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Abstract
We present a generic framework for the specification and reasoning about reduction strategies
in the lambda calculus, representable as sets of term decompositions. It is provided as a Coq
formalization that features a novel format of phased strategies. It facilitates concise description and
algebraic reasoning about properties of reduction strategies. The formalization accommodates many
well-known strategies, both weak and strong, such as call by name, call by value, head reduction,
normal order, full β-reduction, etc. We illustrate the use of the framework as a tool to inspect and
categorize the “zoo” of existing strategies, as well as to discover and study new ones with particular
properties.
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1 Introduction

The behavior of the lambda calculus, be it as a computation model or a prototype program-
ming language, is based on the notion of β-reduction that constitutes a basic computation
step. In its general definition β-reduction is non-deterministic and unrestricted – a term
can be reduced in different ways, and the consequences of the different reduction choices
can vary tremendously, as for the term Kx Ω: it can normalize in two steps in call by name,
reduce indefinitely in call by value [27], or it can be stuck in a variant of call by value with
abstractions as the only values. In many applications it is useful or even necessary to trim
down the full generality of β-reduction by following a specific (not necessarily deterministic)
reduction strategy. In general terms, as Barendregt put it, “a reduction strategy provides a
way of choosing how to reduce a term” [5].

When considering lambda calculus as a programming language or a computation model,
Barendregt’s specification is too general, and we typically impose quite strong restrictions
for strategies to be considered useful or efficient. Computation with the lambda calculus
consists in reducing terms until a normal form (i.e., an irreducible term) is found. Therefore,
one can adopt the following properties as practically relevant characteristics of reduction
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strategies: termination (does the strategy always terminate for a term that has a normal
form?), the number of steps it performs to reach a normal form, or its effectiveness (i.e., how
easy it is to determine at each step what the reduced term should be).

The concept of effectiveness of the strategy poses the following problem to consider: how
do we define reduction strategies, and in particular how do we define effective strategies?
Fortunately, this question has many useful answers coming from the programming languages
community, where various formats of operational semantics have been developed. The
popular approaches include: big-step semantics that describes the relation between the term
and its final value [18], and small-step semantics that describes single steps of computation,
and is typically given in the format of structural operational semantics [28], or of reduction
semantics with explicit representation of reduction contexts [12]. Effectiveness of these
formats (and in consequence, of the strategies defined by them) relies on the fact that their
semantic rules are typically defined inductively, and in such a way that the cost of applying
a rule can be bounded by some low factor (ideally, constant) related to the inspection of the
data structures involved. There exist numerous reduction strategies introduced to model
desired properties of the lambda calculus that can be described in a common semantic format,
there exist methodologies and tools to implement and test them [10, 11, 34], but how can we
compare strategies, and how do we find new, useful ones?

In this work, we make an attempt at characterizing and categorizing effective strategies
in the pure lambda calculus, as they pertain to the order of β-reductions in a reduction
sequence, and we use Coq as our implementation platform [33]. A source of inspiration for
our work was Sestoft’s survey of reduction strategies in the lambda calculus [31] that collected
existing strategies and their ML implementations, as a didactic tool. However, unlike Sestoft,
we base our work on the small-step approach. We exploit the fact that in general small-step
semantics provides more fine-grained control over computation, for example it makes explicit
the order of evaluation (as in left-to-right vs. right-to-left), whereas big-step semantics may
leave it unspecified. Therefore, we choose to take as a foundation the view of strategies
as decompositions of terms into reduction contexts and redices, as offered by the format of
reduction semantics. The framework that we built on these assumptions delineates the space
where most of existing strategies live, and new ones can be discovered, systematically. One
notable omission is the call-by-need strategy – it seems that this strategy should fit in our
picture, but it is harder to characterize, and therefore still remains in the wild.

Related Work. The work closest to ours is Sestoft’s survey of lambda-calculus reduction
strategies. It is accompanied by implementation, but it does not mechanize the properties
of the strategies. Recently, with the rising popularity of proof assistants numerous mechan-
izations of concrete programming languages have been done, but we are not aware of any
comprehensive study of various reduction strategies.

Earlier formalizations of the λ-calculus theory include Shankar’s mechanization of the
Church-Rosser theorem in Boyer-Moore theorem prover [32] and Pfenning’s mechanization
in Elf [25], Huet’s formalization of the residual theory of λ-calculus in Coq [17], McKinna
& Pollack’s formalization of Church-Rosser theorem, standardization theorem, and the
basic theory of Pure Type Systems in LEGO Proof Development System [22], Norrish’s
formalization of basic λ-calculus theory in HOL [23]. Pierce et al. provide a series of
textbooks on software verification including usage of operational semantics in the form of
Coq proof scripts [26]. Biernacka et al. formalize derivations of refocusing abstract machines
for various lambda-calculus reduction strategies in Coq [8]. Most recently, Forster et al.
formalized in Coq reasonability for time and space of weak call by value (shortened lcbv and
cbv here) [13, 14] and essential theorems for it as a model of computation [15].
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Contributions and outline. The contributions of our work are the following:
1. We provide a generic, simple and intuitive formalization of lambda-calculus reduction

strategies in Coq. The formalization is discussed in Section 2.
2. We collect and categorize common existing strategies studied in the functional

programming-language community. We formalize and prove some of their properties, such
as inclusion, determinism, and uniformity. This systematization is presented in Section 3.

3. We propose a novel semantic format to define phased reduction strategies, formalized in
Coq, that facilitates concise specification and algebraic reasoning about strategies. It is
introduced in Section 4, where some of its benefits and advantages over existing formats
are also discussed.

