
Geographically Varying Coefficient Regression:
GWR-Exit and GAM-On?
Alexis Comber #

University of Leeds, UK

Paul Harris #

Rothamsted Research, Harpenden, UK

Daisuke Murakami #

Institute of Statistical Mathematics, Tokyo, Japan

Narumasa Tsutsumida #

Saitama University, Japan

Chris Brunsdon #

Maynooth University, Ireland

Abstract
This paper describes initial work exploring two spatially varying coefficient models: multi-scale
GWR and GAM Gaussian Process spline parameterised by observation location. Both approaches
accommodate process spatial heterogeneity and both generate outputs that can be mapped indicating
the nature of the process heterogeneity. However the nature of the process heterogeneity they each
describe are very different. This suggests that the underlying semantics of such models need to be
considered in order to refine the specificity of the questions that are asked of data: simply seeking
to understand process spatial heterogeneity may be too semantically coarse.
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1 Introduction

Geographically varying regression models are those that estimate coefficients locally rather
than globally. A key feature of such models is that they accommodate process spatial
heterogeneity and support local understandings of how the relationship between different
inputs and an outcome vary spatially. Geographically Weighted Regression (GWR) [2] is
the best known method to calibrate spatially varying regression models. It uses a moving
window (kernel) weighted regression centred on locations in the study area, to estimate
local coefficients. The Geographically Weighted (GW) framework has been extended to
other statistical methods as well as regression such as GW-PCA [10], GW Discriminant
Analysis [3] and GW correspondence matrices [4]. The GWR framework has also been
extended to accommodate parameter (predictor variable) specific bandwidths in Multi-Scale
GWR (MS-GWR) [18, 8, 13].

Determining the kernel bandwidth (size) in any GW analysis is critical as this defines
the variation in the local outputs (i.e. the degree of smoothing). Optimal bandwidths are
identified through some measure of model fit. Thus calibrating GWR model bandwidth(s)
in this way provides an indicator of the spatial scales over which heterogeneous processes
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operate, enhancing process understanding. There are some concerns about the identification
of optimal bandwidths for GWR and MS-GWR using current search heuristics, as in some
cases optimisation searches may return local rather than global optima [6]. The potential for
this is particularly acute when the bandwidth search space is multi-dimensional (MS-GWR).
This may be because the increased complexity / dimensionality of the bandwidth search
space means that the potential for local optima to be identified by search heuristics is greater.

An alternative approach to calibrating local coefficient models can be constructed using
Gaussian Processes (GPs) to model terms in Generalised Additive Models (GAMs) [17, 7].
A GP is a random process over functions and GAMs are a general approach to calibrating
regression models with unspecified functions of the predictor variables, of the form:

y = α + f1(z1) + f2(z2) + · · · + fm(zm) + ϵ

where zj may be a vector.
These can be extended so that each fj(zj) is a linear regression coefficient on another

predictor xj :

y = α(z0) + x1f1(z1) + x2f2(z2) + · · · + xmfm(zm) + ϵ

Finally, if z0 = z1 = · · · zm = z say, and z is a vector specifying spatial locations then
this specifies a geographically varying regression model:

y = α(z) + x1f1(z) + x2f2(z) + · · · + xmfm(z) + ϵ

One way of specifying α(z) · · · fm(z) is that each function is generated from a GP and
each function estimate is an a posteriori estimate of a GPs with a zero mean. GPs also have
a covariance function:

κm(δ) = Cov(fm(z), fm(z + δ))

These control the “smoothness” of fm(z) - the more rapidly κm(δ) reduces as the
magnitude of δ increases, the “smoother” fm(z) tends to be. These are similar to models
based on Kriging as semivariogram functions are related to covariance functions. In a similar
way to MS-GWR, the covariance function for each fm(z) is individually calibrated to optimise
model fit. One task of the GAM is to estimate parameters in each κj(δ) and so estimate
fm(z).

Thus both MS-GWR and GAM GPs with a GP smooth construct spatially varying
coefficient models: both require the degree of smoothing to be determined or specified,
with this done through the optimisation of the bandwidth for each predictor variable via a
back-fitting operation for MS-GWR, and in a GAM GP spline over geographic space, this is
similarly determined through a smoothing parameters for each GP. Both provide a measure
of the process heterogeneity specific to each predictor variable in a regression.

The aim of this paper is to explore the complementaries between MS-GWR and GAM
GPs specified with observation spatial locations as different approaches for specifying geo-
graphically varying regression models in terms of the process understanding (the scale of
spatial heterogeneity) they support. It will also reflect on how fit GA / GP and MS-GWR
models can be optimised and issues around using them for prediction.



