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Abstract
So far, several typed lambda-calculus systems were combined with algebraic rewrite rules, and the
termination (in other words, strong normalisation) problem of the combined systems was discussed.
By the size-based approach, Blanqui formulated a termination criterion for simply typed lambda-
calculus with algebraic rewrite rules which guarantees, in some specific cases, the termination of
the rewrite relation induced by beta-reduction and algebraic rewrite rules on strictly or non-strictly
positive inductive types. Using the inflationary fixed-point construction, we extend this termination
criterion so that it is possible to show the termination of the rewrite relation induced by some rewrite
rules on types which are called non-positive types. In addition, we note that a condition in Blanqui’s
proof can be dropped, and this improves the criterion also for non-strictly positive inductive types.
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1 Introduction

1.1 Background
Since the works [12, 21], several typed λ-calculus systems were combined with algebraic
rewrite rules, and the termination (i.e., strong normalisation) problem of the combined
systems was discussed: for instance, simply typed λ-calculus [11, 15, 18, 9], polymorphic
λ-calculus [12, 21, 17], λΠ-calculus [10], the Calculus of Constructions [25, 7, 8], λ-cube [4],
pure type systems [5, 6]. Rewrite rules can make each of these systems more expressive and
efficient, and a termination criterion for a combined system provides a sufficient condition
for the termination of the rewrite relation (i.e., the reduction relation) in this system. Of
course, there are several non-terminating and interesting combined systems, but here we are
interested in terminating systems only.

The performance of a combined system depends on not only its type discipline but also
the range of rewrite rules whose termination is guaranteed. For instance, while Jouannaud-
Okada’s work [17] handles polymorphic λ-calculus and Blanqui-Jouannaud-Okada’s work [11]
does not, the termination criterion in the latter shows the termination of the recursion
principle for the Brouwer ordinal type, which cannot be shown by the criterion in the
former. The Brouwer ordinal type is a type of well founded trees and a typical example
of strictly positive inductive types. Later, Blanqui ([9]) extended the criterion in [11] so
that non-strictly positive inductive types can be dealt with. Though the setting of [11, 9] is
simply typed λ-calculus, the termination criteria in [11, 9] are powerful enough to deal with
several inductive types which are discussed in the literature on type theory.
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12:2 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

1.2 Aim
We extend the termination criterion in [9] further by making it possible to verify the
termination of the rewrite relation induced by some rewrite rules on types which are called
non-positive types. When we denote arrow types by T ⇒ U , a non-positive type in simply
typed λ-calculus means a sort (i.e., a basic type) B with a constructor c : T1 ⇒ · · · ⇒ Tn ⇒ B
such that B occurs in some Ti negatively. As shown in [20, 22, 7], there are some non-positive
types such that their recursion principles induce non-termination. This indicates the difficulty
in finding a terminating example of recursion principles for non-positive types. However,
if one considers rewrite rules which are different from recursion principles, one can think
of some rewrite rules on non-positive types whose rewrite relation should be shown to be
terminating. It is desirable to extend the criterion in [9] in this respect.

1.3 Approach
The approach of [9] to a termination criterion uses computability predicates with size
annotations. Roughly speaking, its termination criterion is formulated in the following way:
first, an interpretation I of sorts is defined, and a computability predicate is assigned to
each type T by extending this interpretation. A computability predicate is a set of terms
which satisfies several desirable properties for the purpose of termination proofs. In this first
step, the most crucial task is the construction of I. For any sort B, I(B) is defined by using
computability predicates annotated by ordinals: I(B) is equal to sup{SB

a | a < h} for some
limit ordinal h and some ordinal-indexed family (SB

a )a<h of computability predicates, where
SB
a ⊆ SB

b holds for any a, b with a ≤ b. This kind of ordinal-indexed family of computability
predicates is called a stratification, and the ordinal a in SB

a represents the size of terms in
SB
a . The interpretation I is extended to all types by defining I∗(B) := I(B) and

I∗(T ⇒ U) := I∗(T )⇒∗ I∗(U) := {t | ts ∈ I∗(U) for any s ∈ I∗(T )}.

Next, a termination criterion is presented, and it is shown that if a given rewrite system
satisfies the termination criterion, then any term t of type T belongs to the computability
predicate I∗(T ) assigned to T ; this implies that every rewrite sequence from t terminates,
hence the correctness of the termination criterion is verified.

As explained in [9], the above notion of size is useful for showing the termination of
subtraction and division on the natural number type N:

sub x 0→ x sub 0 y → 0 sub (s x)(s y)→ sub x y
div 0 (s y)→ 0 div (s x) (s y)→ s (div (sub x y) (s y))

The termination of the rewrite relation induced by these rules is not straightforward: it is
not obvious to guarantee that the argument sub x y of the function call div (sub x y) (s y) is
“smaller than” s x of div (s x) (s y). But the stratification (SN

a )a<h with size annotation to
constructors and function symbols enables to assign sizes to terms so that the size of sub x y
is not greater than the size of x, and the size of s x is greater than the size of x by one.

The main obstacle in extending this approach in [9] to non-positive types is as follows.
Recall that, roughly speaking, a positive inductive type is a sort B which occurs in the types
of arguments of its constructors only positively. For any interpretation I of sorts and any
type T , let [B : X , I]∗T be the interpretation of T obtained from the sort-interpretation I′

defined as follows: I′(C) := X if C = B, otherwise I′(C) := I(C). Then, a crucial fact for the
method of [9] is that if B occurs in T only positively, then [B : X1, I]∗T ⊆ [B : X2, I]∗T holds
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whenever X1 ⊆ X2 holds. This monotonicity property enables one to define a stratification
S0 ⊆ S1 ⊆ · · · ⊆ Sa ⊆ · · · in the bottom-up way, but this property does not always hold if B
occurs in T negatively.

We remove this obstacle by using the inflationary fixed-point construction ([24]), which
does not assume the monotonicity of operators for fixed points as explained in [1]. This
construction provides the following obvious monotonicity to any ordinal-indexed family
(Sc)c<h of computability predicates: if a ≤ b holds then

⋃
c≤a([B : Sc, I]∗T ) ⊆

⋃
c≤b([B :

Sc, I]∗T ) holds, where B may occur in T negatively. A trade-off is that, for non-positive
types, we need to reformulate a size-based termination argument with pre-fixed points only.

Our construction of computability predicates for non-positive types enables us to extend
the accessibility condition of the termination criterion in [9]. The extended accessibility
condition can be explained as follows: let B be a non-positive type with a constructor
c : T1 ⇒ · · · ⇒ Tn ⇒ B, and x be a variable of type Ti in which B occurs negatively. In
addition, suppose that x also occurs in the right-hand side r of some rewrite rule f l1 · · · ln → r.
Then, the extended accessibility says that x must occur in some lj (1 ≤ j ≤ n) and the path
from the position of x in lj to the position of lj consists of finitely many full applications
of some constructors, where an n-ary constructor c is said to be fully applied if c takes n
arguments t1, . . . , tn. For instance, a variable g satisfies the extended accessibility if lj = c g
holds with g : B⇒ B and c : (B⇒ B)⇒ B, because we encounter only the full application
of c in the path from the position of g in lj to the position of lj . It is crucial that, in this
example, our accessibility condition permits the type B ⇒ B of g to include a negative
occurrence of B, which is not permitted by the accessibility condition in [9]. Together with
one more revision of the termination criterion in [9], our accessibility condition provides the
difference between this criterion and our termination criterion.

In addition, we note that a condition in Blanqui’s proof can be dropped, and this improves
the criterion with regard to non-strictly positive inductive types such as the one appearing in
Hofmann’s extract function for the breadth-first traversal of trees (see, e.g., [19]). Specifically,
we drop a condition on a typing rule for the computability closure in [9]. This enables
us to guarantee the termination of Hofmann’s extract function, while it is, to the best of
our knowledge, an open question whether the criterion in [9] guarantees the termination of
Hofmann’s extract function.

To sum up, our contributions are twofold: first, we extend the termination criterion
in [9] by means of the inflationary fixed-point construction so that it is possible to show
the termination of the rewrite relation induced by some rewrite rules on non-positive types.
Second, we also improve this criterion with regard to non-strictly positive inductive types by
verifying that a condition of a typing rule for the computability closure in [9] can be dropped.

1.4 Outline
In Section 2, we provide several preliminary definitions, and recall the facts needed in the
later sections. Next, in Section 3, computability predicates with size annotations are defined.
Finally, in Section 4, we formulate a termination criterion and prove the computability of
typed terms with rewrite rules satisfying this criterion.

2 Preliminaries

For any finite sequence e⃗ of some elements, we denote the length of e⃗ by |e⃗|. The empty
sequence is denoted by ϵ. Given a non-empty and countable set S of sorts, we define the set
T of types by induction: (1) S ⊆ T, and (2) if T,U ∈ T holds then T ⇒ U ∈ T holds. The
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12:4 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

arrow symbol ⇒ is treated as right associative, and we often abbreviate T1 ⇒ · · · ⇒ Tn ⇒ U

by T⃗ ⇒ U with |T⃗ | = n. The set L of terms is defined as follows: let V be a countably
infinite set of variables, C be a countable set of constructors, and F be a countable set of
function symbols such that V,C,F are pairwise disjoint. Then, (1) V ∪ C ∪ F ⊆ L, (2) if
T ∈ T, x ∈ V and t ∈ L hold then λxT t ∈ L holds, and (3) if t, u ∈ L holds then tu ∈ L holds.
Below we identify two α-equivalent terms. We also adopt Barendregt’s variable condition:
no variable occurs both as a free one and as a bound one in a term, and all bound variables
in a term are distinct. The set of all free variables in a term t is denoted by FV(t). We treat
the term application tu as left associative, and often abbreviate tu1 · · ·un as tu⃗ with |u⃗| = n.
When X1 and X2 are sets of terms, we define X1 ⇒∗ X2 := {s ∈ L | st ∈ X2 for any t ∈ X1}.
The powerset of L is denoted by ℘(L). As usual, a position in an expression such as a term
is a string of positive integers (see, e.g., [3]). The subexpression of e at position p is denoted
by e|p, and we denote by e[e′]p the expression obtained by replacing the subexpression of e
at position p with e′. In addition, we denote by Pos(e, e′) the set of all positions p in e′ with
e′|p = e.

