level approach is general, but a key challenge that Dandelion solves is to
automate each step and extend them to more complex expressions (Subsection 2.2).

2.1 Manual Proof by Harrison
Harrison has manually verified an approximation by Tang [40] of the exponential function,
showing that: ∀x.x ∈ [−0.010831, 0.010831] ⇒ |((ex − 1) − p(x)| ≤ 2−33.2. The manual
verification by Harrison is split into two steps. First, Harrison simplifies the overall proof
goal to a proof about polynomials, by replacing ex − 1 with a high-accuracy truncated Taylor
series q. By truncating the series after the 7th term, the approximation error of the series
becomes 2−58 and the overall proof-goal is reduced from |((ex − 1) − p(x)| ≤ 2−33.2 with the
triangle inequality to

|q(x) − p(x)| ≤ 2−33.2 − 2−58. (1)

The difference between q(x) and p(x) itself is a polynomial h(x), and thus this first step
reduces the overall proof goal to proving an upper bound on the polynomial h. As h

represents the difference between two polynomial approximations, the points where h attains
its maximum value (i.e. its extremal points) are those where the approximation error is the
largest. It thus suffices to reason about the extremal points of h for proving the inequality.

H. Becker, M. Tekriwal, E. Darulova, A. Volkova, and J.-B. Jeannin 6:5

compute extremal
values of polynomials

certificate:
: elementary function
: polynomial approximation

ɛ : error
: input constraints
: series terms

replace elementary function
 with high-degree approximation

Phase 1:

: high-degree approximation
: approximation error

Phase 2:

Valid Invalid

Figure 2 Overview of Dandelion toolchain.

To prove the polynomial inequality, Harrison proved two well-known mathematical
theorems in HOL-Light. The first theorem proves that polynomial p on the closed interval
[a, b] attains its extremal values either at the outer points or at the points where the first
derivative is zero:

▶ Theorem 2. Let p a differentiable, univariate polynomial, defined on [a, b] and M a real
number, then

| p(a) | ≤ M ∧ | p(b) | ≤ M ∧
(∀x. a ≤ x ≤ b ∧ p′(x) = 0 ⇒ | p(x) | ≤ M) ⇒
(∀x. a ≤ x ≤ b ⇒ | p(x) | ≤ M).

The second theorem is called Sturm’s theorem and proves that the exact number of zeros of
a polynomial can be computed from the so-called Sturm sequence of polynomials:

▶ Theorem 3. Let p a differentiable, univariate polynomial, defined on [a, b]. If p has
non-zero values on both a and b, and its derivative is not the constant zero function, then we
call Sturm ss the sturm sequence for p, and the set of zeros of p has size V (a, ss) − V (b, ss).

The Sturm sequence ss of polynomial p is defined recursively as

ss0 = p ss1 = p′ ssi+1 = −rem (ssi−1, ssi)

where rem computes the remainder of the polynomial division ssi−1
ssi

. Computation stops once
the remainder becomes the constant 0 polynomial. Function V (a, ss) in Theorem 3 computes
the number of sign changes when evaluating the polynomials in the list ss on value a.

To prove the final inequality, Harrison computes unverified guesses for both the Sturm
sequence of h′(x) and the zeros of h′(x) using Maple, and manually validates them in HOL4
using Theorem 3. By knowing the number of zeros, and their values, Harrison then provably
derives an upper bound on the extremal values of polynomial h using Theorem 2.

2.2 Automated Proofs in Dandelion
As in Harrison’s approach, Dandelion splits the proof into two parts. In the first phase,
Dandelion replaces elementary functions in the certificate by high-accuracy approximations
computed inside HOL4. The second phase then proves that the approximation error is a
correct upper bound on the extremal points of the resulting polynomial by finding zeros of
the derivative and bounding the number of zeros with Sturm sequences. The key differences
between Dandelion and the proof by Harrison is that Dandelion supports more elementary
functions, i.e. exp , sin , cos , ln , and tan−1 , and that its certificate checking is fully automated

ITP 2022

6:6 Dandelion: Certified Approximations of Elementary Functions

and does not require any user interaction or additional proofs. Figure 2 gives an overview of
the automatic computations done by Dandelion. We explain them at a high-level for our
example from Figure 1.

To prove the overall correctness theorem (Theorem 1), Dandelion first computes a
computable high-accuracy polynomial approximation for cos, denoted by q, using a truncated
Taylor series of degree n, with an approximation error of 3.77e-3. Generally, the certificate
parameter n defines the number of series terms computed for the truncated Taylor series in
Dandelion. Exactly as for Harrison’s manual proof, Dandelion proves an upper bound on
the difference between q and the target polynomial approximation p (Equation 1). Coming
up with a general approach for computing accurate truncated Taylor series of arbitrary
elementary functions was a major challenge for Dandelion – we implemented a library of
general purpose Taylor series for the supported elementary functions. Given a target degree,
Dandelion automatically computes a polynomial implementation and proves an approximation
error for the truncated series. We explain the first phase in more detail in Section 3.

In the second phase, Dandelion computes an upper bound on the polynomial h(x) =
q(x)−p(x) exactly like Harrison, by reasoning about the zeros of its derivative h′, using Sturm
sequences to bound the number of zeros of h′. Based on the number of zeros, Dandelion uses
an (unverified) oracle to automatically come up with a list of zeros of h′.

To prove the final bound on h, Dandelion checks for each zero of h′ that the value of h at
this point is smaller than or equal to the residual error ε − 3.77e-3. Harrison’s definition of
Sturm sequences is defined as a non-computable predicate, involving an existentially quantified
definition of polynomial division. Key to Dandelion is the implementation of a computable
version of polynomial division, as well as Sturm sequences, in combination with equivalence
proofs relating them to Harrison’s predicates. We explain how Dandelion computes the
Sturm sequences automatically and how Dandelion estimates zeros of polynomials in more
detail in Section 4.

Computing the Sturm sequence is the most computationally expensive part of Dandelion,
which we found to be impractical to do in logic. Thus we extract a verified binary using the
CakeML compiler for the second phase of Dandelion only. For the extraction to work, we
translated the HOL4 definitions of the second phase into CakeML source code via CakeML’s
proof-producing synthesis tool [1]. We explain the extraction with CakeML in Section 5.

3 Automatic Computation of Truncated Taylor Series

As in Harrison’s manual proof, Dandelion replaces in a first step the elementary function in
the certificate by a high-accuracy polynomial approximation. The crucial difference is that
Dandelion automates all of the manual steps, which we explain next.

