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—— Abstract

A DNA stack nano-device is a bio-computing system that can read and write molecular signals
based on DNA-DNA hybridisation and strand displacement. In vitro implementation of the DNA
stack faces a number of challenges affecting the performance of the system. In this work, we apply
probabilistic model checking to analyse and optimise the DNA stack system. We develop a model
framework based on continuous-time Markov chains to quantitatively describe the system behaviour.
We use the PRISM probabilistic model checker to answer two important questions: 1) What is the
minimum required incubation time to store a signal? And 2) How can we maximise the yield of
the system? The results suggest that the incubation time can be reduced from 30 minutes to 5-15
minutes depending on the stack operation stage. In addition, the optimised model shows a 40%
increase in the target stack yield.
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1 Introduction

DNA computing is an emerging field that aims to use DNA, biochemistry, and molecular
biology to construct information-processing devices. Since its first appearance where DNA
was used for encoding the directed Hamiltonian path problem [1], the approach has been
applied to design a wide range of biocomputing applications such as molecular computational
circuits [7, 22], DNA storage technologies [9, 21], and synthetic controllers [8]. In [20], we
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presented the design and in vitro implementation of a DNA stack nano-device that can read
and write molecular signals in a last-in first-out way. The stack data structure is implemented
as a linear chain of partially complementary DNA strands which are used to represent both
data and read/write operations. The operations are achieved via DNA-DNA hybridisation
and strand displacement of complementary toehold domains. Although experimental results
show a generally successful implementation, the system still faces a number of challenges
affecting the performance of the resulting stack. That is in particular due to the presence of
unwanted interactions among the biochemical species that implement the system.

To improve the performance of the DNA stack system, we propose the use of probabilistic
model checking [4, 17] in the stack design process. Probabilistic model checking is a formal
verification technique for modelling and analysing stochastic (probabilistic) systems. A
benefit of the technique is the ability to exhaustively explore finite-state probabilistic models,
typically Markov chains or variants. Since all possible behaviours of the system are analysed,
the result is more reliable (and faster in some cases) than stochastic simulation where one
simulation run follows a single possible trajectory of the system. Although probabilistic model
checking was originally applied to software verification, the technique has been successfully
used in biological settings as well [6, 14, 15, 19]. By quantitatively evaluating properties
such as “what is the probability for the system to reach steady-state within 10 minutes”, we
are able to predict the behaviour and optimise the design of a complex biochemical system.

In this work, we develop a probabilistic model framework based on continuous-time
Markov chains (CTMCs) for describing the DNA stack system presented in [20]. We address
two important challenges of the system: how to minimise the incubation time, and how
to maximise the yield of the target stack. A set of properties based on the Continuous
Stochastic Logic (CSL) are defined to quantitatively and rigorously analyse the dynamic
behaviour of the DNA stack model. By model checking these properties we optimise the
experimental protocol for constructing the DNA stack in wvitro. The probabilistic model
checker PRISM [18] is used for the model development and analysis.

The rest of paper is organised as follows: Section 2 briefly introduces the concept of
the DNA stack system, its experimental implementation, and CTMC-based probabilistic
model checking. Section 3 describes the computational model of the DNA stack system,
while Section 4 presents several validation and model checking results. Section 5 discusses
experimental validation of the model checking results and concludes the paper.

2 Background
2.1 DNA stack system

We give here a brief overview of the DNA stack system — more details can be found
in [12, 16, 20]. A computational stack is an abstract data type that serves as a linear
collection of data elements, with two main operations: push (adds an element to the head of
collection) and pop (removes from the head of the collection and returns the most recently
added element). Because of this LIFO (Last In, First Out) feature, stacks are much used for
enforcing sequential access to data.

A DNA stack is a molecular implementation of the stack data structure where the data
elements that are stored, as well as the operations needed to operate the stack, are engineered
via a set of single stranded DNA strands, also called “DNA data operators”; DNA data
operators use both sequence and (partial) secondary structures information to achieve the
functionality by mimicking their computational counterpart. The construction of a DNA stack
structure is achieved via DNA-DNA hybridization and strand displacement of complementary
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Figure 1 Schematic of the DNA stack nano-device.

toehold domains. In a DNA stack implementation, the push operation prepares the stack for
receiving an element, while pop undoes that. To record an element in the DNA stack, one
performs a push operation followed by a data recording operation. To reverse this, a specific
read operation is applied that removes the last element added, followed by a pop operation
which undoes push and returns the stack to its initial state.

Figure 1 gives a schematic representation of a DNA stack system that performs two
push and two pop operations for the data elements dataX (X) and dataY (Y). Six distinct
DNA data operators were developed with their unique toehold domains which can be fully
complementary (A and A*, B and B*, etc.). In addition to the toehold domains, each type of
DNA data operator has an unique hairpin motif for the data storage. These hairpins do not
participate in hybridisation or branch migration; they simply represent Os and 1s (although,
potentially, they could each store or encode more complex data).

The process to record an element starts from an empty stack, which is represented by

hybridised linker and start strands (LS) with the linker attaching to streptavidin beads.

The first push DNA data operator (P) is added to irreversibly hybridise with the empty
stack via the exposed toehold domain A. The stack is now in its data state (LSP), and
the corresponding reaction for this operation can be written as LS + P kA, ISP, The
LSP species now has a single open toehold region BC that can accept dataX (or dataY)

DNA data operator via the reaction: LSP + X kse, 1.SPX. The process can be repeated by
adding any number of push and then data DNA data operator. The reading process proceeds
in a reversed way. Starting from a constructed stack, e.g., LSPXPY, the read DNA data
operator peels the last recorded dataY DNA data operator off the stack by hybridisation
at the exposed domain A and then three-way branch migration with domains BC. This
operation forms the LSPXP stack and a read-dataX (RX) double stranded helix which does
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not expose any single stranded domain and will not participate in further DNA interactions —
the corresponding reaction is LSPXPY +R K, LSPXP + RX. Similarly, the pop DNA data
operator (Q) peels off the exposed push DNA data operator, thus making the stack ready for
another read (or write). The reaction also produces a double stranded helix push-pop (PQ):

LSPXP + Q —2 LSPX + PQ.

