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Abstract
Although the scalable geographically weighted regression (GWR) has been developed as a fast
regression approach modeling non-stationarity, its potential on spatial prediction is largely unexplored.
Given that, this study applies the scalable GWR technique for large-scale spatial prediction, and
compares its prediction accuracy with modern geostatistical methods including the nearest-neighbor
Gaussian process, and machine learning algorithms including light gradient boosting machine. The
result suggests accuracy of our scalable GWR-based prediction.
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1 Introduction

Geostatistical Gaussian process (GP) models have been used for spatial prediction in geology,
environmental science, and other fields (see [2]). Although GP-based spatial prediction is
known to be accurate as demonstrated in [9], the computational complexity inflates in an
order of N3 where N is the sample size due to a matrix inversion. The classical GP model
is unavailable for large samples (e.g., N > 10, 000). To address the drawback, fast GP
approximations have been developed in geostatistics (see [7]) and machine learning areas
(see [11]). For example, nearest-neighbor Gaussian process (NNGP [3]) is widely accepted as
a fast approximate GP in geostatistics. NNGP and other scalable GPs achieve linear-time
computational complexity (i.e., the computational complexity increases in an order of N).
They are available for very large samples.
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12:2 Large-Scale Spatial Prediction by Scalable GWR

Scalable GPs usually model stationary spatial process assuming model parameters in-
cluding regression coefficients as constant over space. However, [4, 13] among others have
demonstrated that regression coefficients can vary over geographical space. Nevertheless, fast
prediction technique considering such spatially varying coefficients (SVCs) is quite limited.

Geographically weighted regression (GWR [1]) is a popular SVC modeling technique
that has been used for spatial prediction (e.g., [6, 5]). It is hard to apply the classical
GWR for very large data in terms of the computational complexity and memory usage. To
overcome the limitation, [10] and [12] developed algorithms for estimating the GWR model
computationally efficiently. In particular, the latter developed the scalable GWR technique
achieving a quasi-linear computational complexity with very small approximation error. The
scalable GWR is potentially useful for spatial prediction. However, it has never been used
for spatial prediction.

The objective of this study is to examine the usefulness of the scalable GWR in terms of
spatial prediction for large samples through a comparison with modern prediction methods
in geostatistics and machine learning areas.

2 GWR model

2.1 Basic GWR model
GWR describes the explained variable yi at i-th sample site on a two-dimensional space
using the following model:

yi =
K∑

k=1
xi,kβi,k + ϵi, ϵi ∼ N(0, σ2) (1)

where xi,k is the k-th explanatory variable and σ2 is the variance parameter. βi,k is the
k-th regression coefficient at the i-th location. The model is estimated by a weighted least
squares (WLS) method assuming greater weights for nearby samples using a distance-decaying
kernel whose decay-speed is dependent on a bandwidth parameter w. Later, we will use an
exponential kernel k(di,j ; w) = exp(di,j/w), where di,j is the Euclidean distance between
locations i and j. The bandwidth parameter w is typically estimated by a leave-one-out
cross-validation (LOOCV). In each iteration of the LOOCV, regression coefficients must be
estimated for all the N sample sites. This property makes GWR slow for very large samples.

2.2 Scalable GWR model
Scalable GWR estimates the same local model (Eq. 1). To lighten the computational cost,
the kernel function k(di,j ; w) with unknown b is replaced with a linear combination of kernel
functions with known b values.

k∗(di,j ; a, b) = a +
L∑

l=1
blk(di,j ; w̃)4/2l

, (2)

where w̃ is a known bandwidth, which is specified based on the median of the 100-nearest
neighbor distance. a and b are parameters being estimated through the LOOCV. The first
term represents a global weight assigning a constant weight across samples while the second
term represents a local weight assigning greater weight on nearby samples. The l-th kernel
k(di,j ; w̃)4/2l has a faster-decay for small l while slower-decay for large l. If b > 1, the weight
bl for faster-decay kernels are larger than those for slower-decay kernel, while the opposite
is true b < 1. Thus, Eq. 2 estimates the decay speed of the kernel by estimating the b

parameter.
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Unlike k(di,j ; w), which is used in the ordinary GWR, k∗(di,j ; a, b) is just a linear function
with respect to the parameters a and bl. Thus, a quasi-linear time algorithm, which is
explained in [12] is available for the model estimation.

2.3 Spatial prediction using the scalable GWR model
The basic GWR is readily applicable for spatial prediction by assuming a spatial kernel
centered on the prediction site. Similarly, once the a and b parameters are estimated by the
LOOCV, the regression coefficient at the prediction site s0 is estimated by a WLS in which
the samples are weighted by using the following kernel function:

k∗(d0,j ; a, b) = a +
L∑

l=1
blk(d0,j ; w̃)4/2l

, (3)

where d0,j is the distance between the prediction site and j-th sample site. Eq. 3 assigns large
weights on observations nearby the site s0. Thus, the regression coefficients are estimated to
reflect the local property nearby the prediction site. Spatial prediction at site s0 is performed
by substituting the estimated local coefficient β̂i,k into the following model:

ŷ0 =
K∑

k=1
x0,kβ̂0,k (4)

Thus, the scalale GWR is easily employed for spatial prediction. Importantly, the spatial
interpolation achieves a (quasi-)linear computation cost that is considered as desirable for
large-scale spatial predictions in geostatistics. Nevertheless, the scalable GWR has never
been applied fro spatial prediction.

3 Application

This section examines the performance of our proposed prediction method through a com-
parison of prediction accuracy with modern prediction techniques including (conjugate)
NNGP and the light gradient boosting machine (LightGBM), which is known as an accurate
and computationally efficient gradient boosting algorithm [8]. We also consider the linear
regression (LM) for reference.

The Lucas housing data, which consists of the data of 25,357 single family houses sold in
Lucas, Ohio in 1993-1998 (N = 25, 357), is used for the comparison. The conventional GWR
is hard to apply because of the computational burden. The explained variable is logged
housing price (see Figure 1) and the explanatory variables are total living area in square feet
(TLA), garage area in square feet (garagesqft), and building age (AGE).

Prediction accuracy is compared though a 5-fold cross-validation (CV). The root mean
squared errors (RMSEs) are as follows: 0.462 (LM); 0.360 (LightGBM); 0.362 (NNGP);
0.309 (Scalable GWR). Surprisingly, scalable GWR has outperforms NNGP and LightGBM,
which are modern geostatistical method and machine learning method respectively. Figure 2
plots the observed price in the x-axis and the price predicted during the CV in the y-axis.
Based on this figure, the scalable GWR tends to have smaller prediction error relative to
alternatives. The result suggests the potential of the scalable GWR as a spatial predictor.
From Figure 2, it is also observed that several predicted values of the scalable GWR have
large error. Further stabilization might be required to improve the prediction accuracy.
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12:4 Large-Scale Spatial Prediction by Scalable GWR

Finally, Figure 3 compares interpolated housing price map. Here, logged price in each 250
m grid covering the study area is predicted. Because explanatory variables are unavailable
on the grids, we compare NNGP with constant mean and the scalable GWR with spatially
varying intercept. Based on the result, the scalable GWR tends to have smoother prediction
result relative to NNGP.

Figure 1 Logged housing price in Lucas county, Ohio.

Figure 2 Comparison of observed (x-axis) and predicted housing prices (log-scale; y-axis).

Figure 3 Comparison of observed and predicted housing prices (log-scale). Intercept-only model
is used for comparison.
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