When checking a certificate for function f , with input range I, Dandelion automatically
replaces every occurrence of an elementary function in f with a truncated Taylor series tf,n.
Below, we take f to be a single elementary function and will discuss the extension to more
complicated elementary function expressions later. The parameter n of tf,n is part of the
certificate and specifies the number of terms computed for the truncated series, i.e. if n is 32,
Dandelion truncates the Taylor series of f after the 32nd term. The final result of the phase is
a high-accuracy polynomial approximation of function f , qf,n, and an overall approximation
error δf,n. For the simple case where f is a single elementary function, qf,n and tf,n are
the same. Once we extend Dandelion to more complicated expressions, Dandelion combines
different instances of tf,n, into the final qf,n, as we explain later. We implement the first
phase in a HOL4 function approxAsPoly and prove soundness of approxAsPoly once and for
all in HOL4:

H. Becker, M. Tekriwal, E. Darulova, A. Volkova, and J.-B. Jeannin 6:7

▶ Theorem 4 (First Phase Soundness).

approxAsPoly f I n = Some(qf,n, δf,n) ⇒ (∀x. x ∈ I ⇒ | f(x) − qf,n(x) | ≤ δf,n)

The theorem states that if approxAsPoly succeeds and returns qf,n and δf,n, then the
approximation error on input range I between f(x) and qf,n(x) is upper bounded by δf,n.

In the rest of this section, we first explain how Dandelion automatically computes truncated
Taylor series for elementary functions like sin and exp, then we explain how Dandelion
extends this approach in approxAsPoly to compute a single polynomial approximations of
more complicated elementary function expressions like exp(x ∗ 1

2) via interval analysis and
propagation of polynomial errors. Throughout this section, we use f to refer to the elementary
function from the certificate, tf,n as truncated Taylor series, δt,n as the approximation error
of the series, qf,n as polynomial approximation, and δf,n as the overall approximation error.

3.1 Truncated Taylor Series for Single Elementary Functions
Both tf,n and δt,n depend on the approximated elementary function f , as well as the number
of series terms n from the certificate. Overall, Dandelion automatically computes a truncated
Taylor series for the elementary functions sin, cos, exp, tan−1, and ln4; the series expansions
for exp and ln already existed in HOL4 prior to Dandelion and we port the series for tan−1

from HOL-Light. For sin and cos we prove series based on textbook descriptions. Formally,
Dandelion proves a truncated Taylor series for each elementary function once and for all as

▶ Theorem 5. ∀x n. Pre(x) ⇒ f(x) =
∑n

i=0(fi 0
i! ∗ xi) + δt,n(x)

Here, f i is the i-th derivative of f , and the approximation error δf,n(x) is soundly bounded
from the remainder term of Taylor’s theorem for input value x. Predicate Pre is a precondition
constraining the interval on which function f can be approximated by the truncated series.
When approximating an elementary function f by its truncated series, Dandelion always
ensures that this precondition Pre is true: The series for exp requires inputs to be non-
negative, the series for ln requires arguments greater than 1, and tan−1 requires arguments
in (−1, 1). The series for sin and cos have no preconditions.

At certificate checking time Dandelion automatically computes an upper bound to the
approximation error δt,n(x). Further, the second phase of Dandelion operates on polynomials
following Harrison’s formalization. Therefore, we prove once and for all that the truncated
series from Theorem 5 can be implemented in Harrison’s polynomial datatype:

▶ Theorem 6. ∀n.
∑n

i=0(fi 0
i! ∗ xi) = tf,n (x)

Theorem 6 proves that tn implements the truncated Taylor series on the left-hand side
for an arbitrary number of approximation steps n. We prove versions of Theorem 6 for each
elementary function supported by Dandelion. Finally, the proof of First Phase Soundness
(Theorem 4) for a single elementary function is a simple combination of Theorems 5 and 6.

3.2 Approximations of More Complicated Expressions
Next, we explain how Dandelion uses truncated Taylor series to approximate more complicated
elementary function expressions, using exp(y × 1

2) − 1 on the interval [1, 2] as an example5. In
general, a Remez-like algorithm can return an approximation for a compound function or an

4 Dandelion currently does not support tan, as a straight-forward reduction to sin(x)/cos(x) did not work
out. We plan to incorporate a more direct series from HOL-Light in the future.

5 Currently, Dandelion does not generally support divisions, hence we represent y
2 as y × 1

2 explicitly.

ITP 2022

6:8 Dandelion: Certified Approximations of Elementary Functions

expression, as long as it stays univariate. Compared to approximating individual functions,
e.g. exp, an overall expression approximation can be more accurate, sometimes avoiding
undesirable effects such as cancellation. Hence, Dandelion should also be able to certify
those.

From Theorems 5 and 6 Dandelion knows how to automatically compute a polynomial
approximation texp ,n and an approximation error δexp,n(x) for the exponential function for a
given input range on the argument. In our example, the input argument is y × 1

2 , and thus
the value of δexp,n(x) depends on the range of this expression, which Dandelion computes
automatically using interval arithmetic [30].

As interval analysis, we reuse an existing HOL4 formalization [4], and extend it with range
bounds for elementary functions. For our example Dandelion also needs to compute a range
bound for exp (y × 1

2). In general, because elementary functions are defined non-computably
in HOL4, we have to rely on a trick to compute interval bounds. To compute interval bounds
for elementary functions, Dandelion reuses our formalized truncated Taylor series. From
Theorem 5 and Theorem 6, we derive for f that

|f(x) − tt,n(x)| ≤ δt,n. (2)

From this inequality, we derive a bound on f(x) in the interval [a, b]

tt,n(a) ≤ f(x) ≤ tt,n(b) + δt,n. (3)

Equation 3 holds for monotone f only, and thus we cannot apply it to sin and cos as they are
periodic. For both functions, interval analysis returns the closed interval [−1, 1]. Dandelion’s
interval analysis is proven sound once and for all in HOL4.

With the interval analysis, we can soundly compute a polynomial approximation for
exp, texp,n on the range of y × 1

2 . Dandelion automatically composes the polynomial y × 1
2

with texp,n to obtain a polynomial qexp(y× 1
2),n with approximation error δexp,n(x). However,

we still need to come up with a polynomial approximation p and an approximation error
for the full function exp(y × 1

2) − 1. In our example, Dandelion treats the constant 1 as a
polynomial returning 1, and automatically computes the polynomial difference of qexp(...),n

and q1,n. The global approximation error δ for the difference of qexp(...),n and q1,n depends
on the approximation errors accumulated in both polynomials. In a final step, Dandelion
automatically computes an upper bound on the global approximation error by propagating
accumulated errors through the subtraction operation.