2.2 Experimental methods

The experimental protocols for the DNA stack are detailed in [20]. Briefly, 400 uL of Sepharose
beads (Cytiva) are incubated and washed to remove the storage ethanol. Then 300nM of
linker is added to the Sepharose beads and incubated at 25°C for 30 minutes. After the
incubation is completed the species is washed (using a solvent of filtered 1X Tris EDTA(TE))
and the sample is centrifuged for 5s at max RPM. The supernatant is then carefully removed.
The process is repeated for each sequential DNA data operator in the order push, data DNA
data operator and so on, until the releaser is added to remove the constructed stack from
the Sepharose beads. The stack is then analyzed via polyacrylamide gel electrophoresis.

The wash event performed prior to each DNA data operator addition aims to eliminate
supernatants such as RX, PQ, P, X, etc. It is worth to notice that due to nonspecific binding
to beads, the supernatant cannot be perfectly removed by the washing. Therefore, some of
these residues can trigger side reactions to form undesired species in the next stack operation,
which may harm the target stack production. For example, in the recording process of adding
the second push DNA data operator , the stack LSPXP can also hybridise with residual
dataX DNA data operator added in the previous step. Together with the new push DNA
data operator P, different types of undesired polymers, such as LSPXPX, LSPXPXP, PXPX
and others, can be formed in the chemistry.

2.3 Probabilistic model checking

Probabilistic model checking [4, 17] is a powerful technique for analysing systems that exhibit
stochastic behaviour. Unlike classical model checking [10] which can only provide qualitative
answers, i.e., the system either satisfies or violates a given property, probabilistic model
checking can reason quantitatively about the probability that the property is true (or false).
To probabilistically model check a system, two inputs are required: a probabilistic system
model and the specification of a temporal property about the system behaviour. In this
section, we introduce the DNA stack system model, and the language utilised for specifying
the temporal properties.

2.3.1 Level-based CTMC

Continuous-time Markov chains (CTMCs) are a well-known stochastic model utilised for
describing and analysing reaction networks [13]. Traditionally, the CTMC state is a population
vector giving the number of molecules of each species. This representation, however, is
infeasible for many real-life biological systems, which usually have large molecular numbers.
In such cases, the size of the underlying CTMCs become huge: the so-called state-space
explosion problem. Level-based CTMCs were introduced to model systems in a more abstract
and efficient way [2, 6]. In a level-based CTMC, each state is characterised by molecular
concentrations, discretised into a number of levels. In this paper we use a similar idea, but
instead of concentrations levels we utilise molecular count levels for a more explicit state-space
representation.
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» Definition 1 (Level-based CTMC). A level-based continuous time Markov chain is a tuple
(N, S, Sy, R) where N is the molecular count level number, S is a finite set of states; So C S
is the set of initial states; and R : S x S — Ry is the transition rate matriz. Moreover,
each state s € S is a tuple s = (ny1, na,...ng) for a fired k € N (number of species), where
n; : 0 < n; < N is the molecular count level for the i-th species.

Thus, given a maximum molecular count M for all species, each level n; represents the
molecular count intervals [0, 30), [A 2. &) (N — 1) 3L N . X7 (level-based CTMCs
are useful when M > N, hence by taking N to be a power of 10 prevents any rounding
issues). Level-based CTMCs can be directly derived from stochastic reaction models — for
deterministic models one can convert concentrations and rate constants as usual, or directly
use concentration levels [2, 6]. Consider a simple reaction A + B —£, C with the stochastic
rate constant k, and a possible state s = (na, ng, nc) of species’ molecular count levels. The

na-R-ng-R-k M
R

transition rate is calculated as where R = N

2.3.2 Continuous Stochastic Logic

Continuous Stochastic Logic (CSL) [3, 5] is a formal notation to express probabilistic temporal
properties of CTMCs and other dynamical systems. Formulae in CSL can be classified into
state and path formulae:

State formula ® == true | a | =@ | PAD | Puplp] | Ssaple]
Path formula ¢ == X'® | dU'®

where a € AP is an atomic proposition over the states of a CTMC, p € [0, 1] is a probability
threshold, e {<, <,>,>}, and I is an interval of R>¢. State formulae are evaluated over
states of a CTMC, while path formulae are evaluated over paths (or executions/traces) of a
CTMC. Formulae P[] and Syp[p] are transient-state and steady-state CSL properties,
respectively. In this work, we only consider transient-state properties since our DNA stack
has a finite reaction time. A CTMC state s satisfies Poqp[¢] if the probability of all the paths
starting from s and satisfying ¢, satisfies the bound 1 p. There are two types of operators
in a path formula: the next operator where X'® is true if ® is satisfied in the next state
of the path and at a time point ¢ € I, and the until operator where ®; U ®, is true if ®,

is satisfied at some time point within interval I, and that ®; is true up until that point.

Additional path operators can be derived as:

the eventually operator F (future) where F/® := true U'®, and

the always operator G (globally) where G!® := ~F/-®
Intuitively, F'® expresses that ® is eventually satisfied at some time point within I, whereas
a path satisfies G'® if ® is true at every time point in I. (See [5] for the formal CSL
semantics.)