A. Comber, P. Harris, D. Murakami, N. Tsutsumida, and C. Brunsdon 13:3

2 Background: GWR and GAM GP

2.1 GWR
Geographically Weighted Regression (GWR) [2] is spatially varying coefficient model, that
uses a kernel based approach to create a series of local regression models, for which local
coefficient estimates of the predictor variable can extracted and mapped. GWR attempts to
calibrate regression models of the form:

yi = β0(ui, vi) + β1(ui, vi)x1i + · · · + βm(ui, vi)xmi + ϵi

where yi and {x1i, · · · , xmi)} for i = 1, · · · , n are a set of observations with m predictor
variables and a response, {β0(., .), · · · βm(., .)} are functions of two variables providing a
mapping from location to a regression coefficient, (ui, vi) for i = 1, · · · , n are locations
associated with each of the n observations, and ϵi is a random variable, typically from a
Normal distribution. The functions βj(., .) are usually of most interest, and after a model is
calibrated these are typically illustrated cartographically. GWR estimates these functions
using data subsets falling under a weighted kernel around a point (u, v) to calibrate a local
weighted least squares regression. The kernel generally takes a distance decay function such
as a Gaussian decay of the form:

wi = exp
(

− d2
i

2h2

)
where di is the distance from (u, v) to (ui, vi) and h is a quantity termed the “bandwidth”
that determines the size of the regression window. Bandwidths can be a fixed distance or a
fixed number of nearest data points (i.e., an adaptive radius depending on the local density
of points. If h is large, the functions βj(., .) become smoother and thus determining the
size of bandwidth in any GWR analysis is critical as this defines the variation in the local
outputs (i.e. the degree of smoothing). Various approaches to finding an “optimal” h for
fitting a model to a given data set exist and generally these try to optimise some measure of
model fit and parsimony, such as AIC.

A standard GWR operates determines a single bandwidth and thus implicitly assumes
that each input variable operates over the same scale with respect to its relationship to the
response variable. In reality some relationships may operate over larger scales than others and
a standard GWR finds a best-on-average scale of relationship non-stationarity [5]. Multi-Scale
GWR (MS-GWR) can be used to address this [18, 8, 13]. It determines a bandwidth for
each predictor variable plus the intercept individually, thereby allowing individual response-
to-predictor variable relationships to vary. Recent thinking has suggested that because of
this, MS-GWR should be the default GWR [5], and a standard GWR only used if there is
evidence to support a single scale of relationship (and bandwidth).

2.2 Statistical Tensions with GWR
GWR has at its core the idea that “whole map” global statistical models ignore any process
heterogeneity and implicitly assume it does not exist. GWR is attractive to geographers and
GIScience because it shows how and where processes vary spatially and because it explicitly
reflects Tobler’s First Law of Geography [15]. This tension between advocates of global
models in classic statistics and local models in spatial statistics can be observed in some
of the critiques of GWR and other nonstationary models [16, 14]. On one side, the main

COSIT 2022



13:4 Geographically Varying Coefficient Regression: GWR-Exit and GAM-On?

critique is that GWR and nonstationary models provide only a collection of local models
in order to model a non-stationary process (in this case the coefficients), whereas Bayesian
models [9], for example, provide a full single model able to capture a non-stationary process.
A further critique is that if the global model has locally clustered outliers (a key indicator of
the potential suitability of a GWR model), then some explanatory variables are missing, or
the process under investigation has been poorly represented by the model inputs or some
theoretical understanding of the process is lacking (and not represented in the predictor
variables).

On the other, advocates of GWR and local statistical analyses argue that whole map
regression models may unreasonably assume stationary regression coefficients [12] and process
heterogeneity (spatial variation in data relationships), whereas in reality the processes do vary
spatially, for example the relationship between crime and unemployment levels is not the same
everywhere. And potentially these arguments are more pertinent to socio-economic processes,
which are more likely to be specifically concerned with how processes manifest themselves
in different socio-economic (local) contexts local, while many environmental or physical
processes have fixed global (mathematical) relationships - i.e. laws. An additional related
argument is that socio-economic analyses are frequently in the situation where ideal data are
never available for actual real-world analysis, as opposed to simulated data commonly used in
theoretical statistics. Large swaths of GIScience and geography deal only in secondary data
– data that was collected by someone else, usually for a different purpose – and frequently
have to use proxies for the data they would really like to use. Very rarely are bespoke
data, collected under experimental design and with full understanding, used in geographical
analyses [1], especially socio-economic ones. In this sense, the use of local statistical models
or global ones, and whether you believe in a global truth or local process understanding, are
a bit like a religious belief: it either makes sense (conceptually or practically) or it does not,
and no amount of logic will sway opinion.