Generally, Dandelion implements an automatic approximation error analysis inside
function approxAsPoly that propagates accumulated approximation errors. The propagation
is implemented for basic arithmetic, and elementary functions to support e.g. expressions
like exp(x) + sin(x − 1).

Computing Propagation Errors for Sin and Cos

To accurately propagate approximation errors through sin and cos, our soundness proof
assumes that the accumulated approximation error is contained in the interval [0, π

2]. This
does not pose a true limitation of Dandelion as errors larger than π/2 would anyway be
undesirable and impractical. For the correctness proof of approxAsPoly (Theorem 4), however,
Dandelion must automatically prove that accumulated errors are less than or equal to π/2.
This poses a challenge as in HOL4 π is defined non-computably using Hilbert’s choice
operator: if 0 ≤ x ≤ 2 and cos(x) = 0, then π is 2 × x. To solve this problem, we reuse
the truncated Taylor series of tan−1 and the fact that tan−1(1) = π/4 to compute a lower
bound r in HOL4, where r ≤ π. At certificate checking time, when propagating the error δf,n

through sin and cos, Dandelion checks δf,n ≤ r
2 , which by transitivity proves that δf,n ≤ π

2 .

H. Becker, M. Tekriwal, E. Darulova, A. Volkova, and J.-B. Jeannin 6:9

3.3 Extending Dandelion’s First Phase

All of the truncated Taylor series proven in Dandelion are for single applications of an
elementary function. For a particular application it may be beneficial to add special cases
to compute a single, more accurate, truncated Taylor series of an elementary function like
exp(sin(x)) instead of computing a truncated series for each function separately.

In Harrison’s original proof this would require manually redoing a large chunk of the proof
work whereas for Dandelion such an extension amounts to 4 steps: Proving the truncated
Taylor series as in Theorem 5, implementing and proving correct the polynomial tf,n as in
Theorem 6, extending approxAsPoly with the special case for the new elementary function,
and finally using the theorems proven for the first two steps to extend First Phase Soundness
(Theorem 4) with a correctness proof for the new case. Complexity of the proofs only depends
on the complexity of the series approximation. Dandelion then automatically uses the new
series approximation whenever the approximated function is encountered in a certificate, and
the global soundness result of Dandelion still holds without any required changes. The second
phase directly benefits from adding additional approximations as more accurate Taylor series
decrease the approximation error of the first phase.

4 Validating Polynomial Errors

For a certificate consisting of an elementary function f, polynomial approximation p, approx-
imation error ε, input constraints I, and truncation steps n, the first phase of Dandelion
computes a truncated Taylor series qf,n and an approximation error δf,n, which is sound
by Theorem 4. Both qf,n and p are polynomials, and following Harrison’s terminology, we
refer to their difference qf,n(x) − p(x) as the error polynomial h(x). In the second phase,
Dandelion automatically finds an upper bound to the extremal values of h(x) and compares
this upper bound to the residual approximation error ε − δf,n, which we refer to as γ. We
prove soundness of the second phase once and for all as a HOL4 theorem:

▶ Theorem 7 (Second Phase Soundness).

∀x. x ∈ I(x) ⇒ | qf,n(x) − p(x) | ≤ γ

Before going into the details of how Dandelion automatically validates the residual error
γ, we quickly recall the key real analysis result which we rely on in this phase: on a closed
interval [a, b], a differentiable polynomial p can reach its extremal values at the outer points
p(a), p(b), and the zeros of p’s first derivative p′ (Theorem 2). To find the extremal values of
h(x), Dandelion thus needs to automatically find all zeros of h′(x).

Dandelion splits finding the extremal values and validating γ into three automated steps:
1. Compute the number of zeros using Sturm’s theorem (Theorem 3 in Section 2)
2. Validate a guess of the zeros computed by an unverified, external oracle
3. Compute an upper bound on extremal values (using the validated zeros) and compare

with γ

Conceptually, the second phase automates the main part of Harrison’s manual proof, and
the key step is computing Sturm sequences automatically in the first step. Next, we explain
the ideas behind automating each of the steps.

ITP 2022

6:10 Dandelion: Certified Approximations of Elementary Functions

sturm_seq (p, q, n) =
2 if n = 0 then

if (rm (p, (1
q[degq]) * q) = 0 ∧ q <> 0) then SOME []

4 else None
else let g = - (rm (p, (1

q[degq]) * q)) in
6 if g = 0 ∧ ~ q = 0 then Some []

else if (q = 0 ∨ (deg q < 3)) then None
8 else case sturm_seq (q, g, n-1) of

None => None
10 |Some ss => Some (g::ss)

Figure 3 HOL4 definition of Sturm sequence computation.

4.1 Bounding the Number of Zeros of a Polynomial

Dandelion bounds the number of zeros of a polynomial using Sturm’s theorem (Theorem 3).
A key challenge in developing this part of Dandelion was ensuring that the Sturm sequence
is computable inside HOL4. In HOL-Light, Harrison defines Sturm sequences as a non-
computable predicate STURM that existentially quantifies results, and thus can only be used
to validate results in a manual proof.

In Figure 3, we show how Dandelion computes Sturm sequences. Function rm (p,q)
computes the remainder of the polynomial division of p by q, deg p is the degree of polynomial
p, and q[n] is the extraction of the n-th coefficient of q. As each polynomial division operation
decreases the degree of the result by at least 1, the Sturm sequence for a polynomial p has
a maximum length of deg(p) − 1, as computation starts with p and its first derivative p′.
Function sturm_seq is therefore initially run on polynomial h′(x), h′′(x), and deg(h′) − 1.

If sturm_seq(deg h’-1, h’, h’’) returns list sseq, the complete Sturm sequence is
h’::h’’::sseq, and Dandelion computes the number of zeros of e′ as its variation on the
input range, based on Theorem 3.

We have proven once and for all that the results obtained from sturm_seq(n, p’, p’’)
satisfy Harrison’s non-computable predicate STURM. Thus we can reuse Harrison’s proof of
Sturm’s theorem (Theorem 3). Harrison’s Sturm sequences also use on a non-computable
predicate for defining the result of polynomial division, and we prove it equivalent to
a computable version in Dandelion, inspired by the one provided by Isabelle/HOL [23].
Ultimately, Dandelion uses these two equivalence proofs to reuse Harrison’s proof of Sturm’s
theorem which we ported from HOL-Light.