3 Modelling DNA stack system

3.1 Workflow overview

We have extended the PRISM model checker by implementing an iterative workflow! to
model the process of the DNA stack system (Figure 2). PRISM offers a high-level modelling
language for describing system behaviour. Following the styles defined in [11, 6], we developed

1 Source code available at https://github.com/shelllbw/mcSTACK.
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Figure 2 CTMC-based workflow for modelling the DNA stack system.

a set of level-based PRISM reaction models (RMs) covering the possible reactions in each

DNA operation step. Starting from the first RM which describes the reactions after first

adding push DNA data operator , the workflow is as follow:
Construct CTMC based on mathbfi* RM: if i = 0, the initial state for generating
the first CTMC is defined as an assumed state of the DNA chemistry such that some
initial steps have been performed (see Appendix for details). Otherwise, the initial states
are obtained from the result of the previous step. Here we use the explicit PRISM engine
for building CTMCs as our model has a potentially large state space, but only a small
fraction of which is actually reachable. The engine takes less than 10s to build a CTMC
with 10% states on a 3.4 GHz Intel Core i5 processor with 12GB memory — much faster
than the MTBDD engine which takes hours.
Compute transient probability: the transient probability at the end of the incubation
time is calculated for each CTMC state. Each state represents a possible molecular level
that the system can reach at the end of incubation.
Perform wash event: the transient states and their probabilities are modified in order
to model the wash event. Washing is assumed to be an instantaneous event. All the state
variables corresponding to the bead-bound species (e.g., LSP, LSPX) have their value N
changed to (1 — u) N, where p € [0,1] is the constant fraction of beads lost on each wash.
All the state variables corresponding to the non bead-bound supernatant species (e.g., X,
RX, PQ) have their value N’ changed to ¢ N’ B,,, which models the survival from wash
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event due to non-specifically bind to beads. Here ¢ € [0, 1] is the constant fraction of
supernatant solution transferred through the wash cycle to the next reaction stage, and
By, = (1 — p)™ is the normalised mass of beads remaining where n is the index of the
current wash. Moreover, states with the same value after the modification are merged
and their probabilities accumulated.

Generate initial state of (i+1)*® RM: in addition to the wash event, transient
states are further manipulated for constructing the next RM. This includes extending the
states with new variables (i.e., new species formed in the next reaction stage) with the
corresponding state values (i.e., initial level of newly added DNA data operators). To
reduce the state space size, a cut-off probability of 107° is introduced so that only states
with relatively high probability are considered as initial states in the next step.

3.2 Reaction models

The major challenge of model checking DNA stack systems is the state space explosion
problem. A stack system with several operations can potentially generate huge numbers of
reachable states after only a few iterations. It is therefore important not only to consider the
reaction models that we developed are able to describe system behaviour, but also to make
sure a reasonable state space size can be maintained for the model analysis. To alleviate the
problem, we have applied several methods.

As discussed in Section 3.1, states with low probability (smaller than 10~°) will not be
considered as initial states for constructing the next CTMC. Since all reactions in the system
are considered as irreversible and the incubation time is sufficiently long, a small portion of
the state space often takes a large probability. In most cases, with a 10~° cut-off probability
we are able to preserve at least 98% of the total probability with no more than 20 states after
6-8 iterations. Level-based RM and CTMC are applied to further reduce the state space

size. To achieve a good precision, a maximum level of 100 (N = 100) is used in this work.

Thus, given a maximum concentration M of 300nM (or equivalently = 27,100 molecules in a
volume of 1.5 x 10713 L), each level represents 3nM (271 molecules) of a DNA species.

A coarse-grained RM framework is developed aiming to capture essential reactions in
each operation step. Since in this work we are interested in the formation of the target stack,
each model consists of two types of reactions: a main reaction which can form the target
DNA stack species, and a set of side reactions that can directly or indirectly react with the
species in the main reaction, thereby reducing the production of the target stack. Let us
consider the following operation sequence as an example:

add push DNA data operator P § add dataX DNA data operators X g add push DNA data
operator P

where we assume the initial species in the chemistry are bead-bound linker-starter LS and
starter S. We can write a unique RM for each incubation stage after adding each new DNA
data operator:

RM1 (add push DNA data operators P):

LS + P =2, LSP (target), S+P Lo, gp

RM2 (add dataX DNA data operators X):

5:7
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(1) LSP +X X< LSPX (target),

(2) P+X %Py, X4+P X2 Wo,

(3) X + Po 23 Wo, P+ Wo 2% Po, Wo 2% Po, Po—25 Wo,
(4) LSPX +P 22, 1Ss, LSP+ Wo 2% 1S, LSPX + Po =25 LS

and RM3 (add push DNA data operators P):

(1) LSPX +P 2, LSPXP (target),

(2) P+X X% Py, X+P 45 Wo,

(3) X + Po =25 Wo, P+ Wo 2% Ps, Wo 2% Ps, Po 25 Wo,
(4) LSPXP + X <% 1Ss, LSPX +Po —25LSo, LSPXP + Wo <2< LSo

where o denotes all possible polymers constructed by P and X (PXP, PXPX, PXPXP,...).
The first reaction in each RM is the main reaction which produces target stack species (i.e.,
LSP in RM1, LSPX in RM2, and LSPXP in RM3), while the rest are side polymerisation
reactions. In each main reaction, the initial concentrations of new-added reactant (X or P)
is always higher than those pre-existing reactant (LS, LSP or LSPX) due to the wash in
previous step. Therefore, a considerable amount of the newly added reactants that cannot
take part in the reactions and survive from wash events would remain in the chemistry.
During the incubation stage of the next operation step, these residues or the o polymer they
formed negatively affect the production rate of target stacks (i.e., side reactions (2)-(4) in
RM2 and RM3). In particular, reactions (2) and (3) are hybridisation of non bead-bound
supernatants to o polymers, and reactions (4) are hybridisation of bead-bound stack and
supernatants. In the model, we do not explicitly represent the detailed structure of o
polymers as it generates RM with infinite reactions. Instead, we only show their left-most
(start) region which determines the capability to hybridise with the stack species in the
main reactions. In this way, the RM complexity is greatly reduced. There are two types
of o polymers that can be formed under such representation: the one starting with push
P DNA data operator (Po) and the one starting with data W DNA data operator (Wo).
Both of them are able to hybridise with the stack species in the main reaction inhibiting the
production of target stacks.

