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Abstract
The widespread availability of GPS-enabled mobile devices has contributed towards an unprecedented
volume of data on human movement. Human mobility data are the key input for developing accurate
mobility models that can support decision-making in, for example, urban planning, transportation
planning and disease spread. However, the increasing geoprivacy concerns have been limiting
the use of and access to such data. For this reason, the WHO-WHERE-WHEN (3W) model, a
privacy-protective model for generating synthetic mobility data, has been developed. However,
human mobility is affected by multiple factors that must be accounted for to produce synthetic
mobility trajectories that accurately simulate the fluctuations of population in a study area. The
3W model already considers four main factors affecting human mobility: size and shape of activity
spaces, circadian rhythm, and home and work locations. Yet, meteorological factors are known to
affect human mobility patterns but, to our knowledge, there is not a model that accounts for weather
conditions. In this paper, we propose a theoretical framework to extend the 3W model to a 4W
model: WHO-WHERE-WHEN-WEATHER. We hypothesise that accounting for weather conditions
in human mobility predictions will increase the overall accuracy of predicted mobility patterns.
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1 Introduction

Mobility models are developed with data on human movements to identify and predict
mobility patterns. However, human movements do not take place in a vacuum but are
rather embedded and influenced by the surrounding environment, also known as movement
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context [6]. Thus, recent mobility studies have been linking movement data to contextual
information to gather insights into commuting behaviour [24], tourist behaviour [11] and how
weather influences human movement patterns [7]. Similarly, mobility models have also been
incorporating movement context by considering work and home regions [16], commuting
distance [17] or social media data [10].

Mobility models do not account for weather variables, yet human movement behaviour
is impacted by meteorological conditions: [7] and [29] found that wind-speed and direction
had an effect on the proportional distribution of time spent in different activities as well as
promoted changes in the choice of transportation modes. [9] and [14] described an effect of
rain on the proportion of vehicular and walking trips. [23] studied the effect of wind and rain
on peoples shopping behaviour. [11] and [30] found a positive effect of increasing temperatures
on walking. [5] discovered that increased rainfall led to higher use of public transportation
in Bergen, Norway. [22] found that weather conditions influence urban mobility patterns.

Despite the increasing body of evidence supporting the role played by weather in human
mobility patterns, up-to-date to our knowledge no mobility model accounts for meteorological
variables when modelling nor predicting human movement patterns. Therefore, the goal
of this paper is laying the foundations of a framework for weather-aware human mobility
modelling at the population level. To consider weather conditions we chose to extend the
WHO-WHERE-WHEN (3W) model, a privacy-protective model for generating synthetic
mobility data [25], by incorporating ERA5 reanalysis data from the European Centre for
Medium-Range Weather Forecasts (ECWMF).

2 The WHO-WHERE-WHEN (3W) model

The 3W is an agent-based model that generates synthetic trajectories by imitating real
spatio-temporal characteristics of movement data [15, 19]. Such models can be used to
simulate hypothetical scenarios, which are useful in disease spread prediction and urban
planning. Additionally, in models such as 3W, the generation of synthetic trajectories from
real data safeguards individual’s privacy while also providing synthetic data that are still
useful for analyses due to their realism [26, 13].

3 The WHO-WHERE-WHEN-WEATHER (4W) model concept

In this section we overview the conceptual framework for the 4W model (Figure 1) and
describe the required input data, trajectory sampling process, synthetic trajectory generation
process and respective output.

3.1 Inputs

3.1.1 Mobility data
We will use Near® unidentifiable mobility data, which is an aggregate of mobile location data
collected from smartphone apps. When a user installs an app, they are asked to share their
location data. Users can opt in or out to location sharing, but when they opt in, their phone
collects location data and shares it with the app provider and Near®. Latitude-longitude
coordinate pairs are collected by smartphones as they move through time and space. These
lat-long pairs are associated with the specific device through a unique identifier also available
in the dataset. The data are provided as a table containing latitude, longitude, timestamp
and device id.
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Figure 1 Concept overview for the WHO-WHERE-WHEN-WEATHER (4W) model.

The Near® mobility dataset we use was generated by about 4.7 million devices and it
covers Rio de Janeiro, a city of approximately 6.7 million people in Brazil, between May
2019 and January 2021. The sampling rate of location data varies from milliseconds to hours
or days depending on the device.