Mappings from C ∪ F to T are denoted by Θ and treated as sets of pairs. We often write
s : T whenever (s, T ) ∈ Θ, i.e., Θ(s) = T holds for a given Θ. For any s ∈ C ∪ F with
Θ(s) = T1 ⇒ · · · ⇒ Tn ⇒ B for some sort B, we put rs := n. A typing environment is a
mapping from a finite set of variables to a set of types. Typing environments are denoted by
Γ,∆ and treated as sets of pairs. In this paper, typing rules are the ones of simply typed
λ-calculus:

(s, T ) ∈ Θ ∪ Γ
Γ ⊢ s : T

Γ ⊢ s : T ⇒ U Γ ⊢ t : T
Γ ⊢ st : U

Γ ∪ (x, T ) ⊢ u : U
Γ ⊢ λxTu : T ⇒ U

A substitution is a mapping θ from V to L such that dom θ := {x ∈ V | θ(x) ̸= x} is
finite. Define FV(θ) :=

⋃
{FV(θ(x)) | x ∈ dom θ}. Any substitution θ is extended to L

by stipulating θ(tu) := θ(t)θ(u) and θ(λxTu) := λxT θ(u). We write θ(t) as tθ, and always
assume that no bound variable in t belongs to dom θ ∪ FV(θ), by using α-conversion if
necessary.

We say that a pair (l, r) of terms is a rewrite rule and write it as l → r if there are a
function symbol f ∈ F, a finite sequence l⃗ of terms, a typing environment ∆ and a type T
such that

l = f l⃗, FV(r) ⊆ FV(l) and ∆ ⊢ l : T hold,

(Subject Reduction) for any Γ and any U , if Γ ⊢ l : U holds then Γ ⊢ r : U holds.
If R is a set of rewrite rules, we define the rewrite relation →R on L as follows: t→R s holds
if and only if t = u[lθ]p and u[rθ]p = s holds for some term u, some substitution θ, some
position p in t and some l → r ∈ R. We define →:=→R ∪ →β , where t→β s holds if and
only if t = u0[(λxTu1)u2]p and u0[u1{(x, u2)}]p = s hold for some terms u0, u1, u2 and some
position p in u0. For any term t and any set X of terms, define → (t) := {u ∈ L | t → u}
and →(X ) :=

⋃
{→(t) | t ∈ X}. We say that → is finitely branching if →(t) is finite for any

t ∈ L. A term t is normal if there is no term t′ such that t→ t′ holds. We denote by SN the
set of all terms t which have no infinite rewrite sequence t→ t1 → t2 → · · · .

When ≤ is a quasi ordering, we write e1 ≤ e2 & e2 ≤ e1 as e1 ∼= e2. Let R,R1, . . . , Rn

be relations. We write x⃗Rprody⃗ if and only if |x⃗| = |y⃗| holds and there is an integer i with
xiRyi and xj = yj for any j ̸= i. We write x⃗(R1, . . . , Rn)lexy⃗ if and only if |x⃗|, |y⃗| ≥ n and
there is an integer i such that xiRiyi and xj = yj holds for any j < i.
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Hereafter, we suppose that the following is given:
a non-empty and countable set S of sorts,
a countably infinite set V of variables, a countable set C of constructors, a countable set
F of functional symbols and a mapping Θ : C ∪ F→ T,
a set R of rewrite rules.

▶ Definition 1 (Interpretations of Types). Let I : S⇀ ℘(L) be a partial function from S to
℘(L). We define a partial function I∗ : T⇀ ℘(L) as follows:

I∗(B) := I(B) if I(B) is defined, otherwise I∗(B) is undefined.
I∗(T ⇒ U) := I∗(T )⇒∗ I∗(U) if both I∗(T ) and I∗(U) are defined, otherwise I∗(T ⇒ U)
is undefined.

We write I∗
1(T ) = I∗

2(S) if and only if both I∗
1(T ) and I∗

2(S) are defined and equal.

For any partial function I : S ⇀ ℘(L), we denote by [B : X , I] the partial function
I′ : S⇀ ℘(L) such that

I′(C) =


X , if C = B,
I(C), if C ̸= B and I(C) is defined,
undefined, else.

For the purpose of this paper, the distinction of positive positions and negative positions
in a type is crucial. We denote the set of all positions in a type T by Pos(T ).

▶ Definition 2. For any T ∈ T, we define the sets Pos+(T ) and Pos−(T ) by induction:
Pos+(B) := {ϵ}, Pos−(B) := ∅.
Poss(T ⇒ U) := {1p | p ∈ Pos−s(T )} ∪ {2p | p ∈ Poss(U)} for each s ∈ {+,−} with
−+ := − and −− := +.

We call Pos+(T ) the set of all positive positions in T , and Pos−(T ) the set of all negative
positions in T . Moreover, for any B ∈ S and any T ∈ T, we define Poss(B, T ) := Pos(B, T )∩
Poss(T ) for each s ∈ {+,−}.

A non-positive type is a sort B with a constructor c : T1 ⇒ · · · ⇒ Tn ⇒ B such that for
some i (1 ≤ i ≤ n), Pos−(B, Ti) is non-empty.

The following fact is known:

▶ Proposition 3 ([7]). For any sort B, if I is defined for any sort occurring in T except
B and Pos(B, T ) ⊆ Pos+(B, T ) holds, then [B : X , I]∗(T ) : ℘(L) → ℘(L) is monotone with
respect to X , that is, if X1 ⊆ X2 holds then [B : X1, I]∗(T ) ⊆ [B : X2, I]∗(T ) holds.

The notion of computability predicate we use is a standard one, as the definition below
shows. A term t is neutral if t has one of the following forms: (1) xs⃗, (2) (λx.t)us⃗, (3) f t⃗,
where |⃗t| ≥ max{|⃗l| | f l⃗→ r ∈ R for some r} holds.

▶ Definition 4 (Computability Predicates). A computability predicate is a set S of terms
satisfying
S ⊆ SN,
→(S) ⊆ S,
if t is neutral and →(t) ⊆ S holds, then t ∈ S holds.

Note that for any computability predicates X1 and X2, X1 ⇒∗ X2 is a computability
predicate. In Section 3, we will use the following lemma (for a proof, see [9, Lemma 1]) to
define computability predicates with size annotations.
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12:6 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

▶ Lemma 5. If → is finitely branching and Q is a non-empty set of computability predicates
with (Q,⊂) well ordered, then

⋃
Q is a computability predicate.

The definition of computability predicates with size annotations will proceed along the
hierarchy of ordinals; for this purpose, we use the notion of stratification defined below. We
denote ordinals by a, b, c, d, and the first uncountable cardinal by h.

▶ Definition 6 (Stratifications). A stratification is an ordinal-indexed family (Sa)a<c of sets
of terms for some c ≤ h. For any term t ∈

⋃
a<c Sa, we define the ordinal oS(t) as the least

ordinal b such that t ∈ Sb holds. We say that a stratification S = (Sa)a<c is monotone if
and only if Sa ⊆ Sb holds for any a, b with a ≤ b < c.

Let S = (Sa)a<h be a monotone stratification. Since any set of terms is countable, there
is a countable ordinal a such that Sa = Sc holds for any c > a. We denote the least ordinal
satisfying this property by m(S). Moreover, let S = (Sa)a<c be a monotone stratification, and
suppose that I is defined for any sort occurring in T except B with Pos(B, T ) ⊆ Pos+(B, T ).
Then, by Proposition 3, ([B : Sa, I]∗(T ))a<c is a monotone stratification. We denote this
monotone stratification by [B : S, I]∗(T ).

One can prove the lemma below as in Lemma 3.(1) of [9].

▶ Lemma 7. Let S = (Sa)a<h be a monotone stratification such that every Sa is a comput-
ability predicate, and assume that → is finitely branching. If t ∈ Sm(S) and t→ t′ hold, then
t′ ∈ Sm(S) and oS(t) ≥ oS(t′) hold.

In the rest of this paper, we always assume that a given rewrite relation → is finitely
branching.

3 Construction of Computability Predicates with Size Annotations

In this section, we define computability predicates with size annotations. Specifically, we
first define the notion of size function (Definition 9), which controls the size-information of
computability predicates. Next, given arbitrary size functions, we define stratifications by
size functions (Definition 10). It is these stratifications that form a family of computability
predicates with size annotations, and this family provides each sort with a computability
predicate as its interpretation. Then, this interpretation of sorts is extended to all types in a
straightforward way.

We fix an arbitrary well founded ordering <S on S, and denote the reflexive closure of
<S by ≤S. Therefore, ≤S is a partial ordering: there is no pair (B1,B2) of sorts such that
B1 ≤S B2, B2 ≤S B1 and B1 ≠ B2 hold. Since ≤S is a partial ordering, we can adopt the
following definition of inductive types and non-strictly positive inductive types: a sort B is an
inductive type if for any constructor c : T1 ⇒ · · · ⇒ Tn ⇒ B of B and any i with 1 ≤ i ≤ n,
Pos(B, Ti) ⊆ Pos+(B, Ti) holds. An inductive type B is strictly positive if for any constructor
c : T1 ⇒ · · · ⇒ Tn ⇒ B of B and any argument Ti of c with Ti = Ti,n1 ⇒ · · · ⇒ Ti,nj

⇒ Ui

(j ≥ 0), B does not occur in any of Ti,n1 , . . . , Ti,nj . A non-strictly positive inductive type is
an inductive type not being strictly positive.

▶ Definition 8 (Arguments of Constructors). Let <S be a well founded ordering on sorts, and
Ti be the i-th argument of the constructor c : T⃗ ⇒ B. Then,
1. Ti is recursive iff Pos(B, Ti) is not empty,
2. Ti is negative iff Pos−(B, Ti) is not empty and for any C, either Pos(C, Ti) is empty or

C ≤S B holds,
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3. Ti is accessible iff Pos(B, Ti) ⊆ Pos+(B, Ti) holds and for any C, either Pos(C, Ti) is
empty or C ≤S B holds.

In order to make our stratifications well-defined (Definition 10 below), hereafter we
assume that for any sort B, B has no constructor which has some non-negative and non-
accessible argument. For instance, when C >S B holds, a constructor c# : C⇒ B of a sort
B has a non-negative and non-accessible argument C. If we admit c# then there exists an
argument T (i.e., C) of c# which includes an occurrence of a sort C with C >S B, and this
breaks our definition of stratifications by size functions. Therefore, we may assume without
loss of generality that for any constructor c : T⃗ ⇒ B, there are natural numbers nc, pc, qc

(nc, pc, qc ≥ 0) satisfying the following (if needed, we permute the arguments of c):
for any i ∈ {1, . . . , nc}, the i-th argument Ti of c is negative,
for any j ∈ {nc + 1, . . . , pc}, the j-th argument Tj of c is accessible and recursive,
for any k ∈ {pc + 1, . . . , qc}, the k-th argument Tk of c is accessible and non-recursive,
and there is a sort occurring in Tk only positively,
for any l ∈ {qc + 1, . . . , rc}, the l-th argument Tl of c is accessible and non-recursive, and
there is no sort occurring in Tl only positively.