On the other hand, some reactions are not considered in our RM framework either because
the molecular level of their reactants stays at zero, or they do not harm the production of
target stacks. For example, two o polymers with complementary start and end region may
hybridise and form a longer polymer: PoW + PoP —— PoP. Such reaction in fact reduces
the polymer concentration and thereby benefits the production of target stacks. By ignoring
those reactions, we assume that our RM is always the “worst” case for the target stacks
formation, and thus the lower bound of their concentration is guaranteed.

4 9

We can use the same idea to build RMs for the read and pop operation steps. Popping
the last added push DNA data operator and then reading the dataX DNA data operator
yield the following RMs:
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RM4 (add pop DNA data operators Q):

(1) LSPXP + Q —2 LSPX + PQ (target),
(2) LSPX +P 24 LSPXP, P+ Q =22 pQ

and RM5 (add read DNA data operators R):

) LSPX+R —% LSP + RX (target), LSP +Q —25 LS+ PQ,
) Q+R X% R, R+Q -5 1Q

3) R+TQ1{B;C>TR, Q+TRk—A>TQ, TRk—AM'Q, TQkB—C>TR
) LSPX + 7R <% 1S5 + RX + PQ

Similar to the RMs for push and write steps, the production of target stack species (LSPX
in RM4, and LSP in RM5) are affected by both main reactants and side reactions. The
residual species surviving wash events (i.e., P in RM4, and Q in RM5) can either directly
hybridise with target stack or indirectly react with them via 7 polymers which trigger chain
annihilation reactions [20], namely (4) in RM5. It is worth noting that the occurrence of
chain annihilation reactions is determined by the right-most (end) region of 7 polymer. Thus
the right-most region of 7 is considered explicitly during the polymer formation, which
produces either 7R or 7Q (i.e., reactions (2) in RM5).

3.3 Model example

To illustrate how the CTMC-based DNA stack model works, consider the below operation
sequence:

add push DNA data operator P 5 add dataX DNA data operator X g add push DNA data
operator P .

The corresponding RMs are the RM1-RM3 illustrated above. To start, the initial state of
RM1 is set as:

(LS=81, P=100, S=2, LSP=0, SP=0)

which corresponds to LS = 243nM, P = 300nM and S = 6nM (lower LS concentration is
caused by the wash events in set-up process). The supernatant survival rate ¢ is set as 0.2,
and the loss rate of bead-bound species p is 0.1. The incubation time of each step is 30
minutes. Moreover, we only consider transient states with probability greater than 107> as
initial states for the next RM. With the above conditions, a level-based CTMC is built from
RM1 with 246 states and 408 transitions, and after incubation the transient probability (>
107?) for the following state is

(LS=0, P=17, S=0, LSP=81, SP=2) = 0.9999999436478932.

The state shows that after incubation all copies of LS contributed to forming LSP, but there
are still 17 levels of P remained in the chemistry. Then the wash event is performed by
removing 80% (¢ = 0.2) of the supernatant species P and SP, and 10% (u = 0.1) of the
(bead-bound) target stack LSP.

5:9
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To construct the next CTMC, the states are also extended with new variables representing
the new species introduced by RM2. Moreover, variable X is set to 100, meaning that 300nM
of new dataX DNA data operators is added to the chemistry. State variables corresponding
to the species LS, S and SP will not be considered as their concentration levels will remain
zero, giving the following initial state and probability:

(P=3, LSP=73, X=100, LSPX=0, LSo = 0,Pc = 0, Wo = 0) = 0.9999999436478932.

The CTMC built from RM2 and the above initial state consists of 5,782 states and 20,108
transitions. The transient probability shows that after incubation there are 25 states with
probability greater than 1075, with the total probability greater than 99.99%. By performing
a wash event and state extension, 7 initial states are generated for building the third CTMC
that adds push DNA data operators (RM3):

= 0.01657086916873019
= 0.12083719755305258
= 0.17053834871599782
= 0.03350530289916429

P=100, LSPX=66, X=3, LSPXP=0, LSo = 0,Po = 0, Wo = 0
P=100, LSPX=65, X=3, LSPPX=0, LSo = 0, Po = 0, Wo = 0
=100, LSPX=64, X=3, LSPXP=0, LSo = 0, Po = 0, Wo = 0
100, LSPX=63, X=3, LSPXP=0, LSo = 0, Po = 0, Wo = 0
P=100, LSPX=63, X=4, LSPXP=0, LSo = 0, Po = 0, Wo = 0) = 0.36343236468968576
P=100, LSPX=64, X=4, LSPXP=0, LSo = 0, Po = 0, Wo = 0) = 0.26484767882197474
P=100, LSPX=65, X=4, LSPXP=0, LSo = 0, Po = 0, Wo = 0) = 0.03026448265945934

P
P

DD OO

(
(
(
(
(
(
(

The resulting CTMC has 46,500 states and 180,110 transitions, and completes this simple
example.