2 Basic concepts and Coq formalization

We aimed at a simple, concise and intuitive formalization. It turns out we only need two
Inductive definitions in the whole development: one for λ-terms, and one for context frames.
Our formalization is also minimalistic in the sense that we do not introduce any more concepts
than we need. In particular, we do not need substitution to talk about strategies, and so
we do not include it in our formalization. This is not a limitation, since the framework is
open to extensions and substitution can be added in order to prove dynamic properties of
the lambda calculus under any definable strategy. Many notions are expressed in terms of
basic set theory as presented next.

2.1 Sets
Sets of elements of type A, denoted with P A, are represented as functions of type A → Prop.
This is similar to Coq.Sets.Ensembles but we do not use the axiom of extensionality. The
definitions are standard, and excerpts are shown in Listing 1.1

Listing 1 Basic relations on sets.
Notation "'P' A" := (A → Prop) (at level 55, only parsing ).
Notation "x '∈' A" := (A x) (at level 70, only parsing ).

Definition subset {A:Type} (s t:P A) : Prop := ∀ x, x ∈ s → x ∈ t.
Definition set_eq {A:Type} (s t:P A) : Prop := ∀ x, x ∈ s ↔ x ∈ t.
Definition disjoint {A:Type} (s t:P A) := ∀ x, x ∈ s → x ∈ t → False.

Infix "⊆" := subset (at level 70).
Infix "==" := set_eq (at level 70).
Notation "∅" := empty_set .
Notation " " := full_set .
Infix "∪" := union (at level 65).
Notation "

⋃
" := family_union .

Infix "×" := cartesian_product (at level 50).

Using the typeclass mechanism of Coq, we show that set_eq is an equivalence relation,
that union is a properly defined operation on sets, and that cartesian product is monotone
(see Listing 2).

1 It is worth noting that set_eq is independent of notion of equality on type A if it has its own one as for
example real numbers.
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Listing 2 Example properties of sets.
Instance set_eq_equiv {A:Type} : Equivalence ( @set_eq A).
Instance union_proper {A:Type} :

Proper ( set_eq ==> set_eq ==> set_eq ) ( @union A).
Instance cartesian_product_monotone {A B:Type} :

Proper ( subset ++> subset ++> subset ) ( @cartesian_product A B).

2.2 Families of terms
The grammar of lambda terms

t ::= x | λx.t | t1 t2

is formalized in a straightforward way, with strings used to represent variable names, as
shown in Listing 3.

Listing 3 Inductive definition of terms.
Inductive term : Type :=
| var (x : string ) : term
| lam (x : string ) (s : term) : term
| app (s : term) (t : term) : term.

When discussing reduction strategies, we will stumble upon various normal forms – they
occur as term families expressible with simple grammars.

nf ∋ n ::= λx.n | a neu ∋ a ::= x | a n

wnf ∋w ::= λx.t | i inert ∋ i ::= x | i w

hnf ∋ h ::= λx.h | r rigid ∋ r ::= x | r t

whnf ∋ q ::= λx.t | r

abs ∋_ ::= λx.t abs∁ ∋_ ::= x | t t

neu

nf

inert

wnf

rigid

hnf

abs

abs∁

whnf

Figure 1 Term families and their inclusions.

In Figure 1, the grammars of common normal forms are shown, together with a diagram
illustrating the relationships between them (the arrows represent inclusions between families).
For example, nf is the family of full β-normal forms (resulting from full, unrestricted
normalization), and is defined with the use of an auxiliary family of neutral terms neu. The
family wnf of weak normal forms occurs as the final results of computation in the (weak) open
call-by-value strategy, and is defined with the use of an auxiliary family of inert terms [2].
Weak-head normal forms whnf result from call-by-name reduction, and its subfamily of
head normal forms hnf contains head-reduced terms. The name rigid for variable-headed
application comes from Accattoli et al. [1].

In the implementation we define the various normal forms as sets of terms using Fixpoints,
as shown for nf and neu in Listing 4. Such definitions contain superfluous information,
e.g., the grammar of neu has to be repeated. Nevertheless, we show in lemmas nf_grammar
and neu_grammar in Listing 4 that the fixpoint definitions coincide with the grammars
in Figure 1, where abs_of and app_of are Coq versions of the constructors used in the
grammars. Moreover, using simple set-based reasoning we can prove that neutral terms
are exactly rigid normal terms (neu_rigid_nf), and we can prove all inclusions shown in
Figure 1 (the example of neu ⊆ nf is shown in the listing).
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Listing 4 Definition, grammars and properties of normal and neutral terms.
Fixpoint neu (a:term) : Prop :=

match a with
| var x => True
| app a n => neu a ∧ nf n
| _ => False
end

with nf (n:term) : Prop :=
match n with
| lam x n => nf n
(* _ => neu n *)
| var x => True
| app a n => neu a ∧ nf n
end.

Lemma nf_grammar : nf == abs_of nf ∪ neu.
Lemma neu_grammar : neu == variable ∪ app_of neu nf.
Lemma neu_rigid_nf : neu == rigid ∩ nf.
Lemma neu_is_nf : neu ⊆ nf.

2.3 Semantic formats

In this section we discuss the most popular approaches to defining computation in the lambda
calculus in order to justify the choices made in our formalization. Our running example is
the left-to-right open call-by-value strategy (shortened as lcbw) studied in detail in [2] but –
as is often the case – occurring in the literature previously [24, 31].

Definitional interpreters

A natural way for a programmer to define a reduction is to write a definitional interpreter
in some metalanguage [30]. This way lcbw is defined in Paulson’s textbook [24] and we
present his evaluator in Listing 5, translated to Coq syntax. The definition is clear and
the deterministic order of reductions follows from the evaluation order of the metalanguage.
However, Coq cannot accept this definition because of possible nontermination.