When Θ(c) = T⃗ ⇒ B holds, T⃗ ⇒ B always has the following structure:

T1 ⇒ · · · ⇒ Tnc︸ ︷︷ ︸
negative arguments

⇒ Tnc+1 ⇒ · · · ⇒ Tpc︸ ︷︷ ︸
accessible and recursive arguments

⇒

Tpc+1 ⇒ · · · ⇒ Tqc ⇒ Tqc+1 ⇒ · · · ⇒ Trc︸ ︷︷ ︸
accessible and non-recursive arguments

⇒ B.

For instance, if C <S B and Θ(c) = (B ⇒ C) ⇒ (C ⇒ B) ⇒ C ⇒ (C ⇒ C) ⇒ B hold,
then we have nc = 1, pc = 2, qc = 3 and rc = 4. On the other hand, if C <S B and
Θ(c) = (C⇒ B)⇒ (C⇒ C)⇒ B hold, then nc = 0, pc = 1, qc = 1 and rc = 2 hold. Notice
that if pc = 0 holds then nc = 0 holds, and similar implications hold for qc and rc.

The size-information of stratifications is controlled by size functions, which compute an
ordinal as the size of c t⃗ from ordinals attached to t1, . . . , tqc as their sizes.

▶ Definition 9 (Size Functions). For any constructor c : T⃗ ⇒ B, a size function (Σc, B⃗c) for
c consists of a function Σc : hqc → h and sorts Bc

1, . . . ,Bc
qc such that

for any i ∈ {1, . . . , pc}, Bc
i = B holds, and

for any i ∈ {pc + 1, . . . , qc}, Bc
i occurs in Ti with Pos(Bc

i , Ti) ⊆ Pos+(Bc
i , Ti) and Bc

i <S B.

We often denote a size function (Σc, B⃗c) by Σc. If B ∈ S holds, then we define
CB := {(c, t⃗, T⃗ ) | c ∈ C, c : T⃗ ⇒ B, |⃗t| = |T⃗ |},
CB

→∗(t) := {(c, t⃗, T⃗ ) ∈ CB | t→∗ c t⃗}, where →∗ is the reflexive and transitive closure of
→.

Note that for any (c, t⃗, T⃗ ) ∈ CB, we do not require ti : Ti.
Below we define stratifications by size functions, and these stratifications form the

interpretation J of sorts, which assigns a computability predicate to each sort. Notice that
we use the inflationary fixed-point construction (see, e.g., [24, 1, 2]) in the case of negative
arguments of constructors.

▶ Definition 10 (Stratifications by Size Functions). Assume that a size function is provided
with each constructor. For any sort B, we define the stratification SB and the value J(B) of
the function J from S to ℘(L) by induction on >S. Suppose that SC and J(C) are defined for
any sort C <S B. We first define SB

a by induction on a ∈ h: SB
0 is defined as the set of all

terms t ∈ SN such that for any (c, t⃗, T⃗ ) ∈ CB
→∗(t),

TYPES 2021



12:8 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

pc = 0,
for any i ∈ {1, . . . , qc}, ti ∈ J∗(Ti), and
Σc(oSc,1(t1), . . . , oSc,qc (tqc)) = 0, where Sc,i is a stratification ([Bc

i : SBc
i

a , J]∗(Ti))a<h for
any i ∈ {1, . . . , qc}.
We abbreviate oSc,1(t1), . . . , oSc,qc (tqc) as oSc (⃗t).

When a = b + 1 holds, we define SB
a as the set of all terms t ∈ SN such that for any

(c, t⃗, T⃗ ) ∈ CB
→∗(t),

for any k ∈ {1, . . . , nc}, tk ∈
⋃

c≤b[B : SB
c , J]∗(Tk),

for any k ∈ {nc + 1, . . . , pc}, tk ∈ [B : SB
b , J]∗(Tk),

for any i ∈ {pc + 1, . . . , qc}, ti ∈ J∗(Ti), and
Σc(oSc,1(t1), . . . , oSc,qc (tqc)) ≤ b + 1, where
Sc,k is a stratification (

⋃
d≤c[B : SB

d , J]∗(Tk))c≤b for any k ∈ {1, . . . , nc},
Sc,k is a stratification ([B : SB

c , J]∗(Tk))c≤b for any k ∈ {nc + 1, . . . , pc} and
Sc,k is a stratification ([Bc

k : SBc
k

c , J]∗(Ti))c<h for any k ∈ {pc + 1, . . . , qc}.
As above, we abbreviate oSc,1(t1), . . . , oSc,qc (tqc) as oSc (⃗t).

When a is a limit ordinal, we define SB
a :=

⋃
b<a SB

b . Finally, we put SB := (SB
a )a<h and

J(B) := SB
m(SB). To justify the definition of J(B), we show that SB is monotone in Lemma

11.(2) below.

Note that in the definition above we used induction on >S and subinduction on a ∈ h.
By the hypothesis of subinduction, we can assume in the case of a = b+ 1 that SB

c is already
defined for any c ≤ b. For any sort B, any set X of terms and any type T , we abbreviate
[B : X , J]∗(T ) as [B : X ]T , and t ∈ J∗(T ) as t ∈ T for any term t. The lemma below
shows that for any sort B, the stratification SB is monotone, and each SB

a is a computability
predicate.

▶ Lemma 11. The following statements hold.
1. Let P,Q be two arbitrary sets of triples (c, t⃗, T⃗ ) of a constructor, a finite sequence of

terms and a finite sequence of types. If P ⊆ Q holds then {t ∈ SN | CB
→∗(t) ⊆ P} ⊆ {t ∈

SN | CB
→∗(t) ⊆ Q} holds.

2. For any sort B, SB is monotone.
3. For any sort B and any a < h, SB

a is a computability predicate.

Proof.
(1.) Straightforward.
(2.) We show by induction on b that if a ≤ b holds then SB

a ⊆ SB
b holds. When b is 0 or

a limit ordinal, the assertion is obvious. Let b = c + 1 be the case. First, we show
SB
c ⊆ SB

c+1. Let t ∈ SB
c be the case. By the definition of SB, oSB(t) cannot be a limit

ordinal, hence either t ∈ SB
0 or t ∈ SB

c0+1 holds for some ordinal c0 < c. Here we consider
the latter case only (the former case is similar). In this case, there are sets Pc0+1 and
Pc+1 such that for any d ∈ {c0 + 1, c + 1}, we have SB

d = {u ∈ SN | CB
→∗(u) ⊆ Pd} and

Pd is the set of all (c, t⃗, T⃗ ) such that
for any k ∈ {1, . . . , nc}, tk ∈

⋃
c≤d−1[B : SB

c ]Tk,
for any k ∈ {nc + 1, . . . , pc}, tk ∈ [B : SB

d−1]Tk,
for any i ∈ {pc + 1, . . . , qc}, ti ∈ Ti, and
Σc(oSc (⃗t)) ≤ d.
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By the assertion 1. above, it suffices to verify that Pc0+1 ⊆ Pc+1 holds. Assume that
(c, t⃗, T⃗ ) ∈ Pc0+1 holds. First, we have tk ∈

⋃
b≤c[B : SB

b ]Tk for any k ∈ {1, . . . , nc} by
c0 < c. Moreover, for any k ∈ {nc + 1, . . . , pc}, we have SB

c0
⊆ SB

c by IH, hence we
have tk ∈ [B : SB

c ]Tk by Pos(B, Tk) ⊆ Pos+(B, Tk) and Proposition 3. It is obvious that
Σc(oSc (⃗t)) ≤ c + 1 holds, so we have Pc0+1 ⊆ Pc+1. Therefore, SB

c ⊆ SB
c+1 holds. Then,

by IH, one can see that if a ≤ c + 1 holds then SB
a ⊆ SB

c+1 holds.
(3.) By induction on a. Since the case of a = 0 is similar to the case of successors, we consider

the cases of successors and limits only. As we have seen in the proof of the assertion
2. above, there is a set Pb+1 such that we have SB

b+1 = {t ∈ SN | CB
→∗(t) ⊆ Pb+1}.

One can show as in [9, Lemma 6] that for any set P of triples of a constructor, a
finite sequence of terms and a finite sequence of types, {t ∈ SN | CB

→∗(t) ⊆ P} is a
computability predicate. Therefore, SB

b+1 is a computability predicate. If a is limit,
then SB

a =
⋃

b<a SB
b holds, and each SB

b with b < a is a computability predicate by IH.
Since ((SB

b )b<a,⊂) is a well ordering by the monotonicity of SB, SB
a is a computability

predicate by Lemma 5 and the assumption that → is finitely branching. ◀

Following [1], one can say that SB
m(SB) is a pre-fixed point in the following sense: for any

(c, t⃗, T⃗ ) such that
c : T⃗ ⇒ B holds, |⃗t| = |T⃗ | holds and c t⃗ is normal,
for any k ∈ {1, . . . , nc}, tk ∈

⋃
c≤m(SB)[B : SB

c ]Tk,
for any k ∈ {nc + 1, . . . , pc}, tk ∈ [B : SB

m(SB)]Tk,
for any i ∈ {pc + 1, . . . , qc}, ti ∈ Ti, and
Σc(oSc (⃗t)) ≤ m(SB) + 1,

we have c t⃗ ∈ SB
m(SB). Hereafter, we often abbreviate t ∈ SB

m(SB) as t ∈ SB.
The statements 1–3 of the lemma below are used in the proof of its statement 4, while

the statement 4 will be used in the proof of Lemma 13 below.

▶ Lemma 12. The following statements hold:
1. t ∈ SB

0 holds iff t ∈ SB holds and for any (c, t⃗, T⃗ ) ∈ CB
→∗(t), Σc(oSc (⃗t)) = pc = 0 holds.

2. t ∈ SB
a+1 holds iff

t ∈ SB holds,
for any (c, t⃗, T⃗ ) ∈ CB

→∗(t), Σc(oSc (⃗t)) ≤ a + 1 holds, and for any k ∈ {1, . . . , pc},
oSc,k (tk) ≤ a holds.

3. If (c, t⃗, T⃗ ) ∈ CB and c t⃗ ∈ SB holds, then we have oSB(c t⃗) ≥ Σc(oSc (⃗t)) and oSB(c t⃗) >
oSc,k (tk) for any k ∈ {1, . . . , pc}.