4.2 Finding Zeros of Polynomials

Given the numbers of zeros nz for h′(x), Dandelion next finds their values. As zero-finding is
highly complicated even in non-verified settings, Dandelion uses an external oracle to come
up with an initial guess of the zeros. These initial guesses are presented as a list of confidence
intervals [a, b], where h′(x) has a zero between a and b. Further, the algorithm computing the
confidence intervals need not be verified, as the result can easily be validated by Dandelion.
To validate a list of guesses Z, Dandelion again relies on a result from real-number analysis,
proven by Harrison: For a confidence interval [a, b], function f has a zero in the interval, if
its first derivative f ′ changes sign in the interval [a, b].

Dandelion validates the confidence intervals Z using a computable function that checks
automatically for each element [a, b] in Z, that h′′(a) × h′′(b) ≤ 0, which is equivalent to a
sign-change in the interval. If the number of zeros found is nz, Dandelion checks that this
sign change occurs at least nz times in Z.

H. Becker, M. Tekriwal, E. Darulova, A. Volkova, and J.-B. Jeannin 6:11

While we do prove our approach for finding zeros of polynomials sound, Dandelion is
necessarily incomplete. One known source for incompleteness are so-called multiple roots as
they occur e.g. in p(x) = (x−1)2. Harrison’s formalization implicitly relies on the polynomial
being squarefree and Dandelion inherits this limitation. This issue could potentially be
addressed using the approach of Li et al. [26] though it would require reproving Sturm’s
theorem for non-squarefree polynomials.

4.3 Computing Extremal Values
In the final step, Dandelion uses the validated confidence intervals Z which contain all zeros
of h′(x) to compute an upper bound to the extremal values of h(x). For interval [a, b],
Dandelion would ideally bound the error of h(x) in [a, b] as the maximum of h(a), h(b), and
h(y), where y is a zero of h′(x). However, we have only confidence intervals for the zeros,
and not their exact values available. Therefore, Dandelion’s computation of an upper bound
to e(x) is more involved, and we base it on a theorem of Harrison. Harrison’s theorem is a
generalization of Theorem 2 for polynomial p, with derivative p′, on interval [a, b]:

▶ Theorem 8.
(1) (∀x. a ≤ x ≤ b ∧ f ′(x) = 0 ⇒
(2) (∀x. a ≤ x ≤ b ⇒ | p′(x) | ≤ B) ∧
(3) (∀[u, v]. [u, v] ∈ Z ⇒ a ≤ u ∧ v ≤ b ∧ | u − v | ≤ e ∧ | f(u) | ≤ K) ⇒

∀x. a ≤ x ≤ b ⇒ | p(x) | ≤ max(| f(a) |, | f(b) |, K + B × e)

The theorem can be used to prove an upper bound on the error polynomial h(x) which
then can be compared to the residual error γ. For Dandelion, we automatically computed the
values described by the assumptions to compute an overall bound on h(x). We implement
this computations in a function validateErr, and explain each of its computation steps on a
high-level, based on the assumptions of Theorem 8.

The first assumption (1) from Theorem 8 states that the confidence intervals in Z contain
only valid zeros and has been established automatically by the previous step. Based on
assumption (2), Dandelion computes B by evaluating |h′(x)| on max(|a|, |b|). Following
assumption (3), Dandelion computes K as the maximum value of evaluating the error
polynomial h on the lower bounds of the confidence intervals in Z, and a value e as the
maximum value of |u − v| for each [u, v] in Z. Dandelion then computes the overall bound
on the error polynomial h as max(h(a), h(b), K + B × e). To validate the residual error γ, it
then suffices to check max(h(a), h(b), K + B × e) ≤ γ.

Overall, we prove once and for all soundness of Dandelion as

▶ Theorem 9 (Dandelion Soundness).

Dandelion(f,p,I,ε,n) = true ⇒ (∀x. x ∈ I ⇒ |f(x) − p(x)| ≤ ε)

The proof of Theorem 9 uses the triangle inequality to combine the theorem First Phase
Soundness (Theorem 4) with the theorem Second Phase Soundness (Theorem 7).

5 Extracting a Verified Binary with CakeML

Computations performed in interactive theorem provers are known to be slower than those in
unverified languages. To alleviate this performance problem, the proof-producing synthesis [1]
implemented in the CakeML verified compiler [39] translates HOL4 functions into their

ITP 2022

6:12 Dandelion: Certified Approximations of Elementary Functions

CakeML counterpart, with an equivalence proof. These translated CakeML functions are
compiled into machine code with the CakeML compiler, and as CakeML is fully verified, the
machine code enjoys the same correctness guarantees as its HOL4 version.

During an initial test run we noticed that the Sturm sequence computations in the
second phase are the most computationally expensive task of Dandelion. HOL4 represents
real-numbers as (reduced) fractions during computation, and we noticed that in Dandelion
their size still grew quite large, leading to a single multiplication taking up to 6 hours.
Therefore, we use CakeML’s proof-producing synthesis to extract a verified binary for the
computations described in Section 4. To communicate results of the first phase with the
binary, we implemented an (albeit unverified) lexer and parser that reads-in results from the
first phase.

6 Evaluation

We have described how Dandelion automatically validates polynomial approximations from
Remez-like algorithms. Next, we demonstrate Dandelion’s usefulness with three separate
experiments, by demonstrating that Dandelion fully automatically
1. validates certificates generated with an off-the-shelf Remez-like algorithm (Subsection 6.1)
2. validates certificates for more complicated elementary function expressions (Subsection 6.2)
3. validates certificates for less-accurate techniques (Subsection 6.3)
All the results we report in this section where gathered on a machine running Ubuntu 20.04,
with an 2.7GHz i7 core and 16 GB of RAM. All runnning times are measured using the
UNIX time command as elapsed wall-clock time in seconds.

6.1 Validating Certificates of a Remez-like Algorithm
In our first evaluation, we show that Dandelion certifies accurate approximation errors from
an off-the-shelf Remez-like algorithm. We generate certificates by combining the Daisy
static analyzer with the Sollya approximation tool [8], and extend Daisy with a simple
pass that replaces calls to elementary functions with an approximation computed by Sollya.
As a Remez-like algorithm, we use the fpminimax [7] function in Sollya. Our pipeline is
benchmarked on numerical kernels taken from the FPBench benchmark suite [12], and the
benchmarks used by an unverified extension of Daisy with approximations for elementary
functions [24]. These benchmarks represent kernels as they occur in e.g. embedded systems,
and thus they benefit from custom polynomial approximations. The original work by Izycheva
et al. [24] synthesizes polynomial approximations whose target error bounds are usually
larger than those inferred by Sollya. Hence, Dandelion could validate Daisy’s bounds as well,
but for the sake of the evaluation we choose more challenging, tighter bounds. For each
benchmark, Daisy creates a certificate for each approximated elementary function, amounting
to a total of 96 generated certificates.