Listing 5 Pseudocode of Paulson’s evaluator for left-to-right open call by value.
Parameter subst : string → term → term → term.

Fixpoint eval (t : term) :=
match t with
| app s t => match eval s with

| lam x u => eval (subst x (eval t) u)
| u => app u (eval t)
end

| t => t
end.

A variant of this approach is to define a higher-order evaluator that represents some
values as functions of the metalanguage, but this is also inapplicable in our situation because
of nontermination.

ITP 2022
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Big-step operational semantics
The evaluator above can be intuitively translated to big-step operational semantics format.
The big-step formulation of the lcbw strategy is given in Figure 2. It is isomorphic to the
one given by Sestoft [31] under the name of “the call-by-value reduction” bv.

x ⇓ x λx.t ⇓ λx.t

t1 ⇓ λx.t t2 ⇓ t′
2 t[x := t′

2] ⇓ t′

t1 t2 ⇓ t′

t1 ⇓ t′
1 ̸≡ λx.t t2 ⇓ t′

2

t1 t2 ⇓ t′
1 t′

2

Figure 2 Sestoft’s big-step operational semantics of open call by value.

The inductive definition of the relation ⇓ can be formulated in Coq. However, due to
presentation of inference rules with multiple independent premises, the evaluation order
happens to be only conventional. In order to discriminate between, e.g., left-to-right and
right-to-left, we need more specific formats.

Another drawback shared by the big-step approaches is the fact that actual computation
is welded with navigation in a term. Therefore, we consider these semantic formats as
derived from a more fundamental, small-step semantics [29]. Interestingly, the specification
of evaluation order can be restored in pretty-big-step semantics [9], which – being big-step in
spirit – is convenient for certain types of reasoning.

Small-step structural operational semantics

In Figure 3, we show the specification of lcbw by a relation lcbw→ defined in the format of
Plotkin’s structural operational semantics [28]. This definition is directly expressible in Coq.

(β)
(λx.t) w

lcbw→ t[x := w]

t1
lcbw→ t′

1 (µ)
t1 t2

lcbw→ t′
1 t2

t2
lcbw→ t′

2 (ν)
w1 t2

lcbw→ w1 t′
2

Figure 3 Structural operational semantics for left-to-right open call by value.

Notice that the small-step formulation demands more information about the reduction
strategy. In the rule (β), we have to restrict substitution to accept only weak normal forms w,
as defined in Figure 1. Without this condition the defined strategy would be nondeterministic
and not call-by-value. Similarly, the rule (ν) states explicitly that the left component of the
application has to be a weak normal form. Therefore, in contrast to the big-step approach,
the small-step formulation requires a precise description of the grammar of terms allowed in
designated positions in a term, for a rule to be applied.

Small-step reduction semantics
We can observe that that rules (µ) and (ν) in structural operational semantics play a different
role than (β) because they simply propagate inner steps while (β) is responsible for the
actual reduction. In reduction semantics [12] these propagation rules are materialized with
an explicit data structure representing contexts, and the one-step reduction is expressed via
contextual closure of the basic reduction rule called contraction. In Figure 4, we present a
reduction semantics for lcbw, which coincides with the left-to-right variant of Accattoli and
Guerrieri’s definition of open call by value [2].
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(λx.t) w ⇀βw
t[x := w]

t ⇀βw t′

E[t] lcbw→ E[t′]
E ::= 2 | w E | E t

Figure 4 Reduction semantics for left-to-right open call by value.

The format of reduction semantics is more compact than the one of structural operational
semantics. It is also more convenient in defining reduction strategies as it separates contraction
(specifying how subterms are rewritten) from contexts (specifying where the contraction
takes place). Therefore we choose this format to define strategies and to formalize in Coq.
However, in the following, we will use the nonterminal wV t instead of E for contexts of lcbw
due to the shortage of capital letters in the latin alphabet.

2.4 Reduction contexts
Traditionally, contexts used in reduction semantics are defined by grammars. The grammar
of general lambda-calculus contexts is the following2:

C ::= 2 | λx.C | C t | t C

Every context can be seen as a term with exactly one free occurrence of a special variable 2
called the hole. It is used to indicate a particular location in a term.

Alternatively, a context can be thought of and represented as a list of elementary contexts
of the form λx.2, 2 t, t2, called frames, on the path between the root of the term and
the hole. This is the representation that we use (see Listing 6). We often think of this
representation as a sequence of navigation steps made from the root of the term in order to
find a redex to contract.

Listing 6 Inductive definition of contexts.
Inductive frame : Type :=
| Lam : string → frame
| Rapp : term → frame
| Lapp : term → frame.

Definition context : Type := list frame .

Technically, a general context (C above) is a folded representation of a list of frames.
Correspondingly, reduction semantics introduces a plug function (often left implicit) to
reconstruct a term from a context and a term put in its hole. It is denoted as C[t], where C

is a context and t is a term.

2[s] = s (C t)[s] = C[s] t (t C)[s] = t C[s] (λx.C)[s] = λx.C[s]

Just as we need to define normal forms as term families to specify strategies, we also need
to restrict the general grammar of contexts. We do it by defining specific context families,
considered as sets of contexts, and therefore formalized as functions of type context →
Prop.

2 McBride showed that it can be derived through simple symbolic differentiation [21].

ITP 2022
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The common examples of reduction contexts are collected as a cheat sheet in Figure 5,
where we use their familiar specification as terms with a hole. For example, CBN defines
standard call-by-name contexts, that in the frames representation consist of just one type
of frames: 2 t. For another example, Weak defines a family of contexts representing a
non-deterministic weak strategy that does not reduce under lambda abstractions.