4. Let δ be the function on h such that δ(a) = a + 1 if a is a limit ordinal, and δ(a) = a

otherwise. If t ∈ SB holds, then we have oSB(t) = δ(sup(R ∪ S ∪ T )) with
R = {oSB(t′) | t→ t′},
S = {oSc,k (tk) + 1 | (c, t⃗, T⃗ ) ∈ CB, t = c t⃗, 1 ≤ k ≤ pc},
T = {Σc(oSc (⃗t))} with (c, t⃗, T⃗ ) ∈ CB and t = c t⃗.

Proof.
(1.) (=⇒) Obvious. (⇐=) Since t ∈ SB holds, we have t ∈ SB

a with a = oSB(t). Then, by
definition, we have t ∈ SN, and for any (c, t⃗, T⃗ ) ∈ CB

→∗(t) and any i ∈ {pc + 1, . . . , qc},
ti ∈ Ti holds. Therefore, we have t ∈ SB

0 because Σc(oSc (⃗t)) = 0 holds.
(2.) (=⇒) Obvious. (⇐=) If pc = 0 holds then we immediately have t ∈ SB

a+1 by assumption.
Suppose that pc ≥ 1 holds. We have t ∈ SB

c+1 with c + 1 = oSB(t), so t ∈ SN holds. If
(c, t⃗, T⃗ ) ∈ CB

→∗(t) holds, then for any i ∈ {pc + 1, . . . , qc}, ti ∈ Ti holds. Moreover, we
have oSc,k (tk) ≤ a for any k ∈ {1, . . . , pc}. Therefore, tk ∈

⋃
b≤a[B : SB

b ]Tk holds for any
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12:10 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

k ∈ {1, . . . , nc}, and tk ∈ [B : SB
a ]Tk holds for any k ∈ {nc + 1, . . . , pc}. Then, t ∈ SB

a+1
holds because we have Σc(oSc (⃗t)) ≤ a + 1.

(3.) One can see that oSB(c t⃗) is either 0 or a successor a + 1. If oSB(c t⃗) = 0 holds, then
c t⃗ ∈ SB

0 holds and so we have oSB(c t⃗) = 0 ≥ Σc(oSc (⃗t)) by definition. If oSB(c t⃗) = a+ 1
holds, then c t⃗ ∈ SB

a+1 holds and so we have oSB(c t⃗) = a + 1 ≥ Σc(oSc (⃗t)) by definition.
Next, we show that oSB(c t⃗) > oSc,k (tk) holds for any k ∈ {1, . . . , pc}. If oSB(c t⃗) = 0
holds, then pc = 0 holds and so the assertion holds vacuously. Let oSB(c t⃗) = a + 1 be
the case, and take a natural number k ∈ {1, . . . , pc}. If k ≤ nc holds, then we have
tk ∈

⋃
b≤a[B : SB

b ]Tk and so oSc,k (tk) ≤ a holds. Otherwise we have tk ∈ [B : SB
a ]Tk,

hence oSc,k (tk) ≤ a holds as well.
(4.) We put a := sup(R∪ S ∪ T ) and b := oSB(t). First, we show b ≥ δ(a). Let t→ t′ be the

case, then we have b ≥ oSB(t′) by Lemma 7. We have b ≥ sup(S ∪ T ) by the statement
3. above, hence b ≥ a. Since b cannot be a limit ordinal, if a is a limit ordinal then
b > a holds, so b ≥ δ(a) holds. Otherwise, we have b ≥ a = δ(a).
Next, we show δ(a) ≥ b. It suffices to show t ∈ SB

δ(a). Since t ∈ SB holds, we have
t ∈ SN, and for any (c, t⃗, T⃗ ) ∈ CB

→∗(t) and any i ∈ {pc + 1, . . . , qc}, ti ∈ Ti holds.
δ(a) = 0: let (c, t⃗, T⃗ ) ∈ CB

→∗(t) be the case. By the statement 1. above, it suffices to
show pc = 0 and Σc(oSc (⃗t)) = 0. First, consider the case of t = c t⃗. Then, S must be
empty and so pc = 0 holds. Moreover, we have Σc(oSc (⃗t)) = 0 by sup(T ) = 0. Next,
let t → t′ →∗ c t⃗ be the case. Then, we have oSB(t′) = 0 and so t′ ∈ SB

0 holds. It
follows that pc = 0 and Σc(oSc (⃗t)) = 0 hold, because (c, t⃗, T⃗ ) ∈ CB

→∗(t′) holds.
δ(a) = c + 1: let (c, t⃗, T⃗ ) ∈ CB

→∗(t) be the case. By the statement 2. above, it suffices
to show that Σc(oSc (⃗t)) ≤ c + 1 holds and oSc,k (tk) ≤ c holds for any k ∈ {1, . . . , pc}.
Consider the case of t = c t⃗ first. We have Σc(oSc (⃗t)) = sup(T ) ≤ c + 1. Moreover,
for any k ∈ {1, . . . , pc}, we have oSc,k (tk) + 1 ≤ sup(S) ≤ a ≤ c + 1. Next, let
t → t′ →∗ c t⃗ be the case. We have t′, c t⃗ ∈ SB because SB

m(SB) is a computability
predicate. By Lemma 7 and the statement 3. above, we have

Σc(oSc (⃗t)) ≤ oSB(c t⃗) ≤ oSB(t′) ≤ c + 1.

For any k ∈ {1, . . . , pc}, we have

oSc,k (tk) < oSB(c t⃗) ≤ oSB(t′) ≤ c + 1

by Lemma 7 and the statement 3. again. Therefore, we have t ∈ SB
δ(a). ◀

By using Lemma 12.(4) as in the proof of [9, Corollaries 1 and 2], one can prove the
following lemma, which is a key lemma for our termination criterion (Theorem 24 below).

▶ Lemma 13. Let c be a constructor, and assume that Σc is strictly extensive with respect to
recursive arguments of c, i.e., ai < Σc(⃗a) holds for any a⃗ and any i ∈ {1, . . . , pc}. Moreover,
we suppose that Σc(⃗a) is not a limit ordinal for any a⃗.
1. For any (c, t⃗, T⃗ ) ∈ CB such that c t⃗ ∈ SB holds and c t⃗ is normal, we have oSB(c t⃗) =

Σc(oSc (⃗t)).
2. If Σc is monotone, then for any (c, t⃗, T⃗ ) ∈ CB with c t⃗ ∈ SB, we have oSB(c t⃗) = Σc(oSc (⃗t)).

4 Computability of Well-Typed Terms

In this section, we first define the notion of annotation for constructors (Definition 17).
An annotation for constructors determines the corresponding size functions (Definition 18),
so one can define stratifications by size functions and the interpretation J of sorts along
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Definition 10 above whenever an annotation for constructors is given. Next, we define the
notion of annotations for function symbols (Definition 20). Finally, we give our termination
criterion, namely, a sufficient condition for the termination of → which consists of several
criteria concerning annotations for constructors and function symbols (Theorem 24).

First of all, we recall accessible subterms in [9], and define a variant of these terms called
quasi-accessible subterms.

▶ Definition 14 (Accessible Subterms and Quasi-Accessible Subterms). Assume that a family
(Σc, B⃗c)c∈C of size functions is given. We say that a triple (u, U,C) is accessible in a tuple
(t, T,B) and write (u, U,C) ⊴a (t, T,B) if and only if either 1. or 2. below is satisfied:
1. (u, U,C) = (t, T,B).
2. There are a tuple (c, t⃗, T⃗ ) ∈ CB and an integer k ∈ {nc + 1, . . . , qc} such that t = c t⃗,

T = B and (u, U,C) ⊴a (tk, Tk,Bc
k) hold.

We say that (u, U,C) is quasi-accessible in (t, T,B) and write (u, U,C) ⊴qa (t, T,B) if and
only if either 1. above or 2’. below is satisfied:
2’. There are a tuple (c, t⃗, T⃗ ) ∈ CB and an integer k ∈ {1, . . . , qc} such that t = c t⃗, T = B

and (u, U,C) ⊴qa (tk, Tk,Bc
k) hold.

Note that if (u, U,C) ⊴qa (t, T,B) holds by the condition 2’ above, then either (u, U,C) ⊴a
(t, T,B) holds or there are finitely many distinct tuples (u1, U1,C1), . . . , (un, Un,Cn) (n ≥ 1)
such that (un, Un,Cn) ⊴a · · · ⊴a (u1, U1,C1) = (t, T,B) holds with un = c t⃗ and we have
u = tk for some negative argument k of c. In other words, ⊴qa \ ⊴a (i.e., the difference of
⊴qa and ⊴a) holds at most once at the beginning. For instance, consider two constructors c0 :
(B⇒ B)⇒ B, c1 : B⇒ B and a variable x : B⇒ B. Then, (x,B⇒ B,B) ⊴qa (c1 (c0 x),B,B)
holds by the condition 2’, and we have (x,B⇒ B,B) ⊴qa (c0 x,B,B) ⊴a (c1 (c0 x),B,B) in
this case. As this example shows, if one has (u, U,C) ⊴qa (t, T,B) or (u, U,C) ⊴a (t, T,B)
with (u, U,C) ̸= (t, T,B), then T = B must hold by definition. That is why ⊴qa \ ⊴a holds
at most once: if U is a type of some negative argument of a constructor for C and we have
(u, U,C) ⊴qa (t, T,B), then U ̸= C must hold.

▶ Lemma 15. Assume that a family (Σc, B⃗c)c∈C of size functions is given. If (u, U,C) ⊴a
(t, T,B) and t ∈ T hold then u ∈ U holds.

Proof. The assertion is trivial if (u, U,C) = (t, T,B) holds, so assume that there are a tuple
(c, t⃗, T⃗ ) ∈ CB and an integer k ∈ {nc + 1, . . . , qc} with t = c t⃗, T = B and (u, U,C) ⊴a
(tk, Tk,Bc

k). Since c t⃗ ∈ T = B holds, we have c t⃗ ∈ SB
a for some a which is zero or a successor

ordinal. If k > pc holds, then we immediately have tk ∈ Tk by definition. If k ≤ pc holds,
then tk ∈ [B : SB

b ]Tk holds for some b with a = b + 1. By Proposition 3, we have

[B : SB
b ]Tk ⊆ [B : SB

m(SB)]Tk = Tk,

so we have tk ∈ Tk also in this case. Therefore, we have u ∈ U by IH. ◀

Size algebras enable us to annotate constructors and function symbols in a way which
estimates the sizes of their inputs and outputs.