4 Results

In this section, we apply our CTMC-based framework to model a 2-signal DNA stack system
that manipulates two data elements, X and Y. The model will be first validated against
stochastic simulation of a rule-based model implementing the same system. Then we apply
probabilistic model checking technique to analyse and optimise the system.

4.1 Modelling and validating a 2-signal DNA stack system

The 2-signal DNA stack system pushes two data elements dataX (X) and dataY (Y) to the
stack, and then performs two pop operations to read out the recorded data:

add push DNA data operators P g add dataX DNA data operators X g add push DNA data
operators P g add dataY DNA data operators Y g
add read DNA data operators R 5 add pop DNA data operators Q g add read DNA data
operators R g add pop DNA data operators Q

The reaction models of the above eight operation steps are detailed in the Appendix. A
maximum molecular level N = 100 is applied, and a fixed 300nM (100 levels) of each DNA
data operators is added to the chemistry at the beginning of each operation step. For each
step, we evaluate the mean level of the target stack after 30 minutes of incubation time.
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Figure 3 Comparison of the PRISM CTMC-based model and stochastic simulation of the rule-
based DNA stack model: mean concentration of the target stacks after 30 minutes of incubation
time for each reaction step for different values of ¢; p = 0.1 in all cases.

Table 1 Performance of CTMC-based model and rule-based stochastic simulation: state space
and transition size for all eight operation steps, total state space probability in the last step, and
CPU times for model checking (MC) and stochastic simulation (SS).

States Transitions  Total probability CPU time (MC) CPU time (SS)

$=01 33x10" 1.1x10° 99.87% 1.5 mins 1.8 mins
=02 28x10° 1.2x10° 99.59% 39 mins 2.2 mins
$=03 28x10° 1.5x107 98.77% 5.1 hours 2.7 mins
¢ =033 4.0x10° 2.2x107 98.43% 8.0 hours 2.9 mins

The green bars in Figure 3 show the results of the CTMC-based model with fixed = 0.1
and various ¢ values. It can be observed that the mean level of the target stacks decrease
gradually w.r.t both the operation step and the increase in ¢. This is not only because 10%
of the stack species are removed during each wash event, but also because residues (e.g.,
strands P, X, R) that survived the wash accelerate side reactions. As a result, the level of
the target stack (LS) drops to 26 in the last step when ¢ = 0.33 is applied. In contrast, since
less residue survives when ¢ = 0.1, there are 34 levels of the target stack (LS) produced in
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the last step. Some performance statistics are reported in Table 1. The size of the state
space grows significantly with ¢, and the computation takes 8 hours when ¢ = 0.33. Despite
the large state space, in all cases more than 98% of the total probability reaches the last
step when a 107° cut-off probability is used in each step.

Due to the simplifications applied to the RMs, behaviours such as polymer-polymer
hybridisation are not considered in the CTMC-based model. It is therefore interesting to
compare the results of our model with the results of the more detailed model. We compare
our CTMC-based model against stochastic simulation of a rule-based model implementing
the same system [20]. The rule-based model covers 20 DNA strand polymerisation and
displacement rules. The comparison is shown in Figure 3. The stochastic simulations are run
with 100 replicates for each case. Overall there is a good agreement between the two models.
In the CTMC-based model, since we simplify the RMs by guaranteeing the lower bound of
target stack, the mean level is always lower than that of the stochastic simulation. With
¢ = 0.1, however, such difference is negligible (less than 1% in the last step). This is due to
the small amount of residues survived from wash, which reduces the occurrence of the side
reactions. With ¢ = 0.33 more residues are in the chemistry, thus the difference between
the two models increases to 4%. The performance of the stochastic simulations is given in
Table 1. Although a single simulation takes 1-3 mins to finish, a much longer time (normally
a few hours) is needed to collect enough replicates for computing statistically reliable results.

4.2 Optimising incubation time

Due to reaction irreversibility, the level of the target stack can eventually reach a stable
value if there is no other species with which it can react. Knowing the time to reach such
a stable state is important as it helps to determine the minimum incubation time. This
is particularly useful for large DNA stack systems, which may involve tens of operation
steps. In this section, we will analyse our probability CTMC-based model to optimise the
incubation time of each DNA operation step. The 2-signal system developed in the previous
section is considered. The operations of push, write, pop, and read are achieved by adding
a fix amount (300nM) of each of the respective DNA data operators. Based on in witro
experiment measurements [20], ¢ and p are set as 0.33 and 0.1, respectively.

To optimise the incubation time, we use the probabilistic model checker PRISM to
quantitatively verify the following CSL property:

Propl : P_s[ G>r ‘target_spec_stable’ | .

Intuitively, the property asks: “What is the probability that the target stack reaches a stable
level from time T onwards?” The condition “target_spec_stable” depends on the reactions of
a given operation step. For example, for the RM2 of Section 3.2, the property becomes:

Propl(RM2) : P—2[ G>7 (LSP=0AP =0APoc =0) ]

That is, the target stack LSPX reaches its stable level when all the main reactant LSP
is transformed, and there is neither push DNA data operators P nor Po polymers in the
chemistry (LSP, X, P, and Po are the species that can affect the production of LSPX). The
main reactant X is not considered in the property as it has higher level than LSP. Thus,
the property can always be satisfied at some time-unit as LSP, P, and Po can eventually be
consumed by X-ended species. Using the same idea, we can re-write Prop! for any reaction
network. For example, the yield of target species LS in RM5 in Section 3.2 is determined by
LSPX, Q and 7Q. The corresponding property is:

Propl(RM5) : P—2[ G>7 (LSPX=0AQ=0A7TQ=0)].
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Figure 4 (a) Heatmap for the satisfaction probability of PropI for target species of the 2-signal
DNA stack over a range of time units T, from 60 (1 min) to 1,500 (25 min). Cells with black
border indicate the suggested incubation time for each operation step. (b) Gel electrophoresis for a
2-signal DNA stack operation with a 30 minutes incubation. For each lane the target species has an
asterisk next to it. Every other unlabeled species is a byproduct. Specifically: Lane 1: NEB low
Molecular ladder (see Appendix for details); Lane 2: S; Lane 3: SP; Lane 4: SPX; lane 5: SPXP;
Lane 6: SPXPX; Lane 7: SPXPX+R; Lane 8: SPXPX+RQ); and Lane 9: SPXPX+RQR. (c) Gel
electrophoresis for a 2-signal DNA stack with the variable incubation timings taken from the schema
optimised by probabilistic model checking.

Figure 4 (a) shows the probability distribution of Prop! with incubation time 7T ranging
from 60 units (1 min) to 1500 units (25 min). The highlighted cells correspond to properties
with the lowest reaction time T as well as having at least 99% satisfaction probability. From
the result, it is suggested that an incubation time of 10-15 min is required for the first four
operation steps. This is because at these stages the concentration levels of the reactants in the
main reactions are relatively high and also close to each other. However, the incubation time
can be reduced to 5 min in the following steps, as there is a significant difference in the levels
of the reactants, which causes a rapid consumption of reactants with lower concentration.

Experimental validation of the model checking result is given in Figure 4 (b) and (c).
A full stack operation for the 2-signal system is performed with 30 minutes incubation
time (Figure 4 (a)), and the variable incubation time suggested from the model checking
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((Figure 4 (b)). As can be seen, in addition to the target species at each operation stage
(asterisks), multiple unwanted species also exist. This is in particular the case during the
reading process (lanes 7-10) with the increase of side reaction rates. However, the two images
show a qualitative agreement, indicating that a similar performance can be achieved with
optimised incubation time.

4.3 Improving target stack yield

The results in Section 4.1 show that high ¢ values (fraction of supernatants surviving the
washing) can significantly reduce the yield of the target stack. This is due to the large amount
of undesired DNA species (e.g., push DNA data operators P in RM2) that survives from the
wash event and increase the rate of side reactions, which compete with the main reactions.
Enhancing wash efficiency and decreasing ¢ is difficult to achieve in vitro. However, we may
still be able to minimise the concentration of undesired species by controlling the amount of
each new DNA data operator added to the chemistry at each step. Consider the 2-signal
system with ¢ = 0.33, where a fixed 300nM of each DNA data operators is added at each
step. The main reaction in the second step “adding dataX” is LSP + X Koo, 19PX. Initially,
there is around 210nM of LSP in the system. Adding 300nM of dataX DNA data operators
results in a large portion of these new DNA data operators not being able to react with LSP.
Instead, they become undesired species in the next step, which in turn negatively affects
the yield of the target stack LSPXP. Therefore, if we reduce the amount of these new dataX
DNA data operators, a higher yield of the target stack would be expected.

In this section, we employ the CSL logic and PRISM to maximise the yield of the target
stack by tuning the amount of each DNA data operator added at each step. The idea is to
first compute a maximum target stack yield when adding a sufficient amount of the DNA
data operators (in our case, 300nM). Taking the result as a reference value, we gradually
decrease the amount of DNA data operators added until reaching a minimum value for which
the system can still produce the desired level of target stack. We use the following CSL

property:
Prop1(C) : P>g.99] F[1800,1800] target_spec > C'| .

Informally, Prop1(C) means that “Given a molecular level C, the probability of target
stack reaching such level after 30 minutes is greater than 99%.” We apply the property for
1 < C <100, and take the maximal C' which satisfies the property as the reference level Cis:

Cret = Max{C | Propl(C)A1< C <100} .

Figure 5(a) gives an example of determining the reference level for the step “adding
dataX” (RM3). When adding 100 levels (300nM) of dataX, the property Prop1(C) : P>.99]
F[1800,1800] LSPX > C ] is false for C' = 71 (213nM) and beyond, and is true for C'= 70
(210nM) and below, indicating that the system can produce a maximum level of 70 LSPX
with 99% probability. Thus we take 70 as the reference level Ciof. Now, the following CSL
property is employed to find the optimised addition concentration:

Prop2 : P>g.99] F[1800,1800] target_spec > Chet | -

The property evaluates whether the system can yield with high probability (> 99%) at least
Cret levels of the target stack at 30 minutes. In order to find the optimal level, we model
check the system with different initial states (i.e., smaller levels) until Prop2 is false. In this
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Figure 5 Optimising DNA addition levels (step “adding dataX” (RM3)) using probabilistic model
checking. Panels: (a) Evaluating Prop1(C) for C = {60,70,71,72,73} when adding 300nM dataX;
(b) Evaluating Prop2 with reduced initial level of dataX, from 72 to 80. Yellow bars: satisfaction of
properties; lines: satisfaction probabilities.

way we find the minimal initial level that satisfies the reference level of target stack Cre. In
Figure 5(b) we evaluate Prop2 using the reference level obtained in (a) for a range of initial
levels. The result suggests that adding 78 levels (234nM) of dataX is the minimum value for
which the system produces the same amount of LSPX when adding 300nM of dataX. The
optimised value, however, can avoid up to 64nM of dataX remaining in the chemistry, which
can harm the system yield in the next step.