3.1.2 Weather data

The weather data we plan to use comes from the fifth generation ECMWF atmospheric
reanalysis model (ERA5) of the global climate covering the period from January 1950 to
present. ERA5 provides hourly global estimates of atmospheric, land and oceanic climate
variables on a 30 km grid from the surface up to a height of 80km. The outputs from ERA 5
reanalysis have been validated and performed with high accuracy when compared to data
from meteorological stations in Brazil [4]. Even though ERA5 reanalysis model provides a
large number of atmospheric variables, we are only interested in using the ones that have
potential direct effect on human mobility patterns. More specifically, we will look at wind
speed components at ten meters height from the surface, temperature at two meters height
from the surface, total cloud cover, total precipitation, rain rate and accumulated snowfall.
We will also take into account the daylight conditions by also annotating the trajectories
with sunrise and sunset information from the daylight Python package [1].

COSIT 2022



17:4 A Weather-Aware Framework for Population Mobility Modelling

3.1.3 Spatial tessellation
The spatial tessellation is an aggregation layer that divides the simulation area, into a set of
non-overlapping polygons, each with a unique identifier and centroid coordinates [20]. In our
case, we will use a common approach, which is constructing a grid over the whole area of
simulation [17, 8]. The resolution of the grid should not be higher than the resolution of the
input data. We plan to test our model using various grid resolutions.

3.1.4 Data pre-processing
The raw data were not sorted, therefore we first split them into separate files for each unique
device identifier. Furthermore, to facilitate sample selection for further analyses each device
data file was also annotated with metadata on data incompleteness. The incompleteness q is
expressed by the total number of missing observations in one-hour time intervals [27]. In
many cases, we observed large gaps between consecutive records in movement trajectories,
reaching up to a few months. Therefore, we calculated the highest possible q that could be
achieved from a one-month-long sample of the movement trajectory for a given device ID.

At this stage, mobility data have a form of a set of raw movement trajectories Pi of i

devices. Each Pi is a set of x, y coordinates and timestamps t ordered by time. In the next
step, we will select a sample of at least 5000 movement trajectories with q < 0.2. In order
to reduce noise in the data, we will extract stay-points from the movement trajectories by
grouping data points from each Pi into clusters of spatio-temporally neighbouring points
[25]. Stay-points are defined as locations where a device spends more than tau time within a
range of delta. In our case, we plan to apply commonly used values of tau = 10 minutes
and delta = 300 metres [18, 25]. and Then, we will assign all detected stay-points for each
mobility trajectory Pi to the respective cells in the spatial tessellation, creating a movement
trajectory where the coordinates are the centroids of the spatial tessellation cell. Finally, we
will create movement sequences by aggregating data to one-hour time-bins. To achieve that,
movement trajectories will be transformed into a sequence of cells visited every hour, where
at each time interval the cell visited for the longest period will be selected as the location of
a device for the one-hour time-bin .

3.2 Sampling
In the sampling stage, input data are used to estimate mobility-related probability distribu-
tions. This stage of the 4W model is called the WHO module. First, we use the mobility
dataset to detect important places for each individual. Important places are defined as
regularly visited locations that have particular importance or function to an individual [27].
In the 3W model, important places refer to work and home only, i.e. the first and second
most significant locations. In the 4W model we will expand this to the nth most important
locations. Introducing a 3rd or even 4th most important location can help accounting for
other regular trips, such as attending an evening course or going to a gym, which could
improve the accuracy of the model [10].

We will assign a rank to detected important locations, where the highest rank indicates
the most significant place. Based on that, we will replace locations recorded in a movement
sequence of each individual by the important rank for this place. Locations that are not
given a rank will be denoted as “other”. This process creates an abstract movement sequence
consisting of “abstract locations” [20], i.e., a temporal sequence of places without geographic
coordinates and in which the spatial component is represented by places, such as “Home”,
“Work”, “nth most significant place” and “Other”.
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In the next step, we will enrich abstract movement sequences with the chosen met-
eorological data. Each record of the abstract movement sequence will be annotated with
information on the weather conditions at the time and location where it was registered.
Similarly to [7], we will translate weather conditions into sequences of qualitative states.
The combination of the sequences describing weather conditions and the abstract mobility
trajectory will create a contextualised abstract mobility trajectory that can be represented by
multiple sequences of strings aligned in time (Fig 2). These are the so-called multi-channel
sequences (MCSA), which is a bioinformatics technique for sequencing and analysing human
genome [3]. However, MCSA has been extensively used for longitudinal studies in social
sciences [2] and more recently in animal and human mobility studies [12, 7].

Figure 2 Schematic representation of one context-enriched abstract movement trajectory in the
form of a multi-channel sequence. Each channel represents a property of movement or movement’s
surroundings. Here we have one channel for each meteorological variable and one channel representing
places, which is our geographical dimension here. The strings in each sequence represent a specific
state for that channel. For example, “AV” indicates average wind speed, “EH” indicates extremely
high temperature, “DR” indicates dry weather.