▶ Definition 16 (Size Algebras). A size algebra consists of
a set A = T (F, V) of F-terms built from a set V of size variables α, β, . . . and a set F of
size function symbols f, g, . . . of fixed arity with V ∩ F = ∅,
a quasi ordering ⩽A on A and a strict ordering <A⊆⩽A such that for each R ∈ {⩽A, <A}
and any substitution φ : V→ A, if aRb holds then aφRbφ holds,
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12:12 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

a function fh : hn → h for each size function symbol f ∈ F of arity n such that for any
valuation µ : V→ h, if a ⩽A b (resp. a <A b) holds then aµ ≤ bµ (resp. aµ < bµ) holds,
where αµ := µ(α) and (f a1 . . . an)µ := fh(a1µ, . . . , anµ).

Size algebras are denoted by A. A size algebra A is monotone if and only if for any f ∈ F, if
a⃗(⩽A)prodb⃗ holds then f a⃗ ⩽A f b⃗ holds.

The successor size algebra is the size algebra A which consists of F, <A,⩽A below:
F = C ∪ {s}, where C is a fixed countably infinite set of constants and s is the unary
function symbol. The interpretation sh of s is the successor function on ordinals, and
each constant in C is interpreted in a fixed way.
<A is defined by induction: a <A s a for any a ∈ A, and if a <A b then s a <A s b. The
ordering ⩽A is defined as the reflexive closure of <A.

One can easily see that the successor size algebra actually satisfies the conditions for being
a size algebra. We will use the successor size algebra in applying our termination criterion
below (Examples 27 and 28).

The set TA of annotated types is defined by induction: (1) T ⊆ TA, (2) if B ∈ S and a ∈ A
hold then Ba ∈ TA holds, (3) if U, T ∈ TA holds then U ⇒ T ∈ TA holds. We adopt the
following notations:

Var(e) means the set of all size variables occurring in an expression e,
|T | means the type obtained by removing all annotations in T ,
Annot(T,B, a) means the annotated type obtained by annotating any occurrence of B in
T by a.

In addition, we extend the positive and negative positions in types to annotated types:
Poss(Bb) := {1p | p ∈ Poss(b)} for each s ∈ {+,−},
Pos+(α) := {ϵ}, Pos−(α) := ∅,
if f is of arity 0 then we define Pos+(f) := {ϵ} and Pos−(f) := ∅, otherwise we define

Poss(fb1 . . . bn) := {ip | i ∈ Mon+(f), p ∈ Poss(bi)}∪{ip | i ∈ Mon−(f), p ∈ Pos−s(bi)},

where Mon+(f) (resp. Mon−(f)) is the set of arguments in which f is monotone (resp.
anti-monotone) with respect to ⩽A.

The top-extension of a size algebra A is the set A = A ∪ {∞} with ∞ ̸∈ A. We define as
follows:

B∞ := B for any B ∈ S.
For any a, b ∈ A, a ⩽∞

A b holds if and only if either a ⩽A b or b =∞ holds. In addition,
a <∞

A b holds if and only if either a <A b or a ̸=∞ = b holds.
For any substitution φ : V→ A and any a ∈ A, aφ :=∞ if there is a variable α ∈ Var(a)
with φ(α) =∞, otherwise aφ is defined as the usual substitution.

Below we denote elements of V∪{∞} by α, β, . . . as well. Then, annotations for constructors
can be formulated as follows:

▶ Definition 17 (Annotations for Constructors). Let A be an arbitrary size algebra. An
annotation for constructors is a family C = (B⃗c,Θ(c))c∈C such that for any c ∈ C with
Θ(c) = T1 ⇒ · · · ⇒ Trc ⇒ B,
1. B⃗c consists of the sorts Bc

1, . . . ,Bc
qc , and

for any i ∈ {1, . . . , pc}, Bc
i = B holds, and

for any i ∈ {pc + 1, . . . , qc}, Bc
i occurs in Ti with Pos(Bc

i , Ti) ⊆ Pos+(Bc
i , Ti) and

Bc
i <S B,

2. Θ(c) = T1 ⇒ · · · ⇒ Trc ⇒ Bσc with σc ∈ A, where Ti = Annot(Ti,Bc
i , α

c
i) if i ∈ {1, . . . , qc},

otherwise Ti = T .
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3. {αc
1, . . . , α

c
pc} ⊆ V, {αc

pc+1, . . . , α
c
qc} ⊆ V∪ {∞}, and the members of {αc

1, . . . , α
c
qc} ∩ V are

either pairwise equal or pairwise distinct,
4. if pc ̸= 0 then Var(σc) ⊆ {α1, . . . , αqc} holds, otherwise σc ∈ V \ {α1, . . . , αqc} holds,
5. Pos(αc

i , σ
c) ⊆ Pos+(αc

i , σ
c) for any i ∈ {1, . . . , qc},

6. αc
i <

∞
A σc holds for any i ∈ {1, . . . , pc}.

We stipulate that an annotation for constructors determines the corresponding size
functions in the following way:

▶ Definition 18 (Size Functions by Annotation). Let an annotation for constructors be given.
For any constructor c, we define the size function Σc induced by this annotation as follows:
put α⃗ := αc

1, . . . , α
c
qc , and suppose that a1, . . . , aqc are arbitrary ordinals less than h. For any

α ∈ Var(σc), we first define the valuation ν as

ν(α) :=


0, if α is distinct from any of α⃗,
ai, if α = αc

i and the members of {α⃗} ∩ V are pairwise distinct,
b, if α = αc

i and the members of {α⃗} ∩ V are pairwise equal,

where b = sup{ai | 1 ≤ i ≤ qc, αc
i ∈ V}. Then, we define

Σc(a1, . . . , aqc) :=
{

0, if σc =∞,
σcν, otherwise.

When an annotation of constructors is given, we have the size function Σc for any
constructor c by the definition above. Then, by Definition 10, we obtain stratifications by
size functions. By using these stratifications with a given valuation µ : V→ h, we interpret
annotated types T ∈ TA as follows:

Bµ := SB
m(SB), and Baµ = SB

aµ,
(U ⇒ V )µ = Uµ⇒∗ V µ.

▶ Lemma 19. Assume that an annotation C for constructors is given.
1. Let c be an arbitrary constructor with pc ̸= 0, and ν, µ be arbitrary valuations from
{α1, . . . , αqc} to h. If αiν ≤ αiµ holds for any i ∈ {1, . . . , qc} with αi ∈ V, then σcν ≤ σcµ

holds.
2. Let Σc be the size function c induced by C. If σc ̸=∞ holds, then ai < Σc(⃗a) holds for

any a⃗ and any i ∈ {1, . . . , pc}.

Proof.
(1.) Since pc ̸= 0 holds, we have Var(σc) ⊆ {α1, . . . , αqc}. Then, the assertion follows because

Pos(αc
i , σ

c) ⊆ Pos+(αc
i , σ

c) holds for any i ∈ {1, . . . , qc} by the definition of C.
(2.) By the definition of C, if σ ̸=∞ holds then we have αc

i <A σ
c for any i ∈ {1, . . . , pc}. It

follows from the definition of size algebras that αc
iν < σcν holds where ν is the valuation

defined in Definition 18, hence we have ai < Σc(⃗a) for any a⃗ and any i ∈ {1, . . . , pc}. ◀

Without loss of generality, we may assume that for any f ∈ F, there is a natural number
qf ≥ 0 such that the first qf arguments of f are all sorts. We denote the i-th argument of f
by Bf

i for any i ∈ {1, . . . , qf}. Notice that there may be a natural number i ∈ {qf + 1, . . . , rf}
with Ti a sort. Using these notations, we define annotations for function symbols as follows:

▶ Definition 20 (Annotations for Function Symbols). Let A be an arbitrary size algebra. An
annotation F for function symbols consists of a well founded quasi ordering ≤F on F∪C∪V
and a family ((Df

A,⩽
f
A, <

f
A, ζ

f
A), (Df

h,⩽
f
h, <

f
h, ζ

f
h),Θ(f))f∈F which satisfy the following: for any

f ∈ F,
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1. h <F f holds for any h ∈ C ∪ V,
2. Θ(f) = T1 ⇒ · · · ⇒ Trf ⇒ Bσf with σf ∈ A,
3. Ti = Annot(Bf

i,Bf
i, α

f
i) for any i ∈ {1, . . . , qf}, and Ti = Ti for any i ∈ {qf + 1, . . . , rf},

4. Var(σf) ⊆ {αf
1, . . . , α

f
qf} ⊆ V, and αf

1, . . . , α
f
qf are pairwise distinct,

5. for each X ∈ {A, h}, Df
X is a set, ⩽f

X is a quasi ordering on Df
X , <f

X is a well founded
relation with <f

X⊆⩽f
X , and ζ f

X is a mapping from Xqf to Df
X such that

if f ≃F g holds, then (Df
X ,⩽

f
X , <

f
X) = (Dg

X ,⩽
g
X , <

g
X) holds for each X ∈ {A, h},

if a⃗ <g,f
A b⃗ holds, then a⃗µ <g,f

h b⃗µ for any valuation µ : V→ h,
<g,f

h ◦ ≤prod⊆<g,f
h ,

where ◦ denotes the composition of two relations, and for each X ∈ {A, h},
(x1, . . . , xqg) <g,f

X (y1, . . . , yqf ) holds iff g ≃F f and ζg
X(x1, . . . , xqg) <f

X ζ f
X(y1, . . . , yqf )

hold.

As an example from [9, Example 3], we consider the subtraction sub ∈ F on natural
numbers: we have Θ(sub) = N⇒ N⇒ N, and the rewrite rules are

sub x 0→ x sub 0 y → 0 sub (s x)(s y)→ sub x y

where 0 : N (zero) and s : N⇒ N (the successor function) are the constructors for N. Using
the successor size algebra, we annotate 0, s and sub as follows:

Θ(0) = Nα, Θ(s) = Nβ ⇒ Nsβ , Θ(sub) = Nγ ⇒ N⇒ Nγ with qsub = 1 and αsub = σsub = γ.

The annotation Θ(sub) indicates that the size of sub x y does not increase from the size of
x. For each X ∈ {A, h}, we take Dsub

X as X, and ζsub
X : X → Dsub

X as the identity function.
In addition, ⩽sub

h and <sub
h are defined as ≤ and < on ordinals, respectively, while we put

⩽sub
A :=⩽A and <sub

A :=<A. The annotation with the identity function is often useful, as we
will see below.

Notice that when both an annotation for constructors and an annotation of function
symbols are given, we have a mapping Θ : C ∪ F→ TA. We adopt similar notations for Θ to
the ones for Θ : C ∪ F→ T.