Sollya’s implementation of fpminimax can be configured to use different degrees for the
generated approximation and different formats for the coefficients of the approximation. In
our evaluation we approximate elementary functions with a degree 5 polynomial, storing the
coefficients with a precision of 53 bits. All input ranges used in the certificates are computed
by Daisy without modifying them, except for exp, where we disallow negative intervals, i.e.
if Daisy wanted to approximate on [−x, y], we change it to [0, y] as Dandelion currently does
not support negative exponentials. This can be fixed by straight-forward range reductions
that are independent to the approximations computed by Remez-like algorithms. For each
such approximation, Daisy creates a certificate to be checked by Dandelion.

H. Becker, M. Tekriwal, E. Darulova, A. Volkova, and J.-B. Jeannin 6:13

Table 1 Overview of certificates validated with Dandelion, MetiTarski, and CoqInterval.

Function # Dandelion MetiTarski CoqInterval
Verified HOL4(s) Binary(s) Verified Time(s) Verified Time(s)

atan 2 1 11.62 20.36 2 6.80 2 1.74
cos 28 25 202.35 251.33 25 3.15 26 1.91
exp 21 18 39.58 212.54 10 5.35 20 1.58
log 8 0 0 0 5 4.99 8 1.68
sin 31 27 17.83 295.66 25 6.32 31 1.78

Total 90 71 67 87

The MetiTarski automated theorem prover [3] is a tool that provides the same level
of automation as Dandelion, but relies on a different technology for proving inequalities.
MetiTarski is based on the Metis theorem prover [22] and can output proofs in TSTP
format [38]. It relies on an external decision procedure to discharge some goals, and for our
experiments we used Mathematica. In general, MetiTarski checks real-number inequalities
that may contain elementary functions, thus we compare the number of certificates validated
by Dandelion to those that can be checked by MetiTarski.

Further, the CoqInterval package [28] proves inequalities about elementary functions in
the Coq theorem prover [10]. In contrast to Dandelion’s technique based on high-accuracy
Taylor polynomials and Sturm sequences, CoqInterval is based on interval arithmetic with
optional interval bisections and high-accuracy Taylor polynomials. Further, Dandelion is
verified in HOL4, while CoqInterval is implemented in Coq. To compare the two approaches,
our evaluation also includes the CoqInterval package. Our evaluation excludes a similar
approach formalized in Isabelle/HOL [21] because we could not come up with a straight-
forward translation of our certificates as inputs to the tool. We have manually tested some
of our benchmarks and expect it to produce results similar to CoqInterval.

Our results are given in Table 1. The left-most column of Table 1, contains the name of
the elementary function approximated by Daisy, and the second column, labeled with a #
contains the number of certificates generated for the elementary function, with unique input
ranges. The next three columns, headed “Dandelion”, contain the number of certificates
validated by Dandelion, the average HOL4 running time for the first phase in seconds, and the
average running time of the binary for the second phase in seconds. The next two columns,
headed “MetiTarski”, contain the number of certificates validated by MetiTarski, and the
average running time in seconds. The final two columns, headed “CoqInterval”, contain the
number of certificates validated by CoqInterval, and the average running time in seconds.

Our evaluation truncates Taylor series after 32 terms in approxAsPoly. In general, we
found six times the degree of the computed approximation to be a good estimate for when to
truncate Taylor series in Dandelion. Our use of 32 instead of 30 is a technical detail, as some
Taylor series require both the number of series terms n, as well as n

2 to be even. In general,
the number of series terms has to be significantly higher than the degree of the approximated
polynomial, to make the approximation error of the first phase almost negligible.

Overall, we notice that each of the tools in our evaluation certifies a slightly different set
of approximations. In total, CoqInterval certifies most of the benchmarks, but Dandelion
successfully checks one cosine certificate that CoqInterval fails to check. While Dandelion
validates more certificates than MetiTarski, both MetiTarski and CoqInterval validate
certificates that are currently out of reach for Dandelion. This is mostly due to the first

ITP 2022

6:14 Dandelion: Certified Approximations of Elementary Functions

phase of Dandelion. Even though we used general, widely known truncated Taylor series for
all supported elementary functions, Dandelion fails to validate certificates for the ln function.
We have inspected the generated certificates, and Dandelion cannot compute a high-accuracy
polynomial approximation for 5 of them because they do not satisfy the precondition of
Dandelion’s Taylor series. For the remaining 3 certificates, we ran into issues with Sollya’s
computation of the confidence intervals for the zeros. On a high-level, the problem originates
from the derivative of the error polynomial h(x) being very close to 0, leading to a huge
number of zeros being found, i.e. computation not terminating within a reasonable amount
of time. To demonstrate that Dandelion still certifies errors for the ln function, we add an
example in Subsection 6.2.

While Dandelion cannot certify errors for the ln function in this part of the evalution, this
is not a conceptual limitation, as polynomial approximations are commonly paired with an
argument reduction strategy. While verification of these strategies is orthogonal to validating
results of an Remez-like algorithm, they could be used to reduce the input range of the
approximated elementary function into a range that Dandelion can certify. More generally,
we have done the heavy lifting of automating the computations and implementing the general
framework, such that adding more accurate Taylor series to Dandelion amounts to mere proof
engineering, modulo coming up with Taylor series in the first place. For the certificates for
tan−1, cos, sin, and exp, we notice that the average running time is in the order of minutes,
making certificate checking with Dandelion’s verified binary feasible.

We compare the approximation errors recorded in the certificates with the infinity norm
computed by Sollya, which is the most-accurate estimate of the approximation error [9].
Overall, Dandelion certifies an approximation error in the same order of magnitude as the
infinity norm for 61 certificates. For the remaining 10, the error is a sound upper bound.
In general, infinity norm-based estimates are known to be the most accurate and their
verification requires more elaborate techniques than Sturm sequences [9]. Consequently we
would not expect Dandelion to be able to always certify infinity norms.

We ran the evaluation for an approximation degree of 3, with precisions of 53 and 23
each to measure the influence of those parameters. Overall, the running time significantly
decreases when decreasing from degree 5 to 3, going from average running times of minutes to
average running times of seconds. Decreasing the precision of the coefficients further speeds
up evaluation, though not as significant as decreasing the degree did. This suggests that
higher coefficient accuracies can easily be used for generating polynomials with Remez-like
algorithms, and lower degree polynomials should be preferred for fast validation.

6.2 Validating Certificates for Elementary Function Expressions
Next, we show that Dandelion can also certify approximation errors for complicated elemen-
tary function expressions. We validate with Dandelion approximation errors for random
examples involving elementary functions and arithmetic. Polynomial approximations are
again generated by Sollya.