CBN ∋ Q ::= 2 | Q t

Head ∋ H ::= Q | λx.H Rigid ∋ C ::=2 | C t | r C

HS ∋ J ::= 2 | J t | λx.J

LO ∋ N ::= N | λx.N LO ∋ N ::=2 | N t | a N

LS ∋ M ::= J |M | λx.M LS ∋ M ::= M t | a M

LI ∋ L ::= 2 | L t | n L | λx.L RI ∋ R ::=2 | R n | t R | λx.R

Weak ∋ W ::= 2 | t W |W t

LCBV ∋ λV t ::= 2 | (λx.t) λV t | λV t t RCBV ∋ tV λ ::=2 | t tV λ | tV λ (λx.t)
LCBW ∋wV t ::= 2 | w wV t | wV t t RCBW ∋ tV w ::=2 | t tV w | tV w w

SDET ∋ V λ ::= 2 | V λ (λx.t)
LOW ∋ iV t ::= 2 | i iV t | iV t t

LLCBW ∋w
aV t

w ::= wV t | w
aV t

w | λx.waV t
w

w
aV t

w ::=a w
aV t

w | w
aV t

w w

RLCBW ∋ w
iV

t
n ::= wV t | w

iV
t
n | λx.wiV

t
n

w
iV

t
n ::= i w

iV
t
n | w

iV
t
n n

LRCBW ∋ t
aV

w
w ::= tV w | t

aV
w
w | λx.taV

w
w

t
aV

w
w ::=a t

aV
w
w | t

aV
w
w w

RRCBW ∋ t
iV

w
n ::= tV w | t

iV
w
n | λx.tiV

w
n

t
iV

w
n ::= i t

iV
w
n | t

iV
w
n n

SCBW ∋ t
iV

t
w ::= W | t

iV
t
w | λx.tiV

t
w

t
iV

t
w ::= i t

iV
t
w | t

iV
t
w w

Figure 5 Context families cheat sheet.

Even though we use the frame representation, we can still prove that the two repres-
entations are equivalent, i.e., that they define the same context family. For example, our
formalization of lcbw-contexts is shown in Listing 7 as the L_CBW function, where Uniform
is a function checking that all frames in a context are proper lcbw frames. On the other
hand, we can express the LCBW grammar of Figure 5, and prove the equivalence stated in
lemma L_CBW_grammar. Let’s spell out the meaning of the LCBW grammar in Figure 5 and
of the L_CBW_grammar lemma: an LCBW context (denoted by wV t and L_CBW) is a hole or
an application of weak normal form (denoted by w and wnf) to an LCBW context, or an
application of an LCBW context to any term (denoted by t and  ).

Apart from this, we can also formalize and prove other properties, such as those stated
in the remaining lemmas in Listing 7: LCBW contexts are weak (L_CBW_is_Weak), CBN
contexts are exactly the weak head contexts (CBN_Weak_Head), and the auxiliary nonterminal
in the grammar of leftmost-outermost contexts (denoted LO) describes exactly the rigid
leftmost-outermost contexts (RLO_Rigid_LO).

Overlined nonterminals inform that they are rigid versions of their regular counterparts,
i.e., not headed by a lambda abstraction. Letters around V in nonterminals inform which
application frames appear in such call-by-value context family. Superscripts concern the
weak fragment and subscripts the remaining part.
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Listing 7 Example properties of contexts.
Definition L_CBW_frame (f:frame) : Prop :=

match f with
| Lapp e => wnf e
| Rapp e => True
| _ => False
end.

Definition L_CBW : P context := Uniform L_CBW_frame .

Definition Lapp_of (t1:P term) (T2:P context ) (C: context ) : Prop :=
match C with Lapp e1 :: C' => t1 e1 ∧ T2 C' | _ => False end.

Definition Rapp_of (T1:P context ) (t2:P term) (C: context ) : Prop :=
match C with Rapp e2 :: C' => t2 e2 ∧ T1 C' | _ => False end.

Lemma L_CBW_grammar :
L_CBW == Hole ∪ Lapp_of wnf L_CBW ∪ Rapp_of L_CBW  .

Lemma L_CBW_is_Weak : L_CBW ⊆ Weak.
Lemma CBN_Weak_Head : CBN == Weak ∩ Head.
Lemma RLO_Rigid_LO : RLO == Rigid ∩ LO.

2.5 Decompositions and Strategies
The purpose of an (effective) reduction strategy is to indicate locations in a term where
contraction can occur. It can be done using decompositions of a term into a designated
subterm and its surrounding context. This approach does not require substitution to prove
any of the properties of strategies that we study in this paper.

Strategies are defined as sets of decompositions, as shown in Listing 8. Recomposition is
the uncurried plug function. With these definitions, we can define that a term is in normal
form with respect to a given strategy if there is no decomposition of this term accepted by
the strategy (cf. normal_form). We can also define that a strategy is deterministic if for
any term there exists at most one of its decompositions accepted by the given strategy (cf.
det_strategy). Our definition of strategy is still quite general and makes it possible to talk
about undecidable strategies, but they are out of the scope of our interest.

Listing 8 Definitions of decomposition, strategy, normal forms and determinism.
Definition decomposition : Type := context * term.
Definition strategy : Type := decomposition → Prop.

Definition recompose : decomposition → term := uncurry plug.

Definition normal_form (s: strategy ) (t:term) : Prop :=
¬ ∃ d, t = recompose d ∧ d ∈ s.

Definition ex_le1 {A:Type} (P : A → Prop) : Prop :=
∀ x x', P x → P x' → x = x'.

Notation "∃≤1 x , p" := ( ex_le1 (λ x, p))
(at level 200, right associativity ) : type_scope .

Definition det_strategy (s: strategy ) : Prop :=
∀ t, ∃≤1 d, t = recompose d ∧ d ∈ s.