Below we define two orderings <A and <h on function calls, where a function call is
expressed as a pair (f, ξ) of a function symbol f and a substitution ξ with the domain
{αf

1, . . . , α
f
qf}. Here the substitution ξ provides an instance of function calls by instantiating

the variables αf
1, . . . , α

f
qf .

▶ Definition 21 (The Orderings on Function Calls). Let g, f ∈ F be the case. Assume that
an annotation for function symbols is given and that for each X ∈ {A, h}, two mappings
ξ : {αg

1, . . . , α
g
qg} → X and η : {αf

1, . . . , α
f
qf} → X are given. Then, (g, ξ) <X (f, η) holds iff

either g <F f or (αg
1ξ, . . . , α

g
qgξ) <g,f

X (αf
1η, . . . , α

f
qfη) holds.

The following type system gives a condition of the termination criterion below (see
the condition Subject Reduction and Decreasingness). Roughly speaking, the rule
(app-decr) guarantees that the size of any function call in ht⃗ is strictly less than (f, φ), and
the rule (sub) with the subtyping rules enables us to reason about the subtype relation
between annotated types.

▶ Definition 22 (Typing Rules for the Computability Closure). Assume that annotations for C
and F are given, and let f be a function symbol with a symbolic valuation φ : {α⃗f} → A. The
typing rules for the computability closure of (f, φ) are as follows:
Rule (app-decr). If the following conditions
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1. (h, V⃗ ⇒ V ) ∈ Γ ∪Θ,
2. either h ≃F f holds or h <F f holds,
3. either h ∈ F holds and ψ is a symbolic valuation from {α⃗h} → A with (h, ψ) <A (f, φ),

or h ∈ V ∪ C holds and ψ is the empty function,
are satisfied, then the rule

Γ ⊢f
φ t1 : V1ψ · · · Γ ⊢f

φ t|V⃗ | : V|V⃗ |ψ

Γ ⊢f
φ ht⃗ : V ψ

(app-decr)

is a typing rule for the computability closure of (f, φ).
Rules (lam) and (sub). We have the following rules:

Γ, x : U ⊢f
φ t : V

Γ ⊢f
φ λx

U t : U ⇒ V
(lam)

Γ ⊢f
φ t : U U ≤ V
Γ ⊢f

φ t : V
(sub)

where the subtyping rules are as follows:

a ≤∞
A b

Ba ≤ Bb
(size) U ′ ≤ U V ≤ V ′

U ⇒ V ≤ U ′ ⇒ V ′ (prod)
U ≤ U (refl) U ≤ V V ≤ T

U ≤ T (tran)

▶ Remark 23. In [9], the rule (app-decr) has one more condition which states that h is
applied to at least qh arguments whenever h ∈ F and h ≃F f holds. That is, the rule in [9] is
obtained from the rule (app-decr) above by replacing the clause 2. with the clause
2’. either h ≃F f and |V⃗ | ≥ qh holds or h <F f holds.
In fact, this condition is not needed to prove the correctness of the termination criterion
in [9]. If this condition is dropped, then the criterion in [9] guarantees the termination of
Hofmann’s extract function for the breadth-first traversal of trees (see, e.g., [19]) as our
termination criterion does. We will show in Example 27 below that our criterion guarantees
the termination of Hofmann’s extract function. If one keeps the condition 2’, then it is, to
the best of our knowledge, an open question whether the termination of Hofmann’s extract
function can be shown by the criterion in [9].

As an illustration of typing rules for the computability closure, we consider the annotated
rewrite system of sub which we have seen above (see also [9, Example 3]). When the symbolic
valuations ψ and φ are defined as ψ := {(γ, β)} and φ := {(γ, s β)}, respectively, then
(sub, ψ) <A (sub, φ) holds. Thus we have, e.g.,

x : Nβ , y : N ⊢sub
φ x : Nβ(= Nγψ) x : Nβ , y : N ⊢sub

φ y : N(= Nψ)
x : Nβ , y : N ⊢sub

φ sub x y : Nβ

(app-decr) β ≤∞
A s β

Nβ ≤ Nsβ
(size)

x : Nβ , y : N ⊢sub
φ sub x y : Nsβ

(sub)

When an annotation C for constructors and an annotation F for function symbols are
given, we denote the set of all size variables used in C by V(C), and the set of all size
variables used in F by V(F ).

In sum, if one provides an annotation for constructors then this annotation determines
a family of size functions, and this family determines a stratification as we have seen in
Section 3. If one also gives an annotation for function symbols, one obtains the typing rules
above for each function symbol f and symbolic valuation φ. Then, in order to prove the
termination of a given rewrite relation →, it suffices to show that our termination criterion
below is satisfied.
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The difference between our termination criterion below and the criterion of [9] consists in
the condition (3) of Accessibility and the condition (2b) of Minimality. Both of these
conditions are added in order to deal with constructors of non-positive types. In particular,
the condition (3) of Accessibility includes the quasi-accessibility, which was defined above
(Definition 14).

▶ Theorem 24 (Termination Criterion). Let C be an annotation for constructors and (Σc)c∈C
be the family of size functions induced by C such that for any c and any a⃗, Σc(⃗a) is not a
limit ordinal. Moreover, let an annotation F for function symbols be given. Then, the rewrite
relation → terminates on the set of all well-typed terms if for each rule f l1 · · · l|⃗l| → r ∈ R
with Θ(f) = T1 ⇒ · · · ⇒ Trf ⇒ Bσf ,
|⃗l| ≥ qf holds,
there is a typing environment Γ : FV(r)→ TA satisfying the following: for any (x, U) ∈ Γ,
there are a term lk (1 ≤ k ≤ |⃗l|), a sort Bx and a size variable αx ∈ V(C) ∪ V(F ) with
Pos(x, lk) ̸= ∅ and U = Annot(|U |,Bx, αx),
there is a substitution φ : {α1, . . . , αqf} → A

such that the following conditions are satisfied:
Monotony. For any i ∈ {1, . . . , qf}, Pos(αf

i, σ
f) ⊆ Pos+(αf

i, σ
f) holds.

Accessibility. For any (x, U) ∈ Γ,
1. x = lk and U = Tkφ holds, or
2. Pos(Bx, |U |) ⊆ Pos+(Bx, |U |) holds, Tk is a sort and (x, |U |,Bx) ⊴a (lk, Tk, Tk), or
3. Pos(Bx, |U |) ⊈ Pos+(Bx, |U |) holds, Tk is a sort and (x, |U |,Bx) ⊴qa (lk, Tk, Tk).

Minimality. For any substitution θ such that ljθ ∈ Tj holds for any j ∈ {1, . . . , |⃗l|}, there is
an ordinal valuation ν satisfying
1. for any i ∈ {1, . . . , qf}, αf

iφν = oSBi (liθ) holds, and
2. for any (x, U) ∈ Γ,

a. if Pos(Bx, |U |) ⊆ Pos+(Bx, |U |) holds, then o[Bx:SBx ]|U |(xθ) ≤ αxν holds,
b. otherwise o(

⋃
c≤a

[Bx:SBx
c ]|U |)a<h

(xθ) = αxν holds.

Subject Reduction and Decreasingness. Γ ⊢f
φ r : T|⃗l|+1 ⇒ · · · ⇒ Trf ⇒ Bσfφ holds.

Proof. Below we show the computability of constructors, the computability of function sym-
bols and the computability of well-typed terms one by one. We first prove the computability
of constructors: for any c ∈ C with Θ(c) = T1 ⇒ · · · ⇒ Trc ⇒ Bσc , any µ : V→ h and any t⃗
with |⃗t| = rc, if ti ∈ Tiµ holds for any i with 1 ≤ i ≤ rc, then c t⃗ ∈ Bσcµ holds. Here we need
to consider constructors of non-positive types, which were not handled by [9]. Let c ∈ C
be the case with Θ(c) = T1 ⇒ · · · ⇒ Trc ⇒ Bσc . In addition, let µ : V→ h be an arbitrary
valuation, and assume that ti ∈ Tiµ holds for any i with 1 ≤ i ≤ rc. Putting t⃗ := t1, . . . , trc ,
we verify c t⃗ ∈ Bσcµ. It is obvious that c t⃗ ∈ SN holds. If pc = 0 holds then we have c t⃗ ∈ SB

0
by Definition 10, hence c t⃗ ∈ Bσcµ follows. Below we assume that pc ̸= 0 holds.

Consider an arbitrary (c, u⃗, T⃗ ) ∈ CB
→∗(c t⃗). If i ∈ {1, . . . , nc} holds, then we have ui ∈

Tiµ = [Bαi
: SB

αiµ]Tiµ ⊆
⋃

c≤αiµ[B : SB
c ]Ti, because ti →∗ ui holds and Tiµ is a computability

predicate. Similarly, for each i ∈ {nc + 1, . . . , qc}, we have ui ∈ Tiµ = [Bi : SBi
αiµ]Ti.

Put a as a := max({Σc(oSc,1(u1), . . . , oSc,qc (uqc))} ∪ {αiµ | 1 ≤ i ≤ qc, αi ∈ V}). Then,
ui ∈

⋃
c≤a[B : SB

c ]Ti holds for any i ∈ {1, . . . , nc}, and ui ∈ [Bi : SBi
a ]Ti holds for any

i ∈ {nc + 1, . . . , qc} by Proposition 3. Therefore, c t⃗ ∈ SB
a+1 holds and oSB(c t⃗) exists.

If σc =∞ holds then we immediately have c t⃗ ∈ BoSB (c t⃗) ⊆ Bσcµ, so let σc ̸=∞ be the
case. By Lemma 13.(2), we have oSB(c t⃗) = Σ(oS (⃗t)) = σcν, where ν is the valuation defined
in Definition 18. If αiν ≤ αiµ holds for any αi ∈ V∩{α⃗}, then it follows from Var(σc) ⊆ {α⃗}
and Lemma 19.(1) that σcν ≤ σcµ holds. We show that αiν ≤ αiµ holds for any αi ∈ V∩{α⃗}.
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Since we consider the case of σc ̸= ∞, {α⃗} ∩ V must be non-empty. If the members of
{α⃗} ∩ V are pairwise distinct, we have αiν = oSi(ti) ≤ αiµ because ti ∈ Tiµ holds. Assume
that all members of {α⃗} ∩ V are equal. We have

αiν = sup{oSj (tj) | 1 ≤ j ≤ qc, αj ∈ V} = oSk (tk)

for some k with 1 ≤ k ≤ qc by definition. Therefore, αiν = αkν ≤ αkµ = αiµ holds because
we have tk ∈ Tkµ.