2.3 GAMs, Bases and Gaussian Processes
A Generalized Additive Model (GAM) uses smooth functions of the predictor variables in
which the values of y are assumed to be of an exponential distribution, such as a Gaussian
one. If

y = f(x) + ϵ

where f is the function being sought in the model, then in GAMs, rather than assuming y

to be some linear function of x, a space of functions, or basis, is chosen of which f is some
element. This allows the basic formula above to be expanded:

y = f(x) + ϵ =
d∑

j=1
βj(x)γj + ϵ

where each βj is a basis function of the transformed x and the γ are the corresponding
regression coefficient estimates. One example of a basis is a Gaussian Process basis. If there
are n distinct geographical locations in the data set, knowing the locations and the covariance
function κ the variance covariance function of the values of βj in each location can be found,
giving a variance covariance matrix R. This can be translated into a set of n basis vectors
βj(x) [11], and the GAM can be calibrated in this way. Thus, in contrast to standard linear
models, the predictors in a GAM include smooth functions of some or all of the covariates,
which allow for non-linear relationships between the predictors and the target variable.
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Figure 1 The working of a GAM spline, with simulated x and y data: the LHS plot shows a
linear regression fitted between knots, the centre shows each basis multiplied by the corresponding
piecemeal linear regression coefficient, and the RHS plot the sum of the basis functions.

GAMs have at their heart the fitting of a series of non-linear functions through the data
as illustrated in Figure 1. In this, the various increasing and decreasing functions (centre
panel) indicate the slope of coefficients from the data defined by a set of x-points called
knots (LHS panel). The RHS panel shows the sum of the basis functions, and is equivalent
to taking the fitted values from a regression on the basis expansion of x. Is this local fitting
that starts to hint at how GAMs can be used with geographic data, where not only are the
splines constructed in attribute space but over geographical space if that is included in the
inputs to the spline. It suggests that GAMS have the potential to bridge between the need
for local, spatial understanding such as is provided by a GWR analysis and for global models,
as well as for the enhanced predictive power of non-linear statistical models.

3 Analysis

3.1 Overview and Data

Socio economic data from the gw R package is used to illustrate both spatial understanding
from GWR and spatial prediction using GAMs. This has census data for the counties in state
of Georgia in the USA from the 1990s. It has 159 observations and 6 variables of interest,
median income, % of the population that is rural, % with degrees, % elderly, % foreign born
and % black. The analyses below construct a MS-GWR model and a GP-derived GAM spline
model of Median Income. Both generate local coefficient estimates, which can be mapped.

COSIT 2022
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3.2 MSGWR vs GAM with GP splines
MS-GWR analyses require the explicit identification of the individual bandwidths for each
covariate. These provide important information about spatial scales at which the relationship
between the predictor variable and the target variables operate. Small bandwidths indicate
a local scale and large ones a global scale. It is quite common for these to vary from highly
local to highly global within a single MS-GWR analysis.

The MS-GWR model shows the covariates to have a range of adaptive bandwidths
(Table 1), and the varying degrees of process heterogeneity are shown by the distributions of
the coefficient estimates in Table 1 and by spatial distribution in Figure 2. In this case the
bandwidths indicate that the variables for % rural (PctRural), % with degrees (PctBach)
and % elderly (PctEld) are highly localised whereas % foreign born (PctFB) and % black
(PctBlack) are global. These are also indicated by the variation in the coefficient estimates
for the covariates in Figure 2.

Table 1 The MS-GWR bandwidths (BW) and distribution of the coefficient estimates.

BW Min 1stQ Median Mean 3rdQ Max
Intercept 25 27.98 38.85 46.12 45.60 52.45 59.97
PctRural 88 0.04 0.06 0.10 0.10 0.14 0.16
PctBach 26 0.02 0.58 0.95 0.87 1.15 1.82
PctEld 31 −2.46 −1.81 −1.42 −1.48 −1.15 −0.48
PctFB 157 −1.48 −1.46 −1.41 −1.37 −1.30 −1.09

PctBlack 157 −0.24 −0.23 −0.22 −0.22 −0.21 −0.20

In a similar way, Gaussian Process splines can be used in a GAM model, parameterised
with observation location, in this case projected Easting and Northing. Each spline was
specified with 7 knots in order to ensure sufficient degrees of freedom across the data and the
splines. Splines optimise a smoothing parameter which controls the degree of smoothing of
the data and as such indicates the locally varying nature of the coefficient. The GPs modelled
in the GAM function all have a mean of zero, so for each covariate an extra fixed offset term
is added. The fixed terms are shown in Table 2 and the spatially smoothed terms in Table 3.
Here it can be seen that of the fixed terms, the Intercept, % with degrees (PctBach), %
elderly (PctEld) and % black (PctBlack) are globally significant, while the Intercept, %
with degrees (PctBach), % elderly (PctEld) and % black (PctBlack) are locally significant.