We applied our approach to optimise the 2-signal system with ¢ = 0.33 and p = 0.1. We
compare the mean level of target stacks in the optimised system with the standard system
with fixed concentrations, as shown in Figure 6. In the last step, the yield of target stack in
the optimised system is 40% higher than the yield of the standard system.

5 Conclusion and future work

In this work, we applied probabilistic model checking to model and optimise a DNA stack
nano-device. An iterative CTMC-based workflow is developed within the PRISM probabilistic
model checker to model the system. Each iteration describes a single DNA operation step:
add new DNA data operator, incubation, and wash. The initial state of the (i 4+ 1)** step is
determined by the model checking result (transient probability) of the i step. Level-based
CTMCs and simplified reaction models are applied to reduce the state space size. We have
used our framework to develop a 2-signal DNA stack system model. The model is validated
against stochastic simulation of a rule-based model implementing the same system. We use
probabilistic model checking to formally analyse and optimise our 2-signal system. Results
suggest that when a fix amount (300nM) of each DNA data operator are added in each
operation step, an incubation time of 10-15 minutes is required for the first several operation
steps, while for the following steps the incubation time can be reduced to 5 minutes. We have
experimentally validated the result by comparing the gel electrophoresis obtained from the
optimised and unoptimised (30 min incubation time) systems. We also applied probabilistic
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Figure 6 Mean level of target stacks after adding a fixed 300nM of each DNA data operator in
each operation step (yellow bars) vs. adding the optimised level (green bars). The values on top of
the green bars are the actual (optimised) levels added to the systems.

model checking to maximise the yield of target stacks by optimising the amount of DNA
data operators added at each reaction step: our optimised model shows a 40% increase in
target stack yield.

Experimental validation on improving the yield of DNA nanostructures is an ongoing
work. The major challenges of the validation are two-fold. First, the concentration difference
between the optimised and unoptimised protocols in some cases (i.e., LSP and LSPX in
Figure 6) is small, which makes the analysis of the results difficult. For example, it is hard
to figure out whether the differences in the experimental output are caused by the model
creating the correct schematic or the stochastic nature of pipetting error. Second, the model
is influenced by two main parameters: ¢ and . Both these factors exhibit a large influence
over the model and are difficult to optimise and control in the experimental setting. There
are two strategies that we could implement in future to potentially solve these problems.
One approach to explore the pipetting stochasticity would be to use a liquid handling robot
to carry out the operations instead of a manual pipette, as robots have much higher accuracy
than human operators and are not prone to fatigue and other factors. It may also improve
the bead loss and washing efficiency. Another strategy to mitigate the bead loss could be to
use another DNA nanostructure to tether the device instead of beads. Finally, an enzymatic
wash could be explored to reduce the noise and in turn the off target species by digesting
potential byproducts and leaving on the target species intact.
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A Complete reaction models for 2-signal DNA stack system

RM1 (add push data operators P):

LS + P —2, LSP (target), S+ P —25SP

RM2 (add dataX data operators X):

1) LSP+ X X% LSPX (target),

3) X + Po X2 Wo, P+ Wo X% P, Wo 5% Po, Po 225 Wo,

(1)
(2) P+X % Ps, X+P -2 Wo,
(3)
(4)

LSPX + P X2, 180, LSP 4+ Wo 229 1.So, LSPX + Po =45 LSo

RM3 (add push data operators P):

1) LSPX +P -2, LSPXP (target),

3

(1)

(2) P+X %P, X+P -5 Wo,

(3) X + Po =25 Wo, P+Wo 2% Po, Wo 2% Ps, Po <25 Wo,
(4)

4) LSPXP + X £2% 1S5, LSPX +Po 25 LSs, LSPXP + Wo <% 1So

where the bi-molecular rate constants were found to be approximately K4 ~ Kpc =

3 x 10*Ms™ !, and Kapc ~ 2.5 x 10°M~1s~!. The bi-molecular strand displacement rate

constants K7 and K> were assumed equal to hybridisation constants K4 and Kp¢ respectively,

due to the long 28nt “tocholds” of the strand displacement reaction [20]. Moreover, the chain
annihilation reactions were approximated as a single step bimolecular reaction whose rate

constant was set to the rate constant of the initial hybridisation event as an upper bound i.e,

kﬁham = k‘A and k‘ggm = kBC-
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RM4 (add dataY data operators Y):

(1) LSPXP +Y 2 LSPXPY (target),

(2) P+Y =% Po, Y +P 25 Wo,

3) Y + Po 225 Wo, P+Wo 2% Ps, Wo 2% Po, Po -2 Wo,

(4) LSPXPY +P £, 1S5, LSPXP + Wo 2% LS, LSPXPY + Wo —2 LSo

RM5 (add read data operators R):

(1) LSPXPY + R L3 LSPXP + RY (target),
(2) LSPXP+Y X< LSPXPY +RY, R+Y =2 RY

RM6 (add pop data operators Q):

(2) Q+RES 7R, R+Q -2 7Q

(3) R+7Q Moy /R, Q+7R 5 7Q, TR 7Q, 7Q X% R

chain chain
(4) LSPXP +7Q %, 1Ss + RX + PQ, LSPX + 7R “2 - LSs + RX + PQ

(1) LSPXP +Q —25 LSPX + PQ (target), LSPX+R —+LSP+RX, LSP+Q —2LS+PQ

RMY7 (add read data operators R):

(1) LSPX +R - LSP + RX (target), LSP+Q —2- LS + PQ,
(2) Q+RES 7R, R+Q -5 7Q

(3) R+7Q 2% 1R, Q+7R 25 7Q, 7R :7Q, Q2% 7R
(4) LSPX +7R 2 185 + RX + PQ

RMS8 (add pop data operators Q):

(1) LSP + Q —25 LS + PQ (target)
2) Q+RE% 7R, R+Q -5 1Q

3) R+7Q LN TR, Q+7R K, 7Q, TR K TQ, TQ keey iR

B Determine initial state of CTMC for RM1

The initial state for generating CTMC from the first reaction model is assumed the following

steps have been performed:

100 levels of (300nM) linker DNA data operators incubate with 100ul sepharose beads
for sufficient time. It’s assumed that all the DNA data operators can irreversible bind to
beads which yields 100 levels of bead-bounded L stacks.