All context-enriched abstract movement sequences will be used to find groups of individuals
with similar mobility patterns while also taking into account the weather conditions affecting
movement. We will use multi-channel sequence analysis (MSCA), optimal matching and
hierarchical clustering to group contextualised abstract movement trajectories according to
mobility behaviour and weather condition. The number of clusters of mobility behaviour will
be estimated using Silhouette Coefficient criterion. The Silhouette Coefficient criterion is a
partitioning metric that takes into account the mean intra-cluster distance and the mean
distance to the nearest cluster for each sample [21]. We will use MCSA to calculate pairwise
dissimilarity between all context-enriched abstract movement sequences. Dissimilarity is
computed based on the minimal cost of replacing, deleting or inserting strings in the channels
representing “place” and “weather conditions” so that one sequence is identical to another.
This will generate a dissimilarity matrix that can then be used as a distance metric for
clustering [7].

Clustered abstract trajectories will be used to calculate conditional probabilities expressing
how likely it is for a person from one of the behavioural groups to visit a particular abstract
location (identified by its rank) at a given time of the day and under certain weather
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conditions. The set of these probabilities is called a mobility diary. We will use these
conditional probabilities in the generation stage of the model to create synthetic movement
trajectories. Clustered abstract trajectories will also be used to determine the proportion
of agents in each behavioural group for the generation process. The proportion will be
established as equal to the one found in the original data.

Finally, we will calculate the distribution of significant locations and the distributions
of commuting distances between important locations for each behavioural group. The
distribution of significant places indicates how likely it is to find the important location of a
particular rank in each cell of spatial tessellation. Such distribution is referred to as a weighed
spatial tessellation [20]. Distributions of commuting distances indicate the median distance
between locations of a particular rank, in all possible combinations without repetitions.

3.3 Generating

The generation process will start initializing agents. Agents will be assigned a mobility diary
from clusters in a ratio corresponding to the ratio of individuals clustered in each group. After
that, each agent will be assigned important locations based on sampled spatial distributions,
following the procedure shown in Fig. 3. Important places will be generated for each agent,
using the weighted spatial tessellation and distributions of commuting distance from the
agent’s cluster. The first significant location will be selected using the spatial distribution
of the most significant locations. The next places, if considered within the model, will be
selected using weighed spatial tessellation for a currently generated rank of places and all
combinations of commuting distance distributions. For example, when generating the second
place, the commuting distance between the first and the second place will be considered (see
Fig. 3). The second location will be selected from an underlying weighed spatial tessellation
within the commuting distance from the first place. When the third place is generated, its
location will be selected from its weighted spatial tessellation in the area which lies within
commuting distances from the first and the second place. The process will follow the same
logic for the fourth, fifth and nth most significant places. The location of the fourth place,
for example, will be selected in the area which lies within commuting distances from the first,
second and third places.

Figure 3 Important places generation process on the example of the second place (a) and the
third place (b) selection. The second place is selected within commuting distance from the first
place using underlying weighted spatial tessellation for the second place. The third place is selected
within a commuting distance from the first and the second place using underlying spatial tessellation
for the third places.
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After assigning important places to every agent, the data generation process will start.
That process will be controlled by the WHERE and WHEN modules, which separately
simulate temporal and spatial aspects of mobility. This will be an iterative process, where
each location for every agent will be generated using its mobility diary and considering current
weather conditions. The WHEN module will select the next abstract location for an agent,
which can be either one of the important places or another location. The WHERE module,
depending on the selection, will generate the next data point in the location of a selected
important place or will use the Exploration and Preferential Return (EPR) mechanism [28]to
select other location. The EPR mechanism selects the next location to be an exploration or
return to a previously visited place. This decision is based on the number of locations already
visited by the agent and accounts for exploratory behaviour in human mobility. Locations
for exploration will be selected using their attractiveness, which is defined as the population
distribution in a given location divided by a distance friction function. The distance friction
function determines that locations further away are less attractive than closer locations. The
location of return will be selected using a probability distribution based on the frequency of
previous visits.

The above process will be completed when the desired number of agents and data records
are generated. The output from the model will have the form of a raw movement trajectory file,
where each row consists of an identifier, timestamp and geographic coordinates. Generation
accuracy will be assessed by comparing the results from the 4W model to real data.

4 Expected results and final considerations

We introduced a theoretical framework for taking weather into account when performing
human mobility modelling. More specifically, we lay the foundations for extending the
WHO-WHERE-WHEN (3W) model [26] into a WHO-WHERE-WHEN-WEATHER (4W)
model. The 4W model will not only introduce weather information, but also experiment
with varying the number of most important places. We hope that, by introducing weather
information and expanding the number of most significant locations, we will be able to
improve the accuracy of predictions, which we will test by comparing the results from the
4W model to the results from the original 3W model and real data.
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