ITP 2022
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The final aspect to consider is how to recognize that a subterm plugged in the hole of
a context can be contracted according to the given strategy. Often, such a term is called
a redex. In the code, we use the name contrex (contractible expression) to stress that it has
fit not just reduction, but exactly contraction. For example, we said that in the lcbw strategy
a redex has to have the form (λx.t) w. On the other hand, any term of the form (λx.t1) t2 is
a redex in cbn.

We define β, βλ, βw, βwh , hβ, nβn term families denoting accepted subjects of contraction
as follows (letter symbols are as in Figure 1: q ∈ whnf , w ∈ wnf , h ∈ hnf , n ∈ nf ; later
on, the symbols β, βλ, βwh will also denote strategies that can perform the appropriate
contraction only in the empty context):

β ∋ (λx.t1) t2 βw ∋ (λx.t) w hβ ∋ (λx.h) t

βλ ∋ (λx1.t1) (λx2.t2) βwh ∋ (λx.t) q nβn ∋ (λx.n1) n2

With these ingredients, we can now define specific strategies, e.g., cbn as CBN× β and
lcbw as LCBW× βw. Example definitions are shown in Listing 9.

Listing 9 Example strategy definitions.
Definition β _contrex : term → Prop := app_of abstraction  .
Definition β wnf_contrex : term → Prop := app_of abstraction wnf.
Definition hnfβ _contrex : term → Prop := app_of ( abs_of hnf)  .

Definition only_β _contraction : strategy := Hole × β _contrex .
Definition cbn : strategy := CBN × β _contrex .
Definition l_cbw : strategy := L_CBW × β wnf_contrex .

3 A trip to the zoo

3.1 Zoo picture description

Figure 6 depicts β-reduction strategies as Cartesian products of context families (located in
the topmost row in the figure) and term families (located in the leftmost column). For example,
cbv := Weak × βλ. There are some crossings that define strategies we are not interested
in, e.g., LOW × βw. We mark them with “·”, and we omit dots in the empty rectangles.
In general there exist strategies that are not Cartesian products, e.g. an interbreeding:
cbn ∪ cbv, but we have not found it interesting.

Some of the strategies are well known and can be identified by their reduction semantics
from the literature: cbn as call by name, no as normal order, lcbv as left-to-right (closed) call
by value [8]. Analogously, rcbv is right-to-left closed call by value and cbv is nondeterministic
closed call by value. On the other hand, cbw can be identified as non-deterministic open call
by value (a.k.a. fireball calculus) and rcbw as its right-to-left substrategy [3]. Analogously,
lcbw is its left-to-right substrategy. In the following, we show that l lcbw (and the three
strategies written underneath it) are deterministic extensions of open call by value to strong
call by value, and that scbw is their superstrategy, non-deterministic strong call by value.3

3 Strong call by value is understood differently in [1]: it is not a superstrategy of open call by value, it is
defined in a language with explicit substitutions and thus it does not fit directly into our zoo. Strong
call by value presented here is a strategy studied in [7].
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Figure 6 Zoo of strategies of the lambda calculus.

Furthermore, the strategies weak, head, fullβ, li, ri are the weak, head, full, leftmost-
innermost and rightmost-innermost β-reductions, respectively. The remaining strategies
(sdet, cbwh, low, ihs and lis) are discussed in Section 4.2.

The arrows shown in the topmost row and leftmost column represent family inclusions,
such as L_CBW_is_Weak : LCBW ⊆Weak. Thanks to the monotonicity of the Cartesian
product, we can read inclusions of the strategies: head ⊆ no because Head ⊆ LO (and
β ⊆ β), or sdet ⊆ lcbw because SDET ⊆ CBN ⊆ LCBV ⊆ LCBW and βλ ⊆ βw.

What is left to be demonstrated, is that the strategies living in the same pen (rounded
rectangle) have the same normal forms, and these normal forms are written in the bottom of
the figure under each pen. For example, normal forms of head, ihs and hs (but not of the dot
for Head×hβ) are exactly hnf . The strategies underlined in the figure are non-deterministic,
and the non-underlined ones are deterministic. Context families in bold are non-uniform and
the other ones are uniform (see definitions in Section 3.3).

3.2 Example reductions
In this section we show how strategies behave when we feed them with terms. To this end,
we define some standard terms and their abbreviations4: I := λx.x, K := λx.λy.x,
ω := λx.x x, Ω := ωω, (t1, t2) := λf.f t1 t2, (t,) := λf.f t, π1 := (K,).

The term (I K) I reduces in cbn, but it is not contractible: K I
cbn← (I K) I ⇀̸β . In cbn

II reduces to I which is its normal form (II
cbn→ I

cbn↛ ), because the decomposition of II into
2 and II is a cbn-decomposition, while the decomposition of I into 2 and I is not. The
reason is that I is not contractible – it is not in the term family β.

4 Notation (t, ) for 1-tuples comes from Python.
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Call by name and call by value can go separate ways on the same term as shown by the
following example: ω K

cbn← I (ω K) cbv→ I (K K). Closed call by value can be stuck where
the open is not: lcbv↚ x (I x) lcbw→ x x. Weak strategies do not allow reduction under lambda
abstractions: (λx.x I) K

weak↚ (λx.(λy.x y) I) K
weak→ (λy.K y) I. For the same term, head and

ihs can behave differently: (λy.K y) I
head← (λx.(λy.x y) I) K

ihs→ (λx.x I) K. Normal-order
reduction is known for avoiding nontermination whenever possible while leftmost-innermost
and rightmost-innermost fall victim to it very easily: I

no← (λx.I) (Ω,) li,ri→ (λx.I) (Ω,).
A very small strategy sdet == cbn ∩ rcbv is capable of performing pair projection:

π1 (K, I) sdet→ (K, I) K
sdet→ K K I

sdet→ (λy.K) I
sdet→ K and nontermination: Ω sdet→ Ω.