An overview of our results is given in Table 2. The table shows the approximatied
function, then Sollya’s parameters (the input range, the target degree (Deg.), the target
precision (Prec.)), and then the infinity-norm (∞-norm) of the approximation. The final
columns summarize the Dandelion results, giving the certified approximation error, and the
running time in seconds of the first phase (HOL4) and the second phase (Binary).

Overall, we notice that the certified approximation error is on the same order of magnitude
as the infinity norm for all examples. We also notice that performance for both phases
varies across the different examples. For the first phase this is often due to how the input
ranges are encoded in the certificate. We noticed that HOL4 is very sensitive to how the
fractions representing real numbers are encoded when performing computations. Similarly,

H. Becker, M. Tekriwal, E. Darulova, A. Volkova, and J.-B. Jeannin 6:15

Table 2 Functions approximated with Sollya using fpminimax and certified with Dandelion.

Function Range Deg. Prec. ∞-norm Error HOL4 Binary

cos(x + 1) [0, 2.14] 5 53 3.06E-5 3.06E-5 169 63
sin(x − 2) [−1, 3.00] 5 53 2.05E-3 2.91E-3 93 68
ln(x + 1

10) [1.001, 1.1] 3 32 1.08E-7 1.08E-7 2775 1773
exp(x × 1

2) + cos(x × 1
2) [0.1, 1.00] 5 53 2.03E-9 4.45E-9 711 5

arctan(x) − cos(3
4 × x) [−0.5, 0.5] 5 53 1.18E-5 1.18E-5 24 2308

performance of the second phase greatly varies depending on the complexity of the error
polynomial computed by the first phase. We observe that perfomance improves with both
smaller degree polynomials, and smaller representations of the polynomial coefficients.

The results in Table 2 exclude examples where two elementary functions are composed
with each other, e.g. as in exp(sin(x − 1)). This is because Dandelion computes the
global high-accuracy approximation in the first phase via polynomial composition of an
approximation for exp and sin. While this is theoretically supported by Dandelion, we found
that the polynomial composition leads to an exponential blow-up in the degree of the error
polynomial. Even for the innocuously looking example exp(sin(x − 1)), the second phase
could not validate a polynomial approximation within 24 hours. This clearly motivates the
use of more elaborate Taylor series if compound elementary functions need to be certified by
Dandelion. In general, settings where elementary functions like those in Table 2 are used
could potentially be made more accurate and be validated faster with custom Taylor series.

6.3 Validating Certificates for Simpler Approximation Algorithms
Remez-like algorithms are known to be the most accurate approximation algorithms. How-
ever, less accurate approaches are still in use today, and as such interesting targets for
verification. Bréhard et al. [6] certify Chebyshev approximations in the Coq theorem prover,
where their approach requires some manual proofs. We demonstrate that Dandelion also
certifies Chebyshev approximations on some random examples by computing Chebyshev
approximations with Sollya’s function chebyshevform. The results are shown in Table 3.

Again, we first give Sollya’s parameter and the infinity norm, then we give the error
certified by Dandelion, and the execution times for the first and second phase.

We also include the approximation certified by Harrison [18], labeled with a ∗. The
polynomial has degree 3, but we leave the precision empty as it is not generated by Sollya,
and we do not provide an infinity norm. The only difference to the proof from Harrison
is that we prove the bound only for positive x, as Dandelion currently does not handle
exponentials on negative values. The lower bound of the range is 0.003, instead of 0 to
rule out a 0 on the lower bound (as exp(x) − 1 = 0 for x = 0), which we must exclude by
Theorem 8. Harrison’s manual proof of the polynomial approximation then reduces to a
single line running Dandelion on the encoding.

7 Related Work

Throughout the paper, we have already hinted at the immediate related work. Next, we
explain the key conceptual differences between Dandelion and the immediate related work
and put Dandelion into the greater context. In general, Dandelion touches upon two key
research areas in interactive and automated theorem proving: techniques for approximating
elementary functions and techniques for proving theorems involving real-numbered functions.

ITP 2022

6:16 Dandelion: Certified Approximations of Elementary Functions

Table 3 Chebyshev approximations certified with Dandelion.

Function Range Deg. Prec. ∞-norm Error HOL4 Binary

cos(x) [0, 2.14] 5 53 3.17E-7 3.22E-7 169 63
sin(x + 2) [−1.5, 1.5] 5 53 4.47E-4 7.60E-4 142 138
sin(3 × x) + exp(x × 1

2) [0, 1] 3 53 2.45E-2 2.48E-2 54 1897
exp(x) − 1∗ [0.003, 0.01] 3 2−33.2 133 <1

Approximating Elementary Functions. The work on approximating elementary functions
can be distinguished among two axes: whether or not the work provides rigorous machine-
checked proofs, and whether the work is fully automated or requires user intervention.

Fully automated, rigorous machine-checked proofs, similar to Dandelion are provided by
the work by Bréhard et al. [6]. They develop a framework for proving correct Chebychev
approximations of real number functions in the Coq theorem prover [10]. Also in Coq,
Martin-Dorel and Melquiond [29] verify polynomial approximations using the CoqInterval [28]
package. They develop a fully automated tactic for proving approximations inside floating-
point mathematical libraries correct. A key difference between Dandelion and both these
tools is that they cannot certify approximations computed by Remez-like algorithms, which
can in general provide more accurate approximations.

For manual proofs, versions of the exponential function have been verified by Harrison [17],
and Akbarpour et al. [2]. The manual proof by Harrison [18] layed out the foundations for
Dandelion. The work has also been extended by Chevillard et al. [9]. Instead of verifying
approximation errors for polynomials, they use so-called sum-of-squares decompositions [19]
to certify infinity norm computations. A major limiting factor for their work was finding
accurate enough Taylor polynomials which we found to not be a major issue for our approach.

Coward et al. [11] use the MetiTarski automated theorem prover [3] to verify accuracy
of hardware finite-precision implementations of elementary functions. MetiTarski provides
proofs in machine-readable form using the TSTP format [38] instead of being developed inside
an interactive theorem prover like HOL4. A major conceptual difference is that the verification
done by Coward et al. reasons about bit-level accuracy of the hardware implementation, while
Dandelion reasons about real-number functions and polynomials. Together with a verified
roundoff error analysis like FloVer [4], Dandelion could be extended to verify finite-precision
implementations of elementary functions, and together with Daisy [24] verification could
possibly be lifted to entire arithmetic kernels.