Next, we show the computability of function symbols: we verify that for any f ∈ F with
Θ(f) = T1 ⇒ · · ·Trf ⇒ Bσf , any µ : {αf

1, . . . , α
f
qf} → h and any t⃗ with |⃗t| = rf , if ti ∈ Tiµ

holds for any i, then f t⃗ ∈ Bσfµ holds. We show this claim by induction on ((f, µ), t⃗) with
(<h,←prod)lex. Let ti ∈ Tiµ be the case for any i with 1 ≤ i ≤ rf . Since f t⃗ is neutral, it
suffices to show that u ∈ Bσfµ holds for any u with f t⃗→ u. The case of u = f u⃗ and t⃗→prod u⃗

is straightforward. Otherwise, we have
(∗) f l⃗→ r ∈ R, t⃗ = l⃗θu⃗ and u = rθu⃗,
where u⃗ = t|⃗l|+1, . . . , trf holds. Recall that if i ≤ qf holds then Ti is a sort and that if i > qf

holds then Ti = Ti holds. Therefore, for any i ∈ {1, . . . , |⃗l|}, we have liθ ∈ Ti by liθ ∈ Tiµ.
We obtain the following valuation ν by Minimality: for any i ∈ {1, . . . , qf}, αf

iφν = oSBi (liθ)
holds, and for any (x, U) ∈ Γ,
1. if Pos(Bx, |U |) ⊆ Pos+(Bx, |U |) holds, then o[Bx:SBx ]|U |(xθ) ≤ αxν holds,
2. otherwise o(

⋃
c≤a

[Bx:SBx
c ]|U |)a<h

(xθ) = αxν holds.
We prove the following claims 1–3. The claim 3 will be proved in the same way as [9,
Theorem 1]. On the other hand, the claim 1 is proved without a condition on (app-decr)
which was imposed in [9] (see Remark 23 above), and the claim 2 forces us to consider the
new case where Bx occurs in |U | negatively for some (x, U) ∈ Γ.
1. Correctness of the computability closure: let ν be the valuation given above by

Minimality, and φ be the substitution given by the assumptions of this theorem. Using
subinduction on ⊢f

φ, we show that for any typing environment ∆, any term t, any type T
and any substitution θ′, if (i) ∆ ⊢f

φ t : T holds and (ii) xθ′ ∈ Uν holds for any (x, U) ∈ ∆,
then tθ′ ∈ Tν holds.
We consider the principal case (app-decr) only: let ∆ ⊢f

φ hw⃗ : V ψ be the case, then we have
wiθ

′ ∈ Viψν for any i with 1 ≤ i ≤ |V⃗ | by the hypothesis of subinduction. We put k := |V⃗ |.
If h ∈ V holds, then ψ = ∅ holds and we have hθ′ ∈ (V⃗ ⇒ V )ν by assumption, hence we
have hθ′w⃗θ′ ∈ V ψν. Let h ∈ C be the case, and put V = (U1 ⇒ · · · ⇒ Um ⇒ Cσc). To
show hw⃗θ′ ∈ V ψν, consider arbitrary u1 ∈ U1ψν, . . . , um ∈ Umψν. By the computability
of constructors, we have hw⃗θ′u⃗ ∈ Cσcψν, hence hw⃗θ′ ∈ V ψν holds by definition. Let
h ∈ F be the case, and assume that

V = (U1 ⇒ · · · ⇒ Um ⇒ Cσh), α⃗h = αh
1 , . . . , α

h
qh , α⃗f = αf

1, . . . , α
f
qf

holds. If h <F f holds, then (h, ψν) <h (f, µ) immediately follows from Definition 21.
Otherwise, we have α⃗hψ <h,f

A α⃗fφ by (h, ψ) <A (f, φ). Then, by Definition 20, we
have α⃗hψν <h,f

h α⃗fφν. By the minimality of ν, we have α⃗fφν ≤prod α⃗fµ, so we have
α⃗hψν <h,f

h α⃗fµ by Definition 20 again. Therefore, (h, ψν) <h (f, µ) holds also in this case.
By the hypothesis of the main induction, for any t⃗ with t⃗ = t1, . . . , tk, tk+1, . . . , tk+m,
if ti ∈ Viψν holds for any i with 1 ≤ i ≤ k and tk+j ∈ Ujψν holds for any j with
1 ≤ j ≤ m, then ht⃗ ∈ Cσhψν holds. Therefore, we have hw⃗θ′u⃗ ∈ Cσhψν for any
u1 ∈ U1ψν, . . . , um ∈ Umψν, hence hw⃗θ′ ∈ V ψν holds by definition.
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2. Computability of the matching substitution: we show that xθ ∈ Uν holds for any
(x, U) ∈ Γ, where θ is the substitution given in (∗) and Γ : FV(r) → TA is the typing
environment given by the assumptions of the theorem. Consider an arbitrary (x, U) ∈ Γ,
then there is an integer k, a term lk, a sort Bx and a size variable αx such that all of
them satisfy the assumptions of the theorem. If Pos(Bx, |U |) ⊆ Pos+(Bx, |U |) holds then
we can prove the assertion as in [9, Theorem 1] by using Lemma 15 and Accessibility, so
assume that Bx occurs in |U | negatively. If x = lk holds, then k must be greater than qf

because |U | is not a sort, hence we have

|U | = U = Tk = Tk

and so xθ = lkθ ∈ Tkµ = Uν holds. Let x ̸= lk be the case, and suppose that the position
of xθ in lkθ is p1 · · · pi (i ≥ 1). By Accessibility, we have (x, |U |,Bx) ⊴qa (lk, Tk, Tk).
Therefore, for any subterm t of lkθ whose position in lkθ is ϵ or p1 · · · pj for some j with
0 ≤ j < i, t has the form c w⃗ for some c ∈ C and some w⃗. Let c0 w⃗0, c1 w⃗1, . . . , ci−1 w⃗i−1
be the subterms of positions ϵ, p1, . . . , p1 · · · pi−1 in lkθ, respectively (hence c0 w⃗0 = lkθ).
We put c := ci−1 if i − 1 ̸= 0, otherwise we put c := c0. Then, since lkθ ∈ Tkµ holds,
we have xθ ∈

⋃
c≤a[Bc : SBc

c ]|U | for some a by applying Definition 10 repeatedly. By the
minimality of ν, we have xθ ∈ Uν.

3. We show that u ∈ Bσfµ holds. The claims 1. and 2. above show rθ ∈ T|l|+1φν ⇒ · · · ⇒
Trfφν ⇒ Bσfφν. By definition, we have Ti = Ti for any i with |l|+ 1 ≤ i ≤ rf , so we have
rθu⃗ ∈ Bσfφν. If σf =∞ holds then we immediately have Bσfφν = Bσfµ, so let σf ̸=∞ be
the case. Since φ does not assign ∞ to any of α1, . . . , αqf , we have σfφ ̸=∞, so ν(σfφ)
is defined. By Monotony, it suffices to verify αiφν ≤ αiµ for any i with 1 ≤ i ≤ qf , but
this follows from Minimality.

Finally, following [9, Theorem 1], we show the computability of well-typed terms by
induction on ⊢: we show that for any Γ, t, T with Γ ⊢ t : T and any substitution θ, if
xθ ∈ U holds for any (x, U) ∈ Γ, then tθ ∈ T holds. The termination of → follows from the
computability of well-typed terms: if Γ ⊢ t : T holds, then we consider the empty substitution
θ. Since any computability predicate subsumes the set V of variables, we have xθ = x ∈ U
for any (x, U) ∈ Γ, hence t ∈ T ⊆ SN holds.

The case of function symbols: by assumption, we have ⊢ f : Θ(f) with Θ(f) = T1 ⇒ · · · ⇒
Trf ⇒ B and Θ(f) = T1 ⇒ · · · ⇒ Trf ⇒ Bσf . It suffices to verify that f t⃗ ∈ B for any t⃗ ∈ T⃗
with |⃗t| = rf . Define the valuation µ : {α1, . . . , αqf} → h as µ(αi) := m(SBi). Since Ti = Bi

holds for any i ∈ {1, . . . , qf} and Tj = Tj holds for any j ∈ {qf + 1, . . . , rf}, we have tk ∈ Tkµ

for any k ∈ {1, . . . , rf}. By the computability of function symbols, we have f t⃗ ∈ Bσfµ ⊆ B.
The case of constructors: by assumption, we have ⊢ c : Θ(c) with Θ(c) = T1 ⇒ · · · ⇒

Trc ⇒ B and Θ(c) = T1 ⇒ · · · ⇒ Trc ⇒ Bσc . It suffices to verify that c t⃗ ∈ B for any t⃗ ∈ T⃗
with |⃗t| = rc. Define the valuation µ : {α1, . . . , αqc} → h as in the previous paragraph. Let
i ∈ {1, . . . , qc} be the case. We have

ti ∈ Ti = [Bi : Bi]Ti = [Bi : SBi

µ(αi)]Ti,

hence ti ∈ Tiµ holds. Therefore, we have tk ∈ Tkµ for any k ∈ {1, . . . , rc}. By the
computability of constructors, we have c t⃗ ∈ Bσµ ⊆ B. The proofs of the other cases are
standard. ◀
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Below we discuss several examples of rewrite systems. The first and the second (Ex-
amples 25 and 26) are examples of non-terminating rewrite systems with a rule for non-positive
types. The third and the fourth (Examples 27 and 28) contain a non-strictly positive inductive
type and a non-positive type, respectively. We show that the first two examples cannot
satisfy our termination criterion, and that the last two examples satisfy the criterion.

▶ Example 25. We consider the following non-terminating rewrite system with a non-
positive type B, which was discussed in [7]: put S := {B,A}, C := {c} and F := {p}
with Θ(c) = (B ⇒ A) ⇒ B and Θ(p) = B ⇒ B ⇒ A. Define the rewrite system R as
R := {p (c x)→ x} with x ∈ V. If we put ω := λyBp y y, then we have

ω(c ω)→β p (c ω)(c ω)→R ω(c ω)→β · · ·

so this rewrite system R is non-terminating. The system R cannot satisfy our termination
criterion: suppose that R satisfies it. Then, qp ≤ 1 holds and so we have Γ ⊢p

φ x : B⇒ Aσφ

by Subject Reduction and Decreasingness. That is, Bx ̸= B holds and B is not annotated in
U with (x, U) ∈ Γ and U = B⇒ Aσφ. Since x ̸= l1 holds, either (x, |U |,Bx) ⊴a (l1, T1, T1) or
(x, |U |,Bx) ⊴qa (l1, T1, T1) must hold by Accessibility. Note that T1 = B and l1 = c x holds.
If (x, |U |,Bx) ⊴a (l1, T1, T1) holds, this contradicts the fact that x is the first argument of c
and nc = 1 holds. If (x, |U |,Bx) ⊴qa (l1, T1, T1) holds, then we must choose B in U as Bx,
but this contradicts the fact that B in U = B⇒ Aσφ is not annotated.