3.3 Uniformity and determinism
There are some general properties that can be expressed and studied uniformly for any
reduction strategy; by way of example we discuss two of such properties, illustrated already
in Figure 6. Sestoft [31] observed that some strategies are uniform in the sense that the
definition of such a strategy (in the big-step semantics) depends inductively only on that
strategy itself, while other strategies are hybrid: they use some uniform ones as substrategies.
Uniform and hybrid strategies were studied e.g. by García-Pérez and Nogueira [16]. Biernacka
et al. [8] define a strategy to be uniform if its context family can be defined with a grammar
with only one nonterminal symbol. That means that the shape of context frames can be
uniformly checked for each frame separately, and it is reflected by our definition of Uniform
(see Listing 10). To prove uniformity it is enough to define the given family in a uniform
way. Disproving it is more complicated: one must show that every grammar with only one
non-terminal symbol that generates all contexts in the family generates also some contexts
that are not in this family.

Another property of interest concerns (non-)determinism. To refute determinism of a
given strategy it is enough to show two different decompositions of the same term accepted by
the strategy. Moreover, superstrategies of a non-deterministic strategy are non-deterministic
(this property is reflected by det_strategy_variance in Listing 10 that says if s1 is a
substrategy of s2 and s2 is deterministic then s1 is also deterministic). On the other hand,
showing determinism is more demanding because it requires equating two decompositions of
the same term accepted by a strategy. In order to prove it for more complex strategies, we
will employ more sophisticated reasoning.

Listing 10 Uniformity and non-determinism.
Fixpoint Uniform (F:frame → Prop) (C: context ) : Prop :=

match C with
| [] => True
| f :: C => F f ∧ Uniform F C
end.

Theorem uniform_strategies : ∀ C, In C [SDET; CBN; R_CBV; L_CBV;
R_CBW; L_CBW; LOW; Weak; HS; RI; LI;  ] → ∃ F, C == Uniform F.

Theorem non_uniform_strategies : ∀ C, In C [Head; LO; LS;
LL_CBW ; LR_CBW ; RL_CBW ; RR_CBW ; SCBW] → ¬ ∃ F, C == Uniform F.

Lemma det_strategy_variance : Proper ( subset --> impl) det_strategy .

Theorem nondeterministic_strategies :
∀ s, In s [cbv; cbw; weak; hs; scbw; full_β] → ¬ det_strategy s.
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4 Phased strategies

Reduction strategies are often implemented as procedures for locating the next redex to
be contracted. For example, call by name can be defined as a strategy that reduces an
application t1 t2 by first reducing t1 to weak-head normal form and then trying β-contraction.
But then it is not clear if such a definition has anything in common with the product
CBN× β, as defined in our formalization. In this section we present a novel semantic format
of phased strategies that allows concise description of strategies in this (operational) spirit
and facilitates algebraic reasoning about their properties. In particular we show that the two
definitions of cbn (and similar definitions of all the other strategies in the zoo) are equivalent.

The basic idea of a phased strategy is that it is a recursively defined sequence of phases,
each phase being a description of one small step in the search for the next redex. The phases
are easy to read and to implement. For example the phased version of lcbw is ↙ lcbw; ↘ lcbw; β.
It consists of three phases, each of which tries to reduce an application of the form t1 t2 (the
absence of the constructor ↓ shows that lcbw never reduces under lambda abstractions). The
first phase is ↙ lcbw, it says: search for the redex in the left term, t1, using the lcbw strategy.
The second phase ↘ lcbw says: if the first phase finds no redex, then continue the search in
the right term, t2, using the lcbw strategy. The third phase tries β-contraction when the
first two phases find no redex.

Apart from their simplicity, phased strategies have other advantages. They are extremely
concise in presentation, and they support equational reasoning that can be used to identify
equal strategies that admit different definitions. The sequencing of phases preserves de-
terminism, which greatly simplifies reasoning about deterministic strategies. In contrast to
small-step semantics from Section 2.3, defining a phased strategy does not require knowledge
of normal forms in this strategy. And in contrast to big-step semantics, the phased format
can distinguish between divergent and stuck terms.

4.1 Definitions
The first ingredient of phased strategies is strategy sequencing. It joins two strategies, called
phases, into one strategy that either makes a step of the first phase unconditionally, or it
makes a step of the second phase – if the term is already in the normal form with respect to
the first phase. This definition is formalized in Listing 11. On paper, we use the semicolon
to denote sequencing, but in Coq we use double semicolon because the single one is already
reserved. Strategy sequencing seems to be quite natural as strategies with the sequencing
operator form a monoid.

Listing 11 Strategy sequencing monoid.
Definition sequence_strategy (r s: strategy ) : strategy :=

λ d, r d ∨ ( normal_form r ( recompose d) ∧ s d).
Infix ";;" := sequence_strategy (at level 60, right associativity ).

Lemma sequence_strategy_empty_r : ∀ s, s;; ∅ == s.
Lemma sequence_strategy_empty_l : ∀ s, ∅;; s == s.
Lemma sequence_strategy_assoc : ∀ q r s, q;; (r;; s) == (q;; r);; s.