A different style of unverified approximations is provided by Lim et al. [27]. Instead of
computing specialized polynomial approximations, they focus on correctly-rounded, general
purpose approximations. These approximations are not build for specific use-cases, but should
rather be seen as replacements for the functions provided in mathematical libraries. At the
time of writing, their approach is not formally verified, but they do provide a pen-and-paper
correctness argument for their code generation. The CR-libm [13] library also provides
unverified alternatives of correctly rounded mathematical libraries, and Muller [32] gives a
general overview of the techniques for implementing elementary functions.

(Automated) Real-Number Theorem Proving. Dandelion heavily relies on HOL4’s support
for real-number theorem proving. Below we list some alternatives for proving properties of
real-numbers in both interactive and automated theorem proving systems. In the HOL-family
of ITP systems, Harrison [19] has formalized sum-of-squares certificates for the HOL-Light [20]
theorem prover. His approach relies on semidefinite programming to find a decomposition
of a polynomial into a sum-of-squares polynomial. Both Isabelle/HOL and PVS have been

H. Becker, M. Tekriwal, E. Darulova, A. Volkova, and J.-B. Jeannin 6:17

independently extended with implementations of Sturm sequences [15, 34, 35]. Their main
focus is not on verification of polynomial approximations, they rather use Sturm sequences
to prove properties about roots of polynomials, non-negativity, and monotonicity.

Previously we have already mentioned the MetiTarski automated theorem prover [3], as an
example of an automated theorem prover for real-numbered functions. However, MetiTarski
is not the only automated prover for real-numbered functions. Real-numbered functions are
also supported by e.g. dReal [16], and z3’s SMT theory for real-numbers [31].

8 Conclusion

We have presented Dandelion, a verified and fully automated certificate checker for polynomial
approximations of elementary functions computed with Remez-like algorithms. Dandelion
splits the validation task into two clearly separated phases: The first phase replaces elementary
functions by high-accuray Taylor series, and the second phase uses Sturm’s theorem and
an external oracle to validate the approximation error. Our evaluation has shown that
Dandelion certifies approximation errors computed by an off-the-shelf Remez-like algorithm,
and Dandelion also certifies approximation errors for Chebyshev approximations.

References
1 Oskar Abrahamsson, Son Ho, Hrutvik Kanabar, Ramana Kumar, Magnus O. Myreen,

Michael Norrish, and Yong Kiam Tan. Proof-Producing Synthesis of CakeML from
Monadic HOL Functions. Journal of Automated Reasoning (JAR), 64(7), 2020. doi:
10.1007/s10817-020-09559-8.

2 Behzad Akbarpour, Amr Abdel-Hamid, Sofiène Tahar, and John Harrison. Verifying a
Synthesized Implementation of IEEE-754 Floating-Point Exponential Function using HOL.
The Computer Journal, 53:465–488, May 2010. doi:10.1093/comjnl/bxp023.

3 Behzad Akbarpour and Lawrence Charles Paulson. MetiTarski: An Automatic Theorem Prover
for Real-Valued Special Functions. Journal of Automated Reasoning (JAR), 44(3):175–205,
2010. doi:10.1007/s10817-009-9149-2.

4 Heiko Becker, Nikita Zyuzin, Raphaël Monat, Eva Darulova, Magnus O Myreen, and Anthony
Fox. A Verified Certificate Checker for Finite-Precision Error Bounds in Coq and HOL4.
In Formal Methods in Computer Aided Design (FMCAD), 2018. doi:10.23919/FMCAD.2018.
8603019.

5 Hans-J. Boehm. Towards an API for the Real Numbers. In Programming Language Design
and Implementation (PLDI), 2020. doi:10.1145/3385412.3386037.

6 Florent Bréhard, Assia Mahboubi, and Damien Pous. A Certificate-Based Approach to
Formally Verified Approximations. In Interactive Theorem Proving (ITP), 2019. doi:10.
4230/LIPIcs.ITP.2019.8.

7 Nicolas Brisebarre and Sylvain Chevillard. Efficient polynomial L-approximations. In IEEE
Symposium on Computer Arithmetic (ARITH), 2007. doi:10.1109/ARITH.2007.17.

8 S. Chevillard, M. Joldeş, and C. Lauter. Sollya: An Environment for the Development
of Numerical Codes. In International Congress on Mathematical Software (ICMS), 2010.
doi:10.1007/978-3-642-15582-6_5.

9 Sylvain Chevillard, John Harrison, Mioara Joldeş, and Ch Lauter. Efficient and accurate com-
putation of upper bounds of approximation errors. Theoretical Computer Science, 412(16):1523–
1543, 2011. doi:10.1016/j.tcs.2010.11.052.

10 The Coq Proof Assistant. URL: https://coq.inria.fr.
11 Samuel Coward, Lawrence Paulson, Theo Drane, and Emiliano Morini. Formal Verification of

Transcendental Fixed and Floating Point Algorithms using an Automatic Theorem Prover.
Formal Aspects of Computing (in press), 2022.

ITP 2022

https://doi.org/10.1007/s10817-020-09559-8
https://doi.org/10.1007/s10817-020-09559-8
https://doi.org/10.1093/comjnl/bxp023
https://doi.org/10.1007/s10817-009-9149-2
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.1145/3385412.3386037
https://doi.org/10.4230/LIPIcs.ITP.2019.8
https://doi.org/10.4230/LIPIcs.ITP.2019.8
https://doi.org/10.1109/ARITH.2007.17
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1016/j.tcs.2010.11.052
https://coq.inria.fr

6:18 Dandelion: Certified Approximations of Elementary Functions

12 Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Chen Qiu, Alexander Sanchez-Stern,
and Zachary Tatlock. Toward a Standard Benchmark Format and Suite for Floating-Point
Analysis. In Numerical Software Verification (NSV), 2016. doi:10.1007/978-3-319-54292-8_
6.

13 Catherine Daramy, David Defour, Florent de Dinechin, and Jean-Michel Muller. CR-LIBM:
a correctly rounded elementary function library. In Advanced Signal Processing Algorithms,
Architectures, and Implementations, volume 5205, pages 458–464. International Society for
Optics and Photonics, 2003.

14 Eva Darulova and Anastasia Volkova. Sound Approximation of Programs with Elementary
Functions. In Computer Aided Verification (CAV), 2019. doi:10.1007/978-3-030-25543-5_
11.

15 Manuel Eberl. A Decision Procedure for Univariate Real Polynomials in Isabelle/HOL. In
Certified Programs and Proofs (CPP), 2015. doi:10.1145/2676724.2693166.

16 Sicun Gao, Soonho Kong, and Edmund M Clarke. dReal: An SMT solver for nonlinear
theories over the reals. In Conference on Automated Deduction (CADE), 2013. doi:10.1007/
978-3-642-38574-2_14.