It is also possible to map locally significant predictors of Median Income arising from the
GAM splines as in Figure 3. The trends in smoothed coefficients broadly show East-West
gradients for the Intercept, % with Degree and % Elderly, and North-South ones for % Black.

Table 2 The coefficient estimates of the GAM fixed terms.

Estimate Std. Error t-value p-value
Intercept 46.398 4.004 11.588 0.000
PctRural −0.541 0.882 −0.613 0.541
PctBach 0.356 0.179 1.985 0.049
PctEld −0.482 0.112 −4.313 0.000
PctFB −0.445 0.294 −1.513 0.133

PctBlack −0.159 0.023 −6.840 0.000
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Figure 2 MS-GWR coefficient estimates.

Table 3 The GAM spatially smoothed terms from the GP splines with location.

Effective df Ref. df F p-value
s(X,Y):Intercept 15.538 18.932 2.093 0.008
s(X,Y):PctRural 5.616 6.044 2.081 0.075
s(X,Y):PctBach 2.517 2.529 2.780 0.031
s(X,Y):PctEld 2.500 2.500 4.812 0.015
s(X,Y):PctFB 2.500 2.500 0.797 0.614

s(X,Y):PctBlack 2.500 2.500 11.675 0.000

3.3 MSGWR bandwidth vs GAM Spline smoothing parameter
The MS-GWR and the smooth terms from the GAM GPs splines constructed with locations,
both construct spatially varying coefficient models. They also both include some measure of
the degree of local smoothing: in a MS-GWR this is specified through the optimisation of the
bandwidth for each predictor variable via a back-fitting operation and in a GAP GP this is
indicated through smoothing parameters for each spline. Importantly both methods provide
a measure of the process heterogeneity that is specific to each predictor variable. However, it
is evident from Figures 2 and 3 that the way that the spatial processes are being modelled by
the 2 approaches is very different. The MS-GWR results have distinct but different locales
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Figure 3 The local coefficient arising from the spatial GAM splines.

of high coefficient estimate value for the different covariates. For example, the association of
% with Degree with Median Income is much greater in a region located in the centre of the
Western part of Georgia under a MS-GWR, whereas under the GAM it is in the South West
corner.

Evidently, despite using the same data, and generating spatially varying coefficient
estimates, the 2 approaches are very different. It would be useful to better understand
how their results relate, if at all, either to be able to link them, or to be able to infer the
circumstances in which each approach may be most useful, under the assumptions that
MS-GWR provides an intuitive understanding of the spatial of the relationship between
target and individual predictor variables and GAMs probably have a stronger theoretical
background.

To investigate how these different ways of capturing and modelling process spatial
heterogeneity, relate if at all, the MSGWR bandwidths and GP spline smoothing parameters
were examined. The smoothing parameters and the MSGWR coefficients were extracted
from the models A correlation showed a high degree of fit for and when they were plotted as
in Figure 4, there is a clear trend between them as shown in the tabular values and in the
scatter plot. This shows, that at least in this example, there is some form of relationship
between MSGWR bandwidth and smoothing parameters of Gaussian Process splines.
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Figure 4 MSGWR bandwidths (x-axis) against the log of the GAM GP spline smoothing
parameter (SP) (y-axis) with a log trend, and a table of the data included.

4 Final Comments

Spatially vary coefficient models are useful because they explicitly accommodate process
spatial heterogeneity, where the relationships between an outcome and factors used to model
or predict that outcome, may change with location. The locally varying coefficient estimates
that are generated by such approaches provide an explicit representation of process spatial
heterogeneity that can be easily communicated via maps. This features has underpinned the
popularity of GWR and and other GW models.

In this work, the same process (Median Income in 159 counties of the state of Georgia) is
clearly being modelled in different ways by two different spatially varying coefficient models,
MS-GWR and GP splines with location in a GAM. The maps in Figures 2 and 3 show these
differences, and provide an indication of the different model semantics. It suggests that the
concept of “process spatial heterogeneity”, which is frequently referred to in the GIScience
and spatial analysis literature with a link to Tobler [15] needs to be refined. The results of
the two methods used here indicate the need for more nuance in the way that we ask data
for “process understanding”.

There is evidently a relationship between MSGWR bandwidths and GP spline smoothing
parameters. The primary role of GAMs is prediction, but here we have shown that when
constructed over geographic space, they can be used to generate locally estimated coefficients.
Further work will explore GAM GP splines over other spatial datasets including simulated
data with known spatial properties. It may extend the splines to the temporal domain.
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