▶ Example 26 (Higher-Order Abstract Syntax for Untyped λ-Calculus). The following is a
non-terminating rewrite system which is obtained from Example 25 above with a minor
change: put S := {B}, C := {abs} and F := {app} with Θ(abs) = (B ⇒ B) ⇒ B and
Θ(app) = B ⇒ B ⇒ B. Then, define the rewrite system R as R := {app (abs g) x → g x}
with {g, x} ⊆ V. If we put ω′ := abs (λyBapp y y), then

app ω′ ω′ = app (abs (λyBapp y y)) ω′ →R (λyBapp y y) ω′ →β app ω′ ω′ →R · · ·

holds, hence this rewrite system R is non-terminating.
We show that the system R cannot satisfy our termination criterion. Assume that R

satisfies the criterion. By Accessibility, we have Bg = B as in Example 25 above, so B must be
annotated in U with (g, U) ∈ Γ, that is, (g,Bαg ⇒ Bαg ) ∈ Γ holds. Then, (x,Bαx) ∈ Γ and
αx = αg must hold, because we have ⊢app

φ gx : Bσφ by Subject Reduction and Decreasingness.
By Lemma 11.(3), B0 ⇒ B0 is a computability predicate, hence there exists a variable

z ∈ B0 ⇒ B0 because any variable belongs to B0 ⇒ B0. This implies that abs z ∈ B holds.
We define a substitution θ as θ := {(g, z), (x, abs z)}, then l1θ = abs gθ ∈ B and l2θ = xθ ∈ B
holds. By Minimality, we have a valuation ν such that

o(
⋃

c≤a
Bc⇒Bc)a<h

(z) = o(
⋃

c≤a
Bc⇒Bc)a<h

(gθ) = αgν = αxν ≥ oB(xθ) = oB(abs z)

holds with o(
⋃

c≤a
Bc⇒Bc)a<h

(z) = 0, but this contradicts the definition of the stratification

SB.

In the two examples below, we use the successor size algebra, which was defined above.

▶ Example 27 (Hofmann’s Extract Function for the Breadth-First Traversal of Trees (see, e.g.,
[19])). Let S := {C, L} be the set of sorts, F := {e} be the set of function symbols with
Θ(e) = C ⇒ L, and C := {c} be the set of constructors with Θ(c) = ((C ⇒ L) ⇒ L) ⇒ C.
The following rewrite rule satisfies our termination criterion: e (c x)→ x e with x ∈ V.
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We annotate c as Θ(c) = ((Cα ⇒ L) ⇒ L) ⇒ Csα, and e as Θ(e) = Cβ ⇒ L∞. By
Definition 18, we have the size function Σc induced by this annotation of c. We define
Γ := {x : (Cα ⇒ L) ⇒ L}, Bx := C, αx := α and φ := {(β, s α)}. Then, take ζe

X as the
identity function for each X ∈ {A, h}.
Monotony. Obvious.
Accessibility. We have (x, (C⇒ L)⇒ L,C) ⊴a (c x,C,C).
Minimality. Let θ be a substitution with c xθ ∈ C. We define ν as ν := {(α, a)} with

a := o[C:SC](C⇒L)⇒L(xθ). Then, by Lemma 13, we have βφν = (s α)ν = a + 1 = Σc(a) =
oSC(c xθ).

Subject Reduction and Decreasingness. Put ψ := {(β, α)}, then we have the following
derivation:

x : (Cα ⇒ L)⇒ L ⊢e
φ x : (Cα ⇒ L)⇒ L ⊢e

φ e : Cα ⇒ L (app-decr)

x : (Cα ⇒ L)⇒ L ⊢e
φ x e : L

(app-decr)

where Cα = Cβψ and (e, ψ) <A (e, φ) hold. Note that we have ⊢e
φ e : Cα ⇒ L because we

dropped the condition |V⃗ | ≥ qh in the rule (app-decr) of [9] (see Remark 23 above).

▶ Example 28 (β-Reduction and βη-Reduction of Untyped λ-Calculus). Let S := {B} be
the set of sorts, where B denotes the type of untyped λ-terms. The following rewrite rules
say that absβ is the λ-abstraction for β-reduction and that absβη is the λ-abstraction for
βη-reduction:

app (absβ g) x→ g x app (absβη g) x→ g x absβη (λyBapp x y)→ x

where absβ is a constructor of B, while absβη and app are function symbols. In this way, one
can deal with both of β-reduction and βη-reduction in one rewrite system. Of course, this
rewrite system is not terminating as seen above. On the other hand, consider the set R of
the following rewrite rules:

f (absβ g)→ absβη g f (absβη g)→ absβ g f (app x y)→ app (f x) (f y)

with {g, x, y} ⊆ V. These rules enable us to replace the outermost λ-abstraction for β-
reduction with the one for βη-reduction, and vice versa. We show that the system R satisfies
the termination criterion. Note that absβ , absβη and app are all constructors of B when we
consider the system R. We thus assume that C is given as {absβ , absβη, app} with Θ(absβ) =
(Bγ ⇒ Bγ)⇒ Bsγ , Θ(absβη) = (Bγ′ ⇒ Bγ′)⇒ Bsγ′ and Θ(app) = Bγ′′ ⇒ Bγ′′ ⇒ Bsγ′′ . By
Definition 18, we have the size functions Σabsβ ,Σabsβη and Σapp. Moreover, put F := {f} with
Θ(f) = Bαf ⇒ Bαf , and take ζ f

X as the identity function for each X ∈ {A, h}.
Consider the first rule (the second rule can be handled in the same way). We define

Γ := {g : Bγ′ ⇒ Bγ′}, Bg := B, αg := γ′ and φ := {(αf , s γ′)}.
Monotony. Obvious.
Accessibility. We have (g,B⇒ B,B) ⊴qa (absβ g,B,B).
Minimality. Let θ be a substitution with absβ gθ ∈ B. We define ν as ν := {(γ′, a)} with

a := o(
⋃

c≤b
[B:SB

c ]B⇒B)b<h
(gθ). Then, by Lemma 13, we have αfφν = (s γ′)ν = a + 1 =

Σabsβ (a) = oSB(absβ gθ).
Subject Reduction and Decreasingness. We have

g : Bγ′ ⇒ Bγ′ ⊢f
φ g : Bγ′ ⇒ Bγ′

g : Bγ′ ⇒ Bγ′ ⊢f
φ absβη g : Bsγ′

(app-decr)
....

Bsγ′ ≤ B
g : Bγ′ ⇒ Bγ′ ⊢f

φ absβη g : B
(sub)
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Since Bφ = B holds, we are done.

Next, consider the third rule f (appxy)→ app (f x) (f y). We define Γ := {x : Bγ′′ , y : Bγ′′},
Bx := By := B, αx := αy := γ′′ and φ := {(αf , s γ′′)}.
Monotony. Obvious.
Accessibility. We have (x,B,B) ⊴a (app x y,B,B) and (y,B,B) ⊴a (app x y,B,B).
Minimality. Let θ be a substitution with app (xθ) (yθ) ∈ B. We define ν as ν := {(γ′′, b)}

with b := max{oSB(xθ), oSB(yθ)}. Then, we have oSB(xθ) ≤ αxν and oSB(yθ) ≤ αyν.
Moreover, by Lemma 13, we have αfφν = (s γ′′)ν = b + 1 = Σapp(oSB(xθ), oSB(yθ)) =
oSB(app (xθ) (yθ)).

Subject Reduction and Decreasingness. Define ψ := {(αf , γ′′)}. We have the following:

Γ ⊢f
φ x : Bγ′′

Γ ⊢f
φ f x : Bγ′′

(app-decr)
Γ ⊢f

φ y : Bγ′′

Γ ⊢f
φ f y : Bγ′′

(app-decr)

Γ ⊢f
φ app (f x) (f y) : Bsγ′′

(app-decr)

where Bγ′′ = Bαfψ and (f, ψ) <A (f, φ) holds.

5 Concluding Remarks and Future Work

We, in this paper, have extended the termination criterion in [9] so that in some case
the termination of the rewrite relation induced by rewrite rules on non-positive types can
be shown. For this purpose, the inflationary fixed-point construction has been used: the
inflationary fixed-point construction is crucial to the definition of stratifications by size
functions for non-positive types. In addition, we have also improved the criterion in [9] with
regard to non-strictly positive inductive types. We have noted that a condition on a typing
rule for the computability closure can be dropped, and then we have shown the termination
of Hofmann’s extract function for the breadth-first traversal of trees. This example is a
typical case of rewrite systems on non-strictly positive inductive types.

However, a thorough study of rewrite rules on non-positive types is far from being achieved,
since it is dependent type systems that are able to include more impressive examples of
non-positive types. A larger goal is thus to extend our termination criterion to dependent
type systems. Setzer’s Mahlo universe ([23]), which is a universe type with a strong reflection
property in Martin-Löf type theory, is an example of non-positive types in dependent type
systems. Exploring rewrite rules for Setzer’s Mahlo universe would be a crucial step for
further research on combined systems of typed λ-calculus and rewrite rules. For this purpose,
we will examine whether our criterion can be extended to λΠ/R-calculus, and whether
Mahlo universe can be formulated in λΠ/R-calculus. This calculus is a combined system
of the dependent type system λΠ-calculus and rewrite rules. Some termination criteria for
λΠ/R-calculus were already formulated by [10, 16], but, to the best of our knowledge, rewrite
rules on non-positive types in this calculus remain unexplored.

Recently, dependently typed programming languages such as Coq and Agda were combined
with rewrite rules ([13, 14]). Providing these combined languages with termination criteria
would be another crucial step for further research on rewrite rules in dependent type systems,
since rewrite rules and several features from Coq or Agda coexist there. Termination criteria
on strictly or non-strictly positive inductive types in these languages are not sufficiently
examined yet, so we are planning to begin by exploring positive inductive types. In particular,
it should be investigated whether the size-based termination method is applicable to formulate
termination criteria on positive inductive types in these combined programming languages.

TYPES 2021



12:22 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

Yet another larger goal is to integrate our work into an automated termination prover
for higher-order rewriting such as Blanqui’s HOT. Since HOT is based on sized types and
computability closure, HOT is most relevant to our work among automated termination
provers.
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