17 John Harrison. "floating point verification in hol light: The exponential function". In Algebraic
Methodology and Software Technology (AMAST), 1997. doi:10.1007/BFb0000475.

18 John Harrison. Verifying the accuracy of polynomial approximations in HOL. In Theorem
Proving in Higher Order Logics (TPHOLs), 1997. doi:10.1007/BFb0028391.

19 John Harrison. Verifying nonlinear real formulas via sums of squares. In Theorem Proving in
Higher Order Logics (TPHOLs), 2007. doi:10.1007/978-3-540-74591-4_9.

20 The HOL-Light Proof Assistant. URL: https://www.cl.cam.ac.uk/~jrh13/hol-light/.
21 Johannes Hölzl. Proving inequalities over reals with computation in isabelle/hol. In Program-

ming Languages for Mechanized Mathematics Systems, 2009.
22 Joe Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In Design and

Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in
NASA Technical Reports, 2003.

23 The Isabelle/HOL Proof Assistant. URL: https://isabelle.in.tum.de/.
24 Anastasiia Izycheva, Eva Darulova, and Helmut Seidl. Synthesizing Efficient Low-Precision

Kernels. In Automated Technology for Verification and Analysis (ATVA), 2019. doi:10.1007/
978-3-030-31784-3_17.

25 Olga Kupriianova and Christoph Lauter. Metalibm: A Mathematical Functions Code
Generator. In International Congress on Mathematical Software (ICMS), 2014. doi:
10.1007/978-3-662-44199-2_106.

26 Wenda Li, Grant Olney Passmore, and Lawrence C Paulson. Deciding univariate polynomial
problems using untrusted certificates in isabelle/hol. Journal of Automated Reasoning, 62(1):69–
91, 2019. doi:10.1007/s10817-017-9424-6.

27 Jay P Lim and Santosh Nagarakatte. One Polynomial Approximation to Produce Correctly
Rounded Results of an Elementary Function for Multiple Representations and Rounding
Modes. Principles of Programming Languages (POPL), 2022. doi:10.1145/3498664.

28 Érik Martin-Dorel and Guillaume Melquiond. CoqInterval: A Toolbox for Proving Non-
linear Univariate Inequalities in Coq. In Conference on Effective Analysis: Foundations,
Implementations, Certification, 2016.

29 Érik Martin-Dorel and Guillaume Melquiond. Proving tight bounds on univariate expressions
with elementary functions in Coq. Journal of Automated Reasoning (JAR), 57(3):187–217,
2016. doi:10.1007/s10817-015-9350-4.

30 R.E. Moore. Interval Analysis. Prentice-Hall, 1966.
31 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), 2008. doi:10.1007/
978-3-540-78800-3_24.

32 Jean-Michel Muller. Elementary Functions. Springer, 2006.

https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-030-25543-5_11
https://doi.org/10.1007/978-3-030-25543-5_11
https://doi.org/10.1145/2676724.2693166
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/BFb0000475
https://doi.org/10.1007/BFb0028391
https://doi.org/10.1007/978-3-540-74591-4_9
https://www.cl.cam.ac.uk/~jrh13/hol-light/
https://isabelle.in.tum.de/
https://doi.org/10.1007/978-3-030-31784-3_17
https://doi.org/10.1007/978-3-030-31784-3_17
https://doi.org/10.1007/978-3-662-44199-2_106
https://doi.org/10.1007/978-3-662-44199-2_106
https://doi.org/10.1007/s10817-017-9424-6
https://doi.org/10.1145/3498664
https://doi.org/10.1007/s10817-015-9350-4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

H. Becker, M. Tekriwal, E. Darulova, A. Volkova, and J.-B. Jeannin 6:19

33 César Muñoz, Anthony Narkawicz, George Hagen, Jason Upchurch, Aaron Dutle, María
Consiglio, and James Chamberlain. DAIDALUS: detect and avoid alerting logic for unmanned
systems. In Digital Avionics Systems Conference (DASC), 2015.

34 Anthony Narkawicz, César Munoz, and Aaron Dutle. Formally-Verified Decision Procedures
for Univariate Polynomial Computation Based on Sturm’s and Tarski’s theorems. Journal of
Automated Reasoning (JAR), 54(4):285–326, 2015. doi:10.1007/s10817-015-9320-x.

35 Anthony Narkawicz, Cesar Munoz, and Aaron Dutle. A decision procedure for univariate
polynomial systems based on root counting and interval subdivision. Journal of Formalized
Reasoning, 11(1):19, 2018. doi:10.6092/issn.1972-5787/8212.

36 Ricardo Pachón and Lloyd N Trefethen. Barycentric-Remez Algorithms for Best Polynomial
Approximation in the Chebfun System. BIT Numerical Mathematics, 49(4):721, 2009.

37 Konrad Slind and Michael Norrish. A Brief Overview of HOL4. In Theorem Proving in Higher
Order Logics (TPHOLs), 2008. doi:10.1007/978-3-540-71067-7_6.

38 Geoff Sutcliffe, Jürgen Zimmer, and Stephan Schulz. Tstp data-exchange formats for automated
theorem proving tools. Distributed Constraint Problem Solving and Reasoning in Multi-Agent
Systems, 112:201–215, 2004.

39 Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens, and Michael
Norrish. The Verified CakeML Compiler Backend. Journal of Functional Programming (JFP),
29, 2019. doi:10.1017/S0956796818000229.

40 Ping-Tak Peter Tang. Table-driven implementation of the exponential function in IEEE floating-
point arithmetic. ACM Transactions on Mathematical Software (TOMS), 15(2):144–157, 1989.
doi:10.1145/63522.214389.

ITP 2022

https://doi.org/10.1007/s10817-015-9320-x
https://doi.org/10.6092/issn.1972-5787/8212
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1145/63522.214389

	1 Introduction
	2 Overview
	2.1 Manual Proof by Harrison
	2.2 Automated Proofs in Dandelion

	3 Automatic Computation of Truncated Taylor Series
	3.1 Truncated Taylor Series for Single Elementary Functions
	3.2 Approximations of More Complicated Expressions
	3.3 Extending Dandelion's First Phase

	4 Validating Polynomial Errors
	4.1 Bounding the Number of Zeros of a Polynomial
	4.2 Finding Zeros of Polynomials
	4.3 Computing Extremal Values

	5 Extracting a Verified Binary with CakeML
	6 Evaluation
	6.1 Validating Certificates of a Remez-like Algorithm
	6.2 Validating Certificates for Elementary Function Expressions
	6.3 Validating Certificates for Simpler Approximation Algorithms

	7 Related Work
	8 Conclusion