We define five unary strategy operators that allow us to peel one top frame from the term
and execute the given strategy beneath. For example, ↙cbn works only on applications and
it can make a cbn-step on t1 in t1 t2. Similarly, ↓cbn works only on abstractions. Analogously,
↙λ cbn can make a cbn-step on t1 in t1 t2 given that t2 is already an abstraction. Formal
definitions are given in Listing 12. We also use β, βλ, βwh to denote strategies that can only
perform the contraction on the top term.
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Listing 12 Phased strategies constructors.
Definition left_strategy (s : strategy ) : strategy :=

λ d, match d with (Rapp _ :: C, c) => s (C, c) | _ => False end.
Definition right_strategy (s : strategy ) : strategy :=

λ d, match d with (Lapp _ :: C, c) => s (C, c) | _ => False end.
Definition down_strategy (s : strategy ) : strategy :=

λ d, match d with (Lam _ :: C, c) => s (C, c) | _ => False end.
Definition left_abs_strategy (s : strategy ) : strategy :=

λ d, match d with (Rapp t2 :: C, c) => abstraction t2 ∧ s (C, c)
| _ => False end.

Definition right_abs_strategy (s : strategy ) : strategy :=
λ d, match d with (Lapp t1 :: C, c) => abstraction t1 ∧ s (C, c)

| _ => False end.

Notation "↙" := left_strategy .
Notation "↘" := right_strategy .
Notation "↓" := down_strategy .
Notation "↙λ" := left_abs_strategy .
Notation "↘λ" := right_abs_strategy .
Notation "'β'" := only_β _contraction .
Notation "'βλ'" := only_βλ_contraction .
Notation "'βwh'" := only_β whnf_contraction .

Definition cbn_phased : strategy := ↙cbn ;; β.

In Figure 7 we present formal definitions of 27 phased strategies, and at the same time
we state 27 theorems formalizing how these strategies are equivalent to 24 strategies from
the zoo of Figure 6. For example, the cbn strategy of Figure 6 can be shown to be equal to
the phased strategy ↙cbn; β, and also to the phased strategy β; ↙cbn (first line).

cbn == ↙cbn; β == β; ↙cbn
head == (β; ↙head) ∪ ↓head

ihs == (↙ihs; β ) ∪ ↓ihs
hs == β ∪↙hs ∪ ↓hs
no == (β; ↙no; ↘no) ∪ ↓no
lis == (↙ihs; β; ↙lis; ↘lis) ∪ ↓lis

fullβ == β ∪↙fullβ ∪↘fullβ ∪ ↓fullβ
li == (↙ li; ↘ li; β) ∪ ↓li
ri == (↘ri; ↙ri; β) ∪ ↓ri

cbwh == ↙cbwh; ↘λ cbwh; βwh

sdet == ↙λ sdet; βλ == βλ; ↙λ sdet
low == β;↙low;↘low ==↙low;β;↘low

weak == ↙weak ∪↘weak ∪ β

lcbv == ↙ lcbv; ↘λ lcbv; βλ

rcbv == ↘rcbv; ↙λ rcbv; βλ

cbv == ↙cbv ∪↘cbv ∪ βλ

lcbw == ↙ lcbw; ↘ lcbw; β

rcbw == ↘rcbw; ↙rcbw; β

cbw == (↙cbw ∪↘cbw); β

l lcbw == ( lcbw; ↙l lcbw; ↘l lcbw) ∪ ↓l lcbw
rlcbw == ( lcbw; ↘rlcbw; ↙rlcbw) ∪ ↓rlcbw
lrcbw == (rcbw; ↙lrcbw; ↘lrcbw) ∪ ↓lrcbw
rrcbw == (rcbw; ↘rrcbw; ↙rrcbw) ∪ ↓rrcbw
scbw == (cbw; (↙scbw ∪↘scbw)) ∪ ↓scbw

Figure 7 Phased forms.

Phased strategy operators exhibit some algebraic properties that ease reasoning about
them. Some examples are shown in Listing 13. Normal forms of a sequenced strategy
are exactly terms that are normal w.r.t. both phases (normal_form_sequence_strategy).
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The left phase of a weak strategy on the left application branch commutes with a β-phase
(left_weak_strategy_β_contraction_commutative). It is because β needs an abstraction
on the left to contract, and weak strategies do not reduce abstractions. This is why cbn
has two different phased forms. Unary phased operators are distributive over sequencing
(phase_distributive_over_sequencing). If a strategy is sequenced with its superstrategy
that is deterministic then the obtained strategy is equivalent to the superstrategy alone
(deterministic_extension). To prove that constructively, we need the decidability of the
smaller strategy to decide if the term is its normal form in the proof of the right-to-left
inclusion.

Listing 13 Example properties of phased strategy operators.
Lemma normal_form_sequence_strategy : ∀ r s,

normal_form (r;; s) == normal_form r ∩ normal_form s.
Lemma left_weak_strategy_β _contraction_commutative : ∀ w,

w ⊆ weak → ↙ w;; β == β;; ↙ w.
Theorem phase_distributive_over_sequencing : ∀ X,

In X [↙;↘;↓;↙λ;↘λ] → ∀ s s', (X s;; X s') == X (s;; s').
Theorem deterministic_extension : ∀ s1 s2 , (∀ x, {x ∈ s1} + {x /∈ s1})

→ det_strategy s2 → s1 ⊆ s2 → s1;; s2 == s2.

4.2 Benefits of phased strategies
In order to see the benefits of phased formulation of the strategies, we first establish the
equalities from Figure 7. For many strategies, if we want to define their reduction semantics
we need to discover what normal forms are with respect to the strategy we are defining. Most
of the time, we prove the equality between reductive form and phased form by induction
over terms, where the induction hypothesis is extended with the equality between a fixed
family of normal forms and normal forms of the phased form. Then we get theorems about
normal forms as corollaries. We collect them in Listing 14.