A wash event is perform by assuming p percent of the L stacks is removed. Given p = 0.1,
90 levels of L remain in the chemistry after the wash.
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Figure 7 Examples of a hypothesised “chain annihilation” multi-stage reaction (left), and P, X
polymer formation (right).

= 100 levels of start DNA data operators are added to hybridise with L. It is assumed that
the irreversible linker-start reaction proceeded to 100% completion over the incubation
time producing 90 levels of LS with 10 levels of supernatant S remain in the chemistry.

= A second wash event is perform by removing 10% LSP stacks, and 80% S (assuming
¢ = 0.2). The result (i.e, LS = 81, S = 2) will be used as the initial state in the first
CTMC.

C Experimental Validation

Table 2 DNA sequences for in vitro validation [20].

Strand Symbol Length Domains |Primary Sequence 5' - 3'

Start S 50 Al* CACACTATTTCCCTTCTACCCGCCCTATCTCATCTCTCATCTCATCTTAA

Push P 56 A*BC |ATAGGGCGGGTAGAAGGGAAATAGTGTGATCCAGTTATT ATAGTTTTGAAGCGTAT
Write X 56 A C*B* |CACACTATTTCCCTTCTACCCGCCCTATATACGCTTCAAA ACTATAATAACTGGAT
Read r 56 B CA*  |ATCCAGTTATTATAGTTTTGAAGCGTATATAGGGCGGGTA GAAGGGAAATAGTGTG
Pop q 56 C*B* A |ATACGCTTCAAAACTATAATAACTGGATCACACTATTTCCC TTCTACCCGCCCTAT
Linker k 33 ml GAGAGAGATGATTAAGATGAGATGAGAGATGAG

Releaser |z 33 *m* CTCATCTCTCATCTCATCTTAATCATCTCTCTC
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For the sake of simplification, we only use data X to build stack in the experiments. This
is because stacks are identified by their length, and it’s unable to distinguish X stack (e.g,
LSPXPX) and Y stack (e.g, LSPXPY) at the current settings as they are different in hairpin
only. Such simplification, however, would not affect our model checking results, as the model
excludes the situation that non-target stack becomes target stack in the later operation steps.

The Vgel simulator [20] is used to create a computer-generated image of what the DNA
stack model output would like post releasing the stack from the beads. An example Vgel
image is given in Figure 8. This Vgel can be combined with the species output to create a
labelled image as we know the lengths of the strands when combined together to be: when
signals are being pushed to the stack

SP: 50 4+ 56 = 106

SPX: 50 + 56 + 56 = 162

SPXP: 50 + 56 + 56 + 56 = 218

SPXPX: 50 + 56 + 56 + 56 = 274
When signals are being read from the stack or popped the length should drop by 56

SPXPXR: 274 - 56 = 218

SPXPXRQ: 218 - 56 = 162

SPXPXRQR:162 - 56 = 106
Note that Linker is not part of this calculation as this creates its own complex of length 33.
There are also other complexes which are formed by side reactions.
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Figure 8 Full stack operation 30 minutes. A comparison of the gel electrophoresis and Vgel
for a full stack operation with a 30 minute incubation. For each lane the target species has an
asterisk next to it. Every other unlabeled species is a byproduct. Gel electrophoresis image: Lane 1:
NEB low molecular ladder; Lane 2: S; Lane 3: SP; Lane 4: SPX; Lane 5: SPXP; Lane 6: SPXPX;
Lane 7: SPXPXR; Lane 8: SPXPXRQ); and Lane 9:SPXPXRQR. Electrophoresis conditions: Gel:10
% Novex TBE Gel 1X TBE @200V for 35minutes Staining dye: Sybr Gold Concentrations: all DNA
data operators were nominally 300nM Vgel image:Lane 1: NEB low molecular ladder. Lane 2: S;
Lane 3: SP; Lane 4: SPX; Lane 5: SPXP; Lane 6: SPXPX; Lane 7: SPXPXR; Lane 8: SPXPXRQ;
and Lane 9: SPXPXRQR.
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Figure 9 Variable timing as per the generated schema. A comparison of the gel electro-
phoresis and Vgel for a full stack operation with the incubation timings taken from the schema
supplied by the model. For each lane the target species has an asterisk next to it. Every other
unlabeled species is a byproduct. Gel electrophoresis image: Lane 1: NEB low molecular ladder;
Lane 2: S; Lane 3: SP; Lane 4: SPX; Lane 5: SPXP; Lane 6: SPXPX; Lane 7: SPXPXR; Lane 8:
SPXPXRQ); and Lane 9: SPXPXRQR. Electrophoresis conditions: 10% Novex TBE Gel in a buffer
of 1X TBE @200V for 35minutes. Staining dye: Sybr Gold Concentrations:all DNA data operators
were nominally 300nM Vgel image: Lane 1: NEB low molecular ladder; Lane 2: S; Lane 3: SP; Lane
4: SPX; Lane 5: SPXP; Lane 6: SPXPX; Lane: 7: SPXPXR; Lane 8: SPXPXRQ); and Lane 9:
SPXPXRQ.
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