Listing 14 Normal forms and determinism theorems.
Theorem weak_head_normal_forms : ∀ s, In s [cbn; cbwh] →

normal_form s == whnf.
Theorem weak_normal_forms : ∀ s, In s [l_cbw; r_cbw; cbw; low; weak]

→ normal_form s == wnf.
Theorem head_normal_forms : ∀ s, In s [head; ihs] →

normal_form s == hnf.
Theorem full_normal_forms : ∀ s, In s [no; lis; ll_cbw ; lr_cbw ;

rl_cbw ; rr_cbw ; scbw; li; ri; full_β] → normal_form s == nf.

Theorem deterministic_strategies : ∀ s, In s
[sdet; cbn; l_cbv; r_cbv; cbwh; l_cbw; r_cbw; low; ihs; head;

lis; no; ll_cbw ; lr_cbw ; rl_cbw ; rr_cbw ; li; ri] → det_strategy s.

As the phased form is affirmed, determinism of the strategies can be proven by simple,
repetitive inductions over terms. This seems to be a more structured approach than ad-hoc
proofs of determinism (cf. the proof of determinism of rrcbw in [7]).

Similarly, the reduction semantics of lis = LS× hβ (leftmost-innermost-spine) is quite
involved (cf. Figure 5). Thanks to the phased formulation, it is clearer how it works and
that the reduction semantics formulation is indeed correct (cf. Figure 7). We can see that
head and ihs (innermost-head-spine) are two different deterministic, head-reducing strategies.
Both are extended to two different full-reducing strategies: lis and no. The study of ihs and
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lis, studied earlier by Barendregt et al. [6], is particularly interesting because they exhibit
some call-by-need traits. For example, their decomposition function reaches the head variable
before any reduction takes place.

The framework of phased strategies facilitates the study of new strategies. It is widely
known that cbn performs weak-head reduction. We have formulated the cbwh strategy that
performs weak-head reduction of arguments before they are substituted, and we have shown
that it is also a weak-head-reducing strategy. Thus, it enjoys Accattoli and Guerrieri’s
harmony property [2].

By swapping the phases of lcbw and rcbw, we have discovered the low (leftmost-outermost-
weak) strategy. It resembles no but does not go under lambda abstractions. It is a complete
weak-reducing strategy, i.e., it always reaches a weak normal form if it exists.

We have formulated the sdet strategy that is a substrategy of all strategies mentioned
in Figure 6, except for ihs, lis, li, and ri. This strategy is sufficient to run Dal Lago and
Accattoli’s simulation of Turing machines [19], and so all of its superstrategies are also
sufficient.

Finally, in Figure 8 we show an example of algebraic reasoning, where we use some of the
algebraic laws that we proved. This example demonstrates that lrcbw (right-to-left-to-right
call by value), which is one of the four self-evident deterministic strong call-by-value evaluation
orders, has a special phased form with left weak phase optimized away. It corresponds to
a special optimization in its implementation by an abstract machine [7]. Similarly, we can
show that scbw is a conservative extension of cbw, and formalize it as scbw == cbw; scbw.
Thus scbw intuitively inherits the strong confluence (diamond property) of cbw [2].

lrcbw == (rcbw; ↙lrcbw; ↘lrcbw) ∪ ↓lrcbw sequence_strategy_assoc==

== (↘rcbw; ↙rcbw; β; ↙lrcbw; ↘lrcbw) ∪ ↓lrcbw left_weak_strategy_β_..._commutative==

== (↘rcbw; β; ↙rcbw; ↙lrcbw; ↘lrcbw) ∪ ↓lrcbw phase_distributive_over_sequencing==

== (↘rcbw; β; ↙(rcbw; lrcbw), ↘lrcbw) ∪ ↓lrcbw deterministic_extension==

== (↘rcbw; β; ↙lrcbw; ↘lrcbw) ∪ ↓lrcbw

Figure 8 An equational reasoning on the lrcbw phased form.

4.3 Phased strategies on their own
Phased strategies as presented above depend on the prior definitions of strategies. Neverthe-
less, there are properties inviting to define them independently. Listing 15 shows that cbn is
the strategy unique up to set equality that satisfies the equation cbn == ↙cbn; β. From this
follows that cbn is the smallest and the largest of such strategies. However, these definitions
(with

⋂
and

⋃
) were again impractical because we could not prove the identity of normal

forms without use of cbn.
Listing 15 Uniqueness of cbn.

Definition cbn_eqn (s : strategy ) : Prop := s == ↙s;; β.
Lemma cbn_unique : ∀ s, cbn_eqn s → s == cbn.
Theorem cbn_ind_form : cbn ==

⋂
cbn_eqn .

Theorem cbn_coind_form : cbn ==
⋃

cbn_eqn .
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Nonetheless, a standalone definition in Coq is possible. We can define counterparts of
strategy operators working on decomposition functions (e.g., sequence_decompose). Then
we can define a decomposition function that corresponds to a phased form, take it as a base
of the strategy and prove the set equality of the strategies as presented in Listing 16.

Listing 16 Independent phased definition of cbn
Fixpoint cbn_decompose (t : term ): option decomposition :=

sequence_decompose
( left_decompose cbn_decompose )
contrex_decompose

t.
Definition decompose_strategy f := λ d, f ( recompose d) = Some d.
Definition cbn_decomposition := decompose_strategy cbn_decompose .
Theorem cbn_decompose_form : cbn == cbn_decomposition .

5 Conclusion

We have presented a minimalistic, concise formalization of a class of reduction strategies in
the λ-calculus, that are representable as term decompositions. It can be extended to richer
languages based on the lambda calculus, or adapted to other term-rewriting formalisms.
We have collected and systematized existing strategies, and shown how some of their properties
can be proved in our framework. Finally, we have introduced a novel semantic format of
phased strategies that enables simple equational reasoning about strategies. As future
work, we plan to accommodate further strategies within our framework, such as variants of
call-by-need strategies, or optimal strategies [20, 4] and study abstract machines derived
from phased forms.
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